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We calculate the neutral current jet production semi-inclusive deeply inelastic scattering process in

this paper. Neutral current implies that interactions can be mediated by the photon, Z° boson, and their
interference. The initial electron is assumed to be polarized and then scattered off by a target particle with
spin 1/2. Calculations are carried out up to twist-3 level in the quantum chromodynamics parton model by
applying the collinear expansion formalism where multiple gluon scattering is taken into account and
gauge links are obtained automatically. After obtaining the differential cross section, we introduce the
definition of the intrinsic asymmetry. This quantity reveals the asymmetry in the distribution of the quark
intrinsic transverse momentum. We find that these asymmetries can be expressed in terms of the transverse
momentum-dependent parton distribution functions and the electroweak couplings. As a result, our
calculations provide a set of new quantities for analyzing the parton distribution functions and the
electroweak couplings. It is helpful to understand the hadronic weak interactions and strong interactions in

the deeply inelastic scattering process simultaneously.

DOI: 10.1103/PhysRevD.106.093003

I. INTRODUCTION

The use of leptons to probe the structure of the nucleon
in deeply inelastic scattering (DIS) has achieved great
success in the past decades. It will still play an important
role in the future Electron-Ion Collider (EIC) [1-3] experi-
ments. One of the primary goals of the EIC is to explore
the three-dimensional (3D) imaging of the nucleon or to
measure the transverse momentum-dependent parton dis-
tribution functions (TMDs) over wide kinematic regions at
high experimental precision. That is vital to understand the
orbital motion and spin-orbital correlation, as well as the
spatial distribution of the parton in the quantum chromo-
dynamics (QCD) bound state. The EIC, which has a large
center-of-mass energy range, also makes it possible for
electroweak measurements through the neutral and charged
current interactions, e.g., precision measurements of the
weak mixing angle, parity violating asymmetries, and
charge asymmetries [4—12].
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The TMDs are usually extracted from the hadron
production semi-inclusive DIS (SIDIS) data within the
TMD formalism. Additionally, jet production the SIDIS
process attracted a lot of attention in recent years in
extracting these TMDs [13-22]. Compared to the hadron
production SIDIS, the jet production one has two distinct
features. First, the jet production reaction does have simpler
forms and does not introduce extra uncertainties from
fragmentation functions. This is helpful to improve the
measurement accuracy. Second, the current region jet can
be a direct probe of analyzing properties of the quark
transverse momentum in the y*N collinear frame. In this
frame the transverse momentum of the virtual photon (g )

is zero. The transverse momentum of the jet (I_c'/l) is equal to

that of the incident quark (k 1) if the higher order gluon
radiation is neglected. Therefore, the measurement of the
jet can access the information of the corresponding incident
quark and even the correlation with the target nucleon spin.
Under this circumstance, we consider the neutral current jet
production SIDIS process at the EIC energies to explore the
transverse momentum properties of the quark in a nucleon.
The neutral current here implies that interactions can be
mediated by the photon, 7Y boson, and their interference.
Semi-inclusive implies that a final current region jet is also
measured in addition to the scattered lepton, i.e., the jet
production SIDIS. The jet is simplified as a quark in our
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consideration. The initial electron is assumed to be polar-
ized and then scattered off by a nucleon with spin 1/2.

Our calculations are carried out up to the leading order
twist-3 (subleading power) level in the QCD parton model
by applying the collinear expansion formalism [23-25].
Higher twist effects are often significant for semi-inclusive
reactions and/or TMD observables. Especially for the
case of twist-3 corrections, they often lead to azimuthal
asymmetries, which are different from the leading twist
ones [26,27]. Therefore, the studies of higher twist effects
will give complementary or even direct access to the
nucleon structures. We calculate the twist-3 differential
cross section of the jet production SIDIS process and
introduce the definition of a new kind of asymmetry. This
quantity, called intrinsic asymmetry, reveals the asymmetry
in the distribution of the quark transverse momentum in a
nucleon. We obtain eight Sy-independent asymmetries and
four Sy-dependent asymmetries with well definitions.
We find that these asymmetries can be expressed in terms
of the TMDs and the electroweak couplings. As a result,
our calculations provide a set of new quantities for
analyzing these corresponding TMDs and the electroweak
couplings. It is helpful to understand the hadronic weak and
strong interactions in the deeply inelastic scattering process
simultaneously.

The rest of this paper is organized as follows. In Sec. II,
we present the formalism of the jet production SIDIS
process and calculate the hadronic tensor at the leading
order twist-3 level in terms of the TMDs in the parton
model. In Sec. III, we calculate the differential cross section
and introduce the definition of the intrinsic asymmetry.
Detailed expressions and numerical results are also shown
there. Finally, a brief summary is given in Sec. IV.

II. THE PROCESS AND THE HADRONIC TENSOR

A. The formalism

We consider the current region jet production SIDIS
process at EIC energies. To be explicit, this process can be
labeled as

e (LA)+N(p,S)—e (I')+qK)+ X, (2.1)
where 4, is the helicity of the initial electron with
momentum /. N can be a nucleon with momentum p
and spin 1/2. g denotes a quark that corresponds to a jet of
hadrons observed in experiments. In this paper, we consider
the case of the electron scattered off a spin-1/2 target with
the neutral current interaction at the tree level of electro-
weak theory, i.e., the exchange of a virtual photon y* or a Z°
boson. The standard variables used in this paper for the
SIDIS are

2p-q’ p-l’

s=(p+0D% (22

where Q% = —¢* = —(I = I')%. The differential cross sec-

tion is written as

2 371 Bt

Um Y a’l'dk
AL (LA YWE (g, p, S, k) s

Q4 ( ) (q p )(2 )32E1/ Ek’

(2.3)

do =

where a, is the fine structure constant. The symbol r can
be yy, ZZ, and yZ, for electromagnetic (EM), weak, and
interference terms, respectively. A summation over r in
Eq. (2.3) is understood, i.e., the total cross section is

given by
do = do?? + do'? + do"". (2.4)
A,’s are defined as
A, = e,
Q4
A,y = =y,
72 =102+ ML) + IZMsin* 20,
z zMz w
7@+ MY My sin? 20y, T

The leptonic tensors for the EM, weak, and interference
interactions are, respectively, given by

le}l/'(l’iw l/) = 2[lul;/ + ll/l}/l - (l ) l/)g/w] + Zi’leguyll” (26)
LI (12, 1) = (¢§ = 5 ) Lin(L 20, 1), (2.7)
LIZ(L A1) = (¢85 — c4A)LIL(L A, 1), (2.8)

where ¢ = (c%)? + (c¢$)? and ¢§ = 2c%c. ¢ and ¢
are defined in the weak interaction current J,(x) =
w(x)Cp(x) with TG =y,(ct, — ¢y”). Similar notations
are also used for quarks where the superscript e is replaced
by ¢. The hadronic tensors are given by

Wiy (q.p. S, K) = Z(2ﬂ)354(p +q—K—py)
X

X (p. S| (0) K X) (ks X[ T3, (0)

,S),
(2.9)

Wo(q.p. S, k') = Z<2ﬂ>354(p +q—K = py)
X
x (p. S| (0)|K' X) (K': X |7 (0)|p. ),
(2.10)
W (q.p, S, k) = Z2ﬂ354p+q K = py)
X

X (p. S|z (0) 1K X) (K’ X| T3, (0) | p, ).

(2.11)
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where J7,(0) = y(0)y*y(0) and J7,(0) = (0)Igy/(0),
with T = y#(c{, — ¢%ys). It is convenient to consider the
K’ -dependent cross section, i.e.,

2 d3l/d2k1
do="A L7 (12, 1) W (q. p. S, K, ) L

sQ Ey
where k/ has been integrated and the integrated hadronic
tensor is given by

(2.12)

} dk.,
W (q, p, S, K)) :/(

Y W p. S K
27)2E, (9., S, k).

(2.13)

In terms of the variables in Eq. (2.2), we can rewrite the
cross section as

do Y%
dxdydyd’k, — 20*

AL (LA U)W (q. p.S.K)),
(2.14)

by using d*I'/2E; ~ ysdxdydy /4. Here y is the azimuthal
angle of I around 1.

B. The hadronic tensor

At the tree level without higher order gluon radiations,
the leading twist hadronic tensor gets contributions from
the handbag diagram, see Fig. 1(a). For higher twist
contributions, multiple gluon scattering diagrams should
be included, e.g., we consider Figs. 1(a) and 1(b) at twist-3
level. Correspondingly, both the quark-quark and quark-
gluon-quark correlation functions (denoted by the shaded

regions) contribute to the hadronic tensor; they are
defined as
50) Y as -
¢V (k. p,S) = 20y ¢ Yp. Sl (0w (y)lp.S). (2.15)
4 4
45(1) ko k S :/ dy d'z ik z+iko (y—2)
¢/’ ( 1, K2, P, ) (27[>3 (271’)36
X (p. Slw(0)gA, (2w (¥)[p.S). (2.16)

where A, is the gluon field. We can see that correlation
functions in Egs. (2.15) and (2.16) are not gauge invariant.
To obtain the gauge-invariant forms, we use the collinear
expansion method that was introduced decades ago for

Al AR Al A Al
{}‘«‘ K /4'{; (1\ 4(] (}\‘ /4('1'
P P P P P 1z
(@ (b) ©
FIG. 1. The first few diagrams of the Feynman diagram series

with exchange of j gluons, where (a) j =0, (b) 1, and (c) 2.

DIS [23,24] and then extended to the SIDIS [25]. At the
tree level, in order to calculate the hadronic tensor in
the collinear expansion formalism, we need to consider the
contributions from the series of diagrams shown in Fig. 1,
i.e., the multiple gluon scattering contributions. Detailed
derivations can be found in Refs. [13,14,25]; we do not
repeat them in this paper for simplicity.

After collinear expansion, the hadronic tensor is
expressed in terms of the gauge-invariant quark-quark
and quark-gluon-quark correlation functions and corre-
sponding calculable hard parts at the twist-3 level, i.e.,

W, (g, p.S. k)

ZW,W q.p.SK), (217

where j denotes the number of exchanged gluons and ¢
denotes different cuts. After integration over k., Wﬁ{,ﬁ)’s

are simplified as

1 ~0) 2
Wi, p.S.K1) = 5 Trlhin® (x. k)

WLt (g, p, S K,) = (2.19)

up to the relevant twist-3 level. They correspond to
Eq. (2.13). The hard parts h,’s are

~ 0 ~

B =1t/ p*. B = vt by, (2.20)
), =TiiTe/p*.  hY), =T/ ATs.  (2.21)
R =T, pt. B =Ty,  (2.22)

The gauge-invariant operator definitions of the quark-
quark and quark-gluon-quark correlation functions are
defined as

A +d _d2 PR
HO)(x, k) = / D ke,

x (p, S|p(0)L(0, y)w(y)

p.S), (2.23)
(1 P+dy—d2yi ixp TV —ik 3
yK1 ) — T A N3 P -
/())()Ck ) / (2 )3 elx y lkl\L
y/4

x(p, S|p(0)D1,(0)L(0, y)y(y)|p,S),
(2.24)

where D ,(y) = —id, 4+ gA,(y) is the covariant derivative.
L(0,y) is the gauge link obtained from the collinear
expansion procedure, which guarantees the gauge invari-
ance of these correlation functions.

The quark-quark and quark-gluon-quark correlation
functions are 4 x 4 matrices in Dirac space, which can
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be decomposed in terms of the Dirac Gamma matrices and
coefficient functions. In the jet production SIDIS process
e”N — e~ gX, where the fragmentation is not considered,
only the chiral even parton distribution functions are
involved because there is no spin flip. Therefore, we only
need to consider the y* and the y®y° terms in the decom-
position of these correlation functions. We have

~ 1 -

&0 =2 [l + yys®l]. (2.25)
1) 1, v &1

o = 5 [y o) 4y yﬂ)ﬁ,&] (2.26)

The TMDs are defined through the decomposition of the
correlation functions or the coefficient functions. Following
the convention in Ref. [15], we have

o)) = p*i, <f1 kS v > +kyiaf*

— MSrof T = Ak iaf T — ul ;/];M> Shf+ (2.27)
3y = P <—/1h91L + L MS ng> — kiqg*

~ MSra9r = Ik agr + Erakip St (2.28)
Here A% = ¢ = ¢ Alﬂ, A can be k, or Sy, and

kiokip =kiokis— 91apk’ /2. For the quark-gluon-
quark correlation function, we have

D = ptig [klpfj — M8y, far — Ak, far
kl(ﬂklﬂ
v S/; fi (2.29)

~ v . i k S
e = (et i) (1= 5 ) = et et (g + K

1

k k
+ {%( L STk{” g" — L S{T”t']”}> + ic'f(

+—
(p-q)
ki8St o B e\ ok St
—{q( I k{” b — LS{T”q}>+lcg( i
_[cql’%{ﬂ—b}_ich&‘qu]]g —[c qk{ﬂqu}erqkwq]thL

157

M

~ 1 . _ ~
q)/()a) = lp+na |:kl/)gj + MST/)ng + /Ith_pgﬁi_L

_kipkip

. (2.30)

7
st }

where a subscript d is used to denote TMDs defined via
the quark-gluon-quark correlation function or coefficient
functions.

In fact, not all twist-3 TMDs shown in Egs. (2.27)-(2.30)
are independent. We can use the QCD equation of motion
Py =0 to obtain the following equations to eliminate
TMDs that are not independent, i.e.,

xpt @O = —fRed!) — 7Imd!) . (2.31)

— & Im@.").

xpt®dOr = g7 Re(D (2.32)

By inserting Eqgs. (2.27)—(2.30) into Egs. (2.31) and (2.32),
we obtain the relationships between the twist-3 TMDs
defined via the quark-quark correlation function and those
defined via the quark-gluon-quark correlation function.
They can be written in a unified form, i.e.,

fas = 9ds = —x(f§ —igS). (2.33)
where K can be L and S can be L and 7 whenever
applicable.

Substituting the hard parts and the corresponding TMDs
into Egs. (2.18) and (2.19) and using Eq. (2.33) to eliminate
the independent TMDs gives the complete twist-3 hadronic

tensor,

ki STJ_

ng)

{[c?k{fc"]”} —l—icgl}%c_]”]fl - [c’ffcﬂ‘é’“} iclk q Nnft = lc ?S’{T”E]”} zc3S¥q IMfr

I S
kfq” —ﬁS%”)]f%

15 qS{T”@”} + quS[”qDJ]MgT

!

kg - ZMS% (2.34)
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reaction plane

FIG. 2. TIllustration of the jet production SIDIS in the y*N
collinear frame. Momenta are labeled in the parentheses. Leptons
are in the x—z plane or the reaction plane.

where g* = g* + 2xp*. The first line in Eq. (2.34) is the
leading twist part, while the other lines give the twist-3 part.
Fromg-g=¢q- -k, =0andq-S; =0, we see clearly that
the full twist-3 hadronic tensor satisfies current conserva-
tion, g, W5 = q,W4 = 0.

III. THE RESULTS UP TO TWIST 3

A. The differential cross section

In order to calculate the differential cross section, we
choose the y*N collinear frame, see Fig. 2, in which the
momenta related to this SIDIS process take the following
forms:

pﬂ = (p+7076l)’

2 /1_
lﬂ:( yxp+7 Q +’Q y70>’
y 2xyp y

o =

H = —X + S~ Lo O s

q < 14 2xp+ 1

/) 7 .
k' =K = 1k.](0,0,cos @, sing). (3.1)
Here k’f denotes the transverse momentum vector of the jet
and k| denotes that of the quark in a nucleon. They are
equal to each other in this frame, see Fig. 3. We do not
distinguish them in the following discussions, and the
transverse vector polarization is parametrized as

S =1571(0,0, cos g, sin g). (3.2)

We define the following functions of y which will be often
used:

FIG. 3. [Illustration of the quark (jet) transverse momentum in
the y*N collinear frame.

A(y) =y* =2y +2,

B(y) =2(2-y)V/1-,

Cy) =y(2-vy),

D(y) =2yy/1-y. (3.3)

It is convenient to divide the differential cross section
into the leading twist and twist-3 parts. Substituting the
leading twist part of the hadronic tensor in Eq. (2.34) and
the leptonic tensor into Eq. (2.14) yields the leading twist
cross section. Here, we give the expressions explicitly for
the weak interaction part,

de?%f
dxdydyd®k',
o) N .
=00 {T§(y) = 2. TEIf1 = [T1(y) = AT (9)) 4911
+ |S7lk  p[sin(ep — ¢s)<Tg<)’) - ﬂeT(q)()’)) f_T
—cos(p — ) (T1(y) = 2.T1(y)) g1z} (3.4)
where we have defined &k, ,, = |l;l|/M, and
T§(y) = cfclA(y) + c5¢5C(y),
T4(y) = c5cA(y) + c{ciC(y).
T1(y) = c5c5A(y) + c§e{C(y),
T1(y) = c§c§A(Y) + c5¢]C(y), (3.5)

to simplify the expressions. 7¢(y)’s and 77 (y)’s are related
to the space reflection even and odd structures, respectively,

in the cross section. For EM interaction, it requires cg/ =0

and ¢/? = 1. In this case, only T¢(y) and T%(y) are left,
and T¢(y) = A(y) and T?(y) = C(y). For the interference

terms, we need to set ¢4 = ¢4 and /¢ = /. The
kinematic factors are also different. To make it transparent,
we can get the EM and interference cross sections by
replacing the parameters in the weak interaction cross
section according to Table L.

Similarly, substituting the twist-3 hadronic tensor in
Eq. (2.34) and the leptonic tensor into Eq. (2.14) yields the
twist-3 cross section. It is given by

TABLE 1. Relations of kinematic factors between weak, EM,
and interference interactions.
1% o
A, L w
zZZ x 4, ¢4 cf.cd
e e e e q q q q
YZ X = Xint el =y, c5 —>cy Cp = Cy,C3 = Cy

2

vy X = e {

c{—=1,¢§-0 cl—>1,c§’—>0
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de??
dxdydyd®k', yQ?
+ Ak Ly [sin (T3 (y)

2
QemX

= - ZXKM{kJ_M cos p(T5(y) = AT f* + koysing(T4(y) — 2, T4(y)g*

= 2.T5())f1 = cos p(T5(y) -

A:T5(y))gL]

184] [ 05(T4(y) = 2, T40)) fr — cos @s(TA(5) = 2, T4(3))gr

+sin(2p — ) (T5(y) = 2.T5(v)) 5"

where k) = M/Q is a twist suppression factor. We have
also defined

T5(y) = c§c{B(y) + ¢5¢5D(y),
T5(y) = c§c{B(y) + c5ciD(y),
T5(y) = c5c§B(y) + cic{D(y),
T(y) = c§ciB(y) + c5¢{D(y). (3.7)

It is also straightforward to obtain the interference and
EM differential cross sections by doing the corresponding
replacements. To further unify the notations, we define
T?.(y)’s and T? (y)’s with r = ZZ, yZ, and yy. For the
weak interaction, we have T?¢,,(y)’s and 77, (y)’s defined
as T¢(y)’s and T?(y)’s given in Eqgs. (3.5) and (3.7),
respectively. For interference and EM parts, according to
Table I, we have

Tgyz<)’) = CVC?/AO}) cseaC(y),
T(q)yz(J’) = ( )+ VCA C(y),
Z(J’) = c4ciAY) + ey C(y),
z(J’) = CVCZA()’) C(\I/C@’),
T3,7(y) = c{chB(y) + ciciD(y),
T3,,(v) = ciclB(y) + cjciD(y),
T3,7(y) = ciciB(y) + cicyD(y),
T4,,(v) = c{ciB(y) + ciciD(y), (3.8)
and
g, ) =A0),  T3,0) =0,
T, =Cy), T{,0») =0,
3,0 =B(y), T3, =0,
i,(0)=D(). T3, =0 (3.9)

We see that only half of the terms will survive if only EM
interaction is considered. This is because parity is con-
served in EM interaction.

LM 1 — cos(2¢ — ) (T4(y)

—arionfegt]) e

B. The intrinsic asymmetry

Most of the discussions based on the differential cross
section are about the azimuthal and spin asymmetries. They
are important for understanding the TMDs and/or nucleon
structures. In this part, we introduce a new quantity, named
intrinsic asymmetry, to explore the transverse momentum
distribution of the quark in a nucleon.

In the y*N collinear frame introduced before, the trans-
verse momentum of the incident quark (jet) is in the x-y
plane. It can be decomposed as

k| =k, cosg, (3.10)

kK, =k, sing. (3.11)
Therefore, it is possible to explore the imbalance of the
momentum in the x direction, i.e., k% (+x) — k| (—x), see
Fig. 4. This imbalance would be induced by the intrinsic
transverse momentum of the quark in the nucleon (we do
not consider the contributions from gluons). To explore this
imbalance, we can define the asymmetry as

dq)d& — [*"2 dpds
ﬂ/2 /2
S5 day ydg

A)C

(3.12)

for the Sr-independent case. Here dé is used to denote

do. . .
Ty P Subscript U, U denotes the unpolarized cross
section. The sum of the differential cross section for EM,

ky

FIG. 4. The quark (jet) transverse momentum in the x-y plane.
The difference of the red hemisphere and the blue one gives the
imbalance of the transverse momentum distribution.
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weak, and interference terms is understood. For the
Sr-dependent case, we define

[ode [ ,r/zdwsda— PP do [*2, dpsds

Ax
fj%d I ﬂ/zdfl’sdffu,u

(3.13)

One notes that, in Egs. (3.12) and (3.13), we only
introduced the asymmetries in the x direction.
Asymmetries in the y direction can be defined in a similar
way. We do not show them here for simplicity.

According to our definition, we find that these
asymmetries do not vanish, at least formally. For the
Sr-independent asymmetries, we have

dxrcprk |y )(Tg ()’)fl

P , 3.14
uu Vs xTo(»)f ( )
b ki)t (3.15)
uu V3 ){Tg()’)fl ’
dxicyk g 2 T4() gt
Ay, = ki 2(y)g , (3.16)
, b3 )(To(Y)fl
ok TS0 (3.17)
U.L ju )(Tg()’)fl 7
Axicpk 2 TS
Az, = oukin SW)f ’ (3.18)
; T )(To()’>f1
Ak TG
Ay, = ok 2(y)g , (3.19)
; T )(To(Y)fl
o Ak Tt (3.20)
L.L n ){Tg(y)fl ’
. _ 4k T30 (3.21)
Vs ){To(y)fl

We can see that they are twist-3 effects and are suppressed
by a factor «;,. There are four Sy-dependent asymmetries,
which correspond to the leading twist effects,

4kJ_M)(T (y)ng

Aor = ey, O

We see that Ay, and Aj ;. are determined by the Sivers
function fi; [28,29]. We note again that only weak
interaction results are shown in Eqgs. (3.14)—(3.25). For
the complete results, EM and interference interactions
should be included.

If only the EM interaction is considered, we are left with
the following asymmetries:

Axxprk |y 333()’”L

AT = — , (3.26)
oy r eéA(Y)fl
dxryk )y €2B(Y) [T
Ay = M AL (3.27)
T qu(Y)fl
Axicyrk |2 €2D(y) gt
Ay = MM g D)7 (3.28)
n qu(y)fl
dxxy k D -
Agf _ XKy K1 m eg (y)gL ) (329)
n qu(y)fl
Ak ezA(J’> 1l
Al =—= QTT, (3.30)
T eq (y)fl
o Ak e2C(y)gi;
A}gT _ M ( ) 1T (331)

7 e A)f1

However, Egs. (3.26)—(3.31) cannot give any information
about the electroweak couplings. To determine these
couplings, we still need to study the asymmetries from
both the weak and EM interactions.

To have an intuitive impression of the intrinsic asym-
metries shown above, we present the numerical values of
Ay y and A7, in Figs. 5-8, respectively. We take the
Gaussian ansatz for the TMDs, i.e.,

1 2
filx,ky) = mfl(x)e_lam s (3.32)

PO ky) = g fr(x)e kLA (3.33)

aA%x
where f(x) are taken from CT14 [30] and the faction is
taken as x = 0.3 for illustration. In order to determine
ft(x, k), we have used the Wandzura-Wilczek approxi-
mation (neglecting quark-gluon-quark correlation function,
g = 0)[26,27]. Only the up and down quarks are taken into
account and the widths of the unpolarized TMD f(x, k)
are taken as A’2 = A’ = 0.53 GeV? [31-35]. Figures 5
and 6 show the results at A2 = 0.5 GeV?, while Figs. 7
and 8 show the results at A3 = 0.5 GeV?.
A few remarks are listed as follows:
(i) Asymmetry A7, is 2 or 3 orders of magnitude
smaller than A{,’ y- From Eq. (3.18) we know A7 ;; is
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FIG. 5. The intrinsic asymmetry Ay, ;, with respect to y (left) and k, (right). The solid lines show the asymmetry at 5 GeV, while the
dashed lines show the asymmetry at Q = 10 GeV. Here A2 = A’2 = 0.53 and A2 = 0.5 GeV?, while A2 runs from 0.2 to 0.5 GeV>.
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FIG. 6. The intrinsic asymmetry A7 ;, with respect to y (left) and k (right). The solid lines show the asymmetry at 5 GeV, while the
dashed lines show the asymmetry at Q = 10 GeV. Here A2 = A2 = 0.53 and A2 = 0.5 GeV?2, while A2 runs from 0.2 to 0.5 GeV?.
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FIG. 7. The intrinsic asymmetry Ay, ;; with respect to y (left) and & (right). The solid lines show the asymmetry at 5 GeV, while the
dashed lines show the asymmetry at Q = 10 GeV. Here A2 = A’2 = 0.53 and A2 = 0.5 GeV?, while A2 runs from 0.2 to 0.5 GeV>.
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The intrinsic asymmetry A ;; with respect to y (left) and &, (right). The solid lines show the asymmetry at 5 GeV, while the

dashed lines show the asymmetry at Q = 10 GeV. Here A2 = A’2 = 0.53 and A2 = 0.5 GeV?, while A2 runs from 0.2 to 0.5 GeV>.

a parity violating effect or an effect of the weak
interaction. It should be the same order of magnitude
as parity violation in the standard model.

(i) Asymmetry A¢,,; decreases with respect to the
energy, while AZU increases with the energy.

(iii) Asymmetries A7, ; and A7, behave in the same way
when AZ(A?) is fixed and A%(A2) is running.

(iv) Furthermore, we find that the intrinsic asymmetry is
more sensitive to A2 than A2. This would indicate
that the width of f*(x,k,) for the up quark is
different from that for the down quark.

IV. SUMMARY

In this paper, we consider the neutral current jet
production SIDIS process and calculate the differential
cross section of this process at tree level twist 3. The
calculation includes the EM, weak, and inference inter-
actions. The initial electron is assumed to be polarized and
then scattered off by a target particle with spin 1/2. After
obtaining the differential cross section, we introduce the
definition of the intrinsic asymmetry, which is induced
from the quark intrinsic transverse momentum. We obtain
eight Sr-independent asymmetries and four Sy-dependent
asymmetries with well definitions. We find that these
asymmetries can be expressed in terms of the TMDs and

the electroweak couplings. To have an intuitive impres-
sion of these intrinsic asymmetries, we present the
numerical values of Ay, ;; and Aj ;. A few observations
are also shown in the last section. First of all, we find that
A7y is 2 or 3 orders of magnitude smaller than A7, , as it
is a parity violating effect. Second, asymmetry A7
decreases with respect to the energy, while A7 ;; increases
with the energy. Third, asymmetries A7, ;; and A7 ;; behave
in the same way when AZ(A2) is fixed and A2(A2Z) is
running. Last but not least, we find that the intrinsic
asymmetry is more sensitive to A% than AZ. This would
indicate that the width of f* for the up quark is different
from that for the down quark. In a word, our calculations
provide a set of new quantities for analyzing these
corresponding TMDs and the electroweak couplings. It
is helpful to understand the hadronic weak and strong
interactions as well as the nucleon structures in the deeply
inelastic scattering process simultaneously.
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