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Control over quantum electrodynamics (QED) radiative corrections is critical for precise determination
of neutrino oscillation probabilities from observed (anti)neutrino detection rates. It is particularly important
to understand any difference between such corrections for different flavors of (anti)neutrinos in charged-
current interactions. We provide theoretical foundations for calculating these corrections. Using effective
field theory, the corrections are shown to factorize into soft, collinear, and hard functions. The soft and
collinear functions contain large logarithms in perturbation theory but are computable from QED. The hard
function parametrizes hadronic structure but is free from large logarithms. Using a simple model for the
hard function, we investigate the numerical impact of QED corrections in charged-current (anti)neutrino-
nucleon elastic cross sections and cross-section ratios at GeV energies. We consider the implications of
mass singularity theorems that govern the lepton-mass dependence of cross sections for sufficiently
inclusive observables and demonstrate the cancellation of leading hadronic and nuclear corrections in
phenomenologically relevant observables.
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I. INTRODUCTION

The program of studying neutrino oscillations to answer
fundamental questions about neutrinos requires precise inter-
action cross sections. In particular, the ratio of cross sections
for electron versus muon (anti)neutrinos is critical to phe-
nomenology and difficult to constrain by direct experimental
measurements. This ratio is impacted by electromagnetic
radiative corrections [1,2], and it is thus imperative to
compute these corrections and to constrain their uncertainties.
In this paper, we construct the theoretical framework to
determine radiative corrections to neutrino cross sections and
cross-section ratios.1 We consider the experimental condi-
tions under which quantum electrodynamics (QED) radiative

corrections must be computed and discuss the practical
implications for neutrino oscillation analyses.
We formulate the problem of QED radiative corrections

to (anti)neutrino scattering processes in the framework of
effective field theory. This allows a clean separation
between corrections that are rigorously computable within
QED and corrections that depend on hadronic physics.
When the (anti)neutrino energy Eν is much larger than the
charged lepton mass ml (i.e., Eν ≫ ml) the former, soft
and collinear, corrections contain flavor-dependent large
logarithm enhancements, lnðEν=mlÞ; these corrections
depend on detailed experimental conditions but can be
computed perturbatively. The latter, hard, corrections are
subject to hadronic uncertainty but are independent of the
charged lepton mass and cancel in ratios of cross sections
for different lepton flavors (i.e., electron and muon)
involving the same hadronic kinematics. Using effective
field theory methods, we resum large logarithms in per-
turbation theory and estimate the uncertainty from
neglected higher-order corrections. We investigate the
insensitivity of certain cross-section ratios to hadronic
uncertainty at the nucleon level. While the detailed
incorporation of nucleon-level corrections into nuclear
cross sections is beyond the scope of this work,
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1For a concise summary of the theoretical formalism and
implications for νe=νμ ratios see Ref. [3].
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we also discuss how nuclear effects impact these flavor
ratios.
The paper is organized as follows. Section II provides an

overview of the experimental setups and analysis strategies
for current and near-future experiments with GeV energy
(anti)neutrino beams, which are the primary focus of our
work. Section III studies the limit of a nonrelativistic
nucleon, ml ≪ Eν ≪ M, where M denotes the nucleon
mass. This formal limit is used to introduce a class of
observables that incorporates real photon radiation and to
motivate the more general theoretical formalism that
follows. In Sec. IV, we discuss factorization for hard
scattering exclusive processes. We establish the relevant
factorization theorem and evaluate the separate contribu-
tions of soft, collinear, and hard photons. Section V
considers the inclusion of noncollinear energetic photons
in experimental observables. Section VI illustrates the
phenomenological consequences of our analysis; we study
observables representing electron- and muon-induced
electromagnetic showers at neutrino detectors, present
cross sections and cross-section ratios, and compare them
with existing experimental data. Section VII contains a
summary and outlook. We provide tables with cross
sections in Supplementary Material [4].

II. EXPERIMENTAL SIGNATURES OF EVENTS
WITH PHOTONS

Our focus is on accelerator neutrino experiments with
Eν ∼ 1 GeV. In the typical setup, a beam consisting
primarily of muon flavor neutrinos or antineutrinos is
created, and one of the goals in oscillation experiments
is to determine the rate at which electron flavor (anti)
neutrinos are observed in the beam after propagating some
distance. In a simplified description, near detectors are used
to constrain (anti)neutrino flux and muon (anti)neutrino
cross sections, while theory is needed to determine the
effect of differences between electron and muon (anti)
neutrino cross sections.
We consider two basic classes of observables: exclusive

and inclusive. Exclusive observables are subdivided into
two general classes: first, the charged-current elastic
process accompanied by only soft photons of energy
smaller than some value ΔE; second, the same as the first,
but including also energetic collinear photons, within a
cone of angular size Δθ. In both cases, distributions are
computed with respect to the invariant momentum transfer
Q2 between the initial (anti)neutrino and the final-state
lepton jet. For small ΔE and small Δθ, Q2 may be
identified with the hadronic momentum transfer for elastic
(anti)neutrino-nucleon scattering. For the inclusive case,
we consider the class of observables that also includes
energetic noncollinear photons in the cross section.
The parameter ΔE is a soft-photon cutoff parameter:

photons with energy smaller than ΔE are assumed to be
unseen by the detector. The appropriate choice of ΔE

depends on the specific process and observable under
consideration and on properties of the detector. For
example, photons that interact repeatedly by Compton
scattering in a diffuse way throughout the detector, and
photons that destructively interact by eþe− pair production
and therefore appear spatially and directionally local within
the detector, will leave very different signatures. Photons in
the former class are effectively “invisible” as separate
objects because they do not leave a localized signature,
although they might contribute to a calorimetric measure-
ment of nonlepton energy in some detectors. In polystyrene
scintillator or water, Compton scattering dominates the
photon cross section from energies between 20 keVand 30
or 25 MeV, respectively, whereas in liquid argon detectors,
Compton scattering dominates photon interactions only for
energies between 150 keV and 12 MeV [5]. Therefore, ΔE
will be between ten and tens of MeV for experiments using
these detectors.
The appropriate choice of the parameter Δθ depends on

the flavor of the (anti)neutrino and the detector technology.
In nearly all detector technologies deployed in oscillation
experiments at accelerator energies, electrons and positrons
(e∓) from νe and ν̄e charged-current interactions are
observed through electromagnetic showers, i.e., a cascade
of bremsstrahlung photons from electrons and positrons
and eþe− pair production from these photons. Radiated
photons that are roughly collinear with the initial e− or eþ
will generally not be distinguished from this electromag-
netic shower and must be included as part of the observ-
able. For a given charged lepton direction, we consider this
observable to consist of all events with a specified total
lepton jet energy, after summing the charged lepton energy
and the energy of photons within a cone of angular size Δθ.
To estimate the appropriate Δθ, we consider the Molière
radius of the electromagnetic shower initiated by the
primary e� and the length of the mean shower maximum
and find the angle which would place the photon within the
Molière radius at shower maximum [6]. This angle
decreases logarithmically with the primary e� energy.
Consider for example a typical 500 MeV e� energy; for
polystyrene scintillator, water, and liquid argon, the angle is
9°, 10°, and 16°, respectively. For all three materials, the
angle is a factor ∼2 lower at 3 GeV e� energies.
Accordingly, a range of Δθ is interesting to consider: from
5° for the NOνA experiment, to 10° for T2K, Hyper-K, and
DUNE, to 20° for the short-baseline neutrino program at
Fermilab [7]. For low-density tracking detectors in a
magnetic field, such as in the existing T2K and proposed
DUNE near detectors, photons would generally not be
clustered together with the primary e�.
In a tracking target detector, such as segmented scintil-

lator, a gaseous tracking detector in a magnetic field, or in a
liquid argon time projection chamber, the energy of final-
state muons from νμ or ν̄μ interactions is typically deter-
mined using the range of the muon in the detector or its
curvature in the magnetic field. Accordingly, collinear
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photons would usually not contribute to the reconstructed
muon energy. On the other hand, in a water Cherenkov
detector, photons would contribute to the observed energy
associated with a muon if their angle from the muon
direction were consistent with multiple scattering over the
range of the muon. We determine the relevant cone size by
computing the Gaussian core of multiple scattering [6] for a
muon. A similar criterion would hold for identification of a
photon in the detector; the photon typically would not be
reconstructed as distinct from the muon if it is emitted
along the path of the muon. The resulting angles are similar
in the relevant materials (polystyrene scintillator, water and
liquid argon), with water 10% larger than polystyrene and
liquid argon another 10% larger. The angles depend weakly
on the kinetic energy of the muon, with angles of ≈2° for
the few hundred MeV kinetic energies relevant for T2K in
scintillator, dropping to ≈1.5° at few GeV energies.
Accordingly, a cone of size Δθ ¼ 2° around the muon is
a reasonable separation between photons in Cherenkov
detectors2 that would be identified as collinear with muons
and those which could be seen as separate particles in the
reconstruction.

III. STATIC LIMIT IN (ANTI)NEUTRINO-
NUCLEON SCATTERING

The tree-level neutrino scattering process is displayed in
Fig. 1:

νlðpÞ þ nðkÞ → l−ðp0Þ þ pðk0Þ: ð1Þ

We consider also the related antineutrino process:

ν̄lðpÞ þ pðkÞ → lþðp0Þ þ nðk0Þ: ð2Þ

It is instructive to first study charged-current elastic
scattering in the formal static limit, ml ≪ Eν ≪ M. This is
an important exactly calculable limit for the more general
case involving nontrivial hadronic structure, analogous to
the well-known McKinley-Feshbach correction for elec-
tron-proton scattering [9,10]. Beyond this formal utility,
however, the static limit captures the leading logarithmi-
cally enhanced contributions to radiative corrections in
perturbation theory and thus correctly describes the leading
logarithm approximation for flavor ratios of interest to
neutrino oscillation experiments. In the following subsec-
tions, we compute this benchmark cross section.

A. Lagrangian and leading-order cross section

The static limit M → ∞, as well as Eν=M power
corrections, may be computed systematically in nonrela-
tivistic (NR) effective field theory. The appropriate effec-
tive theory consists of NRQED for relativistic charged
leptons and nonrelativistic nucleons [11–15], supplemented
by the four-fermion interaction between leptons and heavy
nucleons:

Leff ¼ −
ffiffiffi
2

p
GFVudl̄γμPLνlh̄

ðpÞ
v γμ½cV þ cAγ5�hðnÞv þ H:c:;

ð3Þ

with PL ¼ ð1 − γ5Þ=2. Here hðpÞv and hðnÞv denote heavy
particle fields for the proton and neutron, respectively
[11,16–18]; subscript v denotes the laboratory frame refer-
ence vector vμ ¼ ð1; 0; 0; 0Þ. We have expressed the oper-
ator coefficients in terms of the scale-independent Fermi
constant GF and the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element Vud. At tree level, the effective operator
coefficients are related to familiar nucleon structure param-
eters: cV → gV ≈ 1 and cA → gA ≈ −1.27. Beyond tree
level, we define operators and coefficients in theMS scheme
at renormalization scale μ. The anomalous dimension of
both effective operators is readily calculated:

d ln ci
d ln μ2

¼ −
3

8

α

π
þOðα2Þ: ð4Þ

The tree-level differential cross section for the processes (1)
and (2) is given by [19,20]

dσLO
dQ2

¼ G2
FjVudj2
2π

�
c2V þ c2A − ðc2V − c2AÞ

Q2 þm2
l

4E2
ν

�
; ð5Þ

whereQ2 ¼ −ðp0 − pÞ2 is the momentum transfer between
initial and final lepton states. The total cross section at
leading order is

σLO ¼ G2
FjVudj2
π

ðc2V þ 3c2AÞEν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ν −m2

l

q
: ð6Þ

FIG. 1. Kinematics of charged-current elastic scattering for
neutrino (left) and antineutrino (right).

2This analysis omits an important detail for large water
Cherenkov detectors such as Super-Kamiokande, where large
photosensors and scattering of Cherenkov light play significant
roles in the angular separation between adjacent features [8].
Such effects in a real Cherenkov detector could result in merging
of angular features on scales significantly larger than the 2°
inherent resolution calculated above, but a detailed detector
simulation would be required to assess this effect.
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Note that Eqs. (5) and (6) are valid for arbitrary lepton mass;
below we will focus on the limit ml=Eν → 0. The cross
sections for neutrino and antineutrino scattering are identical
in the static limit.

B. Charged-current elastic process with one soft photon

In the static limit, radiative corrections to the tree-level
result in Eq. (5) can be computed using the Feynman rules
of the effective Lagrangian of Eq. (3). Consider first the
OðαÞ correction to the observable that does not distinguish
between the elastic process and the process with radiation
of one photon with energy below ΔE:

dσsoft ¼
�
1þ α

π
δsoft

�
dσLO: ð7Þ

The correction δsoft is the sum of virtual corrections δv and
real soft-photon corrections δs. Note that the superscript
“soft” here denotes the observable including radiation of
only soft photons and does not imply restriction to the soft
region of virtual diagrams. In the limit of small charged
lepton mass ml=Eν ≪ 1, we have

δv ¼ 2

�
1 − ln

2Eν

ml

�
ln
ml

λγ
− ln2

2Eν

ml
þ ln

2Eν

ml

þ 3

4
ln

μ2

m2
l
þ 5

6
π2; ð8Þ

δs ¼ 2

�
1 − ln

2Eν

ml

�
ln

λγ
2ΔE

− ln2
2Eν

ml
þ ln

2Eν

ml
þ 1 −

1

6
π2;

ð9Þ

with the photon mass regulator λγ. The total correction is
thus

δsoft¼δsþδv¼2

�
1− ln

2Eν

ml

�
ln

Eν

ΔE
þ3

4
ln

μ2

m2
l
þ1þ2

3
π2;

ð10Þ

where, as required, the result does not depend on the photon
mass regulator λγ [21–24]. This correction is shown as a
function of (anti)neutrino energy by the blue solid line in
Fig. 2.3 The cross-section corrections are larger in the case
of the electron flavor, which is subject to larger kinematic
logarithms.

C. Charged-current elastic process with one soft or
collinear photon

Let us similarly consider the charged-current elastic
observable that includes energetic collinear radiation. For
definiteness, the cone observable is defined by fixing the
charged lepton direction and allowing collinear radiation
within Δθ of this fixed direction. An explicit computation
yields the relative correction δjet, including soft and virtual
parts as above, to the leading-order cross section:

dσjet ¼
�
1þ α

π
δjet

�
dσLO; ð11Þ

static limit, 

E = 20 MeV

soft photon only
soft or collinear photon,  = 2o

inclusive cross section

/
L

O

0.8

0.9

1.0

E , GeV
0 2 4 6 8 10

soft photon only
soft or collinear photon,  = 10o

inclusive cross section

E = 20 MeV

/
L

O

0.8

0.9

1.0

E , GeV
0 2 4 6 8 10

FIG. 2. Ratio of one-loop cross section to the tree-level result in the static limit, for scattering of electron (anti)neutrinos (left plot) and
muon (anti)neutrinos (right plot). The observable including only the radiation of one soft photon of energy below ΔE ¼ 20 MeV is
shown by the blue solid curve. The correction including also radiation of one collinear hard photon is represented by the red dashed line,
with cone sizes Δθ ¼ 10° and 2° appropriate for electrons and muons, respectively. Inclusive cross sections are shown by the green
dotted line. All curves are shown with the choice of the scale corresponding to the physical nucleon mass μ ¼ M.

3It is interesting to note the cancellation of terms in Eq. (10)
involving double logarithms in the lepton mass, ∼ ln2ðmlÞ. This
is a consequence of the Kinoshita-Lee-Nauenberg (KLN) theo-
rem [21–24] and finiteness at ml → 0 of the cross section
including real collinear radiation.
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δjet ¼ 2

�
1 − ln

2Eν

ml

�
ln

Eν

ΔE
þ 3

4
ln

μ2

m2
l
þ 13

4
þ 2π2

3
þ
�
ln ð1þ η2Þ − η2

1þ η2

�
ln

Eν

ΔE
− ðtan−1 ηÞ2

þ 1

2
Li2ð−η2Þ þ

1

4
ln2 ð1þ η2Þ þ 1

4

�
2

1þ η2
−

1

η2
− 3

�
ln ð1þ η2Þ −

�
1þ 1

1þ η2

�
tan−1 η

η
; ð12Þ

with the dimensionless parameter η ¼ ΔθEν=ml. At
Δθ → 0, the cross section reduces smoothly to the soft-
photon-only result, δjet → δsoft. In the limit of very small
charged lepton mass ml=Eν ≪ Δθ, the cross section
becomes

δjet !
ml≪ΔθEν

�
1þ ln

ðΔθÞ2
4

�
ln

Eν

ΔE
−
3

4
ln
ðΔθÞ2
4

þ 3

4
ln

μ2

4E2
ν
þ π2

3
þ 13

4
: ð13Þ

Note that, in contrast to Eq. (10), the collinear singularity
∼ lnml in Eq. (13) is regulated by the jet size Δθ. Flavor
dependence of radiative corrections enters via the param-
eter η appearing in Eq. (12) but cancels in the massless limit
ml → 0, in agreement with the KLN theorem [21–24]. The
correction to the jet observable in Eq. (12) is shown as a
function of (anti)neutrino energy by the red dashed line
in Fig. 2.

D. Inclusive cross section in the static limit

Finally, let us describe the contribution of noncollinear
energetic photons. Integrating over the total phase space for
photons above ΔE in energy, we obtain the real hard-
photon contribution:

σh ¼
α

π
δhσLO;

δh ¼ −2
�
1 − ln

2Eν

ml

�
ln

Eν

ΔE
−
3

2
ln
2Eν

ml
þ 13

4
−
π2

3
: ð14Þ

The resulting inclusive cross section σtot is factorizable:

σtot ¼
�
1þ α

π
δtot

�
σLO: ð15Þ

In the limit of small charged lepton mass ml=Eν ≪ 1,
the correction δtot does not depend on lepton flavor and is
given by

δtot ¼ δv þ δs þ δh ¼
3

4
ln

μ2

4E2
ν
þ 17

4
þ π2

3
: ð16Þ

This simple calculation provides another example (cf. [25])
of the cancellation of Sudakov double logarithms [26]

considering the inclusive cross section with both soft and
hard radiation. We present the ratio of the inclusive cross
section to the tree-level result in Fig. 2 by the green dotted
line and observe a cancellation of virtual and real con-
tributions entering the cross section with opposite signs.
Lepton-mass corrections enter with m2

l suppression in
agreement with the KLN theorem [21–24].4
In the static limit, there is no dependence on hadronic

structure (beyond the numerical values of cV and cA),
and hence the entire calculation may be performed
perturbatively. For the general case, where Eν is not
small compared to hadronic scales, it is imperative to
disentangle the hard scale, containing nonperturbative
hadronic physics, from the perturbative soft and collinear
scales.

IV. FACTORIZATION

The process under consideration is charged-current
(anti)neutrino-nucleon elastic scattering: νln → l−pðγÞ,
ν̄lp → lþnðγÞ, where “(γ)” denotes possible photon
emission. Our default observable includes only soft or
collinear radiation of real photons, with the precise defi-
nition for soft and collinear given in Sec. II. Throughout the
analysis, we consider fixed initial- and final-state nucleon
momenta. In a final step for phenomenological applica-
tions, we may integrate over the final-state nucleon
kinematics.
For both virtual and real radiative corrections to the tree-

level process, we may decompose the total momentum
integration into regions. It is convenient to work in
the light-cone basis, decomposing an arbitrary four-vector
Lμ as

Lμ ¼ n · L
n̄μ

2
þ n̄ · L

nμ

2
þ Lμ

⊥
≡ Lμ

þ þ Lμ
− þ Lμ

⊥ ↔ ðn · L; n̄ · L; L⊥Þ; ð18Þ

4The correction to the total cross section of Eq. (6) with a finite
charged lepton mass can be written in terms of the charged lepton
velocity β as

δ ¼
�
4þ 2

β
ln
1þ β

1 − β

�
ln
1þ β

2β
þ 4

β
Li2

1 − β

1þ β

þ 7 − 16β þ 3β2

8β
ln
1þ β

1 − β
þ 3

4
ln

μ2

m2
l
þ 17

4
þ π2

3β
: ð17Þ
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where nμ and n̄μ are conventional four-vectors satisfying
n2 ¼ n̄2 ¼ 0 and n · n̄ ¼ 2. For a charged lepton moving
in the z direction, we choose nμ ¼ ð1; 0; 0; 1Þ and
n̄μ ¼ ð1; 0; 0;−1Þ, with the four-velocity of the initial-state
nucleon in its rest frame vμ ¼ ðnμ þ n̄μÞ=2 ¼ ð1; 0; 0; 0Þ.
The relevant momentum regions are

soft∶ Lμ ∼ Λðλ; λ; λÞ;
collinear∶ Lμ ∼ Λðλ; 1;

ffiffiffi
λ

p
Þ;

hard∶ Lμ ∼ Λð1; 1; 1Þ; ð19Þ

where the hard scale is Λ ∼M ∼ Eν ∼Q. The dimension-
less expansion parameter λ ∼ ΔE=Λ is determined by
experimental conditions that dictate the fraction of energy
allowed in soft radiation. The lepton mass satisfies
ml ≲

ffiffiffi
λ

p
Λ, and the jet angular resolution satisfies

Δθ ≲ ffiffiffi
λ

p
.

In our default factorization analysis represented by
Eq. (28) below, we employ the formal power counting
ml=Λhard ≪ 1. For the muon, an alternative counting
ΔE ≪ mμ ∼ Λhard would group the muon mass with other
“hard” scales, resulting in a simpler soft-hard factorization
formula without collinear function. Since “large loga-
rithms” are not extremely large for the muon, it may seem
preferable to adopt this simpler description. However,
muon power corrections are well described by our
power-counting analysis and are numerically small com-
pared to other uncertainties. Moreover, important phenom-
enological features, such as the insensitivity of flavor ratios
to hadronic and nuclear uncertainties, can be readily seen
by adopting a unified description of electron and muon
observables. A more detailed effective theory analysis of
soft-hard versus soft-collinear-hard factorization is left to
future work.

A. Factorization in the static limit

In preparation for the more general case, let us examine
the contributions from different momentum regions to the
cross section in the static limit. As an example, consider the
one-loop virtual correction depicted in Fig. 3 (in Feynman-
t’Hooft gauge, with photon mass regulator λγ):

M ¼ ie2
Z

ddL
ð2πÞd

1

L2 þ 2L · p
1

−v · L
1

L2 − λ2γ

× =vð=Lþ =pþmlÞΓl ⊗ Γh; ð20Þ

where the tree-level amplitude from Eq. (3) is conveniently
expressed as the product of leptonic Γl and hadronic Γh
Dirac structures: Mtree ¼ Γl ⊗ Γh. The hard contribution
to the scattering amplitude, MH, is given in dimensional
regularization by setting ml ¼ 0:

MH ¼ ie2
Z

ddL
ð2πÞd

1

L2 þ 2L · p
1

−v · L
1

L2

× =vð=Lþ =pÞΓl ⊗ Γhjp2¼0: ð21Þ

The soft contribution MS is

MS ¼ ie2
Z

ddL
ð2πÞd

1

2L · p
1

−v · L
1

L2 − λ2

× =vð=pþmlÞΓl ⊗ Γhjp2¼m2
l
: ð22Þ

Finally, the remaining collinear contribution MJ is

MJ ¼ ie2
Z

ddL
ð2πÞd

1

L2 þ 2L · p
1

−v · L−

1

L2

× =vð=Lþ =pþmlÞΓl ⊗ Γhjp2¼m2
l
: ð23Þ

It is straightforward to evaluate these integrals explicitly
and to include the soft and collinear contributions to wave-
function renormalization. The radiative corrections to the
cross section of Eq. (7) are found to be

δsoft ¼ δS þ δJ þ δH; ð24Þ

where (after MS renormalization5 and including real soft-
photon radiation) the hard (δH), soft ðδS) and collinear (δJ)
contributions are, respectively,

δH ¼ −
1

4
ln2

4E2
ν

μ2
þ 1

2
ln
4E2

ν

μ2
− 1þ 19π2

24
;

δS ¼
�
1 − ln

2Eν

ml

��
ln

μ2

ðΔEÞ2 þ ln
2Eν

ml

�
þ 1 −

π2

6
;

δJ ¼
1

4
ln2

μ2

m2
l
þ 1

4
ln

μ2

m2
l
þ 1þ π2

24
: ð25Þ

For the observable that includes energetic photon emission
within angle Δθ of the charged lepton direction, radiative
corrections in Eq. (12) are given by

δjet ¼ δS þ δJ þ δ0J þ δH; ð26Þ

where the additional contribution from the radiation
of the real photon is obtained from collinear photon
Feynman diagrams and is given explicitly from Eqs. (12)
and (10) by

5The bare and renormalized couplings are related as
e2bare
4π ð4πÞϵe−γEϵ ¼ αbare ¼ μ2ϵαðμÞ½1þOðαÞ�.
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δ0J ¼ δjet − δsoft ¼ 9

4
þ
�
ln ð1þ η2Þ − η2

1þ η2

�
ln

Eν

ΔE
− ðtan−1 ηÞ2 −

�
1þ 1

1þ η2

�
tan−1 η

η

þ 1

2
Li2ð−η2Þ þ

1

4
ln2 ð1þ η2Þ þ 1

4

�
2

1þ η2
−

1

η2
− 3

�
ln ð1þ η2Þ: ð27Þ

We see that δH contains no large logarithms when μ is of
order of the hard scale, μ ∼ Eν ¼ OðΛÞ. Similarly, δJ
contains no large logarithms when μ is of order of the
collinear scale, μ ∼ml ¼ Oð ffiffiffi

λ
p

ΛÞ. The correction δ0J
contains a logarithm lnðEν=ΔEÞ, as required for cancella-
tion of lnml singularities [23,24] in the limit ml → 0. The
expected eikonal logarithms remain in δS when μ is of order
of the soft scale, μ ∼ ΔE ¼ OðλΛÞ. We have thus achieved
a scale separation, isolating the contributions from each of
the relevant hard, collinear and soft momentum regions.
Below, we state the general factorization theorem beyond
the static limit. The jet and soft functions are straightfor-
ward generalizations of the static limit quantities computed
above and reduce to δS, δJ, and δ0J in the appropriate limits.
The hard function becomes a nonperturbative quantity that
we describe using phenomenological form factors. In the

formal static limit Eν=M → 0 (and ml=Eν ∼ Δθ ≪ 1), the
hard function would reduce to δH in Eq. (25), including the
appropriate combination of Wilson coefficients cV and cA
from Eq. (3).

B. Factorization beyond the static limit

The above analysis of momentum regions, formalized in
soft-collinear effective theory (SCET), does not rely on the
static limit and can be straightforwardly generalized.
The key difference for Eν ∼M is that the hard function
becomes sensitive to hadronic structure and cannot be
computed in perturbation theory. Including also the general
kinematic dependence in the soft and collinear factors, we
have the following factorization theorem for the cross
section6:

dσ
dQ2

∝ H

�
Eν

M
;
Q2

M2
;
μ

M

��
J

�
μ

ml

�
R

�
μ

ml
; vl · vp

�
S

�
μ

ΔE
; vl · vp; v · vl; v · vp

�

þ
Z

1− ΔE
Etree
l

0

dxj

�
μ

ml
; x; v · vlΔθ

�
R

�
μ

ml
; xvl · vp

�
S

�
μ

ΔE
; xvl · vp; xv · vl; v · vp

��
; ð28Þ

valid up to power corrections in λ. Here vl and vp denote
the charged lepton and proton four-velocities, respectively,
entering the tree-level process, Q2 ¼ −ðk0 − kÞ2 ¼
2M2ðvn · vp − 1Þ is the momentum transfer between initial
and final nucleon states, Etree

l ¼EνþM−v ·k0 ¼mlv ·vl
is the lepton energy for the tree-level process, and x ¼
El=Etree

l denotes the fraction of the total jet energy carried

by the charged lepton (the total jet energy is defined as the
energy carried by the charged lepton plus collinear pho-
tons). The quantities ΔE and Δθ denote soft energy and
angular acceptance parameters depending on experimental
conditions, and μ defines the renormalization scale. For
completeness, we have included the remainder function R
in the factorization formula [18]; this function relates the
running electromagnetic coupling in the QED theory with
and without the dynamical charged lepton l and contrib-
utes numerically small corrections starting at two-loop
order. All energy components are taken in the laboratory
frame. To obtain various observable predictions, the ex-
pression in Eq. (28), for appropriate choices of ΔE and Δθ,

6Our model of Sec. IV E 2 provides an explicit demonstration
of the factorization theorem at one-loop order. It reproduces
correctly the soft and collinear functions, leaving a hard function
independent of IR scales.

FIG. 3. Decomposition of full theory diagram into hard, soft and collinear momentum regions.
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can be integrated with respect to Q2. The second term in
square brackets, involving j, is omitted for observables
with soft-photon radiation only.7

The factorization formula of Eq. (28) is valid up to
power-suppressed contributions in the power-counting
parameter λ: λ ∼ ΔE=Λhard ∼m2

l=Λ2
hard ∼ ðΔθÞ2, with the

hard scale Λhard ∼M ∼ Eν ∼Q in general. In this paper, we
include lepton-mass corrections in tree-level cross-section
expressions. Consequently, all neglected power-suppressed
contributions are additionally suppressed by electromag-
netic coupling constant α, although logarithmic enhance-
ments are still possible. The power-counting parameter
turns out to be at or below the percent size at accelerator
neutrino experiments for all three determining quantities, as
one can estimate from discussions of experimental
details in Sec. II. For example, for photon energy resolution
ΔE ¼ 20 MeV and cone size Δθ ¼ 10°, we have

ΔE=Λhard ∼ 0.02, ðΔθÞ2 ∼ 0.03, m2
e=Λ2

hard ∼ 3 × 10−7, and
m2

μ=Λ2
hard ∼ 0.01, assuming Λhard ∼ 1 GeV.

In the following sections, we compute the separate soft
(S), collinear (J), and hard (H) functions appearing in the
factorization formula. We then collect results and compute
several illustrative observables.

C. Soft function

The soft function appearing in Eq. (28) accounts for
physics below the energy scale of particle masses. It is
independent of hadronic structure and depends only on
particle velocities, electric charges, the energy cutoff
variable ΔE and the renormalization scale μ. Including
virtual soft corrections and real soft-photon radiation with
energy below ΔE yields the process-independent soft
function through one-loop order [18]:

S

�
μ

ΔE
; vl · vp; v · vl; v · vp

�
¼ 1þ α

π

�
2ð1 − vl · vpfðvl · vpÞÞ ln

μ

2ΔE
þ Gðvl · vp; v · vl; v · vpÞ

�
; ð29Þ

where vμ defines the laboratory frame in which ΔE is measured [by default vμ ¼ ð1; 0; 0; 0Þ], vμl ¼ p0μ=ml and vμp are the
charged lepton and proton velocity vectors, respectively, and the functions f and G are given, respectively, by [18,27]

fðwÞ ¼ lnwþffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ;

Gðw; x; yÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ln xþ þ yffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p ln yþ þ wffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
�
ln2xþ − ln2yþ þ Li2

�
1 −

xþffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ðwþx − yÞ
�

þ Li2

�
1 −

x−ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ðwþx − yÞ
�
− Li2

�
1 −

yþffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ðx − w−yÞ
�
− Li2

�
1 −

y−ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ðx − w−yÞ
��

; ð30Þ

with a� ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
. The soft function of Eq. (29) applies to both the neutrino process in Eq. (1), where vp denotes the

final-state proton velocity, and to the antineutrino process in Eq. (2), where vp denotes the initial-state proton velocity.
The soft function is infrared (IR) finite and is universal for the different operator structures contributing to the hard function in
Eq. (28).We remark that for v · vp → 1, i.e., when the proton is at rest in the laboratory frame, the soft function reduces to [25]

S

�
μ

ΔE
;w; w; 1

�
¼ 1þ α

π

�
1þ 2

�
1 −

1

2β
ln
1þ β

1 − β

�
ln

μ

2ΔE
þ 1

2β
ln
1þ β

1 − β

�
1þ ln

1þ β

4wβ2

�
þ 1

β

�
Li2

1 − β

1þ β
−
π2

6

��
; ð31Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=w2

p
is the final lepton velocity in the proton rest frame. In particular, the limit (31) applies for the case of

antineutrino-proton scattering with ΔE measured in the proton rest frame.
Large logarithms appear in the limit of small charged lepton mass. For example, in the proton rest frame,

S

�
μ

ΔE
;
El

ml
;
El

ml
; 1

�
!

El≫ml

1þ α

π

�
−ln2

2El

ml
þ ln

2El

ml
þ 2

�
1 − ln

2El

ml

�
ln

μ

2ΔE
þ 1 −

π2

6

�
; ð32Þ

7For simplicity, we define the jet to contain a single charged lepton plus any number of collinear or soft photons, ignoring
contributions of additional eþe− pairs generated by “internal” conversion of a virtual photon; such effects are of two-loop order. The
region of x integration, x ¼ 0…1 − ΔE=Etree

l results from x ¼ ml=Etree
l …1, upon omitting the region near x ¼ 1 that is contained in the

soft-photon term and noticing that the region at x ¼ 0 is power suppressed. The soft function multiplying j corresponds to the charged
lepton of energy El ¼ xEtree

l ; the replacement v · vl → xv · vl is by definition exact, and the replacement vl · vp → xvl · vp is valid up
to power corrections. The integration region near x ¼ 1, corresponding to soft photons, is described exactly up to power corrections in
our explicit expressions for j, which use only the approximation ml=El ≪ 1.
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with the recoil charged lepton energy in the laboratory
frame El. For GeV (anti)neutrino energies, the double-
logarithmic corrections for the electron case, l ¼ e, are
large and higher-order contributions must be included for
percent-level accuracy. The result in Eq. (32) coincides
with the one-loop soft correction δS in the static nucleon
limit with an ultrarelativistic lepton, Eq. (25).
The renormalization group evolution of the soft function

is described through two-loop order by [18,28,29]

dSðμÞ
d ln μ2

¼ γSðμÞSðμÞ;

γSðμÞ ¼
�
γ0 þ γ1

αðμÞ
π

��
1 −

1

2β
ln
1þ β

1 − β

�
αðμÞ
π

; ð33Þ

with γ0 ¼ 1 and γ1 ¼ −5nl=9, including nl virtual
dynamical charged leptons. Exponentiating the one-loop
result, we evaluate the complete resummed soft function
through OðαÞ in the counting α ln2ð2El=mlÞ ¼ Oð1Þ [i.e.,
lnð2El=mlÞ ¼ Oðα−1=2Þ]. Some expressions for the next
order in α can be found in Refs. [18,30–33].

D. Collinear function

The collinear contributions represented by J and jðxÞ in
Eq. (28) describe physics at energy scales of order of the
charged lepton mass. Like the soft function, these con-
tributions are independent of hadronic structure. As dis-
cussed in Sec. II, energetic photons radiated within a cone
of size Δθ around the final lepton direction can be included

in the definition of the observable depending on the lepton
flavor and detector details.
Consider first the case when no energetic collinear

radiation is emitted. We have derived the collinear function
both by momentum region decomposition of the virtual
correction and by exploiting Feynman rules in the collinear
sector of SCET. The one-loop result is given by

J

�
μ

ml

�
¼ 1þ α

4π

�
ln2

μ2

m2
l
þ ln

μ2

m2
l
þ 4þ π2

6

�
: ð34Þ

Since the jet function is independent of hadronic structure,
the result of Eq. (34) is identical to the one-loop correction
δJ in the static nucleon limit with ultrarelativistic lepton,
Eq. (25). Some two-loop results for collinear functions in
QED were derived in Refs. [18,34–36].
Jet observables include energetic collinear photons.

Through one-loop order, the contribution to the cross
section is given by (η≡ ΔθEtree

l =ml)

j

�
μ

ml
; x;η

�
¼ α

π

�
1

2

1þ x2

1− x
lnð1þ x2η2Þ− x

1− x
x2η2

1þ x2η2

�
:

ð35Þ

The expression in Eq. (35) is obtained using SCET
Feynman rules. After integrating over x, the contribution
is identical to δ0J of Eq. (27) in the static limit
(when Etree

l ¼ Eν):

Z
1−ΔE=Etree

l

0

dxj

�
μ

ml
; x; η

�
¼ α

π

�
1

2
Li2ð−η2Þ þ

1

4
ln2 ð1þ η2Þ þ 1

4

�
2

1þ η2
−

1

η2
− 3

�
ln ð1þ η2Þ þ 9

4

þ
�
ln ð1þ η2Þ − η2

1þ η2

�
ln
Etree
l

ΔE
− ðtan−1 ηÞ2 −

�
1þ 1

1þ η2

�
tan−1 η

η

�
: ð36Þ

We remark that, in the limit of small charged lepton mass,

j

�
μ

ml
; x; η

�
!

ml≪ΔθEtree
l

α

π

�
1þ x2

1 − x
ln
xEtree

l Δθ
ml

−
x

1 − x

�
;

ð37Þ

where the coefficient of the logarithm is identified with the
well-known splitting function [37–43].
Muon and electron jets for accelerator neutrino energies

are quite different objects. Photon radiation is highly
collimated in the direction of the outgoing lepton for
charged-current processes with electron flavor, but only
a relatively small contribution is contained within a 1°–2°
cone for the muon flavor. We illustrate this dependence of
radiated events on the jet angle by plotting Eq. (36), and the

derivative of Eq. (36) with respect to Δθ, in Figs. 4 and 5,
respectively.
Two limiting cases are of interest. The limit of very small

charged lepton mass gives (recall η ¼ ΔθEtree
l =ml)

Z
1−ΔE=Etree

l

0

dxj

�
μ

ml
;x;η

�

!
η≫1

α

π

�
ð2 lnη−1Þ lnE

tree
l

ΔE
−
3

2
lnη−

π2

3
þ9

4
þ π

2η
þO

�
1

η2

��
:

ð38Þ

Adding the virtual soft and collinear corrections, the jet
angular size regulates the collinear singularity when
ml ≪ ΔθðEl þ EγÞ, as observed for the static limit
case in Eq. (13). For example, η≳ 10 is realized for
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Etree
l ≳ 30 MeV for electrons and Etree

l ≳ 6 GeV for muons
when the cone angle is Δθ ¼ 10°. In the opposite limit of
very narrow jet, the collinear radiation is suppressed by
phase space and vanishes as

Z
1−ΔE=Etree

l

0

dxj

�
μ

ml
; x; η

�

→
η≪1

α

π

�
η2

24
þ
�
ln
Etree
l

ΔE
−
23

10

�
η4

2
þOðη6Þ

�
: ð39Þ

The two-loop renormalization group evolution of the
collinear function is given by [18,44,45]

dJðμÞ
dlnμ2

¼ γJðμÞJðμÞ;

γJðμÞ¼
�
2 ln

μ2

m2
l
þ1

��
γ0þγ1

αðμÞ
π

�
αðμÞ
4π

þγ2

�
αðμÞ
4π

�
2

;

ð40Þ

where γ2 ¼ 3
2
þ 50nl

27
− 2ð1þ nl

3
Þπ2 þ 24ζ3 with the number

of dynamical charged leptons in the theory nl.
In the factorization theorem of Eq. (28), the soft and jet

functions appear as

JRð1ÞSð1Þ þ
Z

dxjðxÞRðxÞSðxÞ; ð41Þ

where the x integration limits depend on the observable.
In place of Eq. (41), we use the simplified form
JRð1ÞSð1Þ exp½R dyj1ðyÞ� in the phenomenological analy-
sis, where j1ðxÞ denotes the one-loop contribution. This
exponentiation of the one-photon collinear correction
accounts for the potentially enhanced leading phase-space

double logarithms
�
2α
π ln ΔE

El
ln ΔθEl

ml

�
nc arising from the

radiation of two or more (nc) collinear photons.

E. Hard function

The hard function H appearing in Eq. (28) represents a
matching coefficient when the full theory including
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FIG. 4. Differential cross section dσγ for one radiated photon of energy above ΔE ¼ 20 MeV within the angle Δθ to the lepton
direction, divided by the tree-level charged-current elastic cross section dσLO. The ratio dσγ=dσLO is computed using Eq. (36) for the
scattering of electron (anti)neutrinos (left plot) and muon (anti)neutrinos (right plot). The bottom, middle, and top curves correspond to
electromagnetic jet energy 600 MeV, 2 GeV, and 6 GeV, respectively.
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FIG. 5. Derivative of dσγ in Fig. 4 with respect to Δθ, divided by the tree-level charged-current elastic cross section dσLO.
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hadronic physics8 is matched onto soft-collinear effective
theory (where hadronic physics is integrated out). The
matching is performed by equating the amplitudes dis-
played in Fig. 1, computed in both full theory and effective
theory, accounting for tree-level and one-loop corrections.
We begin in Sec. IV E 1 by parametrizing the hard function
by invariant amplitudes. In Sec. IV E 2, we then introduce a
default model for the nonperturbative matching condition.
Finally, we consider the renormalization group evolution

for the hard matching coefficient within the effective theory
in Sec. IV E 3.

1. Invariant amplitudes

At leading power, charged lepton masses may be ignored
in the hard matching condition. The matrix element of the
charged-current elastic process with massless charged
lepton can then be expressed as9

Tνln→l−p ¼
ffiffiffi
2

p
GFVudl̄−γμPLνlp̄

�
f1γμ þ f2

iσμρqρ

2M
þ fAγμγ5 − f3A

Kμ

M
γ5

�
n;

T ν̄lp→lþn ¼
ffiffiffi
2

p
GFV�

ud
¯̄νlγ

μPLlþn̄
�
f̄1γμ þ f̄2

iσμρqρ

2M
þ f̄Aγμγ5 þ f̄3A

Kμ

M
γ5

�
p: ð42Þ

Here q ¼ p − p0 ¼ k0 − k, K ¼ ðkþ k0Þ=2, GF is the Fermi constant, Vud is the CKM matrix element and M ¼
ðMp þMnÞ=2 is the average nucleon mass. The four independent invariant amplitudes are functions of two kinematic
variables: Q2 ¼ −t ¼ −q2 and ν ¼ ðs − uÞ=4 ¼ MEν − ðQ2 þm2

lÞ=4, where s, t, and u are the usual Mandelstam
invariants. For the antineutrino case, the invariant amplitudes are given by f̄iðνþ i0; Q2Þ ¼ fið−ν − i0; Q2Þ�, where fi
stands for one of f1, f2, fA, and f3A. The quantities fi are ultraviolet (UV) finite and IR divergent when virtual QED
corrections are included. These IR divergences cancel in the matching between full theory and effective theory.
Using the representation of Eq. (42), the charged-current elastic cross section (without radiation) in the laboratory frame

is expressed in terms of invariant amplitudes as10 [47]

dσ
dQ2

ðEν; Q2Þ ¼ G2
FjVudj2
2π

M2

E2
ν

�
ðτ þ r2ÞAðν; Q2Þ − ν

M2
Bðν; Q2Þ þ ν2

M4

Cðν; Q2Þ
1þ τ

�
; ð43Þ

where τ ¼ Q2=ð4M2Þ and r ¼ ml=ð2MÞ. The quantities A, B, and C are given, respectively, by11

A ¼ τjgMj2 − jgEj2 þ ð1þ τÞjfAj2 − τð1þ τÞjf3Aj2 − r2ðjgMj2 þ jfA þ 2FPj2 − 4ð1þ τÞF2
PÞ;

B ¼ Re½�4τf�AgM − 2r2ðfA − 2τFPÞ�f3A�;
C ¼ τjgMj2 þ jgEj2 þ ð1þ τÞjfAj2 þ τð1þ τÞjf3Aj2: ð44Þ

For numerical results in this paper, we include all mass corrections within the hadronic model of Sec. IV E 2.12 At tree level,
these corrections are accounted for by including the pseudoscalar form factor in the expressions for A, B andC and retaining
the lepton-mass dependence in kinematic prefactors. We will use a standard ansatz (partially conserved axial current and the
assumption of pion pole dominance) for the pseudoscalar form factor: FPðQ2Þ ¼ 2M2FAðQ2Þ=ðm2

π þQ2Þ. Electric and
magnetic amplitudes gE and gM are defined from f1 and f2 as, respectively,

gE ¼ f1 − τf2; gM ¼ f1 þ f2: ð45Þ

For antineutrino-proton scattering, the sign in the first term of B is negative.

8For definiteness, we consider the full theory as nf ¼ 3 flavor quantum chromodynamics (QCD) in the presence of four-fermion
electroweak operators [46], i.e., the Standard Model after integrating out electroweak vector bosons,W�, Z0, Higgs field, h, and heavy
quarks t, b, and c.

9We use the shorthand notation l̄−ð…Þνl ¼ ūðlÞðp0Þð…ÞuðνÞðpÞ and ¯̄νlð…Þlþ ¼ v̄ðνÞðp0Þð…ÞvðlÞðpÞ for the usual Dirac spinors
with momentum assignment in Fig. 1.

10We neglect the relative difference in nucleon masses, ðMn −MpÞ=ðMn þMpÞ, and electroweak power corrections suppressed by
the W-boson mass, Q2=M2

W ; these effects contribute at the permille level.
11The sign in front of f3A in B differs from Ref. [47] for antineutrino scattering, as noted in Ref. [48].
12In terms of Eq. (28), the matching calculation includes power-suppressed terms in the hard function. This procedure does not

achieve a complete scale separation beyond the leading power (both hard and collinear momentum regions contribute power-suppressed
terms), but the complete lepton-mass dependence in the hadronic model is retained through OðαÞ.
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When one-loop radiative corrections are included, the full-
theory cross section in Eq. (43) receives contributions
originating from soft, collinear, and hard regions of virtual
photon momentum. The soft and collinear region contri-
butions are reproduced by the effective theory and cancel in
the matching; in the computation of observables, these
contributions are replaced by the complete soft and
collinear functions computed within the effective theory,
incorporating real photon radiation and perturbative resum-
mation. The hard region contribution determines the hard
function appearing in the factorization formula of Eq. (28).

2. Hadronic model

The matching condition depends on the nonperturbative
quantities f1, f2, fA, and f3A appearing in Eq. (42). At the
leading order in α, these invariant amplitudes are
determined byquark current operators taken between nucleon
states. Assuming isospin symmetry, they can be expressed in
terms of isovector electromagnetic form factors FV1;V2 ¼
Fp
1;2 − Fn

1;2, extracted from electron scattering data with
constraints from atomic spectroscopy [49–123], and the axial
form factor FA as [47]

f1ðν; Q2Þ → FV1ðQ2Þ; f2ðν; Q2Þ → FV2ðQ2Þ;
fAðν; Q2Þ → FAðQ2Þ; f3Aðν; Q2Þ → 0: ð46Þ

Radiative corrections modify each of the four invariant
amplitudes and introduce nonperturbative information
beyond the form factorsF1;2;AðQ2Þ. In principle, sufficiently
precise (anti)neutrino-nucleon scattering measurements

could be used to extract this information [48,124–134].
Alternatively, future lattice QCD calculations could perform
a first-principles evaluation starting from the quark-level
Lagrangian [135–142]. Since neither of these options is
currently available, we use a simple hadronic model to
represent theOðαÞ corrections to the invariant amplitudes in
the matching condition for purposes of illustration. The
model is based on a form-factor insertion ansatz whereby
point-particle Feynman diagrams are dressed with on-shell
form factors at the hadronic vertices. This procedure is
illustrated in Fig. 6. This hadronic model generalizes a
commonly used estimate of two-photon exchange correc-
tions in elastic lepton-proton scattering [143–146].
The resulting vertex correction to the tree-level charged-

current elastic process on nucleons is given by [suppressing
the prefactor

ffiffiffi
2

p
GFVud common with the tree-level expres-

sion in Eq. (42)]

Tv
νln→l−p ¼ e2

Z
ddL
ð2πÞd l̄γμ

−=p0 − =L
ðLþ p0Þ2 −m2

l
γσPLνlΠμνðLÞp̄

�
Γp
ν

=k0 − =LþM
ðL − k0Þ2 −M2

Γσ þ Γσ
=kþ =LþM

ðLþ kÞ2 −M2
Γn
ν

�
n;

Tv
ν̄lp→lþn ¼ e2

Z
ddL
ð2πÞd

¯̄νlγ
σPL

=p0 þ =L
ðLþ p0Þ2 −m2

l
γμl̄ΠμνðLÞn̄

�
Γn
ν

k0 − =LþM
ðL − k0Þ2 −M2

Γσ þ Γσ
kþ =LþM

ðLþ kÞ2 −M2
Γp
ν

�
p: ð47Þ

Here

ΠμνðLÞ ¼ i
L2 − λ2γ

�
−gμν þ ð1 − ξγÞ

LμLν

L2 − aξγλ2γ

�
ð48Þ

is the momentum-space photon propagator with the photon
mass regulator λγ, the gauge-fixing parameter ξγ, and an
arbitrary constant a, and

ΓN
ν ¼ γνFN

1 ð−L2Þ þ iσνρLρ

2M
FN
2 ð−L2Þ ð49Þ

is the electromagnetic vertex, where N denotes proton (p)
or neutron (n), while FN

1 and FN
2 are Dirac and Pauli

electromagnetic form factors, respectively. The charged-
current weak vertex is

Γσ ¼ γσFV1ðQ2Þ þ iσσρqρ

2M
FV2ðQ2Þ

þ γσγ5FAðQ2Þ þ qσ
M

γ5FPðQ2Þ: ð50Þ

We remark that a naive implementation of the form-factor
insertion ansatz would involve form factors evaluated at
momentum transfer ðq� LÞ2 rather than q2, as in Eq. (50).
Such an ansatz would violate electromagnetic gauge
invariance, giving rise to spurious collinear singularities.13

FIG. 6. Hadronic model for hard matching at one-loop level. The
photon is exchanged between the charged lepton and nucleon lines.

13For example, current conservation requires a cancellation
between amplitudes for photon emission from the charged lepton
line and from the proton line. The former contribution would
involve Fið−q2Þ, but the latter would involve Fið−ðq� LÞ2Þ,
spoiling the cancellation.
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We thus adopt Eq. (50) as our default model. For this model
calculation of virtual diagrams with Eq. (47), exploiting the
on-shell vertex of Eq. (49), we express the Dirac and Pauli
form factors as [recall M ¼ ðMp þMnÞ=2 is the average
nucleon mass and τ ¼ Q2=ð4M2Þ]

Fp;n
1 ðQ2Þ ¼ Gp;n

E þ τGp;n
M

1þ τ
; Fp;n

2 ðQ2Þ ¼ Gp;n
M − Gp;n

E

1þ τ

ð51Þ

and employ a simple dipole form for the proton electric,
proton magnetic, and neutron magnetic form factors and an
ansatz for the neutron electric form factor constrained by its
charge radius [121,122] at low Q2 and by ∼Q−4 perturba-
tive QCD behavior at high Q2 [147–149]:

Gp
EðQ2Þ ¼ Gp

MðQ2Þ
μp

¼ Gn
MðQ2Þ
μn

¼ 1�
1þ Q2

Λ2

�
2
;

Gn
EðQ2Þ ¼ −hr2EiQ2

6ð1þ bτÞG
p
EðQ2Þ; ð52Þ

with hr2Ei ¼ −0.1161 fm2, μp ¼ 2.7928, μn ¼ −1.9130,
Λ2 ¼ 0.71 GeV2, and b ¼ 4.6. We have performed the
evaluation of the UV-finite amplitudes from Eq. (47) in
d ¼ 4 and cross-checked imaginary parts of all terms in
Eq. (47) by independent calculation exploiting unitarity.14

This section represents a model for the real part of the
nucleon contribution and a discussion of uncertainties
owing to parametric inputs and neglected inelastic con-
tributions.
The amplitudes in the hadronicmodel canbe represented as

f1ðν; Q2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZlZ

ðpÞ
h

q
ðFV1ðQ2Þ þ fv1ðν; Q2ÞÞ;

f2ðν; Q2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZlZ

ðpÞ
h

q
ðFV2ðQ2Þ þ fv2ðν; Q2ÞÞ;

fAðν; Q2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZlZ

ðpÞ
h

q
ðFAðQ2Þ þ fvAðν; Q2ÞÞ;

f3Aðν; Q2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZlZ

ðpÞ
h

q
ðf3AÞvðν; Q2Þ; ð53Þ

where the charged lepton field renormalization factor Zl is
given by the standard QED expression:

Zl ¼ 1 −
α

4π

�
ln

μ2

m2
l
þ 2 ln

λ2γ
m2

l
þ 4

�

þ α

4π
ð1 − ξγÞ

�
ln
μ2

λ2γ
þ 1þ aξγ lnðaξγÞ

1 − aξγ

�
: ð54Þ

For the external proton, we include the on-shell wave-
function renormalization constant of the heavy spin-1=2
fermion (cf. Ref. [18] for the analogous discussion of Born
amplitudes in electron-proton scattering)

ZðpÞ
h ¼ 1þ α

2π
ln
μ2

λ2γ
þ α

4π
ð1− ξγÞ

�
ln
μ2

λ2γ
þ 1þaξγ lnðaξγÞ

1−aξγ

�
:

ð55Þ

Amplitudes in Eq. (53) do not depend on the arbitrary
regularization parametera and have correct IR behavior. The
expressions in Eq. (53) provide a conventional, and model-
independent, definition of charged-current “Born” form
factors F1;2;AðQ2Þ, once the functions fv1;2;A are specified.
For definiteness, we take μ ¼ M. In the absence of CP
violation (which we neglect), we have defined the overall
phase of the amplitudes in Eq. (42) such that the Born form
factors are real. We remark that the separation of the gauge-
independent hard matching contribution into “Born” and
“non-Born” terms is necessarily QED gauge dependent; for
definiteness, we specify Feynman–’t Hooft gauge, i.e.,
ξγ ¼ 1.15 Our hadronic model identifies fv1;2;A with the
contributions from Eq. (47). For FV1;V2ðQ2Þ, we use the
isospin rotation of Born form factors16 extracted from
experimental e − p and e − n scattering data, measurements
of the neutron scattering length, and μH spectroscopy data
[159], i.e., FV1;2ðQ2Þ ¼ Fp

1;2ðQ2Þ − Fn
1;2ðQ2Þ, where p

stands for the proton and n stands for the neutron. For
FAðQ2Þ, we use the Born form factor extracted from
experimental νμ − n scattering data [132].
For the phenomenological analysis, we consider the

following assignment of uncertainty to the hard function

14In contrast to elastic charged lepton-proton scattering, the
high-energy behavior of imaginary parts in the charged-current
elastic process does not allow us to write down unsubtracted
dispersion relations for any of the invariant amplitudes. Perform-
ing crossing and charge conjugation, the amplitudes of (anti)
neutrino-nucleon elastic scattering νln → l−p (ν̄lp → lþn) are
not related to amplitudes of a (anti)neutrino scattering reaction.
Thus, we cannot use crossing relations for amplitudes in the same
channel to suppress the high-energy behavior and obtain con-
vergence of dispersive integrals.

15Alternatively, one can define gauge-independent Born form
factors by moving local gauge-dependent virtual contributions to
field renormalization factors of the external proton and neutron.
Such a prescription differs from our default calculation by small
structure-dependent contributions to the nucleon self-energies,
which are independent of the lepton mass.

16We have neglected isospin-violating effects in the relation of
charged-current form factors to electromagnetic form factors and
in the omission of second-class current contributions to the tree-
level process [150–153]. Isospin-breaking effects are expected
from constituent quark model estimates to be of permille level
[154–157]. According to a chiral perturbation theory-based
calculation [158], they can reach the percent level for the
magnetic form factor; while this is potentially significant com-
pared to the precision of electron-proton scattering data, the tree-
level uncertainty of the charged-current process is dominated by
axial form factor. Radiative corrections are neglected in existing
extractions of FAðQ2Þ.

THEORY OF QED RADIATIVE CORRECTIONS TO NEUTRINO … PHYS. REV. D 106, 093006 (2022)

093006-13



matching condition. Consider first the Born form factors
F1;2;AðQ2Þ. For tree-level amplitudes (but not for the
calculation of loop diagrams), these form factors and
corresponding uncertainties are taken as default fits of
data with Q2 < 1 GeV2 from the analysis of scattering and
spectroscopy data [132,159], taking the isospin-decom-
posed fit for the vector form factors; all form factors are
presented in z-expansion form while uncertainties are
described by the covariance matrix of z-expansion param-
eters. In ratios to the leading-order cross section, this
dominant source of uncertainty is largely reduced.
Second, for the amplitudes fv1;2;Aðν; Q2Þ, we consider
separate variations in the hadronic model to account for
parametric inputs and for neglected contributions. Note that
the hadronic model involves form factors F1;2;AðQ2Þ
appearing inside virtual loop diagrams; here we use a
simpler dipole ansatz for electromagnetic form factors as
specified in Eq. (52). For the parametric inputs, we vary the
nucleon electromagnetic form factors appearing in loop
diagrams by shifting the pole parameter Λ2 in Eq. (52) as

Λ2 → ð1� 0.1ÞΛ2; this range covers experimentally
allowed values for electromagnetic form factors [159].
Model dependence due to the insertion of on-shell hadronic
vertices and the neglect of inelastic intermediate states is
represented by a simple ansatz that adds the neutron electric
and magnetic form factors to each of the neutron and proton
electromagnetic vertices.17 Based on this ansatz, relative
contributions to the uncertainty of the cross-section ratio to
the tree-level result from the hard function are displayed for
the electron flavor in Fig. 7 and for the muon flavor in
Fig. 8. Each separate source of uncertainty is at permille
level or even below.
Our definition of Born form factors in Eq. (53) corre-

sponds to a conventional MS scheme at scale μ ¼ M [18]
and ξγ ¼ 1. As discussed in Ref. [18], a variety of other
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FIG. 7. Uncertainties from the hard function on the ratio of the differential cross section, with only one soft photon radiated, to the tree-
level result in νen → e−p (left plots) and ν̄ep → eþn (right plots). For initial (anti)neutrino energies Eν ¼ 600 MeV (upper plots) and
Eν ¼ 2 GeV (lower plots), the soft-photon energy cutoff is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. The uncertainty
propagated from the tree-level form factors is shown by the red dashed line. The difference obtained by varying nucleon electromagnetic
form-factor parameter Λ2 as Λ2 → 1.1Λ2 in the loop diagram is shown by the green dash-dotted line. As discussed in the text, the total
contribution of Gn

E and Gn
M at the neutron electromagnetic vertex and the variation of the proton electromagnetic vertex obtained by

adding Gp
E → Gp

E þ Gn
E and Gp

M → Gp
M þ Gn

M represent an estimate for neglected contributions in the hadronic model. These variations
are shown by the black dotted line and by the black fine-dotted line, respectively. The sum of all variations in quadrature is shown by the
blue solid line.

17This ansatz is motivated by the observation that two-photon
exchange corrections in elastic electron-proton scattering from
the proton Pauli form factor were shown to have a similar size to
inelastic contributions [160].
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schemes have been used to extract Born form factors in the
literature [123,143] but differ at a level not resolved by
data. To account for this discrepancy, we add in quadrature
a perturbative uncertainty estimated by varying the scale of
matching, min ðQ2;M2; E2

νÞ=2≲ μ2 ≲ 2max ðQ2;M2; E2
νÞ,

and assuming that the experimental extraction FiðQ2Þ
represents the Born amplitude at μ ¼ M.

3. Matching and renormalization group evolution

The hard function H in Eq. (28) is determined by
matching the factorization formula to the cross section
of Eq. (43) evaluated in the hadronic model. Contributions
from soft and collinear momentum regions in the hadronic
model are the same, by construction, as the corresponding
one-loop expressions in the effective theory derived in
Secs. IV C and IV D. By choosing the hard matching scale
μH ∼ Λhard ∼M ∼Q ∼ Eν, we ensure that H is free from
large logarithms. In order to resum large logarithms in the
final observable cross section, we evolve the hard function
to the low scale μL, writing

dσ ∼HðμHÞ
�
HðμLÞ
HðμHÞ

�
JðμLÞSðμLÞ: ð56Þ

Performing the running at two-loop level with the anoma-
lous dimension γH ¼ −γJ − γS, with γS and γJ from
Eqs. (33) and (40), respectively, we resum leading
and subleading large logarithms and obtain HðμLÞ at

renormalization scale μL ≪ μH. The low scale
could be further resolved into separate soft and collinear
scales, μS ∼ λΛhard and μJ ∼ λ

1
2Λhard, writing JðμLÞ ¼

JðμJÞ½JðμLÞ=JðμJÞ� and SðμLÞ ¼ SðμSÞ½SðμLÞ=SðμSÞ�.
Since the impact of such further resummation is numeri-
cally small, we use a common scale μS ¼ μJ ¼ μL for
simplicity. Residual perturbative uncertainty is estimated
by varying min ðm2

l; ðΔEÞ2Þ=2≲ μ2L ≲ 2max ðm2
l; ðΔEÞ2Þ

and min ðQ2;M2; E2
νÞ=2≲ μ2H ≲ 2max ðQ2;M2; E2

νÞ.
To illustrate convergence of the perturbative expansion,

we consider the theory with one dynamical charged lepton
nl ¼ 1, i.e., electron loops only.18 The electromagnetic
coupling constant at the scale μ is related to its on-shell
value α0 ≈ 1=137.036 as [18]

α ¼ α0

�
1þ 1

3
ln

μ2

m2
e

�
α0
π

�

þ
�
1

9
ln2

μ2

m2
e
þ 1

4
ln

μ2

m2
e
þ 15

16

��
α0
π

�
2
�
: ð57Þ

The running of the hard function from the hard scale μH to
the soft scale μL can be solved analytically and can be
expressed in terms of the charged lepton energy in the
proton rest frame, εl ¼ mlðvl · vpÞ, as
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FIG. 8. The same as Fig. 7 but for the muon flavor.

18For numerical results in following sections, we specify
nl ¼ 0 below the electron mass scale, nl ¼ 1 between electron
and muon mass scales, and nl ¼ 2 above.
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0Þ; ð58Þ

where we keep terms contributing through order α1, when
α ln2ðμH=μLÞ ¼ Oð1Þ. We illustrate the convergence of the
perturbation theory by evaluating the cross section for the
electron flavor charged-current elastic process, including
only soft radiation, in Fig. 9. The successive curves
represent resummations correct through Oð1Þ, Oð ffiffiffi

α
p Þ,

and OðαÞ, respectively, with perturbative uncertainties of
order Oð ffiffiffi

α
p Þ, OðαÞ, and Oðα ffiffiffi

α
p Þ; resummation correc-

tions beyond Oð ffiffiffi
α

p Þ are numerically small. We also
compare our result to the fixed-order calculation of the
same process.

F. Factorization for inelastic processes

The factorization formalism extends naturally to other
exclusive processes at the nucleon level, for example
radiation of noncollinear hard photons (νlN → lNγ) or
pion emission (νlN → lNπ). In each case, soft and jet
functions are perturbatively calculable, depending only on
particle masses and velocities and kinematic variables.
Hadronic physics is encoded in a basis of hard functions.
Semi-inclusive processes that sum over hadronic channels
(νlN → lX) can be similarly analyzed. Such processes are
left to future work.
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FIG. 9. Ratio of the differential cross section, with only soft-photon radiation, to the tree-level result in νen → e−p (left plots) and
ν̄ep → eþn (right plots). For incident (anti)neutrino energies Eν ¼ 600 MeV (upper plots) and Eν ¼ 2 GeV (lower plots), the soft-
photon energy cutoff is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. The resummed result including all corrections of OðαÞ is
shown by the blue solid lines. It is compared to the resummation result including only the leading logarithms, shown by the green dotted
lines, and to the result including subleading logarithms of order Oð ffiffiffi

α
p Þ, shown by the red dashed lines. To illustrate the net effect of

resummation, we also present the fixed-order result using the same hadronic model by the black dash-dotted lines. Hadronic uncertainty,
described in Sec. IV E 2, is displayed for the fixed-order calculation. Only perturbative uncertainty, estimated by scale variation as
described in the text, is presented for the first three lines.
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V. INCLUSIVE CROSS SECTIONS

In this section, we describe the inclusion of noncollinear
hard photons to scattering cross sections and discuss
model-independent properties of inclusive cross sections
on nucleons and nuclei.

A. Hadronic model for hard real photon emission

Let us consider the process νln → l−pðγÞ [or the
analogous antineutrino process ν̄lp → lþnðγÞ] including
arbitrary photon kinematics. To describe the radiation of
noncollinear hard photons, we exploit the same hadronic
model as in Sec. IV E 2. Recall that our prescription is
equivalent to employing free-particle propagators for inter-
mediate states, with the electroweak vertex evaluated using
external-leg kinematics, as in Eq. (50). This ansatz ensures
electromagnetic gauge invariance and avoids spurious
collinear singularities of a naive form-factor insertion
model. In the phenomenological analysis, we demonstrate
how such spurious singularities would impact cross-section
predictions for near-collinear kinematics (Fig. 13). For
generic, noncollinear, kinematics, the difference between
our “default” gauge invariant and a “local” nongauge-
invariant model, where the electroweak vertex is evaluated
in kinematics of a local field theory, can be interpreted as a
simple measure of hadronic model dependence. This
difference is illustrated in Figs. 14 and 15.

B. Expansion in small lepton mass

We have observed previously that sufficiently inclusive
observables have a finite limit at vanishing lepton mass
ml → 0. In the static limit, this behavior is seen explicitly
in the jet observable at fixed Δθ [cf. Eq. (13)] and in the
inclusive cross section [cf. Eq. (16)]. In general, the ml →
0 limit must be finite for any observable including real
photon radiation that is kinematically degenerate with the
charged lepton in the absence of radiation [21–24].
The finiteness of the ml → 0 limit has important

implications for flavor ratios of charged-current (anti)
neutrino cross sections. Consider, e.g., the total inclusive
cross section for νln → l−pðγÞ as a function of the lepton
mass:

σðmlÞ ¼ Aþ B0

m2
l

Λ2
þ B1

m2
l

Λ2
ln
m2

l

Λ2
þ � � � ; ð59Þ

where Λ denotes a conventional hard scale and the ellipsis
denotes terms of orderm4

l and terms containingm2
l ln

2ðmlÞ
that arise from two-loop QED corrections; such terms are
negligibly small in the numerical analysis. Here A, B0, and
B1 are independent of ml but depend on the neutrino
energy and hadronic parameters. The ratio of muon to
electron cross sections is then

σðmμÞ
σðmeÞ

¼ 1þ B0

m2
μ
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þ B1

m2
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þO
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e
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Λ
;
m4

μ

Λ4

�
; ð60Þ

where we have written B0 ¼ B0=A and B1 ¼ B1=A.
As an explicit example, the static-limit cross section

through one-loop order is

σðmlÞ ¼ σLO
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: ð61Þ

Choosing Λ ¼ 2Eν and accounting for the ml dependence
of σLO, we find

B0 ¼ −2þ α

π

�
19

2
þ 2π2

3

�
; B1 ¼ −

3α

π
: ð62Þ

The general case, beyond the static limit, is treated
similarly but with different numerical values of B0

and B1. For example, at an illustrative neutrino energy
Eν ¼ 2 GeV, and setting Λ ¼ 1 GeV, integrating the total
charged-current elastic cross section of Eq. (43) yields

B0ðEν ¼ 2 GeVÞ ¼ −0.28þOðα; ϵnucÞ;
B1ðEν ¼ 2 GeVÞ ¼ Oðα; ϵnucÞ; ð63Þ

where ϵnuc denotes a possible nuclear correction for
applications to bound nucleons. We will compute the
OðαÞ contributions within our hadronic model as part of
the phenomenological analysis in Sec. VI E. We also
consider OðϵnucÞ corrections in a standard nuclear model
in Sec. VI G.

VI. PHENOMENOLOGICAL APPLICATIONS

In this section, we examine in detail several variations of
the observables introduced above. The observables are
representative of typical event classes for charged-current
elastic (anti)neutrino scattering with final-state electron or
muon, with choices for real photons determined by typical
detector capabilities, as discussed in Sec. II. In the
following Sec. VI A, we consider a “minimal” observable
containing just the charged lepton and soft radiation. This
type of observable is difficult to realize with typical
neutrino detectors that cannot cleanly separate electrons
from energetic photons; however, it provides a contrast
with more inclusive cross sections and also is similar to
well-studied observables in elastic electron-proton scatter-
ing. Section VI B considers the default observable for
electronlike jet events. Section VI C discusses observables
for muon flavor and studies scattering with energetic
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photons, where muon (anti)neutrino events can be mis-
identified as electron flavor. Section VI D considers the
emission of noncollinear hard photons. Section VI E
includes such noncollinear hard-photon emission in the
evaluation of inclusive observables. Section VI F considers
the ratio of electron versus muon cross sections and
discusses the extent to which hadronic uncertainties cancel
in the ratio. Leading nuclear effects are considered in
Sec. VI G. Finally, we compare the size of radiative
corrections with existing experimental νμ and ν̄μ data in
Sec. VI H.

A. Cross section with charged lepton and soft photons

In all observables that involve only soft or collinear
radiation, the cross section is given by Eq. (28). The soft
function S is given by Eq. (29). The hard function at the
hard renormalization scale is computed as in Sec. IV E, and
the running between hard and soft renormalization scales is
determined as in Sec. IV E 3. The collinear function
depends on the specification of jet observable. For mea-
surements that separate charged leptons from the accom-
panying collinear radiation, only soft real radiation is
relevant and the collinear function is given by J in
Eq. (34). Precisely this observable has been used in
Sec. IV E to illustrate the impact of hadronic uncertainties
in Figs. 7 and 8 and to illustrate the convergence of

resummed perturbation theory in Fig. 9. The ratio of this
cross section to the tree-level result in the nonrelativistic
limit was shown as a function of (anti)neutrino energy by
the solid blue curve in Fig. 2, where a default soft-photon
energy cutoff ΔE ¼ 20 MeV was used. The complete
relativistic case, for a range of ΔE values, is shown for
neutrino-neutron and antineutrino-proton scattering with
electron flavor in Fig. 10 and with muon flavor in Fig. 11.
Results are displayed for typical accelerator (anti)neutrino
energies Eν ¼ 600 MeV and Eν ¼ 2 GeV. In these figures,
Q2 can be identified as the momentum transfer between
nucleons: Q2 ¼ −ðk − k0Þ2.

B. Electron-jet observable

In most practical neutrino detectors at energies of
accelerator oscillation experiments, final-state electrons
with and without nearly collinear photons cannot be
distinguished. Neutrino detectors are typically homo-
geneous and are the target material in which the (anti)
neutrinos themselves interact. In traveling through the
detector, the final-state electrons lose energy by brems-
strahlung, which also results in nearly collinear photons.
These photons, in turn, interact by producing eþe− pairs,
which then deposit energy near the primary electron.
To account for the energy deposited by real collinear

photons, we must modify the observable from Sec. VI A
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FIG. 10. Differential cross-section ratio to the tree-level result for electron (anti)neutrino charged-current elastic scattering on the
nucleon accompanied by soft radiation, as a function of Q2 for a few different soft-photon energy cutoffs ΔE. Left and right plots are
for neutrino and antineutrino scattering, respectively. Upper and lower plots are for Eν ¼ 600 MeV and Eν ¼ 2 GeV, respectively.
The curves show the results for ΔE ¼ 10, 20, and 40 MeV.
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that allowed only soft real photon emission. For a fixed
direction of charged lepton momentum, we consider all
events where either the photon is soft, i.e., has energy
below ΔE, or the photon is energetic and collinear, i.e., has
energy above ΔE and is radiated within the angle Δθ to the
electron direction. Such events are not distinguished from
charged-current elastic events without radiation. We remark
that this definition is similar to, but differs slightly from, a
common scheme in the QCD literature due to Sterman and
Weinberg (SW) [161], where the angle is specified relative
to the direction of total energy flow. Such fine-grained
details are beyond the precision of the current generation of
neutrino experiments but could be resolved using a more
elaborate detector simulation. Integrating over the phase
space of energetic photons within the angle Δθ to the
electron direction, we obtain an additional contribution to
the collinear function in the factorization formula, given at
one-loop order by jðxÞ in Eq. (35). As discussed in Sec. IV
D, in order to resum leading large logarithms from multiple
collinear photon emission, we exponentiate the collinear
photon correction [162–164].
Figure 12 shows the correction to unpolarized cross

sections as a function of hadronic momentum transfer,
Q2 ¼ −ðk − k0Þ2, over the kinematic region of the elastic
2 → 2 process. For reference, the plot includes the curve from
Sec. VI A with the observable describing only soft-photon
radiation.Also shown in the figure as a deviation fromunity is
the uncertainty of the tree-level process, dominated by the
poorly constrained axial-vector form factor. This uncertainty
dominates the error budget of the absolute cross section but
cancels between the numerator and denominator in various

cross-section ratios. The impact of this tree-level uncertainty
and of radiative corrections, on critical νe versus νμ cross-
section ratios will be examined below.

C. Electronlike muon-jet events

Compared to the case of electrons, bremsstrahlung from
muons is a rarer process because of the larger muon mass. It
is precisely this difference between muons, which slowly
lose energy by ionization and collision processes, and
electrons, which lose energy by bremsstrahlung, that is
used as the primary way to distinguish electron and muon
(anti)neutrino interactions from each other in neutrino
oscillation experiments. Therefore, events with muons
and energetic collinear photons can be misidentified as
electron events. For this confusion to happen, the photon
must carry a significant fraction of the primary muon
energy because low-energy collinear photons are consistent
with collisional processes where muons create γ rays in the
detector. To accurately predict this confusion, a detailed
detector simulation is required. However, we may estimate
the effect in a simplistic model in which a collinear muon
and photon will only be confused with an electron if the
range of the muon in the detector is less than the range of an
electron with energy equal to the sum of the photon energy
and muon kinetic energy. Because the electron shower
range at high energies grows only logarithmically with
electron energy, but muon range grows nearly linearly, the
fraction of the energy that must be carried by the collinear
photon will grow with muon energy. By comparing the
average length of electron showers [6,165] to muon range
[166], we have developed an empirical parametrization of
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FIG. 11. The same as Fig. 10 but for the muon flavor.
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the collinear photon energies that would not cause
this confusion: Eγ≲Ẽf0.95−0.75=½ðẼ=1GeVÞþ0.85�g,
where Ẽ ¼ Eν −Q2=2M −mμ. This parametrization is
independent of the choice of detector materials considered
in this work—scintillator, water, and argon—and is valid
for Ec ≪ Ẽ≲ 5 GeV, where Ec is the electron critical
energy in the target medium, i.e., the energy above which
electron energy loss is dominated by bremsstrahlung [167].
Ec is approximately 90 MeV in polystyrene scintillator,
75 MeV in water, and 32 MeV in liquid argon.
A quantity of interest is the cross section for muon

neutrino and antineutrino events with collinear photon
energies large enough so that the final-state muon could
be mistaken for an electron and therefore lead to flavor
misidentification. This is a potential concern, especially
since electron (anti)neutrino events are much less common
than muon (anti)neutrino events in the relevant (anti)
neutrino beams. The ratio of this cross section to the
tree-level charged-current elastic cross section is shown as
the solid curve in Fig. 13, using our default hadronic model
(“default model” in the figure). As the figure illustrates, the
probability for such misidentification is small, of order one
part in 104, and this is a subleading effect in the current
generation of experiments. This effect is potentially much
larger for experiments whose particle identification algo-
rithms are sensitive to lower-energy collinear photons than

were presumed to cause misidentification in this study. To
illustrate the dependence on the assumed photon energy
threshold for misidentification as electron (anti)neutrinos,
the figure also shows the cross section for the cases where
Eγ > Eμ −mμ and Eγ > 200 MeV. As remarked in
Sec. IV E, a naive form-factor insertion model for the hard
matching condition violates electromagnetic current con-
servation, leading, e.g., to spurious ∼ lnðmlÞ collinear
singularities. We illustrate the importance of ensuring this
conservation condition by comparing our default hadronic
model to the naive form-factor insertion model (“local
model” in the figure).

D. Energetic photons isolated from charged lepton jets

Hard photons outside of electron jets can be misidentified
as coming from π0 → γγ and may be removed from many
oscillation analyses in an attempt to reduce such back-
grounds. In the case of low-energy oscillation experiments,
attempts to select quasielastic muon neutrino or antineutrino
interactions may also remove events with a visible photon
that is not collinear with the muon. We estimate the relative
contributions of such events in the following.
To evaluate one-photon events with energy above ΔE

outside the cone of angle Δθ, we use the hadronic model of
Secs. IV E 2 and VA, labeled default model in our figures.
Recall that this model differs from a naive form-factor
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FIG. 12. Ratio of the differential cross section to the tree-level result for νe (ν̄e) including only soft or both soft and collinear photon
emission. Left and right plots are for neutrino and antineutrino scattering, respectively. Upper and lower plots are for Eν ¼ 600 MeV
and Eν ¼ 2 GeV, with soft-photon energy cutoff ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. The lower blue dash-dotted band
corresponds to curves in Fig. 10. The upper pink dashed band includes also real photons within a cone of size Δθ ¼ 10°. The difference
between the green dashed line and unity represents the uncertainty of the tree-level cross section itself; this uncertainty largely cancels in
the displayed cross-section ratios.
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insertion ansatz by the choice of form-factor arguments:Q2

at the weak vertex is determined by the external nucleon leg
kinematics. In the phase space of photons outside the
collinear region, the naive model does not give rise to
spurious ∼ lnml singularities, and we may use the differ-
ence between this local model and our default hadronic
model as a crude measure of model dependence. Note that
the cross section including these one-photon events is
exclusive of the jet cross section of Sec. VI B with only
one photon, for the same ΔE and Δθ.
The results in Figs. 14 and 15 for photon energy

thresholds ΔE of 20, 40, and 80 MeV show that the cross
section for hard photons outside of electron jets is of order
1% to several % of the tree-level cross section and
potentially significant for current and future neutrino
oscillation experiments.

E. Inclusive observables

Sections VI A, VI B, and VI C restricted attention to
event classes that excluded noncollinear hard photons. In
Sec. VI D, we considered the contribution of noncollinear
hard photons to the cross section for charged-current (anti)
neutrino-nucleon scattering, finding that such events can
contribute significantly in current and future neutrino
experiments. These photons may not be explicitly recon-
structed but, if not vetoed, would contribute to the observed

event rate and would affect (anti)neutrino energy
reconstruction based solely on the visible energy in the
leptonic shower.
For measurements that include (i.e., do not veto) such

hard photons, the relevant cross section involves integration
over the full phase space of radiated photons. For such
observables, we perform a calculation within our default
hadronic model described in Secs. IV E 2 and VA. In
contrast to Secs. VI A and VI B, we compute at fixed order
in QED perturbation theory. We assign the same tree-level
form-factor uncertainty and the same uncertainty assign-
ment for virtual contributions (cf. Sec. VI D regarding
uncertainty of the hard real photon contribution).
Figures 16 and 17 provide results for distributions when
the independent variable Q2 is defined using different
measures of leptonic energy. For example, in the case of
electrons, Q2 may be defined using the electron energy
itself,Q2 ¼ 2MðEν − ElÞ, or using the sum of electron and
photon energies,Q2 ¼ 2MðEν − El − EγÞ, or perhaps as in
a realistic experiment, using the energy reconstructed
within a Δθ ¼ 10° cone whose axis is around the electron
direction. Note that for the El spectrum, parameter ΔE
does not enter: the observable sums over all “unobserved”
photons, not just those below a threshold ΔE. Similarly for
the El þ Eγ spectrum, ΔE does not enter, since the
spectrum is equivalent to the spectrum in hadronic

E  = 0.6 GeV,  = 10o

 p  + n 

d
/d

L
O

10 5

2 10 5

5 10 5

0.0001

Q2, GeV2

0 0.2 0.4 0.6

E  = 2 GeV,  = 10o

 n  - p 

d
/d

L
O

10 4

10 3

Q2, GeV2

0 0.5 1.0 1.5

E  = 0.6 GeV,  = 10o

 n  - p 

d
/d

L
O

10 5

2 10 5

5 10 5

0.0001

Q2, GeV2

0 0.2 0.4 0.6

default model
default model, E  > E  - m
default model, E  > 200 MeV
local model
local model, E  > E  - m
local model, E  > 200 MeV

fake e

E  = 2 GeV,  = 100

 p  + n 

d
/d

L
O

10 4

10 3

Q2, GeV2

0 0.5 1.0 1.5

FIG. 13. Ratio of unpolarized radiative charged-current-elastic-like νμ and ν̄μ differential cross sections to the tree-level result with
collinear photon energy above the threshold for final muon to be misidentified as electron, as described in the text. Reference scenarios
with Eγ > Eμ −mμ and Eγ > 200 MeV are shown for comparison. Plots are for (anti)neutrino beam energies Eν ¼ 600 MeV (upper
plots) and Eν ¼ 2 GeV (lower plots). The calculation based on our default electroweak vertex is labeled as default model. The
calculation when the electroweak vertex is taken as in diagrams with local interactions is labeled as local model.
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FIG. 14. Ratio of unpolarized radiative charged-current-elastic-like νe and ν̄e differential cross sections to the tree-level result with
hard photons outside the jet cone. Curves show Eγ > 20, 40, and 80 MeV, for the angle between the electron and photon θ > 10°. Plots
are for (anti)neutrino beam energies Eν ¼ 600 MeV (upper plots) and Eν ¼ 2 GeV (lower plots). The calculation based on our default
electroweak vertex is labeled as default model. The calculation when the electroweak vertex is taken as in diagrams with local
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FIG. 15. The same as Fig. 14 but for the muon flavor charged-current-elastic-like cross section, with θ > 2°.
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FIG. 16. Ratio of the inclusive differential cross section including noncollinear emission of one hard photon to the tree-level result is
presented as a function of Q2. Electron neutrino-neutron scattering is shown on left plots and antineutrino-proton scattering on right
plots. For comparison, the result including only soft photon radiation with energy below ΔE is shown by the black dash-dotted lines and
light blue band. The El þ Eγ energy spectrum is shown by the red dashed lines; the spectrum of events reconstructed from the energy
within the Δθ ¼ 10° cone is shown by the dark-blue dashed double-dotted lines and blue band; and the energy spectrum reconstructed
from the electron energy is shown by the green dotted lines. (Anti)neutrino beam energies are taken as Eν ¼ 600 MeV (upper plots) and
Eν ¼ 2 GeV (lower plots), and the soft-photon energy cutoff is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. Q2 is defined
according to the spectrum in figures. The displayed Q2 range for 600 MeV (anti)neutrino beam corresponds to the maximum for tree-
level elastic kinematics. For 2 GeV (anti)neutrinos, the displayed Q2 range is truncated to focus on the phenomenologically relevant
regime. Central value cross sections for the entire Q2 region are displayed in Fig. 18.

FIG. 17. The same as Fig. 16 but for the muon flavor. The cone observable is not presented since the radiation inside the cone is
negligible for the muon flavor.
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momentum transfer Q2, which sums over all possible
photon energies.19 For the “energy in cone” observable,
we use ΔE ¼ 20 MeV to specify the selection, assuming
that photons below this value are not reconstructed.
Note that the allowed region of Q2 is different for

different spectra and may extend beyond the tree-level
kinematic limit. In particular, the El spectrum extends up to
Q2 ¼ 2MðEν −mlÞ, in contrast to the El þ Eγ spectrum,
which extends only to the tree-level kinematic limit. We
illustrate these regions and provide corresponding cross
sections for neutrino-neutron and antineutrino-proton scat-
tering in Fig. 18.

F. Cross-section ratios

We have noted that, after the inclusion of radiative
corrections, the uncertainty of absolute cross sections for
either electron or muon flavor, and for either neutrino or
antineutrino, is dominated by hadronic uncertainties of the
tree-level process. Cross-section ratios, for electron versus
muon and for neutrino versus antineutrino, are critical to

oscillation analyses. Within our formalism, we can sys-
tematically investigate the impact of radiative corrections
on these ratios, determining the absolute size of corrections,
and the extent to which hadronic uncertainties cancel.
Figure 19 displays the cross-section ratio of electron

to muon flavor, comparing the tree-level case to the
default observable for exclusive electron and muon
charged-current events. For comparison, we show also
the ratio of the soft-photon-only cross sections. For
observables taken at the same value of hadronic Q2, the
hard function H cancels identically in the ratio in our
leading-power analysis. The remaining soft and jet func-
tions depend on the charged lepton mass and the kinematic
parameter Δθ.
Figure 20 displays the double ratio of σ=σLO for neutrino

versus antineutrino events. The deviation from unity is
small compared to the magnitude of the total radiative
correction to either neutrino or antineutrino separately,
reflecting the structure of the factorization formula, as
follows. First, for a given charged lepton mass, the jet
function is identical when the same event selection is used.
Second, the soft function differs only in the kinematics of
the proton, and identical leading logarithmically enhanced
terms appear for neutrino and antineutrino cases at the same
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FIG. 18. Tree-level differential cross section for the (anti)neutrino beam energies Eν ¼ 600 MeV and Eν ¼ 2 GeV is compared to the
spectra of radiated events, with photons above the energyΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively, whenQ2 is defined from the
lepton energy El or from the sum of lepton and photon energies El þ Eγ . Results are shown for electron and muon flavors, for neutrino-
neutron scattering on the left plot and for antineutrino-proton scattering on the right plot. The flavor difference of tree-level cross
sections is unresolved on this figure over the wide range of allowed kinematics; see upper curves on all plots. We also present the
spectrum of events reconstructed from the energy within the cone of angle Δθ ¼ 10° for the electron flavor.Q2 and its range are defined
according to the spectrum in figures. Integrals over all Q2 values for El, energy in 10° cone, and El þ Eγ spectra are the same.

19Parameter ΔE enters as a regulator parameter during the
calculation, separating an IR-divergent soft region from the
remainder, but is taken negligibly small for the final results.
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FIG. 20. Antineutrino-proton over neutrino-neutron differential cross-section double ratios to the tree-level results with electron (left
plots) and muon (right plots) flavors including the radiation of soft photons with energy belowΔE, shown by the black dash-dotted lines
and light blue band, and accounting also for the radiation of collinear photons in case of electron flavor as described in Sec. VI B, shown
by the red dashed lines and pink band. For (anti)neutrino beam energies Eν ¼ 600 MeV (upper plots) and Eν ¼ 2 GeV (lower plots), the
soft-photon energy cutoff is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. Differences between the double ratios with and without
collinear photons arise from subleading effects and are indistinguishable in the figure (see text). The relative uncertainty of the tree-level
antineutrino over neutrino cross-section ratio is represented by the green dotted line as a deviation from unity.

FIG. 19. Electron over muon flavor ratios of unpolarized differential cross section in neutrino-neutron (left plots) and antineutrino-proton
(right plots). Blue solid lines and blue band, tree level; black dash-dotted lines and light blue band, including radiation of soft photons with
energy below ΔE; red dashed lines and pink band, including radiation of soft photons with energy below ΔE and including radiation of
collinear photons for the electron flavor as described in Sec. VI B but not for the muon flavor. For (anti)neutrino beam energies Eν ¼
600 MeV (upper plots) and Eν ¼ 2 GeV (lower plots), the soft-photon energy cutoff is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively.
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charged lepton kinematics (the soft functions become
identical in the static limit; cf. Sec. III). Finally, deviations
of the ratio from unity from the hard functionH also do not
contain large logarithm enhancements. Note that unlike the
case of e versus μ cross sections for either neutrino or
antineutrino, hadronic uncertainties in the hard function do
not cancel. Since only the ratio of antineutrino over
neutrino cross sections but not the double ratio can be
accessed experimentally, we present the relative uncertainty
of the tree-level ratio as a deviation from unity in Fig. 20.
This uncertainty from the hard function presently limits
our knowledge of antineutrino over neutrino cross-
section ratios and can be reduced only with improved
knowledge of elementary (anti)neutrino-nucleon scattering
amplitudes.
Figures 21 and 22 show the analog of Figs. 19 and 20,

but calculated for the inclusive event sample, as discussed
in Sec. VI E. For each spectrum here, Q2 is reconstructed
from the corresponding energy as described in Sec. VI E.
For this case, there is no exact cancellation between hard
functions in electron versus muon cross sections, since the
events for a given value of (reconstructed) Q2 do not
necessarily correspond to the same nucleon kinematics.
Moreover, the double ratio deviates significantly from unity
for the El spectrum, for which there is no direct corre-
spondence to the events of the El þ Eγ spectrum.

G. Leading nuclear effects

In current neutrino detectors, most scattering events take
place on nucleons bound inside nuclei. In the following, we
estimate the relative importance of leading nuclear correc-
tions. We represent these corrections by an “impulse”
model, where the nucleon-level process is described by
assigning modified kinematics to the initial-state nucleon,
and by enforcing constraints on the final-state nucleon
kinematics. This model does not represent a complete
description of complicated nuclear dynamics.20 However
for GeV (anti)neutrino energies and for the nuclei of
interest (e.g., carbon, oxygen, and argon), it is expected
to capture the leading effects and is sufficient for our
purposes. In particular, we demonstrate that the dominant
corrections cancel in critical cross-section ratios, in accor-
dance with the general arguments in Sec. V B. We evaluate
separately the effects due to the binding or removal
energy, Fermi motion, and Pauli blocking. A detailed
comparison to recent developments in nuclear physics
would require more elaborate calculation including
final-state interactions, long-range correlations, and
meson exchange currents. Some of these effects are

FIG. 21. (Inclusive) Electron over muon flavor ratios of unpolarized differential cross sections in neutrino-neutron (left plots) and
antineutrino-proton (right plots) scattering at tree level, shown by the blue solid lines; the ratio of El spectra is shown by the green dotted
lines; the ratio of spectrum of events reconstructed from the energy within the 10° cone for the electron flavor to the El spectrum for the
muon flavor is shown by the dark-blue dashed double-dotted lines and blue band; and the ratio of El þ Eγ energy spectra is shown by
the red dashed lines. (Anti)neutrino beam energies are taken as Eν ¼ 600 MeV (upper plots) and Eν ¼ 2 GeV (lower plots); the soft-
photon energy cutoff for jet events with electron (anti)neutrinos is ΔE ¼ 25 MeV and ΔE ¼ 10 MeV, respectively. Q2 is defined
according to the spectrum in figures.

20For work on nuclear structure effects for interaction cross
sections, and further references, see Refs. [168–186].
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taken into account in modern neutrino event generators
[187–194].
According to the prescription of Smith and Moniz [195],

a bound nucleon is described by changing the free-nucleon
calculation by the replacement of the initial nucleon mass
M → M − Eb.

21 Since the limit Eb → 0 is smooth, the
leading term in the expansion is of order Eb=M and cancels
in the flavor ratio when lepton-mass corrections are
ignored. For the relevant range of Eb, of order
few × 10 MeV, binding effects on the absolute cross
sections are ∼few × 1% or below.
To estimate the corrections due to Fermi motion, we

boost to the rest frame of the initial-state struck nucleon.
Instead of the lab frame (anti)neutrino energy Eν, the
nucleon in its rest frame sees a neutrino with energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ν sin2 θ þ

�
1þ k⃗2

M2

�
ðEν cos θ − jk⃗jÞ2

s
; ð64Þ

and the nuclear cross section is given by an average over the
initial nucleon angle θ and summation over all nucleon
states up to the Fermi momentum, jk⃗j ≤ kF (for numerical
evaluations, we take a value for the 40Ar nucleus
kF ≈ 240 MeV). Consequently, Fermi motion results in
relative corrections of order k2F=M

2 and k2F=E
2
ν. Such

corrections could become large at very small (anti)neutrino
energies close to the muon production threshold, which we
illustrate in Table I. For flavor ratios, relative changes are
much smaller than for cross sections themselves. A similar
effect applies to all distributions presented in this paper for
the (anti)neutrino energies of interest.
Pauli blocking effects similarly scale as k2F, but because

they are concentrated at low Q2 where the cross section is
sizable, the impact on total cross sections can be significant.
In Table II, we present the effect on the cross section as well
as the change of flavor ratios. We represent the Pauli
blocking effect by retaining only that region of phase space
where the final-state nucleon momentum has jk⃗j > kF
[195]. This effect only slightly depends on the (anti)
neutrino flavor at energies much larger than the muon
mass. Going to lower (anti)neutrino energies, the effect
increases [196–198]. Pauli blocking corrections to flavor
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FIG. 22. (Inclusive) The same as Fig. 20 but for inclusive observables as specified in the caption to Fig. 21.

TABLE I. Relative effects of the Fermi motion on the total
unpolarized cross sections and flavor ratios at leading (LO) and
next-to-leading (NLO) orders for (anti)neutrino beam energies
600 MeV and 2 GeV. Upper limits for both neutrino and
antineutrino (and for both muon and electron flavor in the
second column) are shown in this table.

Eν (GeV) δσ
σ (%)

�
δðσe=σμÞ
σe=σμ

�
LO

(%)

�
δðσe=σμÞ
σe=σμ

�
NLO

(%)

0.6 ≲2.5 ≲0.06 ≲0.05
2.0 ≲0.3 ≲0.003 ≲0.01

21The precise replacement ansatz depends on a conventional
choice of hadronic amplitude basis and of independent kinematic
variables [131]. This choice does not affect the present discus-
sion.
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ratios are below or comparable to hadronic uncertainties
propagated from total inclusive cross sections.
In summary, while nuclear effects can have a sizable

impact on absolute cross sections, they do not significantly
change flavor ratios of total inclusive cross sections and of
spectra with respect to the hadronic momentum transfer.
This statement remains true in the presence of radiative
corrections, following from the results in Sec. VI E.
Returning to the discussion of Sec. V B, we may summa-
rize the impact of nuclear corrections on the flavor ratio as
a shift in B0ðEν ¼ 2 GeVÞ ¼ −0.28 → −0.32 [131], for
the combined effects of binding energy, Fermi motion and
Pauli blocking.

H. Comparison to (anti)neutrino-nucleus quasielastic data

Our results predict significant radiative corrections to the
charged-current elastic scattering process. These correc-
tions are especially important in νe versus νμ flavor ratios
owing to the sparsity of νe cross-section measurements, the
potentially larger contributions for νe versus νμ, and the
direct impact of corrections on νμ → νe oscillation analyses
[3]. However, radiative corrections are also present in the
more-abundant νμ scattering data. The elastic scattering
process has been studied with muon flavor neutrinos and
antineutrinos scattering off free protons [199], weakly
bound light nuclei [124,125,127,128,132,200–202], and
tightly bound medium-sized nuclei [203–221]. Here, we
examine how radiative corrections affect the interpretation
of these measurements, which were analyzed using tree-
level cross-section models.
We consider radiative corrections in several large data-

sets, all of which have been collected using hydrocarbon
targets. A complication in implementing the radiative
corrections is that, for measurements on nuclei, the same
observable hadronic final state can originate from different
nucleon-level processes: events originating from nucleon-
level elastic scattering are observed together with other
processes such as multinucleon knockout or pion produc-
tion followed by pion absorption in the target nucleus. The
collection of these events is referred to as “CCQE-like” or
“CC0π” in the literature. In this study of CC0π νμ and ν̄μ
interactions, we define CC0π to be an event with a single

appropriately charged muon and no other charged leptons,
no mesons, and any number of nucleons in the final state,
after final-state interactions in the nucleus have occurred.
To compare the effects from radiative corrections with
experimental data, we embed our predictions into neutrino
event generators that include a default model for nuclear
effects and predictions for inelastic feed-down into the
signal.
We implement radiative corrections as follows. For

each neutrino energy, we compute the unpolarized differ-
ential neutrino-nucleon cross section for νμ (and ν̄μ)
scattering, with Q2 defined using lepton kinematics [i.e.,
Q2 ≡ 2MðEν − ElÞ]. We form the ratio of this result to the
tree-level cross section. For Eν ¼ 600 MeV and 2 GeV, this
ratio is displayed in Fig. 17, labeled “El spectrum.” In the
sum over initial-state nucleons of the nuclear model,
radiative corrections are applied by multiplying the
tree-level result by this ratio, in the rest frame of each
struck nucleon. A flux average is then performed over
neutrino energy for the relevant neutrino beam. The
logarithmically enhanced contributions to radiative correc-
tions, ∼ lnðE2

ν=m2
μÞ, depend only on lepton kinematics and

are independent of hadronic structure. We therefore apply
the same Q2-dependent correction determined from “true
CCQE” events to all events that pass a CC0π selection. For
multinucleon events in the nuclear model, the struck
nucleon (neutron for ν, proton for ν̄) is the one considered
participating in the interaction, and radiative corrections
are again applied in the rest frame of the struck nucleon. In
this evaluation for muon flavor, we neglect events in the
phase-space region outside elastic kinematics (cf. Fig. 18);
explicit evaluation shows that such events change muon

TABLE II. Relative effects of Pauli blocking on the total
unpolarized cross sections and flavor ratios for (anti)neutrino
beam energies 600 MeV and 2 GeV.

Eν (GeV) δσ
σ (%)

�
δðσe=σμÞ
σe=σμ

�
LO

(%)

����
�

δðσe=σμÞ
σe=σμ

�
NLO

���� (%)

0.6 ν −13 0.15 ≲0.2
ν̄ −37 0.21 ≲0.2

2.0 ν −11 −0.002 ≲0.01
ν̄ −18 0.009 ≲0.01

2, GeV2Q
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FIG. 23. Estimated cross-section ratio to the tree-level result for
the CC0π process in T2K, NOvA, DUNE, and MINERvA (LE
and ME flux configurations) experiments after averaging over the
corresponding neutrino flux, as a function of Q2 ¼ −ðpν − pμÞ2.
See text for details.
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FIG. 24. The effect of radiative corrections to the tree-level prediction for the cos θμ ¼ 0.94–0.98 bin of the T2K ND280 νμ (left) and
ν̄μ (right) CCQE-like data [219] is shown for the cross section per nucleon of a CH target.

FIG. 25. The effect of radiative corrections to the tree-level prediction for the cos θμ ¼ 0.60–0.70 bin of the T2K ND280 νμ (left) and
ν̄μ (right) CCQE-like data [219] is shown for the cross section per nucleon of the CH target.

FIG. 26. The effect of radiative corrections to the tree-level prediction for one slice of the MINERvA LE νμ CCQE-like data [214]
(left) and ν̄μ CCQE-like data [226] (right) is shown for the cross section per nucleon of the CH target.
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(electron) flavor cross sections in the relevant energy range
at permille (percent) level or below.
Neutrino interactions are generated with the NEUT [222]

and GENIE [223] neutrino-event generators22 for the
MINERvA, NOvA, and T2K muon (anti)neutrino fluxes
on a plastic scintillator (CH) target and for DUNE [224] on
a 40Ar target, using NUISANCE [225]. For MINERvA,
both the low-energy (LE) and medium-energy (ME)
neutrino flux configurations are included. NEUT and
GENIE show very similar features, and only predictions
using NEUT are presented in the following figures. The
resulting ratios to tree-level cross sections for CC0π events
from the T2K, NOvA, MINERvA, and DUNE experiments
are shown in Fig. 23. A 4%–7% suppression is observed at
low Q2 for the NOvA, MINERvA, and DUNE experi-
ments, all of which have significant neutrino flux in the
Eν > 1 GeV region.
The kinematic dependence of radiative corrections is

compared to experimental data in Figs. 24–27. For the T2K
experiment, the data are presented as a function of the
momentum of the muon, pμ, in a fixed range of the cosine
of the lepton scattering angle relative to the neutrino beam
direction, cos θμ. We choose illustrative cos θμ bins close to
the peak in the cos θμ distribution from Ref. [219]. For the
MINERvA experiment, the data are presented as a function
of the transverse projection of the muon momentum along
the neutrino beam direction, pt, in a fixed range of the
longitudinal projection pjj (we choose illustrative pjj bins
close to the broad peak in the pjj distributions from
Refs. [214,226]). For the comparison to T2K νμ and ν̄μ
data in Figs. 24 and 25, experimental error bars are large
compared to the small radiative corrections displayed in
Fig. 23. For the LE MINERvA data, opposite effects are

observed in the low-pt and high-pt regions, corresponding
to the low-Q2 and high-Q2 regions of Fig. 23. For the
ME MINERvA data, the effects are enhanced further at
low pt due to the larger neutrino energy (cf. Fig. 23); as for
the LE MINERvA data, the effect for ν̄μ is stronger than
for νμ.
Previous studies have used the kinematic dependence of

data-theory comparisons to constrain uncertain nucleon and
nuclear parameters, e.g., providing measurements of axial
nucleon form factors [48,124–134,199], multinucleon
processes, or other nuclear effects [229,230]. The correc-
tions to tree-level predictions in this work can be used to
determine the impact of radiative corrections on these
measurements and will be important for the interpretation
of future precise measurements with neutrinos.

VII. SUMMARY AND OUTLOOK

In this paper, we have developed the framework for
radiative corrections in charged-current (anti)neutrino-
nucleon elastic scattering at GeV (anti)neutrino energies.
Exploiting effective field theories, we have shown that
scattering cross sections factorize into soft, collinear, and
hard functions. The soft and collinear functions contain
flavor-dependent large logarithm enhancements and
depend on detailed experimental conditions but can be
computed perturbatively. The hard function is subject to
hadronic uncertainty but is independent of the charged
lepton mass and cancels in ratios of cross sections for
different lepton flavors involving the same hadronic
kinematics.
We have provided analytic expressions for the soft

function and its small lepton-mass limit. We have per-
formed the first calculations of the collinear function
separately for virtual corrections and for the radiation of
one collinear photon and have provided small-angle
and small lepton-mass limits. We have illustrated the

FIG. 27. The effect of radiative corrections to the tree-level prediction for the same slice of the MINERvA ME νμ [217] (left) and ν̄μ
[227,228] (right) CCQE-like data is shown for the cross section per nucleon of the CH target.

22
NEUT 5.5.0 with Valencia model 1p1h and 2p2h and GENIEv3

G18_10a_02_11a.
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factorization theorem in an exactly calculable model
corresponding to a nonrelativistic nucleon and ultrarela-
tivistic lepton.
We have expressed the hard function for arbitrary

kinematics in terms of a model-independent amplitude
decomposition for charged-current (anti)neutrino-nucleon
elastic scattering. We have determined the invariant ampli-
tudes in a gauge-invariant hadronic model that reproduces
soft and collinear regions of the one-loop charged-current
elastic process. We have performed detailed error analysis
including hadronic and perturbative uncertainties within
this model. The tree-level hard function is the main source
of uncertainty in absolute cross sections. However, this
uncertainty largely cancels in important cross-section
ratios, in particular the ratio of electron to muon cross
sections. Remaining uncertainties are at permille level.
Our results confirm a naive estimate of radiative cor-

rections by powers of leading logarithms. Exclusive cross
sections at GeV neutrino energies with electron flavor can
change by ∼10%–20% when only soft photons are
included in the observable and up to ∼5% when both soft
and collinear radiation are included. The corresponding
changes in muon (anti)neutrino cross sections are typically
smaller and can reach up to ∼5%. Inclusive cross sections
at fixed hadronic momentum transfer are subject to smaller
radiative corrections, due to the cancellation between
virtual and real contributions after the inclusion of hard
photons. However, inclusive results vary by ∼10%–20%
(5%–10%) for electron (muon) flavor depending on the
way that kinematics is reconstructed from leptons and
photons.
An important result from our studies for precision

accelerator neutrino oscillation program is that the total
cross section as a function of (anti)neutrino energy,
inclusive of real photon emission, is very similar for
electron and muon (anti)neutrino events, as Figs. 16, 17,
and 21 illustrate. However this simple result is achieved
only after summing inclusively over distinct kinematic
configurations. Electron-flavor and muon-flavor cross sec-
tions receive significant, and different, corrections as a
function of kinematics that must be carefully accounted for
when experimental cuts and efficiency corrections are
applied in a practical experiment. It is also important to
carefully match the theoretical calculation of radiative
corrections to experimental conditions since radiative
corrections depend strongly on the treatment of real photon
radiation.
The double ratio of the neutrino over antineutrino cross

sections to the tree-level result is very close to unity for
exclusive observables and for inclusive observables corre-
sponding to the same value of hadronic momentum trans-
fer. This situation can be traced to the fact that the collinear
function is the same in neutrino and antineutrino scattering
and that enhanced perturbative contributions to the soft
function are similarly the same. However, differences in the

kinematic reconstruction of electron-flavor and muon-
flavor events in practical detectors lead to significant
deviations of this double ratio from the unity.
Our studies have shown that the probability for a muon

(anti)neutrino event to be misidentified as an electron (anti)
neutrino event due to the presence of energetic collinear
photons is of order 10−4 or below. Radiative cross sections
with noncollinear hard photons have typically percent level
and should be accounted for in precise measurements with
accelerator (anti)neutrino beams.
Our work can be directly applied to analyze (anti)

neutrino-nucleon scattering processes, accounting for
QED radiative corrections for the first time. An important
application is the extraction of the nucleon axial form factor
and corresponding axial radius from neutrino scattering
data at GeV energies.
A primary motivation for our work is the analysis of

neutrino oscillation signals using nuclear targets. Although
the study was performed with (anti)neutrino-nucleon scat-
tering, important cross-section ratios are insensitive to the
explicit form of the nonperturbative hard function and
similar conclusions are valid for scattering on nuclei. First,
the radiative corrections to exclusive cross sections at large
momentum transfer, and the corresponding flavor ratios,
are dominated by large perturbative logarithms that are
independent of nuclear or hadronic parameters. Second, the
radiative corrections to inclusive cross sections are gov-
erned by an expansion in small lepton mass [cf. Eq. (59)],
which implies small modifications to radiative corrections
from nuclear effects and small theoretical uncertainties on
flavor ratios of inclusive cross sections.
Our work paves the way for the rigorous incorporation of

radiative corrections at accelerator neutrino experiments, an
important missing ingredient for the achievement of the
desired precision in extractions of the Pontecorvo-Maki-
Nakagawa-Sakata matrix parameters, squared mass
differences, and discovery of the CP violation in the lepton
sector.
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