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We calculate the neutral current jet production semi-inclusive deeply inelastic scattering process in
this paper. Neutral current implies that interactions can be mediated by the photon, Z0 boson, and their
interference. The initial electron is assumed to be polarized and then scattered off by a target particle with
spin 1=2. Calculations are carried out up to twist-3 level in the quantum chromodynamics parton model by
applying the collinear expansion formalism where multiple gluon scattering is taken into account and
gauge links are obtained automatically. After obtaining the differential cross section, we introduce the
definition of the intrinsic asymmetry. This quantity reveals the asymmetry in the distribution of the quark
intrinsic transverse momentum. We find that these asymmetries can be expressed in terms of the transverse
momentum-dependent parton distribution functions and the electroweak couplings. As a result, our
calculations provide a set of new quantities for analyzing the parton distribution functions and the
electroweak couplings. It is helpful to understand the hadronic weak interactions and strong interactions in
the deeply inelastic scattering process simultaneously.
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I. INTRODUCTION

The use of leptons to probe the structure of the nucleon
in deeply inelastic scattering (DIS) has achieved great
success in the past decades. It will still play an important
role in the future Electron-Ion Collider (EIC) [1–3] experi-
ments. One of the primary goals of the EIC is to explore
the three-dimensional (3D) imaging of the nucleon or to
measure the transverse momentum-dependent parton dis-
tribution functions (TMDs) over wide kinematic regions at
high experimental precision. That is vital to understand the
orbital motion and spin-orbital correlation, as well as the
spatial distribution of the parton in the quantum chromo-
dynamics (QCD) bound state. The EIC, which has a large
center-of-mass energy range, also makes it possible for
electroweak measurements through the neutral and charged
current interactions, e.g., precision measurements of the
weak mixing angle, parity violating asymmetries, and
charge asymmetries [4–12].

The TMDs are usually extracted from the hadron
production semi-inclusive DIS (SIDIS) data within the
TMD formalism. Additionally, jet production the SIDIS
process attracted a lot of attention in recent years in
extracting these TMDs [13–22]. Compared to the hadron
production SIDIS, the jet production one has two distinct
features. First, the jet production reaction does have simpler
forms and does not introduce extra uncertainties from
fragmentation functions. This is helpful to improve the
measurement accuracy. Second, the current region jet can
be a direct probe of analyzing properties of the quark
transverse momentum in the γ�N collinear frame. In this
frame the transverse momentum of the virtual photon (q⃗⊥)
is zero. The transverse momentum of the jet (k⃗0⊥) is equal to
that of the incident quark (k⃗⊥) if the higher order gluon
radiation is neglected. Therefore, the measurement of the
jet can access the information of the corresponding incident
quark and even the correlation with the target nucleon spin.
Under this circumstance, we consider the neutral current jet
production SIDIS process at the EIC energies to explore the
transverse momentum properties of the quark in a nucleon.
The neutral current here implies that interactions can be
mediated by the photon, Z0 boson, and their interference.
Semi-inclusive implies that a final current region jet is also
measured in addition to the scattered lepton, i.e., the jet
production SIDIS. The jet is simplified as a quark in our
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consideration. The initial electron is assumed to be polar-
ized and then scattered off by a nucleon with spin 1=2.
Our calculations are carried out up to the leading order

twist-3 (subleading power) level in the QCD parton model
by applying the collinear expansion formalism [23–25].
Higher twist effects are often significant for semi-inclusive
reactions and/or TMD observables. Especially for the
case of twist-3 corrections, they often lead to azimuthal
asymmetries, which are different from the leading twist
ones [26,27]. Therefore, the studies of higher twist effects
will give complementary or even direct access to the
nucleon structures. We calculate the twist-3 differential
cross section of the jet production SIDIS process and
introduce the definition of a new kind of asymmetry. This
quantity, called intrinsic asymmetry, reveals the asymmetry
in the distribution of the quark transverse momentum in a
nucleon. We obtain eight ST-independent asymmetries and
four ST-dependent asymmetries with well definitions.
We find that these asymmetries can be expressed in terms
of the TMDs and the electroweak couplings. As a result,
our calculations provide a set of new quantities for
analyzing these corresponding TMDs and the electroweak
couplings. It is helpful to understand the hadronic weak and
strong interactions in the deeply inelastic scattering process
simultaneously.
The rest of this paper is organized as follows. In Sec. II,

we present the formalism of the jet production SIDIS
process and calculate the hadronic tensor at the leading
order twist-3 level in terms of the TMDs in the parton
model. In Sec. III, we calculate the differential cross section
and introduce the definition of the intrinsic asymmetry.
Detailed expressions and numerical results are also shown
there. Finally, a brief summary is given in Sec. IV.

II. THE PROCESS AND THE HADRONIC TENSOR

A. The formalism

We consider the current region jet production SIDIS
process at EIC energies. To be explicit, this process can be
labeled as

e−ðl; λeÞ þ Nðp; SÞ → e−ðl0Þ þ qðk0Þ þ X; ð2:1Þ

where λe is the helicity of the initial electron with
momentum l. N can be a nucleon with momentum p
and spin 1=2. q denotes a quark that corresponds to a jet of
hadrons observed in experiments. In this paper, we consider
the case of the electron scattered off a spin-1=2 target with
the neutral current interaction at the tree level of electro-
weak theory, i.e., the exchange of a virtual photon γ� or a Z0

boson. The standard variables used in this paper for the
SIDIS are

x ¼ Q2

2p · q
; y ¼ p · q

p · l
; s ¼ ðpþ lÞ2; ð2:2Þ

where Q2 ¼ −q2 ¼ −ðl − l0Þ2. The differential cross sec-
tion is written as

dσ ¼ α2em
sQ4

ArLr
μνðl; λe; l0ÞWμν

r ðq; p; S; k0Þ d3l0d3k0

ð2πÞ32El0Ek0
;

ð2:3Þ
where αem is the fine structure constant. The symbol r can
be γγ, ZZ, and γZ, for electromagnetic (EM), weak, and
interference terms, respectively. A summation over r in
Eq. (2.3) is understood, i.e., the total cross section is
given by

dσ ¼ dσZZ þ dσγZ þ dσγγ: ð2:4Þ
Ar’s are defined as

Aγγ ¼ e2q;

AZZ ¼ Q4

½ðQ2 þM2
ZÞ2 þ Γ2

ZM
2
Z� sin4 2θW

≡ χ;

AγZ ¼ 2eqQ2ðQ2 þM2
ZÞ

½ðQ2 þM2
ZÞ2 þ Γ2

ZM
2
Z� sin2 2θW

≡ χint: ð2:5Þ

The leptonic tensors for the EM, weak, and interference
interactions are, respectively, given by

Lγγ
μνðl;λe;l0Þ¼2½lμl0νþ lνl0μ−ðl · l0Þgμν�þ2iλeεμνll0 ; ð2:6Þ

LZZ
μν ðl; λe; l0Þ ¼ ðce1 − ce3λeÞLγγ

μνðl; λe; l0Þ; ð2:7Þ

LγZ
μνðl; λe; l0Þ ¼ ðceV − ceAλeÞLγγ

μνðl; λe; l0Þ; ð2:8Þ

where ce1 ¼ ðceVÞ2 þ ðceAÞ2 and ce3 ¼ 2ceVc
e
A. ceV and ceA

are defined in the weak interaction current JμðxÞ ¼
ψ̄ðxÞΓμψðxÞ with Γe

μ ¼ γμðceV − ceAγ
5Þ. Similar notations

are also used for quarks where the superscript e is replaced
by q. The hadronic tensors are given by

Wμν
γγ ðq; p; S; k0Þ ¼

X
X

ð2πÞ3δ4ðpþ q − k0 − pXÞ

× hp; SjJμγγð0Þjk0;Xihk0;XjJνγγð0Þjp; Si;
ð2:9Þ

Wμν
ZZðq;p;S; k0Þ ¼

X
X

ð2πÞ3δ4ðpþ q− k0 −pXÞ

× hp;SjJμZZð0Þjk0;Xihk0;XjJνZZð0Þjp;Si;
ð2:10Þ

Wμν
γZðq; p; S; k0Þ ¼

X
X

ð2πÞ3δ4ðpþ q − k0 − pXÞ

× hp; SjJμZZð0Þjk0;Xihk0;XjJνγγð0Þjp; Si;
ð2:11Þ
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where Jμγγð0Þ ¼ ψ̄ð0Þγμψð0Þ and JμZZð0Þ ¼ ψ̄ð0ÞΓμ
qψð0Þ,

with Γμ
q ¼ γμðcqV − cqAγ5Þ. It is convenient to consider the

k0⊥-dependent cross section, i.e.,

dσ¼ α2em
sQ4

ArLr
μνðl;λe;l0ÞWμν

r ðq;p;S;k0⊥Þ
d3l0d2k0⊥

El0
; ð2:12Þ

where k0z has been integrated and the integrated hadronic
tensor is given by

Wμν
r ðq; p; S; k0⊥Þ ¼

Z
dk0z

ð2πÞ32Ek0
Wμν

r ðq; p; S; k0Þ: ð2:13Þ

In terms of the variables in Eq. (2.2), we can rewrite the
cross section as

dσ
dxdydψd2k0⊥

¼ yα2em
2Q4

ArLr
μνðl; λe; l0ÞWμν

r ðq; p; S; k0⊥Þ;

ð2:14Þ

by using d3l0=2El0 ≈ ysdxdydψ=4. Here ψ is the azimuthal
angle of ⃗l0 around ⃗l.

B. The hadronic tensor

At the tree level without higher order gluon radiations,
the leading twist hadronic tensor gets contributions from
the handbag diagram, see Fig. 1(a). For higher twist
contributions, multiple gluon scattering diagrams should
be included, e.g., we consider Figs. 1(a) and 1(b) at twist-3
level. Correspondingly, both the quark-quark and quark-
gluon-quark correlation functions (denoted by the shaded
regions) contribute to the hadronic tensor; they are
defined as

ϕ̂ð0Þðk; p; SÞ ¼
Z

d4y
ð2πÞ3 e

ikyhp; Sjψ̄ð0ÞψðyÞjp; Si; ð2:15Þ

ϕ̂ð1Þ
ρ ðk1; k2; p; SÞ ¼

Z
d4y
ð2πÞ3

d4z
ð2πÞ3 e

ik1zþik2ðy−zÞ

× hp; Sjψ̄ð0ÞgAρðzÞψðyÞjp; Si; ð2:16Þ

where Aρ is the gluon field. We can see that correlation
functions in Eqs. (2.15) and (2.16) are not gauge invariant.
To obtain the gauge-invariant forms, we use the collinear
expansion method that was introduced decades ago for

DIS [23,24] and then extended to the SIDIS [25]. At the
tree level, in order to calculate the hadronic tensor in
the collinear expansion formalism, we need to consider the
contributions from the series of diagrams shown in Fig. 1,
i.e., the multiple gluon scattering contributions. Detailed
derivations can be found in Refs. [13,14,25]; we do not
repeat them in this paper for simplicity.
After collinear expansion, the hadronic tensor is

expressed in terms of the gauge-invariant quark-quark
and quark-gluon-quark correlation functions and corre-
sponding calculable hard parts at the twist-3 level, i.e.,

Wr;μνðq; p; S; k0Þ ¼
X
j;c

W̃ðj;cÞ
r;μν ðq; p; S; k0Þ; ð2:17Þ

where j denotes the number of exchanged gluons and c

denotes different cuts. After integration over k0z, W̃
ðj;cÞ
r;μν ’s

are simplified as

W̃ð0Þ
r;μνðq; p; S; k0⊥Þ ¼

1

2
Tr½ĥð0Þr;μνΦ̂ð0Þðx; k⊥Þ�; ð2:18Þ

W̃ð1;LÞ
r;μν ðq; p; S; k0⊥Þ ¼

1

4p · q
Tr½ĥð1Þρr;μνΦ̂ð1Þ

ρ ðx; k⊥Þ� ð2:19Þ

up to the relevant twist-3 level. They correspond to
Eq. (2.13). The hard parts hr’s are

ĥð0Þγγ;μν ¼ γμ=nγν=pþ; ĥð1Þργγ;μν ¼ γμ=̄nγ
ρ
⊥=nγν; ð2:20Þ

ĥð0ÞZZ;μν ¼ Γq
μ=nΓq

ν=pþ; ĥð1ÞρZZ;μν ¼ Γq
μn̄γ

ρ
⊥=nΓ

q
ν ; ð2:21Þ

ĥð0ÞγZ;μν ¼ Γq
μ=nγν=pþ; ĥð1ÞργZ;μν ¼ Γq

μn̄γ
ρ
⊥=nγν: ð2:22Þ

The gauge-invariant operator definitions of the quark-
quark and quark-gluon-quark correlation functions are
defined as

Φ̂ð0Þðx; k⊥Þ ¼
Z

pþdy−d2y⊥
ð2πÞ3 eixp

þy−−ik⃗⊥·y⃗⊥

× hp; Sjψ̄ð0ÞLð0; yÞψðyÞjp; Si; ð2:23Þ

Φ̂ð1Þ
ρ ðx; k⊥Þ ¼

Z
pþdy−d2y⊥

ð2πÞ3 eixp
þy−−ik⃗⊥·y⃗⊥

× hp; Sjψ̄ð0ÞD⊥ρð0ÞLð0; yÞψðyÞjp; Si;
ð2:24Þ

where DρðyÞ ¼ −i∂ρ þ gAρðyÞ is the covariant derivative.
Lð0; yÞ is the gauge link obtained from the collinear
expansion procedure, which guarantees the gauge invari-
ance of these correlation functions.
The quark-quark and quark-gluon-quark correlation

functions are 4 × 4 matrices in Dirac space, which can

(a) (b) (c)

FIG. 1. The first few diagrams of the Feynman diagram series
with exchange of j gluons, where (a) j ¼ 0, (b) 1, and (c) 2.
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be decomposed in terms of the Dirac Gamma matrices and
coefficient functions. In the jet production SIDIS process
e−N → e−qX, where the fragmentation is not considered,
only the chiral even parton distribution functions are
involved because there is no spin flip. Therefore, we only
need to consider the γα and the γαγ5 terms in the decom-
position of these correlation functions. We have

Φ̂ð0Þ ¼ 1

2

h
γαΦð0Þ

α þ γαγ5Φ̃
ð0Þ
α

i
; ð2:25Þ

Φ̂ð1Þ
ρ ¼ 1

2

h
γαΦð1Þ

ρα þ γαγ5Φ̃
ð1Þ
ρα

i
: ð2:26Þ

The TMDs are defined through the decomposition of the
correlation functions or the coefficient functions. Following
the convention in Ref. [15], we have

Φð0Þ
α ¼ pþn̄α

�
f1 −

k⊥ · S̃T
M

f⊥1T
�
þ k⊥αf⊥

−MS̃TαfT − λhk̃⊥αf⊥L −
k⊥hαk⊥βi

M
S̃βTf

⊥
T ; ð2:27Þ

Φ̃ð0Þ
α ¼ pþn̄α

�
−λhg1L þ k⊥ · ST

M
g⊥1T

�
− k̃⊥αg⊥

−MSTαgT − λhk⊥αg⊥L þ k⊥hαk⊥βi
M

SβTg
⊥
T : ð2:28Þ

Here Ãα⊥ ¼ εαA⊥ ¼ εαβ⊥ A⊥β, A can be k⊥ or ST, and
k⊥hαk⊥βi ¼ k⊥αk⊥β − g⊥αβk2⊥=2. For the quark-gluon-
quark correlation function, we have

Φð1Þ
ρα ¼ pþn̄α

�
k⊥ρf⊥d −MS̃TρfdT − λhk̃⊥ρf⊥dL

−
k⊥hρk⊥βi

M
S̃βTf

⊥
dT

�
; ð2:29Þ

Φ̃ð1Þ
ρα ¼ ipþn̄α

�
k̃⊥ρg⊥d þMSTρgdT þ λhk⊥ρg⊥dL

−
k⊥hρk⊥βi

M
SβTg

⊥
dT

�
; ð2:30Þ

where a subscript d is used to denote TMDs defined via
the quark-gluon-quark correlation function or coefficient
functions.
In fact, not all twist-3 TMDs shown in Eqs. (2.27)–(2.30)

are independent. We can use the QCD equation of motion
=Dψ ¼ 0 to obtain the following equations to eliminate
TMDs that are not independent, i.e.,

xpþΦð0Þρ ¼ −gρσ⊥ ReΦð1Þ
σþ − ερσ⊥ ImΦ̃ð1Þ

σþ; ð2:31Þ

xpþΦ̃ð0Þρ ¼ −gρσ⊥ ReΦ̃ð1Þ
σþ − ερσ⊥ ImΦð1Þ

σþ: ð2:32Þ

By inserting Eqs. (2.27)–(2.30) into Eqs. (2.31) and (2.32),
we obtain the relationships between the twist-3 TMDs
defined via the quark-quark correlation function and those
defined via the quark-gluon-quark correlation function.
They can be written in a unified form, i.e.,

fKdS − gKdS ¼ −xðfKS − igKS Þ; ð2:33Þ

where K can be ⊥ and S can be L and T whenever
applicable.
Substituting the hard parts and the corresponding TMDs

into Eqs. (2.18) and (2.19) and using Eq. (2.33) to eliminate
the independent TMDs gives the complete twist-3 hadronic
tensor,

W̃μν ¼ −ðcq1gμν⊥ þ icq3ε
μν
⊥ Þ

�
f1 −

k⊥ · S̃T
M

f⊥1T
�
− ðcq3gμν⊥ þ icq1ε

μν
⊥ Þ

�
−λhg1L þ k⊥ · ST

M
g⊥1T

�

þ 1

ðp · qÞ
�
½cq1kfμ⊥ q̄νg þ icq3 k̃

½μ
⊥q̄ν��f⊥ − ½cq1 k̃fμ⊥ q̄νg − icq3k

½μ
⊥q̄ν��λhf⊥L − ½cq1S̃fμT q̄νg − icq3S

½μ
T q̄

ν��MfT

−
�
cq1

�
k⊥ · S̃T
M

kfμ⊥ q̄νg −
k2⊥
2M

S̃fμT q̄νg
�
þ icq3

�
k⊥ · ST
M

k½μ⊥q̄ν� −
k2⊥
2M

S½μT q̄
ν�
��

f⊥T

− ½cq3 k̃fμ⊥ q̄νg − icq1k
½μ
⊥q̄ν��g⊥ − ½cq3kfμ⊥ q̄νg þ icq1k̃

½μ
⊥q̄ν��λhg⊥L − ½cq3SfμT q̄νg þ icq1S̃

½μ
T q̄

ν��MgT

þ
�
cq3

�
k⊥ · ST
M

kfμ⊥ q̄νg −
k2⊥
2M

SfμT q̄νg
�
þ icq1

�
k⊥ · ST
M

k̃½μ⊥q̄ν� −
k2⊥
2M

S̃½μT q̄
ν�
��

g⊥T
�
; ð2:34Þ
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where q̄μ ¼ qμ þ 2xpμ. The first line in Eq. (2.34) is the
leading twist part, while the other lines give the twist-3 part.
From q · q̄ ¼ q · k⊥ ¼ 0 and q · ST ¼ 0, we see clearly that
the full twist-3 hadronic tensor satisfies current conserva-
tion, qμW̃

μν
t3 ¼ qνW̃

μν
t3 ¼ 0.

III. THE RESULTS UP TO TWIST 3

A. The differential cross section

In order to calculate the differential cross section, we
choose the γ�N collinear frame, see Fig. 2, in which the
momenta related to this SIDIS process take the following
forms:

pμ ¼ ðpþ; 0; 0⃗⊥Þ;

lμ ¼
�
1 − y
y

xpþ;
Q2

2xypþ ;
Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

; 0

�
;

qμ ¼
�
−xpþ;

Q2

2xpþ ; 0⃗⊥
�
;

k0μ⊥ ¼ kμ⊥ ¼ jk⃗⊥jð0; 0; cosφ; sinφÞ: ð3:1Þ

Here k0μ⊥ denotes the transverse momentum vector of the jet
and kμ⊥ denotes that of the quark in a nucleon. They are
equal to each other in this frame, see Fig. 3. We do not
distinguish them in the following discussions, and the
transverse vector polarization is parametrized as

SμT ¼ jST jð0; 0; cosφS; sinφSÞ: ð3:2Þ

We define the following functions of y which will be often
used:

AðyÞ ¼ y2 − 2yþ 2;

BðyÞ ¼ 2ð2 − yÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
;

CðyÞ ¼ yð2 − yÞ;
DðyÞ ¼ 2y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
: ð3:3Þ

It is convenient to divide the differential cross section
into the leading twist and twist-3 parts. Substituting the
leading twist part of the hadronic tensor in Eq. (2.34) and
the leptonic tensor into Eq. (2.14) yields the leading twist
cross section. Here, we give the expressions explicitly for
the weak interaction part,

dσZZt2
dxdydψd2k0⊥

¼ α2emχ

yQ2
f½Tq

0ðyÞ − λeT̃
q
0ðyÞ�f1 − ½T̃q

1ðyÞ − λeT
q
1ðyÞ�λhg1L

þ jST jk⊥M½sinðφ − φSÞðTq
0ðyÞ − λeT̃

q
0ðyÞÞf⊥1T

− cosðφ − φSÞðT̃q
1ðyÞ − λeT

q
1ðyÞÞg⊥1T �g; ð3:4Þ

where we have defined k⊥M ¼ jk⃗⊥j=M, and

Tq
0ðyÞ ¼ ce1c

q
1AðyÞ þ ce3c

q
3CðyÞ;

T̃q
0ðyÞ ¼ ce3c

q
1AðyÞ þ ce1c

q
3CðyÞ;

Tq
1ðyÞ ¼ ce3c

q
3AðyÞ þ ce1c

q
1CðyÞ;

T̃q
1ðyÞ ¼ ce1c

q
3AðyÞ þ ce3c

q
1CðyÞ; ð3:5Þ

to simplify the expressions. Tq
i ðyÞ’s and T̃q

i ðyÞ’s are related
to the space reflection even and odd structures, respectively,
in the cross section. For EM interaction, it requires ce=q3 ¼ 0

and ce=q1 ¼ 1. In this case, only Tq
0ðyÞ and Tq

1ðyÞ are left,
and Tq

0ðyÞ ¼ AðyÞ and Tq
1ðyÞ ¼ CðyÞ. For the interference

terms, we need to set ce=q3 ¼ ce=qA and ce=q1 ¼ ce=qV . The
kinematic factors are also different. To make it transparent,
we can get the EM and interference cross sections by
replacing the parameters in the weak interaction cross
section according to Table I.
Similarly, substituting the twist-3 hadronic tensor in

Eq. (2.34) and the leptonic tensor into Eq. (2.14) yields the
twist-3 cross section. It is given by

FIG. 2. Illustration of the jet production SIDIS in the γ�N
collinear frame. Momenta are labeled in the parentheses. Leptons
are in the x–z plane or the reaction plane.

FIG. 3. Illustration of the quark (jet) transverse momentum in
the γ�N collinear frame.

TABLE I. Relations of kinematic factors between weak, EM,
and interference interactions.

Ar Lμν
r Wμν

r

ZZ χ ce1; c
e
3 cq1; c

q
3

γZ χ → χint ce1 → ceV; c
e
3 → ceA cq1 → cqV; c

q
3 → cqA

γγ χ → e2q ce1 → 1; ce3 → 0 cq1 → 1; cq3 → 0
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dσZZt3
dxdydψd2k0⊥

¼ −
α2emχ

yQ2
2xκM

�
k⊥M cosφðTq

2ðyÞ − λeT̃
q
2ðyÞÞf⊥ þ k⊥M sinφðT̃q

3ðyÞ − λeT
q
3ðyÞÞg⊥

þ λhk⊥M½sinφðTq
2ðyÞ − λeT̃

q
2ðyÞÞf⊥L − cosφðT̃q

3ðyÞ − λeT
q
3ðyÞÞg⊥L �

þ jST j
�
sinφSðTq

2ðyÞ − λeT̃
q
2ðyÞÞfT − cosφSðT̃q

3ðyÞ − λeT
q
3ðyÞÞgT

þ sinð2φ − φSÞðTq
2ðyÞ − λeT̃

q
2ðyÞÞ

k2⊥M

2
f⊥T − cosð2φ − φSÞðT̃q

3ðyÞ − λeT
q
3ðyÞÞ

k2⊥M

2
g⊥T

��
; ð3:6Þ

where κM ¼ M=Q is a twist suppression factor. We have
also defined

Tq
2ðyÞ ¼ ce1c

q
1BðyÞ þ ce3c

q
3DðyÞ;

T̃q
2ðyÞ ¼ ce3c

q
1BðyÞ þ ce1c

q
3DðyÞ;

Tq
3ðyÞ ¼ ce3c

q
3BðyÞ þ ce1c

q
1DðyÞ;

T̃q
3ðyÞ ¼ ce1c

q
3BðyÞ þ ce3c

q
1DðyÞ: ð3:7Þ

It is also straightforward to obtain the interference and
EM differential cross sections by doing the corresponding
replacements. To further unify the notations, we define
Tq
i;rðyÞ’s and T̃q

i;rðyÞ’s with r ¼ ZZ, γZ, and γγ. For the
weak interaction, we have Tq

i;ZZðyÞ’s and T̃q
i;ZZðyÞ’s defined

as Tq
i ðyÞ’s and T̃q

i ðyÞ’s given in Eqs. (3.5) and (3.7),
respectively. For interference and EM parts, according to
Table I, we have

Tq
0;γZðyÞ ¼ ceVc

q
VAðyÞ þ ceAc

q
ACðyÞ;

T̃q
0;γZðyÞ ¼ ceAc

q
VAðyÞ þ ceVc

q
ACðyÞ;

Tq
1;γZðyÞ ¼ ceAc

q
AAðyÞ þ ceVc

q
VCðyÞ;

T̃q
1;γZðyÞ ¼ ceVc

q
AAðyÞ þ ceAc

q
VCðyÞ;

Tq
2;γZðyÞ ¼ ceVc

q
VBðyÞ þ ceAc

q
ADðyÞ;

T̃q
2;γZðyÞ ¼ ceAc

q
VBðyÞ þ ceVc

q
ADðyÞ;

Tq
3;γZðyÞ ¼ ceAc

q
ABðyÞ þ ceVc

q
VDðyÞ;

T̃q
3;γZðyÞ ¼ ceVc

q
ABðyÞ þ ceAc

q
VDðyÞ; ð3:8Þ

and

Tq
0;γγðyÞ ¼ AðyÞ; T̃q

0;γγðyÞ ¼ 0;

Tq
1;γγðyÞ ¼ CðyÞ; T̃q

1;γγðyÞ ¼ 0;

Tq
2;γγðyÞ ¼ BðyÞ; T̃q

2;γγðyÞ ¼ 0;

Tq
3;γγðyÞ ¼ DðyÞ; T̃q

3;γγðyÞ ¼ 0: ð3:9Þ

We see that only half of the terms will survive if only EM
interaction is considered. This is because parity is con-
served in EM interaction.

B. The intrinsic asymmetry

Most of the discussions based on the differential cross
section are about the azimuthal and spin asymmetries. They
are important for understanding the TMDs and/or nucleon
structures. In this part, we introduce a new quantity, named
intrinsic asymmetry, to explore the transverse momentum
distribution of the quark in a nucleon.
In the γ�N collinear frame introduced before, the trans-

verse momentum of the incident quark (jet) is in the x-y
plane. It can be decomposed as

kx⊥ ¼ k⊥ cosφ; ð3:10Þ

ky⊥ ¼ k⊥ sinφ: ð3:11Þ

Therefore, it is possible to explore the imbalance of the
momentum in the x direction, i.e., kx⊥ðþxÞ − kx⊥ð−xÞ, see
Fig. 4. This imbalance would be induced by the intrinsic
transverse momentum of the quark in the nucleon (we do
not consider the contributions from gluons). To explore this
imbalance, we can define the asymmetry as

Ax ¼
R π=2
−π=2 dφdσ̃ −

R 3π=2
π=2 dφdσ̃R 3π=2

−π=2 dσ̃U;Udφ
ð3:12Þ

for the ST-independent case. Here dσ̃ is used to denote
dσ

dxdydψd2k0⊥
. Subscript U, U denotes the unpolarized cross

section. The sum of the differential cross section for EM,

FIG. 4. The quark (jet) transverse momentum in the x-y plane.
The difference of the red hemisphere and the blue one gives the
imbalance of the transverse momentum distribution.
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weak, and interference terms is understood. For the
ST-dependent case, we define

Ax¼
R π=2
−π=2dφ

R π=2
−π=2dφSdσ̃−

R 3π=2
π=2 dφ

R π=2
−π=2dφSdσ̃R 3π=2

−π=2dφ
R π=2
−π=2dφSdσ̃U;U

: ð3:13Þ

One notes that, in Eqs. (3.12) and (3.13), we only
introduced the asymmetries in the x direction.
Asymmetries in the y direction can be defined in a similar
way. We do not show them here for simplicity.
According to our definition, we find that these

asymmetries do not vanish, at least formally. For the
ST-independent asymmetries, we have

Ax
U;U ¼ −

4xκMk⊥M

π

χTq
2ðyÞf⊥

χTq
0ðyÞf1

; ð3:14Þ

Ay
U;U ¼ −

4xκMk⊥M

π

χT̃q
3ðyÞg⊥

χTq
0ðyÞf1

; ð3:15Þ

Ax
U;L ¼ 4xκMk⊥M

π

χT̃q
3ðyÞg⊥L

χTq
0ðyÞf1

; ð3:16Þ

Ay
U;L ¼ −

4xκMk⊥M

π

χTq
2ðyÞf⊥L

χTq
0ðyÞf1

; ð3:17Þ

Ax
L;U ¼ 4xκMk⊥M

π

χT̃q
2ðyÞf⊥

χTq
0ðyÞf1

; ð3:18Þ

Ay
L;U ¼ 4xκMk⊥M

π

χTq
3ðyÞg⊥

χTq
0ðyÞf1

; ð3:19Þ

Ax
L;L ¼ −

4xκMk⊥M

π

χTq
3ðyÞg⊥L

χTq
0ðyÞf1

; ð3:20Þ

Ay
L;L ¼ 4xκMk⊥M

π

χT̃q
2ðyÞf⊥L

χTq
0ðyÞf1

: ð3:21Þ

We can see that they are twist-3 effects and are suppressed
by a factor κM. There are four ST-dependent asymmetries,
which correspond to the leading twist effects,

Ax
U;T ¼ −

4k⊥M

π2
χT̃q

1ðyÞg⊥1T
χTq

0ðyÞf1
; ð3:22Þ

Ay
U;T ¼ 4k⊥M

π2
χTq

0ðyÞf⊥1T
χTq

0ðyÞf1
; ð3:23Þ

Ax
L;T ¼ 4k⊥M

π2
χTq

1ðyÞg⊥1T
χTq

0ðyÞf1
; ð3:24Þ

Ay
L;T ¼ −

4k⊥M

π2
χT̃q

0ðyÞf⊥1T
χTq

0ðyÞf1
: ð3:25Þ

We see that Ay
U;T and Ay

L;T are determined by the Sivers
function f⊥1T [28,29]. We note again that only weak
interaction results are shown in Eqs. (3.14)–(3.25). For
the complete results, EM and interference interactions
should be included.
If only the EM interaction is considered, we are left with

the following asymmetries:

Aγγ;x
U;U ¼ −

4xκMk⊥M

π

e2qBðyÞf⊥
e2qAðyÞf1

; ð3:26Þ

Aγγ;y
U;L ¼ −

4xκMk⊥M

π

e2qBðyÞf⊥L
e2qAðyÞf1

; ð3:27Þ

Aγγ;y
L;U ¼ 4xκMk⊥M

π

e2qDðyÞg⊥
e2qAðyÞf1

; ð3:28Þ

Aγγ;x
L;L ¼ −

4xκMk⊥M

π

e2qDðyÞg⊥L
e2qAðyÞf1

; ð3:29Þ

Aγγ;y
U;T ¼ 4k⊥M

π2
e2qAðyÞf⊥1T
e2qAðyÞf1

; ð3:30Þ

Aγγ;x
L;T ¼ 4k⊥M

π2
e2qCðyÞg⊥1T
e2qAðyÞf1

: ð3:31Þ

However, Eqs. (3.26)–(3.31) cannot give any information
about the electroweak couplings. To determine these
couplings, we still need to study the asymmetries from
both the weak and EM interactions.
To have an intuitive impression of the intrinsic asym-

metries shown above, we present the numerical values of
Ax
U;U and Ax

L;U in Figs. 5–8, respectively. We take the
Gaussian ansatz for the TMDs, i.e.,

f1ðx; k⊥Þ ¼
1

πΔ02 f1ðxÞe−k⃗
2⊥=Δ02

; ð3:32Þ

f⊥ðx; k⊥Þ ¼
1

πΔ2x
f1ðxÞe−k⃗

2⊥=Δ2

; ð3:33Þ

where f1ðxÞ are taken from CT14 [30] and the faction is
taken as x ¼ 0.3 for illustration. In order to determine
f⊥ðx; k⊥Þ, we have used the Wandzura-Wilczek approxi-
mation (neglecting quark-gluon-quark correlation function,
g ¼ 0) [26,27]. Only the up and down quarks are taken into
account and the widths of the unpolarized TMD f1ðx; k⊥Þ
are taken as Δ02

u ¼ Δ02
d ¼ 0.53 GeV2 [31–35]. Figures 5

and 6 show the results at Δ2
u ¼ 0.5 GeV2, while Figs. 7

and 8 show the results at Δ2
d ¼ 0.5 GeV2.

A few remarks are listed as follows:
(i) Asymmetry Ax

L;U is 2 or 3 orders of magnitude
smaller than Ax

U;U. From Eq. (3.18) we know Ax
L;U is
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FIG. 6. The intrinsic asymmetry Ax
L;U with respect to y (left) and k⊥ (right). The solid lines show the asymmetry at 5 GeV, while the

dashed lines show the asymmetry at Q ¼ 10 GeV. Here Δ02
u ¼ Δ02

d ¼ 0.53 and Δ2
u ¼ 0.5 GeV2, while Δ2

d runs from 0.2 to 0.5 GeV2.
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FIG. 7. The intrinsic asymmetry Ax
U;U with respect to y (left) and k⊥ (right). The solid lines show the asymmetry at 5 GeV, while the

dashed lines show the asymmetry at Q ¼ 10 GeV. Here Δ02
u ¼ Δ02

d ¼ 0.53 and Δ2
d ¼ 0.5 GeV2, while Δ2

u runs from 0.2 to 0.5 GeV2.
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FIG. 5. The intrinsic asymmetry Ax
U;U with respect to y (left) and k⊥ (right). The solid lines show the asymmetry at 5 GeV, while the

dashed lines show the asymmetry at Q ¼ 10 GeV. Here Δ02
u ¼ Δ02

d ¼ 0.53 and Δ2
u ¼ 0.5 GeV2, while Δ2

d runs from 0.2 to 0.5 GeV2.
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a parity violating effect or an effect of the weak
interaction. It should be the same order of magnitude
as parity violation in the standard model.

(ii) Asymmetry Ax
U;U decreases with respect to the

energy, while Ax
L;U increases with the energy.

(iii) Asymmetries Ax
U;U and Ax

L;U behave in the same way
when Δ2

uðΔ2
dÞ is fixed and Δ2

dðΔ2
uÞ is running.

(iv) Furthermore, we find that the intrinsic asymmetry is
more sensitive to Δ2

u than Δ2
d. This would indicate

that the width of f⊥ðx; k⊥Þ for the up quark is
different from that for the down quark.

IV. SUMMARY

In this paper, we consider the neutral current jet
production SIDIS process and calculate the differential
cross section of this process at tree level twist 3. The
calculation includes the EM, weak, and inference inter-
actions. The initial electron is assumed to be polarized and
then scattered off by a target particle with spin 1=2. After
obtaining the differential cross section, we introduce the
definition of the intrinsic asymmetry, which is induced
from the quark intrinsic transverse momentum. We obtain
eight ST-independent asymmetries and four ST-dependent
asymmetries with well definitions. We find that these
asymmetries can be expressed in terms of the TMDs and

the electroweak couplings. To have an intuitive impres-
sion of these intrinsic asymmetries, we present the
numerical values of Ax

U;U and Ax
L;U. A few observations

are also shown in the last section. First of all, we find that
Ax
L;U is 2 or 3 orders of magnitude smaller than Ax

U;U, as it
is a parity violating effect. Second, asymmetry Ax

U;U

decreases with respect to the energy, while Ax
L;U increases

with the energy. Third, asymmetries Ax
U;U and Ax

L;U behave
in the same way when Δ2

uðΔ2
dÞ is fixed and Δ2

dðΔ2
uÞ is

running. Last but not least, we find that the intrinsic
asymmetry is more sensitive to Δ2

d than Δ2
u. This would

indicate that the width of f⊥ for the up quark is different
from that for the down quark. In a word, our calculations
provide a set of new quantities for analyzing these
corresponding TMDs and the electroweak couplings. It
is helpful to understand the hadronic weak and strong
interactions as well as the nucleon structures in the deeply
inelastic scattering process simultaneously.
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