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This paper serves as an update of the previous work entitled “Heavy-flavor-conserving hadronic weak
decays of charmed and bottom baryons”. We make an improvement on the bag wave functions by removing
the center-of-mass motion of the bag. All the baryon matrix elements are now calculated under the same
framework without introducing new parameters. The matrix elements of 4-quark operators are found to be
nearly twice larger than the previous ones. The calculated branching fractions of Ξ0

c → Λþ
c π

− and Ξ−
b →

Λ0
bπ

− are both in agreement with current experimental results. For the yet-to-be-measured heavy-flavor-
conserving decays, we findBðΞþ

c → Λþ
c π

0Þ ¼ ð13.8� 1.4Þ × 10−3,BðΞ0
b → Λ0

bπ
0Þ ¼ ð2.6� 0.3Þ × 10−3,

BðΩ0
c → Ξþ

c π
−Þ ¼ ð2.0� 0.2Þ × 10−3 and BðΩ0

c → Ξ0
cπ

0Þ ¼ ð1.1� 0.1Þ × 10−3. They are all accessible to
LHCb, Belle and Belle II and can be tested in the near future.

DOI: 10.1103/PhysRevD.106.093005

I. INTRODUCTION

It is known that a rigorous and reliable approach for
describing the nonleptonic decays of heavy baryons,
especially the nonfactorizable effects, does not exist.
Nevertheless, there is a special class of weak decays of
heavy baryons that deserves special attention, namely,
heavy-flavor-conserving (HFC) nonleptonic decays such
as the singly Cabibbo-suppressed decays ΞQ → ΛQπ
and ΩQ → ΞQπ with Q ¼ c, b [1]. They can be studied
in a more trustworthy way. Since the pion produced in HFC
decays are soft, it is legitimate to apply for the soft-pion
theorem to evaluate the nonfactorizable contributions in
both S- and P-wave amplitudes. If the heavy quark
behaves a spectator, then we will have another great
simplification, namely, the P-wave amplitude will vanish
in ΞQ → ΛQπ decays in the heavy quark limit, while the
S-wave vanishes in ΩQ → ΞQπ decays in the limit of
mQ → ∞. Indeed, this is the case for Ξb → Λbπ and
Ωb → Ξbπ decays as the b quark does not participate in
weak interactions in these b-flavor-conserving decays.
However, charm-flavor-conserving decays Ξc → Λcπ
and Ωc → Ξcπ receive additional contributions from the

W-exchange diagrams via cs → dc transition. Hence, the
charm quark no longer acts as a spectator and the P-wave
(S-wave) will not diminish in Ξc → Λcπ (Ωc → Ξcπ)
decays in the heavy quark limit.
In the soft-pion limit, the HFC decay amplitudes can be

formulated in terms of the matrix elements of the current
(i.e., 2-quark operator) and 4-quark operators [2].
Previously, they were estimated within the static bag model
by two of us (HYC and FX). However, the calculated
branching fraction of Ξ0

c → Λþ
c π

− of order 1.76 × 10−3 [2]
is too small by a factor of 3 compared to the recent LHCb
measurement of ð5.5� 0.2� 1.8Þ × 10−3 [3].
The problem can be traced back to the fact that the

description of the bag model is a semiclassical one.
Quarks are treated as quantum objects as they obey the
free Dirac equation, while the boundary of the bag is a
classical object, an infinite potential barrier, possessing a
definite position. Clearly, a static bag is not invariant
under space translation, and it is impossible for a static
bag to be at rest in the quantum mechanics as 3 momenta
are the generators of space translation. The problem is
also related to the salient feature that the bag quarks
are unentangled. Although the expectation value of the
3-momentum vanishes

hpqi ¼ 0; ð1Þ
it is impossible for hp2

qi to be zero due to

hp2
qi ¼ E2

q −M2
q > 0; ð2Þ
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where Eq, pq, and Mq are the energy, 3-momentum and
mass, respectively, of the quark q. Here, we have used the
fact that the bag quarks obey the free Dirac equation and
possess a definite energy. Combining Eqs. (1) and (2), we
arrive at1

hpBi ¼ hpq1 þ pq2 þ pq3i ¼ 0;

hp2
Bi ¼ hðpq1 þ pq2 þ pq3Þ2i ¼ hp2

q1i þ hp2
q2i þ hp2

q3i > 0;

ð3Þ

where pB and pqi are the 3-momenta of the baryon and the
ith quarks, respectively, and we have used hpqi · pqji ¼
hpqii · hpqji for i ≠ j as the quarks are unentangled. The
variance of the baryon’s 3-momentum σ2pB

≡ hp2
Bi − hpBi2

would be referred to the center-of-mass motion (CMM) of
the bag. It is straightforward to see that the CMM is Lorentz
invariant,

σ2pB
¼ hE2

Bi − hpμ
Bp

ν
Bigμν − hEBi2 þ hpμ

Bihpν
Bigμν

¼ −hpμ
Bp

ν
Bigμν þ hpμ

Bihpν
Bigμν; ð4Þ

where pμ
B is the 4-momentum of the baryon. Since

the last two terms in the above equation cancel each other,
a physical bag with a definite momentum should not have a
CMM as σ2pB

¼ 0. However, in the static bag model we
have σ2pB

> 0. This unwanted CMM is an issue and it
should be removed for a consistent treatment.
In this update, we shall make an improvement on this

shortcoming by getting rid of the CMM of the bag. In
particular, it has been shown that the axial form factors are
found to be 15% larger [4] once the CMM issue is
remedied.
The layout of this work is organized as follows. In

Sec. II, we recall the expressions of the HFC decay
amplitudes given previously. In Sec. III, we construct
the baryon wave functions free of the CMM effect and
sketch the methods of computing the matrix elements.
Numerical results and discussions are presented in Sec. IV.
We conclude our study in Sec. V. Baryon wave functions
are summarized in Appendix A. Appendix B is devoted to
an explicit evaluation of a given matrix element of 4-quark
operators.

II. FORMALISM

In this section we recapitulate the formalism outlined in
Ref. [2]. In the HFC processes, the W-exchange through
su → ud transitions is described by the following effective
Hamiltonian,

Hu
eff ¼

GFffiffiffi
2

p V�
udVusðc1Ou

1 þ c2Ou
2Þ; ð5Þ

where GF is the Fermi constant, c1;2 the Wilson coeffi-
cients, and Vqq0 the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. For HFC decays of charmed baryons, they
receive additional W-exchange contributions from the
cs → dc transition. The relevant effective Hamiltonian
reads

Hc
eff ¼

GFffiffiffi
2

p V�
cdVcsðc1Oc

1 þ c2Oc
2Þ; ð6Þ

with

Oq
1 ¼ðd†αLμqαÞðq†βLμsβÞ; Oq

2 ¼ðq†αLμqαÞðd†βLμsβÞ; ð7Þ

where the Greek ðα; β; γÞ alphabets stand for the color
indices and Lμ ¼ γ0γμð1 − γ5Þ.
The general amplitude for Bi → Bf þ P is given as

MðBi → Bf þ PÞ ¼ iūfðA − Bγ5Þui; ð8Þ

where BiðfÞ are the parent (daughter) baryons with uiðfÞ
their Dirac spinors, and A and B correspond to the parity-
violating (PV) S-wave and parity-conserving (PC) P-wave
amplitudes, respectively. The partial wave amplitudes of
HFC ΞQ → ΛQπ and ΩQ → ΞQπ decays have been studied
in Ref. [2] for Q ¼ b, c. The expressions of the S-wave
amplitudes are collected as follows [2]2

AΞ0
c→Λþ

c π
− ¼ ζ½a1f2πðmΞc

−mΛc
ÞfΛþ

c Ξ0
c

1

− c−ðauΛþ
c Ξþ

c
− acΛþ

c Ξþ
c
Þ�;

AΞþ
c →Λþ

c π
0 ¼ ζffiffiffi

2
p ½a2f2πðmΞc

−mΛc
ÞfΛþ

c Ξþ
c

1

− c−ðauΛþ
c Ξþ

c
− acΛþ

c Ξþ
c
Þ�;

AΞ−
b→Λ0

bπ
− ¼ ζ½a1f2πðmΞb

−mΛb
ÞfΛ0

bΞ
−
b

1 − c−auΛ0
bΞ

0
b
�;

AΞ0
b→Λ0

bπ
0 ¼ ζffiffiffi

2
p ½a2f2πðmΞb

−mΛb
ÞfΛ0

bΞ
0
b

1 − c−auΛ0
bΞ

0
b
�;

AΩ0
c→Ξþ

c π
− ¼ −ζc−acΞ0

cΩ0
c
;

AΩ0
c→Ξ0

cπ
0 ¼ ζffiffiffi

2
p c−acΞ0

cΩ0
c
;

AΩ−
b→Ξ0

bπ
− ¼ AΩ0

b→Ξ0
bπ

0 ¼ 0; ð9Þ

whereas the P-wave amplitudes read

1It can also be deduced from the Heisenberg uncertainty
principle. As the baryon is localized, it cannot possess a definite
3-momentum.

2The reader may notice that the expressions of the S- and P-
wave amplitudes in this work have opposite signs to that given in
Ref. [2]. We use the PDG convention hπ−ðqÞjAμj0i ¼ −ifπqμ
[5], which was erroneously stated in the first footnote of Ref. [2],
and then follow the scenario outlined in Ref. [6] for partial-wave
amplitudes.
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BΞ0
c→Λþ

c π
− ¼ ζc−

�
gAðπ

−Þ
Λþ
c Σ0

c

mΛþ
c
þmΣ0

c

mΞ0
c
−mΣ0

c

acΣ0
cΞ0

c
þ acΛþ

c Ξ0þ
c

mΞ0
c
þmΞ0þ

c

mΛþ
c
−mΞþ

c

gAðπ
−Þ

Ξ0þ
c Ξ0

c

�
;

BΞþ
c →Λþ

c π
0 ¼

ffiffiffi
2

p
ζc−

�
gAðπ

0Þ
Λþ
c Σþ

c

mΛþ
c
þmΣþ

c

mΞþ
c
−mΣþ

c

acΣþ
c Ξþ

c
þ acΛþ

c Ξ0þ
c

mΞþ
c
þmΞ0þ

c

mΛþ
c
−mΞ0þ

c

gAðπ
0Þ

Ξ0þ
c Ξþ

c

�
;

BΞ−
b→Λ0

bπ
− ¼ BΞ0

b→Λ0
bπ

0 ¼ 0;

BΩ0
c→Ξþ

c π
− ¼ −ζ

�
a1f2πðmΩc

þmΞc
ÞgΞþ

c Ω0
c

1 þ c−g
Aðπ−Þ
Ξþ
c Ξ00

c

mΞþ
c
þmΞ00

c

mΩ0
c
−mΞ00

c

acΞ00
c Ω0

c

�
;

BΩ0
c→Ξ0

cπ
0 ¼ −

ζffiffiffi
2

p
�
a2f2πðmΩc

þmΞc
ÞgΞ0

cΩ0
c

1 þ 2c−g
Aðπ0Þ
Ξ0
cΞ00

c

mΞþ
c
þmΞ00

c

mΩ0
c
−mΞ00

c

acΞ00
c Ω0

c

�
;

BΩ−
b→Ξ0

bπ
− ¼ −ζa1f2πðmΩb

þmΞb
ÞgΞ0

bΩ
−
b

1 ;

BΩ−
b→Ξ−

b π
0 ¼ −

ζffiffiffi
2

p a2f2πðmΩb
þmΞb

ÞgΞ−
bΩ

−
b

1 ; ð10Þ

along with the following abbreviations

ζ ≡ GFffiffiffi
2

p
fπ

V�
udVus; c− ≡ 1

2
ðc1 − c2Þ: ð11Þ

In Eqs. (9) and (10), the factorizable contributions are
expressed in terms of parameters a1;2 given by

a1 ¼ c1 þ
c2
Nc

; a2 ¼ c2 þ
c1
Nc

; ð12Þ

and the form factors fB
0B

1 and gB
0B

1 defined by

hB0jq0αð0Þγμqαð0ÞjBi ¼ ūB0

�
fB

0B
1 ðq2Þγμ − fB

0B
2 ðq2Þiσμν qν

mB
þ fB

0B
3 ðq2Þ q

μ

mB

�
uB;

hB0jq0αð0Þγμγ5qαð0ÞjBi ¼ ūB0

�
gB

0B
1 ðq2Þγμ − gB

0B
2 ðq2Þiσμν qν

mB
þ gB

0B
3 ðq2Þ q

μ

mB

�
γ5uB; ð13Þ

where ðq0; qÞ ¼ ðu; sÞ and ðd; sÞ, depending on the isospin
of B0 and B. In Eqs. (9) and (10), the form factors fB

0B
1 and

gB
0B

1 are evaluated at q2 ¼ m2
π . Note that the Wilson

coefficients c1;2 and the parameters a1;2 are evaluated at
the scale μ ¼ mc and m̄ðmbÞ for charmed and bottom
baryons, respectively. We follow Ref. [2] to employ
the Wilson coefficients c1 ¼ 1.336 and c2 ¼ −0.621 at
the scale μ ¼ mc and c1 ¼ 1.139 and c2 ¼ −0.307 at
μ ¼ m̄bðmbÞ.
Nonfactorizable contributions arising from the W-

exchange diagrams induced by su → ud and cs → dc
transitions are dedicated by the PC matrix elements
auB0B anda

c
B0B, respectively, of 4-quark operators defined by

3

hB0jOuðcÞ
1 −OuðcÞ

2 jBi ¼ ūB0 ðauðcÞB0B þ buðcÞB0B γ5ÞuB; ð14Þ

where both auðcÞB0B and buðcÞB0B have canonical dimension 3. The

axial couplings gAðπ
−Þ

B0B and gAðπ
0Þ

B0B in Eq. (10) are the special
cases of g1, obtained by taking ðq0; qÞ ¼ ðu; dÞ and ðq0; qÞ ¼
ððu; uÞ − ðd; dÞÞ=2 at q2 ¼ 0, respectively.
From Eqs. (9) and (10) we see that the S-wave

of Ω−
b → Ξbπ and the P-wave of Ξb → Λbπ vanish.

This is ascribed to the fact that the b quark in these
HFC decays does not participate in weak interactions.
The diquark transition 1þ → 0þ þ 0− in Ω−

b → Ξbπ
in S-wave is prohibited by conservation of angular
momentum. Likewise, the diquark transition 0þ → 0þ þ
0− in Ξb → Λbπ in P-wave is not allowed by the
same token.

III. MODEL CALCULATION

In this section we shall calculate the matrix elements of
the current and 4-quark operators using the homogeneous
bag model in which the unwanted CMM of the bag is
removed [4].

3Recall that the commutator term of the S-wave in
the soft-pion limit is proportional to hBfj½Qa

5;H
pv
eff �jBii ¼

−hBfj½Qa;Hpc
eff �jBii.
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A. Baryon wave functions

The baryon wave functions are given in Appendix A. Here we take the antitriplet charmed baryons for an illustration

jΞ0
c;↑i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↑ðdscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΞþ
c ;↑i ¼

Z
1ffiffiffi
6

p ϵαβγu†aαðx1!Þs†bβðx2!Þc†cγðx3!ÞΨabc
A↑ðuscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΛþ
c ;↑i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↑ðducÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i; ð15Þ

where ½d3x⃗� ¼ d3x⃗1d3x⃗2d3x⃗3, the Latin ða; b; cÞ alphabets are the spinor indices, and ϵ is a totally antisymmetric tensor.
Compared to the static bag wave functions given in Ref. [7], the wave functions here are expressed in terms of creation
operators and the Fermi statistics is taken care of by the anti-commutation relation

fqaαðx⃗Þ; q†bβðx⃗0Þg ¼ δabδαβδ
3ðx⃗ − x⃗0Þ: ð16Þ

For the spatial distributionΨ of the quarks, we shall describe it using the homogeneous bag model first proposed in Ref. [8]

Ψabc
A↕ðq1q2q3Þðx⃗1; x⃗2; x⃗3Þ ¼

Nffiffiffi
2

p
Z

½ϕa
q1↑

ðx⃗1 − x⃗ΔÞϕb
q2↓

ðx⃗2 − x⃗ΔÞ−ϕa
q1↓

ðx⃗1 − x⃗ΔÞϕb
q2↑

ðx⃗2 − x⃗ΔÞ�ϕc
q3↕

ðx⃗3 − x⃗ΔÞd3x⃗Δ; ð17Þ

where N is a normalization constant and ϕa
q are the bag wave functions in the static bag model,

ϕq↕ðr⃗Þ ¼
�

ucðrÞχ↕
vcðrÞr̂ · σ⃗χ↕

�
≡

8>><
>>:
 
Eþj0ðjpqjrÞχ↕
E−j1ðjpqjrÞr̂ · σ⃗χ↕

!
for r ≤ R;

0 for r > R;

ð18Þ

with χ↑ ¼ ð1; 0ÞT and χ↓ ¼ ð0; 1ÞT representing Jz ¼ �1=2, E� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq �Mq

p
, and j0;1 the spherical Bessel functions.

Note that the spin structure of Eq. (17) is simply

1ffiffiffi
2

p ð↑↓ − ↓↑Þ↕; ð19Þ

and the heavy quark clearly points to the same direction with the antitriplet baryon.
The integral of d3x⃗Δ in Eq. (17) plays an essential role of removing the CMM, rendering the wave function to be invariant

under space translation. To see this, we apply the space translation operator T d⃗ on jΛþ
c i for example,

T d⃗jΛþ
c i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1 þ d⃗Þu†bβðx⃗2 þ d⃗Þc†cγðx⃗3 þ d⃗ÞΨabc
A↑ðducÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

¼
Z

1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↑ðducÞðx⃗1 − d⃗; x⃗2 − d⃗; x⃗3 − d⃗Þ½d3x⃗�j0i;

¼
Z

1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↑ðducÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i ¼ jΛþ

c i; ð20Þ

where use of T d⃗q
†
aαðx⃗ÞT †

d⃗
¼ q†aαðx⃗þ d⃗Þ and T d⃗j0i ¼ j0i has been made in the first line of the equation, and the second and

third lines are obtained by changing the integration variables

x⃗1;2;3 → x⃗1;2;3 − d⃗; ð21Þ

and
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x⃗Δ → x⃗Δ þ d⃗; ð22Þ

respectively. As the 3-momentum operator P̂ is the gen-
erator of space translation, we deduce that

P̂jΛþ
c i ¼ P̂2jΛþ

c i ¼ 0: ð23Þ

Thus, the CMM is taken away from the static bag.
Throughout this work, we give the integration variables
x⃗Δ an additional meaning. By eliminating every d3x⃗Δ
integrals, the formulae would be reduced to the ones in
the static limit [2].
For a baryon at rest (i.e., with zero momentum), quarks

distribute homogeneously all over the space to fulfill the
translation-invariant requirement. Now the baryons are
described by a linear superposition of infinite bags.
Although quarks are no longer localized, they are confined
with each other in the sense that

Ψabc
A↕ðq1q2q3Þðx⃗1; x⃗2; x⃗3Þ ¼ 0; for jx⃗i − x⃗jj > 2R; ð24Þ

with i, j ¼ 1; 2; 3 and i ≠ j. It can be proved by noticing
that the integrand in Eq. (17) vanishes when jx⃗Δ − x⃗ij > R.
While Eq. (24) holds in the homogeneous bag
model because the locations of the quarks are entangled,
it is also valid in the static bag model since quarks are
localized.
Of course, it is possible to construct other baryon wave

functions free of the CMM issue in different bag models.
Nevertheless, we believe that the homogeneous bag model
for Ψ which we have adopted here is the simplest one as it

requires no new parameter and the static limit can be easily
recovered.
By taking the normalizing condition as

hpBjp0
Bi ¼ u†u0ð2πÞ3δ3ðpB − p0

BÞ; ð25Þ

we find [4]

uu
N 2

¼
Z

d3x⃗Δ
Y

i¼1;2;3

Z
ϕ†
qiðx⃗þi Þϕqiðx⃗−i Þd3x⃗i; ð26Þ

where x⃗�i ¼ x⃗i � x⃗Δ=2. In Eq. (26), the spin direction of
ϕqi is not important as it leads to the same result. In the
following, we will suppress the spin indices whenever they
make no difference.
To cooperate with the soft pion limit, we take

the 3-momenta of the initial and final baryons to be zero
for consistency. In particular, the matrix elements of
4-quark operators would simply vanish if the baryons
have different momenta asHeff respects the energy-momen-
tum conservation law. Since q2 ¼ m2

π ≈ ðMΞQ
−MΛQ

Þ2≈
ðMΩQ

−MΞQ
Þ2 ≈ 0, the treatment we adopt here is in fact an

excellent approximation. For example, the errors of the form
factors are of order 10−3. The method of boosting the baryon
wave functions requires several additional steps, and the
interested readers are referred to Ref. [4] for detail.

B. Current operators

To illustrate the calculation of form factors, we take
Ξ0
c → Λþ

c as an example. It follows from Eq. (16) that

hΛþ
c ju†αð0ÞLμsαð0ÞjΞ0

ci ¼
Z

Ψab0c†
AðducÞðx⃗1; 0; x⃗3ÞðLμÞb0bΨabc

AðdscÞðx⃗1; 0; x⃗3Þd3x⃗1d3x⃗3

¼
Z

d3y⃗d3y⃗0d3x⃗1d3x⃗3ϕ
†
dðx⃗1 − y⃗Þϕdðx⃗1 − y⃗0Þϕ†

uð−y⃗ÞLμϕsð−y⃗0Þϕ†
cðx⃗3 − y⃗Þϕcðx⃗3 − y⃗0Þ; ð27Þ

With Eq. (26), it is easily seen that form factors are
independent of the normalization condition of the Dirac
spinors ðūuÞ. By changing the integration variables

ðy⃗; y⃗0; x⃗1; x⃗3Þ→
�
−x⃗2 −

1

2
x⃗Δ;−x⃗2 þ

1

2
x⃗Δ; x⃗1 − x⃗2; x⃗3 − x⃗2

�
ð28Þ

we recast Eq. (27) to a more symmetric form

hΛþ
c ju†αð0ÞLμsαð0ÞjΞ0

ci ¼
Z

½d3x⃗�d3x⃗Δϕ†
uðx⃗þ2 ÞLμϕsðx⃗−2 Þ

× ϕ†
dðx⃗þ1 Þϕdðx⃗−1 Þϕ†

cðx⃗þ3 Þϕcðx⃗−3 Þ;
ð29Þ

where the static limit is recovered by taking x⃗�i → x⃗i. By
matching Eqs. (13) and (29), we find

ðf1; g1Þ ¼ ð0.978; 0Þ; ð30Þ

where we have used [9]
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R¼ð5.0�0.1ÞGeV−1; Mu¼0; Ms¼0.28GeV;

Mc¼1.655GeV: ð31Þ

For form factors, the uncertainties of the bag radius can be
neglected for the precision under consideration in this
work. Notice that f1 is very close to 0.985 obtained from
the MIT bag model [2]. It is ascribed to that f1 ¼ 1 is
protected by the SUð3ÞF symmetry and hence a large
correction is not expected.
Since the c quark shares the same spin direction with Ξ0

c
and Λþ

c , we are forced to choose both baryon spins aligned
in the same direction to get a nonvanishing result. Thus, the
spin flipping term g1 vanishes, providing that the spin of the
antitriplet baryon arises solely from the c quark. It can also
be understood as the transition of the diquark 0þ → 0þ þ π
is forbidden by conservation of angular momentum and
parity [1,2]. Thus, the strong coupling of BcBcπ vanishes
and so does gπBcBc

. On the other hand, the c quark in the
sextet baryon does not necessarily share the same spin
direction with the baryon and hence the aforementioned
argument cannot be applied.
The relevant form factors are given in Table I. Notice that

in contrast to f1, g1 is not protected by the flavor symmetry
and found to be 16% larger than the one in the static
limit [2].

C. 4-quark operators

The calculations of 4-quark operators are similar to those
of the current ones. We take the su → ud transition in

Ξþ
c → Λþ

c to illustrate the method. Applying the anticom-
mutation relation in Eq. (16), we find

hΛþ
c jðd†αð0ÞLμuαð0ÞÞðu†βð0ÞLμsβð0ÞÞjΞþ

c i

¼
Z

Ψa0b0c†
AðducÞð0;0; x⃗3ÞðLμÞa0aðLμÞb0bΨabc

AðuscÞð0;0; x⃗3Þd3x⃗3;

ð32Þ

for Ou
1, and

hΛþ
c jðu†βð0ÞLμuβð0ÞÞðd†αð0ÞLμsαð0ÞÞjΞþ

c i

¼
Z

Ψa0b0c†
AðducÞð0;0; x⃗3ÞðLμÞb0aðLμÞa0bΨabc

AðuscÞð0;0; x⃗3Þd3x⃗3;

ð33Þ

for Ou
2. With the Fierz identity ðLμÞb0aðLμÞa0b ¼

−ðLμÞa0aðLμÞb0b, it is straightforward to show that
hΛþ

c jðOu
1 þOu

2ÞjΞ0
ci ¼ 0, as it should be because the

operator Ou
1 þOu

2 is symmetric in color indices, while
the baryon wave function is color antisymmetric. This is
known as a special case of the Köner-Pati-Woo theorem
[10]. On the other hand, for the sextet baryon B6 we have

hB6jOu
1jB6i ¼ 0; ð34Þ

which can be deduced by substituting S for A in Eqs. (32)
and using Ψabc

S ¼ Ψbac
S along with the Fierz identity.

Substituting Eq. (17) into Eq. (32) leads to

X
½λ�

1

2
ð−1Þλ1−λ3

Z
d3x⃗3d3y⃗d3y⃗0ϕ

†
cðx⃗3 − y⃗Þϕcðx⃗3 − y⃗0Þϕ†

dλ4
ð−y⃗ÞLμϕuλ2ð−y⃗0Þϕ†

uλ3
ð−y⃗ÞLμϕsλ1ð−y⃗0Þ;

¼
X
½λ�

1

2
ð−1Þλ1−λ3

Z
d3x⃗Δd3x⃗3ϕ

†
cðx⃗þ3 Þϕcðx⃗−3 Þ

Z
d3x⃗ϕ†

dλ4
ðx⃗þÞLμϕuλ2ðx⃗−Þϕ†

uλ3
ðx⃗þÞLμϕsλ1ðx⃗−Þ;

≡
Z

d3x⃗ΔDcðx⃗ΔÞΓðx⃗ΔÞ ð35Þ

where [λ] stands for the possible configurations of spins

ðλ1; λ2; λ3; λ4Þ ∈ fð↓;↑;↓;↑Þ; ð↑;↓;↓;↑Þ; ð↑;↓;↑;↓Þ; ð↓;↑;↑;↓Þg: ð36Þ

To sort out the expression, we have changed the integration variables

TABLE I. Numerical results of the form factors with π ∈ fπ−; π0g, depending on the isospin of the baryons.

ðB;B0Þ ðΛþ
c ;Σ0

cÞ ðΞ0þ
c ;Ξ0

cÞ ðΞþ
c ;Ξ0þ

c Þ ðΞ0
c;Ξ00

c Þ ðB;B0Þ ðΞþð0Þ
c ;Ω0

cÞ ðΞ0ð−Þ
b ;Ω−

b Þ
gπBB0 0.614 −0.436 −0.218 0.218 gs→uðdÞ

1
−0.616 −0.597
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ðy⃗; y⃗0; x⃗3Þ →
�
−x⃗ −

1

2
x⃗Δ;−x⃗þ

1

2
x⃗Δ; x⃗3 − x⃗

�
; ð37Þ

and taken the shorthand as

Dcðx⃗ΔÞ ¼
Z

d3x⃗3ϕ
†
cðx⃗þ3 Þϕcðx⃗−3 Þ

Γðx⃗ΔÞ ¼
X
½λ�

1

2
ð−1Þλ1−λ3

Z
d3x⃗ϕ†

dλ4
ðx⃗þÞ

× Lμϕuλ2ðx⃗−Þϕ†
uλ3

ðx⃗þÞLμϕsλ1ðx⃗−Þ: ð38Þ

Although Eq. (35) seems complicated, it can be understood
as follows:

(i) The x⃗Δ is the distance between the static bags of the
initial and final baryons. The integrals of d3x⃗Δ can
be viewed as computing the overlapping of the bags.

(ii) TheDcðx⃗ΔÞ is the overlapping of the spectator quark
in the static bags separated at a distance of x⃗Δ.

(iii) The Γðx⃗ΔÞ describes the weak transition, where the
ðsuÞ and ðudÞ pairs are annihilated and created in
the static bags centering at − 1

2
x⃗Δ and 1

2
x⃗Δ, respec-

tively.
To extract auΛþ

c Ξþ
c
, we choose the parity-conserving part

of the operators, namely

ðLμÞabðLμÞcd → ðVμÞabðVμÞcd þ ðAμÞabðAμÞcd: ð39Þ

Plugging Eq. (39) to Eq. (35) and comparing with Eq. (14),
we find

auΛþ
c Ξþ

c
¼ ð3.74� 0.20Þ × 10−2 GeV3; ð40Þ

where the uncertainties arise from the bag radius in Eq. (31)
and the details are sketched in Appendix B. Note that this
value is consistent with the estimation

1

c1 − c2
ð5.6� 1.1Þ × 10−2 GeV3; ð41Þ

made in the diquark model [11].
In the previous bag model calculation, it was found

auΛþ
c Ξþ

c
¼ 1.67 × 10−2 GeV3 [2].4 Interestingly, our current

result indicates that auΛþ
c Ξþ

c
is enhanced by a factor of 2.2

once the CMM is removed from the static bag. The large
correction can be seen by the fact that auΛþ

c Ξþ
c
has canonical

dimension 3, and the only possible canonical dimension
comes from the bag radius in the massless limit of Mu;d;s.

5

Therefore, it is expected that

auΛþ
c Ξþ

c
∝ R−3: ð42Þ

This implies that aΛþ
c Ξþ

c
is sensitive to the bag radius. It has

been shown in Ref. [8] that the distance between the quarks
will become smaller by around 20% once the CMM is
eliminated. This explains the large correction since
ð4=5Þ−3 ≈ 2. Likewise, it is ready to evaluate the matrix
elements ofOc

1;2 in a similar vein. In the static bag model, it
was found acΛþ

c Ξþ
c
¼ 0.55 × 10−2 GeV3 [2]. We see from

Table II that this matrix element is enhanced by a factor of
1.7 after taking the CMM effect into account.
The light diquark of the antitriplet and sextet baryons

form spin-0 and spin-1 configurations, respectively. Since
Ou

1 is a scalar, it is unable to bring spin-1 to spin-0. Thus,
we obtain

hB3̄jOu
1;2jB6i ¼ 0: ð43Þ

As shown in Ref. [1], the combined heavy quark and chiral
symmetries severely restrict the weak transitions allowed.
It turns out that B3̄ − B6 weak transition via the
weak Hamiltonian Hu

eff is prohibited in the heavy
quark limit, namely, hB3̄jHu

eff jB6i ¼ 0, which is consistent
with Eq. (43). However, the same argument is not appli-
cable to Oc

1;2 since neither cs nor cd forms a spin
eigenstate.
The results of the matrix elements au;cBB0 are summarized

in Table II. For charm baryons, we take the parameters in
Eq. (31), whereas we take Mb ¼ 4.78 GeV for bottom
baryons.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Before proceeding to the numerical results, we shall
follow Ref. [2] to treat Nc in Eq. (12) as an effective
parameter and take Neff

c ¼ 18.8 and 1.88 at the μ ¼ mc and
μ ¼ m̄bðmbÞ scales, respectively. For the heavy baryon
lifetimes, we shall use [5,12]

TABLE II. Parity-conserving matrix elements of the 4-quark operators in units of 10−2 GeV3.

ðB;B0Þ ðΛþ
c ;Ξþ

c Þ ðΛ0
b;Ξ0

bÞ ðΛþ
c ;Ξ0þ

c Þ ðΣþ
c ;Ξþ

c Þ ðΣ0
c;Ξ0

cÞ ðΩc;Ξ0
cÞ ðΩc;Ξ00

c Þ
auBB0 3.74(20) 3.68(20) 0 0 0 0 0
acBB0 0.95(5) 0 −1.61ð9Þ 1.61(9) 2.28(13) −2.26ð11Þ −3.97ð25Þ

4The matrix elements auΛþ
c Ξþ

c
and acΛþ

c Ξþ
c
are denoted by X and Y,

respectively, in Ref. [2].

5We do not include MQ here, as spectator quarks have little
effects on the matrix elements.
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τðΞþ
c Þ ¼ ð453� 5Þ fs; τðΞ0

cÞ ¼ ð150.5� 1.9Þ fs; τðΩ0
cÞ ¼ ð274.5� 12.4Þ fs;

τðΞ0
bÞ ¼ ð1.480� 0.030Þ ps; τðΞ−

b Þ ¼ ð1.572� 0.040Þ ps; τðΩ−
b Þ ¼ ð1.64þ0.18

−0.17Þ ps: ð44Þ

Expressions of the S- and P-wave amplitudes for various
HFC decays obtained in the previous work are collected
in Eqs. (9) and (10). Since the matrix elements auBB0

evaluated in the static bag model led to BðΞ−
b → Λ0

bπ
−Þ ¼

6.6 × 10−4, which is too small compared to the LHCb
measurement [see Eq. (46) below], a hybrid scheme was
adopted in Ref. [2] for the matrix elements of 4-quark
operators, namely, the diquark model for auBB0 and the static
bag model for acBB0.6 We have noticed in passing that the
matrix elements auBB0 evaluated in the homogeneous bag
model without the CMM is consistent with the diquark
model. Thus we shall use the homogeneous bag model to
compute both auBB0 and acBB0 for reason of consistency.
Using the values of matrix elements from Table II and form
factors from Table I, the calculated S- and P-wave
amplidutes, branching fractions and up-down asymmetries
of various HFC decays are displayed in Table III.
The first measured HFC weak decay is the

b-flavor-conserving and strangeness-changing weak decay
Ξ−
b → Λ0

bπ
−. Its relative rate was measured by LHCb

to be [13]

fΞ−
b

fΛ0
b

BðΞ−
b → Λ0

bπ
−Þ ¼ ð5.7� 1.8þ0.8

−0.9Þ × 10−4; ð45Þ

where fΞ−
b
and fΛ0

b
are b → Ξ−

b and b → Λ0
b fragmentation

fractions, respectively. The values of fΞ−
b
=fΛ0

b
were obtained

by LHCb by invoking SU(3) symmetry inΞ0
b → J=ψΞ− and

Λ0
b → J=ψΛ decays [14], leading to7

BðΞ−
b → Λ0

bπ
−Þexp ¼ ð6.0� 1.8Þ × 10−3: ð46Þ

The charm-flavor-conserving decay Ξ0
c → Λþ

c π
− first advo-

cated and studied in 1992 [1] was finallymeasured by LHCb
in 2021 [3] and Belle very recently [15] with results in
excellent agreement with each other,

BðΞ0
c → Λþ

c π
−Þexp ¼

� ð0.55� 0.18Þ% LHCb;

ð0.54� 0.14Þ% Belle:
ð47Þ

Our results BðΞ0
c → Λþ

c π
−Þ ¼ ð7.2� 0.7Þ × 10−3 and

BðΞ−
b → Λ0

bπ
−Þ ¼ ð4.2� 0.5Þ × 10−3 are both in agree-

ment with experiment. The predicted branching fractions
for Ω−

b → Ξ0
bπ

− and Ω−
b → Ξ−

bπ
0 decays are very small as

they proceed only through factorizable external and internal
W-emission diagrams, respectively. The factorizable ampli-
tude is proportional to the pion’s momentum, which is of
order 205 MeV in HFC Ωb decays. Consequently, their
rates are suppressed.
In Table IV we compare our results with other model

calculations. For HFC Ξ0
c → Λþ

c π
− decay, it is clear that all

the early predictions before 2020 with the branching
fraction of order ð1 ∼ 3Þ × 10−4 are too small compared
to experiment. As first pointed out by Niu, Wang and
Zhao (NWZ) [16] and independenly by Groote and Körner
[17], the P-wave amplitude induced through cs → dc
W-exchange was overlooked in all the previous model
calculations. It turns out that owing to the small mass
difference between Ξc and the intermediate Σc pole, of
order 16 MeV, PC amplitudes are two orders of magnitude
larger than the PVones (see Table III). That is, Ξc → Λþ

c π
receives largest contributions from the Σc pole terms.
We next turn to the HFC decays of the bottom baryon Ξb.

From Eqs. (9) and (10) we see that if the factorizable
contributions to Ξb → Λbπ are neglected, we will have the
relation [19]

ffiffiffi
2

p
AΞ0

b→Λ0
bπ

0 ¼ AΞ−
b→Λ0

bπ
−
; ð48Þ

for S-wave amplitudes, while P-waves vanish, leading to

2BðΞ0
b → Λ0

bπ
0Þ ≈ BðΞ−

b → Λ0
bπ

−Þ: ð49Þ

Since the factorizable amplitude is proportional to the
pion’s momentum, it vanishes in the soft-pion limit. In
reality, it is a small contribution to HFC decays as the pion
is soft. Hence, the above relation (49) is expected to be
approximately valid. However, it is badly broken in the
work of NWZ [16], see Table IV. To see this, from
Table VII of Ref. [16] we see that negative-parity baryon
pole contributions to the S-wave amplitudes do respect the
relation (48). However, NWZ claimed a large factorizable
contribution to Ξ−

b → Λ0
bπ

− from the external W-emission8

comparable to the pole terms, which breaks the relation
(48) badly. In our case, nonfactorizable terms dominate the
S-wave, namely, auΛ0

bΞ
0
b
≫ f2πðmΞb

−mΛb
Þ, see Eq. (9). At

any rate, this issue will be clarified by measur-
ing BðΞ0

b → Λ0
bπ

0Þ.
In the charm sector, Ωc → Ξcπ acquire additional con-

tributions from nonspectator W-exchange for both PC and
6The diquark model is not applicable to the matrix

elements acBB0 .
7This value can be found explicitly in Ref. [3].

8On the contrary, the factorizable internal W-emission con-
tribution to Ξ0

b → Λ0
bπ

0 was not considered in Ref. [16].
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PV amplitudes. The P-wave amplitude of Ωc → Ξcπ is
enhanced by the Ξ0

c pole, though it is not so dramatic
as in the case of Ξc → Λcπ. The predicted branching
fraction is of order 2 × 10−3 for Ω0

c → Ξþ
c π

− and
1 × 10−3 for Ω0

c → Ξ0
cπ

0. These HFC decays are accessible
to LHCb, Belle and Belle II. Early crude estimates
given in [18] indicated BðΩb → ΞbπÞ ∼Oð10−6Þ and
BðΩc → ΞcπÞ < Oð10−6Þ.
The asymmetry parameter α vanishes in the decays Ξb →

Λbπ and Ωb → Ξbπ owing to the absence of P- and S-wave
transitions, respectively. By contrast, it is very close to −1 in
Ωc → Ξcπmodes. For decaysΞ0

c → Λþ
c π

− andΞþ
c → Λþ

c π
0,

the decay asymmetries are found to be positive, of order 0.45.
In the work of NWZ [16], the corresponding decay asym-
metries are −0.16 and −0.007,9 respectively. Therefore,
NWZ predicted a negative up-down asymmetry in Ξ0

c →
Λþ
c π

− and a negligible one in Ξþ
c → Λþ

c π
0.

In short, although this work and the model of NWZ yield
similar branching fractions for Ξc → Λcπ, we differ in the
treatment of S-wave amplitudes; while NWZ rely on the
pole model to consider negative-parity baryon pole con-
tributions, we appeal to current algebra thanks to the soft
nature of the pion produced in HFC decays. Furthermore,

NWZ claimed a sizable factorizable contribution to the
S-wave while it is small in our case due to the soft
momentum of the pion. Consequently, NWZ predict
(i) a negative decay asymmetry in Ξ0

c → Λþ
c π

− and a
negligible one in Ξþ

c → Λþ
c π

0, and (ii) BðΞ0
b →

Λ0
bπ

0Þ ≪ BðΞ−
b → Λ0

bπ
−Þ. Hence, measurements of decay

asymmetries in Ξc → Λcπ and the rate of Ξ0
b → Λ0

bπ
0

relative to Ξ−
b → Λ0

bπ
− will allow us to discriminate differ-

ent models.

V. CONCLUSION

We have improved the numerical estimations of the
previous work [2], where the static bag was employed. The
wave functions from the homogeneous bag model are
adopted in order to remove the CMM of the static bag.
The calculations have been carried out under the same
framework, and we have shown that the matrix elements
of 4-quark operators are enhanced about twice. We have
found that BðΞ0

c → Λþ
c π

−Þ ¼ ð7.2� 0.7Þ × 10−3 and
BðΞ−

b → Λ0
bπ

−Þ ¼ ð4.2� 0.5Þ × 10−3, both are in agree-
ment with experiment. For the yet-to-be-measured heavy-
flavor-conserving decays, we find BðΞþ

c →Λþ
c π

0Þ¼
ð13.8�1.4Þ×10−3, BðΞ0

b → Λ0
bπ

0Þ ¼ ð2.6� 0.3Þ × 10−3,
BðΩ0

c→Ξþ
c π

−Þ¼ð2.0�0.2Þ×10−3, and BðΩ0
c→Ξ0

cπ
0Þ¼

TABLE IV. Branching fractions (in units of 10−3) of heavy-flavor-conserving decays Ξc → Λcπ and Ξb → Λbπ predicted in various
models. All the model results have been normalized using the current world averages of lifetimes for Ξþ;0

c and Ξ0;−
b given in Eq. (44).

Mode
ðCLYÞ2 Faller Gronau Voloshin Niu HYC

This work Exp[11] [18] [19] [20] [16] [2]

Ξ0
c → Λþ

c π
− 0.17 <3.9 0.18þ0.23

−0.13 >0.25� 0.15 5.8� 2.1 1.76þ0.18
−0.12 7.2� 0.7 5.4� 1.1

1.34� 0.53a

Ξþ
c → Λþ

c π
0 0.11 <6.1 <0.2 � � � 11.1� 4.0 3.03þ0.29

−0.22 13.8� 1.4 � � �
2.01� 0.80a

Ξ−
b → Λ0

bπ
− 7.0 1.9–7.6 6.4� 4.3 8� 3 1.4� 0.7 4.67þ2.29

−1.83 4.2� 0.5 6.0� 1.8
Ξ0
b → Λ0

bπ
0 2.5 0.9–3.7 3.2� 2.1 � � � 0.17� 0.15 2.87þ1.20

−0.99 2.6� 0.3 …

aAssuming (wrongly) constructive interference between the W-exchange diagrams induced by cs → dc and su → ud transitions.

TABLE III. The magnitudes of the S- and P-wave amplitudes (in units of 10−7), branching fractions (in units of 10−3) and the up-down
asymmetries of various HFC decays.

Mode A B BF α

Ξ0
c → Λþ

c π
− −3.24� 0.20 −522� 30 7.2� 0.7 0.46� 0.05

Ξþ
c → Λþ

c π
0 −2.51� 0.14 −410� 23 13.8� 1.4 0.45� 0.05

Ω0
c → Ξþ

c π
− 3.06� 0.15 −91� 6 2.0� 0.2 ≈ − 1.00

Ω0
c → Ξ0

cπ
0 −2.17� 0.12 69� 4 1.1� 0.1 ≈ − 1.00

Ξ−
b → Λ0

bπ
− −3.27� 0.20 0 4.2� 0.5 0

Ξ0
b → Λ0

bπ
0 −2.67� 0.14 0 2.6� 0.3 0

Ω−
b → Ξ0

bπ
− 0 16.1� 0.1 ð6.5� 0.7Þ10−2 0

Ω−
b → Ξ−

bπ
0 0 3.49� 0.02 ð3.2� 0.3Þ10−3 0

9Decay asymmetries are obtained using the S- and P-wave
amplitudes given in Table IV of Ref. [16].
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ð1.1�0.1Þ×10−3. They are all accessible to LHCb, Belle,
and Belle II and can be tested in the near future.
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APPENDIX A: BARYON WAVE FUNCTIONS

For antitriplet heavy baryons, the light quarks ðu; d; sÞ
form spin-0 configuration. Their wave functions are
given by

jΞþ
c ;↕i ¼

Z
1ffiffiffi
6

p ϵαβγu†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↕ðuscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΞ0
c;↕i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↕ðdscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΛþ
c ;↕i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
A↕ðducÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i; ðA1Þ

where the spatial parts of the wave functions are described by Eq. (17).
On the other hand, the light quarks of the sextet baryons form spin-1 configuration. Their wave functions read

jΣþþ
c ;↕i ¼

Z
1

2
ffiffiffi
3

p ϵαβγu†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðuucÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΣþ
c ;↕i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þu†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðducÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΣ0
c;↕i ¼

Z
1

2
ffiffiffi
3

p ϵαβγd†aαðx⃗1Þd†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðddcÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΞ0þ
c ;↕i ¼

Z
1ffiffiffi
6

p ϵαβγu†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðuscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΞ00
c ;↕i ¼

Z
1ffiffiffi
6

p ϵαβγd†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðdscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i;

jΩ0
c;↕i ¼

Z
1

2
ffiffiffi
3

p ϵαβγs†aαðx⃗1Þs†bβðx⃗2Þc†cγðx⃗3ÞΨabc
S↕ðsscÞðx⃗1; x⃗2; x⃗3Þ½d3x⃗�j0i; ðA2Þ

where

Ψabc
S↑

ðx⃗1; x⃗2; x⃗3Þ ¼
Nffiffiffi
6

p
Z

ð2ϕa
q1↑

ðx⃗10Þϕb
q2↑

ðx⃗20Þϕc
q3↓

ðx⃗30Þ − ϕa
q1↑

ðx⃗10Þϕb
q2↓

ðx⃗20Þϕc
q3↑

ðx⃗30Þ − ϕa
q1↓

ðx⃗10Þϕb
q2↑

ðx⃗20Þϕc
q3↑

ðx⃗30ÞÞd3x⃗Δ;

Ψabc
S↓

ðx⃗1; x⃗2; x⃗3Þ ¼
Nffiffiffi
6

p
Z

ð−2ϕa
q1↓

ðx⃗01Þϕb
q2↓

ðx⃗02Þϕc
q3↑

ðx⃗03Þ þ ϕa
q1↓

ðx⃗01Þϕb
q2↑

ðx⃗02Þϕc
q3↓

ðx⃗03Þ þ ϕa
q1↑

ðx⃗01Þϕb
q2↓

ðx⃗02Þϕc
q3↓

ðx⃗03ÞÞd3x⃗Δ;

ðA3Þ

with x⃗0i ¼ x⃗i − x⃗Δ.
The wave functions of the b-baryons can be obtained by substituting b for c.

APPENDIX B: EVALUATION OF auΛ+
c Ξ+

c

In this appendix we evaluate one of the matrix elements, say auΛþ
c Ξþ

c
, explicitly. We start with sorting out the overlapping of

the spectator quark
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Dcðx⃗ΔÞ ¼
Z

d3x⃗ð uþc χ†; −ivþc χ†σxþ Þ ·
�

u−c χ

iv−c σx−χ

�
;

¼
Z

d3x⃗½uþc u−c þ vþc v−c χ†ðσxþσx−Þχ�;

¼
Z

d3x⃗

�
uþc u−c þ vþc v−c

�
x̂þ · x̂− þ 1

rþr−
iχ†ðx⃗Δ × x⃗Þ · σ⃗χ

��
;

¼
Z

d3x⃗½uþc u−c þ vþc v−c ðx̂þ · x̂−Þ�; ðB1Þ

where we have taken the shorthand σv ¼ v̂ · σ⃗ with v̂ an arbitrary unit vector, u�q ¼ uqðr�Þ and v�q ¼ vqðr�Þ with
r� ¼ jx⃗�j. To get the third line of the equation, we have used the relation σiσj ¼ δij þ iϵijkσk,
The integrals in Γðx⃗ΔÞ are much more complicated. We decompose them into several parts as

Γðx⃗ΔÞ ¼
Z

d3x⃗
X

i¼1;2;3;4

Γiðx⃗Δ; x⃗Þ þ PV ðB2Þ

with

Γ1ðx⃗Δ; x⃗Þ ¼
X
½λ�

1

2
ð−1Þλ1−λ3ϕ†

dλ4
ðx⃗þÞϕuλ2ðx⃗−Þϕ†

uλ3
ðx⃗þÞϕsλ1ðx⃗−Þ;

Γ2ðx⃗Δ; x⃗Þ ¼
X
½λ�

1

2
ð−1Þλ1−λ3ϕ†

dλ4
ðx⃗þÞγ5ϕuλ2ðx⃗−Þϕ†

uλ3
ðx⃗þÞγ5ϕsλ1ðx⃗−Þ;

Γ3ðx⃗Δ; x⃗Þ ¼ −
X
½λ�

1

2
ð−1Þλ1−λ3ϕ†

dλ4
ðx⃗þÞViϕuλ2ðx⃗−Þϕ†

uλ3
ðx⃗þÞViϕsλ1ðx⃗−Þ;

Γ4ðx⃗Δ; x⃗Þ ¼ −
X
½λ�

1

2
ð−1Þλ1−λ3ϕ†

dλ4
ðx⃗þÞViγ5ϕuλ2ðx⃗−Þϕ†

uλ3
ðx⃗þÞViγ5ϕsλ1ðx⃗−Þ; ðB3Þ

where Vi ¼ γ0γi with i ¼ 1; 2; 3 and PV stands for the parity-violating part, which is not concerned in this work.
In tidying up the spin indices, it is useful to note the identities

X
½λ�

1

2
ð−1Þλ1−λ3ðχ†λ3χλ1Þðχ

†
λ4
χλ2Þ ¼ 1;

X
½λ�

1

2
ð−1Þλ1−λ3ðχ†λ3σiχλ1Þðχ

†
λ4
χλ2Þ ¼

X
½λ�

1

2
ð−1Þλ1−λ3ðχ†λ3χλ1Þðχ

†
λ4
σiχλ2Þ ¼ 0;

X
½λ�

1

2
ð−1Þλ1−λ3ðχ†λ3σiχλ1Þðχ

†
λ4
σjχλ2Þ ¼ −δij; ðB4Þ

which can be derived from a direct calculation. It can be interpreted as the interacting quarks are spin-0, so the matrix
elements cannot depend on a specific direction. Using Eq. (B4), we arrive at

Γ1ðx⃗Δ; x⃗Þ ¼ ðuþd u−u þ vþd v
−
u x̂þ · x̂−Þðuþu u−s þ vþu v−s x̂þ · x̂−Þ þ ðx⃗Δ × x⃗Þ2

ðrþr−Þ2 vþd v
−
u vþu v−s ;

Γ2ðx⃗Δ; x⃗Þ ¼ ðuþd v−u x̂− − vþd u
−
u x̂þÞðuþu v−s x̂− − vþu u−s x̂þÞ;

Γ3ðx⃗Δ; x⃗Þ ¼ Γ2ðx⃗Δ; x⃗Þ þ 2ðuþd v−u x̂− þ vþd u
−
u x̂þÞ · ðuþu v−s x̂− þ vþu u−s x̂þÞ;

Γ4ðx⃗Δ; x⃗Þ ¼ 3uþd u
−
u uþu u−s þ vþd v

−
u vþu v−s

�
2þ ðx̂þ · x̂−Þ2 þ ðx⃗Δ × x⃗Þ2

ðrþr−Þ2
�
− ðuþd u−u vþu v−s þ vþd v

−
u uþu u−s Þx̂þ · x̂−: ðB5Þ

To see the connection with the static limit, we take x⃗Δ ¼ 0 and obtain
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auΛþ
c Ξþ

c
¼ 2

Z X
k¼1;2;3;4

Γkð0; x⃗Þd3x⃗ ¼ 2

Z
4ðuduu þ vdvuÞðuuus þ vuvsÞð4πr2drÞ: ðB6Þ

This is precisely the quantity X defined in Eq. (4.1) of Ref. [2].
The integrals of d3x⃗ in Eqs. (B1) and (B2) can be further simplified by adopting the cylindrical coordinate with x⃗Δ in the z

direction given as

Dðx⃗ΔÞ ¼ 2π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−r2Δ=4

p

0

ρdρ
Z ffiffiffiffiffiffiffiffiffiffi

R2−ρ2
p

−rΔ=2

−
ffiffiffiffiffiffiffiffiffiffi
R2−ρ2

p
þrΔ=2

dz

�
uþc u−c þ vþc v−c

4ρ2 þ 4z2 − r2Δ
4rþr−

�
;

Γðx⃗ΔÞ ¼ 2π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−r2Δ=4

p

0

ρdρ
Z ffiffiffiffiffiffiffiffiffiffi

R2−ρ2
p

−rΔ=2

−
ffiffiffiffiffiffiffiffiffiffi
R2−ρ2

p
þrΔ=2

dz
X

Γiðx⃗Δ; ρ; zÞ; ðB7Þ

where rΔ ¼ jx⃗Δj, and we have used that the integrands are independent of the azimuthal angule, and the bounds of the
integrals come from the bag boundary. It is easily seen that Dðx⃗ΔÞ and Γðx⃗ΔÞ depend only on the magnitude of x⃗Δ. Thus,
Eq. (35) can be recast as Z

d3x⃗ΔDcðx⃗ΔÞΓðx⃗ΔÞ ¼ 4π

Z
2R

0

drΔDcðrΔÞΓðrΔÞ: ðB8Þ

Here the upper limit of rΔ comes from that the static bags separated farther than 2R do not overlap. This completes the
evaluation of auΛþ

c Ξþ
c
.
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