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We study rare three-body decays of the Ω baryon using SU(3) chiral perturbation theory, the successful
effective field theory of quantum chromodynamics at low energies. At leading order, we calculate the
branching fractions of the decay Ω− → Ξππ for all possible combinations of pions. For one channel, we
find an order-of-magnitude discrepancy between theory and experiment. This tension is known to exist in
the nonrelativistic limit, and we confirm that it remains in the relativistic calculation. Fairly independent of
the values of the low-energy constants, we establish lower limits for the branching fractions of these three-
body Ω decays, which reaffirm the gap between theory and experiment. We point out that this discrepancy
is closely tied to the ΔI ¼ 1=2 selection rule. In turn, this means that the three-body decays constitute an
interesting tool to scrutinize the selection rule. Using next-to-leading-order calculations, we also provide
predictions for the decayΩ− → Ξ0μ−ν̄μ. We show that fully differential distributions will provide access to
low-energy constants needed in the axial-vector transitions from a decuplet to octet baryon. Since data for
all of these rare three-body Ω decays are scarce (fully differential data are nonexistent), we recommend
that they be remeasured at running and upcoming experiments, such as BESIII, LHCb, Belle-II, and
PANDA.

DOI: 10.1103/PhysRevD.106.093001

I. INTRODUCTION AND SUMMARY

TheΩ− baryon acquires a special role in the lowest-lying
spin-3=2 decuplet of flavor SU(3). While the decays of all
other decuplet states are dominated by the strong inter-
action, the Ω− baryon can decay only weakly. Weak decays
of hadrons are interesting for at least two reasons. First,
they can be used as a tool to study CP violation (see
Refs. [1–4], and references therein). Here, the overarching
context is the search for physics beyond the Standard
Model. Second, the electroweak interactions constitute an
important probe to study the structure of hadrons. Here, the
overarching context is the study of the poorly understood
nonperturbative sector of the strong interaction.
Most weakly decaying baryons are spin-1=2 particles, as

photon radiation is usually possible, which deexcites the
higher spin state. However, when the minimal quark
content is pure in flavor (qqq with q ¼ u; d; s; c;…), the
Pauli principle together with the color-white structure
demands a completely symmetric spin state, i.e., spin
3=2 for the ground-state baryon. The lowest-lying uuu

(Δþþ) and ddd (Δ−) states are heavy enough to allow for
the strong decay into a nucleon and a Goldstone boson
(a pion). But, the Ω− baryon, with its three strange quarks,
is too light to decay into a cascade (Ξ) and an antikaon [5].
Pure flavor baryons in the charm or bottom sector are
expected to exist but have not yet been found. Thus, the Ω−

baryon is special. Its decays provide information about the
interplay of the strong and weak interactions [6–10] that is
complementary to the weak decays of the ground-state
spin-1=2 octet baryons.
In fact, there are (at least) two puzzles related to the

decays of the Ω− baryon. According to the present data
situation, the two-body decays Ω− → Ξ−π0;Ξ0π− seem to
violate the much-celebrated isospin selection, or ΔI ¼ 1=2
rule [5,11], and the three-body decayΩ− → Ξ−π−πþ seems
to show no trace of the Ξð1530Þ resonance as an inter-
mediate state in the Ξπ channel [12].
From a theory point of view, the main purpose of this

paper is to show that these two puzzles are interrelated. We
should point out right away that our purpose is not to solve
the two puzzles. Instead, we will discuss the consequences
of the ΔI ¼ 1=2 rule for the three-body decays
Ω− → Ξ−πþπ−, Ξ−π0π0, and Ξ0π−π0. Partly, the discus-
sion serves to sharpen the contrast between the current
experimental situation and the current understanding of
the weak decays of hadrons. Based on our findings, we
shall argue that differential data on the three-body decays
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Ω− → Ξππ would offer much more information than the
two-body decays, if it really turns out that the ΔI ¼ 1=2
rule is grossly violated in the decays of the Ω− baryon.
Unfortunately, experimental opportunities to study Ω−

decays, and in extension their potential violation of the
ΔI ¼ 1=2 rule, have long been absent. This absence is over
now, as Ω− baryons (and other hyperons) are and will be
abundantly produced in several running and upcoming
experiments, such as BESIII, LHCb, Belle-II, and
PANDA [13–20]. These experiments offer the possibility
to study weak baryon decays in significantly more detail.
Therefore, from an experimental point of view, we regard
our paper as a timely reminder of previous discussions,
where we also deepen the present discourse by interrelating
two- and three-body decays. Our work is meant as a
motivation to study, in particular, the differential distribu-
tions of three-body decays, which provide access to the low-
energy constants (LECs) of the effective field theory for the
strong and weak interactions in the flavor SU(3) sector.
Besides leading-order (LO) calculations for Ω− → Ξππ in a
relativistic framework of chiral perturbation theory (χPT),
we will also provide predictions based on next-to-leading-
order (NLO) calculations for the so-far-unobserved decay
Ω− → Ξ0μ−ν̄μ. Such semileptonic decays give access to
LECs that are SU(3)-flavor related [21,22] to the production
of Δ baryons in neutrino-nucleon and neutrino-nucleus
reactions [23–27].
Let us now briefly review the isospin selection rule, after

which we will be in a position to summarize the scope of
this paper. In the Standard Model, weak decays of hadrons
are driven by an effective four-quark operator of left-
handed quarks [3,28]. For the decays of strange quarks, this
transition operator can be decomposed into a left-handed
octet and a left-handed 27-plet of flavor SU(3). Assuming
octet dominance leads to the ΔI ¼ 1=2 selection rule for
nonleptonic weak decays of strange hadrons, like kaons
and hyperons. In principle, all possibilities caused by
the octet and 27-plet can be encoded in the LECs of a
corresponding hadronic effective field theory (chiral per-
turbation theory) [3,8]. Yet, if the number of LECs is large
and the data situation poor, the predictive power will be
rather limited. In this case, it is interesting to figure out if
some LECs are smaller than others. For a corresponding
situation in the strong-interaction sector of mesons, see the
discussions in Refs. [29–31]. How the situation can change
over the years with better data and improvements in theory
can be deduced from Ref. [32].
Coming back to the weak nonleptonic decays of hadrons,

one needs better (e.g., more differential) data to determine
the LECs or some more microscopic input (lattice QCD,
hadronic models, quark models) to reduce the number of
LECs by focusing on the numerically dominant ones.
Another way of describing the microscopic situation is to
consider the strange quark that decays. Either it might flip
directly to a down quark (pictured, for instance, by the

famous penguin diagram from Ref. [33]), or it might
produce a down, an up, and an antiup quark. In the first
case, the isospin changes definitely by ΔI ¼ 1=2. In the
second case, the three quarks might form an isospin 1=2 or
3=2 combination. In some sense, the ΔI ¼ 1=2 selection
rule is based on the simplest possible case. Of course, it is
the (poorly understood) hadron structure that dictates which
case of transition happens with which probability ampli-
tude. Therefore, the weak decays offer an opportunity to
explore QCD in the nonperturbative regime.
Phenomenologically, the ΔI ¼ 1=2 rule is, in general,

well satisfied; see Refs. [3,4,8,34], and references
therein. For instance, ΔI ¼ 1=2 implies that the ratios
ΓðΛ → pπ−Þ=ΓðΛ → nπ0Þ and ΓðΞ− → Λπ−Þ=ΓðΞ0 →
Λπ0Þ should both have a value close to 2, while ΔI ¼ 3=2
implies that the ratios should have a value close to 0.5. The
measured values [5], both approximately 1.77, clearly
favor octet dominance.
However, according to the current experimental status,

the selection rule is violated to an unexpectedly large extent
by the decays Ω− → Ξπ. The ΔI ¼ 1=2 rule implies

ΓðΩ− → Ξ0π−Þ
ΓðΩ− → Ξ−π0Þ

����
theory

≈ 2 ð1Þ

(while pure ΔI ¼ 3=2 implies that the ratio would be
approximately equal to 0.5). Measurements give approx-
imately [5,11]

ΓðΩ− → Ξ0π−Þ
ΓðΩ− → Ξ−π0Þ

����
exp:

≈ 2.74; ð2Þ

which suggests an unexpectedly strong admixture of a
ΔI ¼ 3=2 amplitude, interfering positively for Ξ0π− and
negatively for Ξ−π0. If this finding is confirmed by new
measurements, the current effective-field-theory picture
about the interplay of the strong and the weak interaction
will receive significant modifications.
On the theoretical side, we can follow two lines of

thought. On the one hand, we can explore the consequences
of abandoning the ΔI ¼ 1=2 rule. This has been done in
Ref. [8], with the conclusion that more data are needed to
make phenomenologically useful predictions. On the other
hand, we can posit theΔI ¼ 1=2 rule to be true and look for
more disagreements between theory and experiment. This
work follows the second line of reasoning. In particular, we
look at three-body decays, as differential data give much
more information than just comparing two numbers (2
versus 2.74 for the previously discussed ratio).
We will present new calculations for the decays Ω− →

Ξππ (for all combinations of pions). These calculations will
be kept at LO, as there are not enough data to pin down the
LECs that appear at NLO. Moreover, given the scanty data,
an NLO calculation is of little added value. In the context of
heavy-baryon χPT, the decay width for Ω− → Ξ−πþπ− has
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already been calculated in Ref. [10]. We will extend this
calculation by including more decays, calculating fully
differential distributions, and supplanting the heavy-baryon
approximationwith a fully relativistic formalism.Wewill put
special emphasis on the ΔI ¼ 1=2 rule and use it, together
with chiral symmetry, to provide model-independent lower
bounds for the branching fractions. What makes our lower
bounds robust is that chiral symmetry breaking relates the
decay channels Ξππ and Ξπ. We will find an order-of-
magnitude disagreement between current experimental data
and our robust lower bound for the measured channel
Ω− → Ξ−πþπ−. Even though all building blocks to establish
this lower bound have existed in the literature, we are not
aware that it has been spelled out that the failure to under-
stand the current data of Ω− → Ξ−πþπ− provides a further
challenge to theΔI ¼ 1=2 rule. In turn, this means that such
three-body decaysΩ− → Ξππ could beused to scrutinize our
understanding of the strong and weak interactions. The
general theme of this work is that three-body decays
Ω− → Ξππ, Ω− → Ξμν̄μ, and Ω− → Ξeν̄e (see also
Ref. [22]) offer the opportunity to determine LECs of the

effective field theory of QCD at the low energies probed by
hyperon decays.
The rest of this work is structured in the following way: In

the next section, we specify the relativistic chiral Lagrangian
that describes at LO the strong and weak interactions of the
baryon decuplet, the baryon octet, and the Goldstone boson
octet. We supplement this Lagrangian by the subleading
NLO terms that we need in the present work. We also
specify our power counting [21,22]; i.e., we give a meaning
to the phrase “NLO.” In Sec. III, we utilize the LO
Lagrangian to present the decays Ω− → Ξππ in great detail.
In Sec. IV, we provide NLO predictions for the semileptonic
decay Ω− → Ξ0μ−ν̄μ. A brief outlook is presented in Sec. V.
Some technical aspects that would interrupt the main line of
reasoning have been relegated to Appendixes.

II. THE SU(3) CHIRAL LAGRANGIAN

The dominant parts of the interactions of octet and
decuplet baryons with Goldstone bosons and external fields
at low energies are provided by the following LO chiral SU
(3) Lagrangian [21,35–38]:

Lð1Þ
baryon ¼ tr½B̄ði=D −mð8ÞÞB� þ T̄μ

abc½iγμναðDαTνÞabc − γμνmð10ÞðTνÞabc� −HA

2
T̄μ
abcγνγ5ðuνÞcdTabd

μ

þD
2
trðB̄γμγ5fuμ; BgÞ þ

F
2
trðB̄γμγ5½uμ; B�Þ þ

hA
2

ffiffiffi
2

p ðϵadeT̄μ
abcðuμÞbdBc

e þ ϵadeB̄e
cðuμÞdbTabc

μ Þ; ð3Þ

where tr denotes a flavor trace. In passing, we have
introduced totally antisymmetric products of gamma ma-
trices:

γμν ¼ 1

2
½γμ; γν� ¼ −iσμν; ð4Þ

γμνα ¼ 1

2
fγμν; γαg ¼ iϵμναβγβγ5: ð5Þ

In agreement with Ref. [39], our conventions are γ5 ¼
iγ0γ1γ2γ3 and ϵ0123 ¼ −1.
This Lagrangian is supplemented by the corresponding

LO chiral Lagrangian for the Goldstone bosons [29,40–43]:

Lð2Þ
meson ¼ F2

π

4
trðuμuμ þ χþÞ: ð6Þ

Finally, we add the terms that describe the nonleptonic
weak decays at the respective LO for baryons and
Goldstone bosons [3,34]:

Lð0Þ
weak ¼ hCT̄

μ
abc½uðhþ h†Þu†�cdTabd

μ

þ hDtrðB̄fuðhþ h†Þu†; BgÞ
þ hFtrðB̄½uðhþ h†Þu†; B�Þ

þ 1

4
hπF2

πtr½uðhþ h†Þu†uμuμ�: ð7Þ

In the above Lagrangians, we have packaged the mesons
into

Φ ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA: ð8Þ

In our convention, Φa
b is the entry in the ath row and bth

column. Additionally [42,43],1

u2 ¼ U ¼ exp ðiΦ=FπÞ: ð9Þ

1Note that in this parametrization there is a sign difference to
Ref. [30].
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These Goldstone boson fields can be combined into a
sourcelike term uμ ¼ iu†ð∇μUÞu† ¼ u†μ.
The spin-1=2 octet baryons are encoded in

B ¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA: ð10Þ

Spin-3=2 decuplet baryons are collected in a totally flavor-
symmetric tensor Tabc, where

T111 ¼ Δþþ; T112 ¼ 1ffiffiffi
3

p Δþ;

T122 ¼ 1ffiffiffi
3

p Δ0; T222 ¼ Δ−;

T113 ¼ 1ffiffiffi
3

p Σ�þ; T123 ¼ 1ffiffiffi
6

p Σ�0; T223 ¼ 1ffiffiffi
3

p Σ�−;

T133 ¼ 1ffiffiffi
3

p Ξ�0; T233 ¼ 1ffiffiffi
3

p Ξ�−; T333 ¼Ω−: ð11Þ

The chirally covariant derivative acting on these fields is
defined as

DμB ¼ ∂
μBþ ½Γμ; B�; ð12Þ

ðDμTÞabc ¼ ∂
μTabc þ ðΓμÞadTdbc þ ðΓμÞbdTadc þ ðΓμÞcdTabd;

ð13Þ

ðDμT̄Þabc ¼ ∂
μT̄abc − ðΓμÞdaT̄dbc − ðΓμÞdbT̄adc − ðΓμÞdcT̄abd;

ð14Þ

∇μU ¼ ∂μU − iðvμ þ aμÞU þ iUðvμ − aμÞ; ð15Þ

where

Γμ ¼
1

2
fu†½∂μ− iðvμþaμÞ�uþu½∂μ− iðvμ−aμÞ�u†g: ð16Þ

The external sources can be used to mediate the
interactions with the fields that do not couple to the strong
interaction [41]. In our case, these are the weak source h
emerging effectively from the left-handed four-quark oper-
ator, the vector source vμ, the axial-vector source aμ, the
scalar source s, and the pseudoscalar source p. We can
combine the latter two into χ ¼ 2B0ðsþ ipÞ, from which
we define χ� ¼ u†χu† � uχ†u.
For the nonleptonic weak decays, one replaces the

elements of the octet matrix h by hab ¼ δa2δ3b or, equiv-
alently, hþ h† ↦ λ6 [3]. This choice for h selects the s → d
transitions [34] consistent with the ΔI ¼ 1=2 rule. We can

introduce interactions with electromagnetism via the
replacement [42,43]

vμ ↦ eAμ

0
BB@

2
3

0 0

0 − 1
3

0

0 0 − 1
3

1
CCA; ð17Þ

where Aμ is the photon field and e the proton charge. For
semileptonic weak decays mediated by W bosons, we
replace [42,43]

vμ − aμ ↦ −
gwffiffiffi
2

p Wþ
μ

0
BB@

0 Vud Vus

0 0 0

0 0 0

1
CCAþ H:c: ð18Þ

with the W-boson field Wþ
μ , the Cabibbo-Kobayashi-

Maskawa matrix elements Vud and Vus [44], and the weak
gauge coupling gw.
The pion-decay constant is Fπ ¼ 92.4 MeV, and HA, D,

F, hA, B0, hC, hD, hF, and hπ are other LECs. Those needed
for our purposes will be specified below in Sec. III.
The octet and decuplet baryon masses in the chiral limit

are mð8Þ and mð10Þ, respectively. In practice, we take the
physical masses for all the states. Formally, this can be
achieved by adding NLO mass-splitting terms [21] to the
strong Lagrangian (3). We will not provide those terms
explicitly, but we shall specify the elements of the NLO
Lagrangian [22] that are needed for the semileptonic decays:

Lð2Þ
baryon ¼ icMϵadeB̄e

cγμγ5ðfμνþ ÞdbTabc
ν

þ icEϵadeB̄e
cγμðfμν− ÞdbTabc

ν þ H:c: ð19Þ

The new LECs are cM and cE. The field strengths fμν�
[30,32] are given by

fμν� ¼ uFμν
L u† � u†Fμν

R u; ð20Þ

with

Fμν
R;L¼ ∂

μðvν�aνÞ−∂
νðvμ�aμÞ− i½vμ�aμ;vν�aν�: ð21Þ

With respect to chiral transformations [43,45]
L ∈ SUð3ÞL, R ∈ SUð3ÞR, and hV ∈ SUð3ÞV , the fields
transform as2

2We remark that the transformation properties for U and u
given in Refs. [21,22] are incorrect. The authors mixed con-
ventions of Refs. [43,45]; see also Appendix C.
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U ↦ RUL†; u ↦ Ruh†V ¼ hVuL†;

uμ ↦ hVuμh
†
V; B ↦ hVBh

†
V;

h ↦ LhL†; uhu† ↦ hVðuhu†Þh†V;
Tabc
μ ↦ ðhVÞadðhVÞbeðhVÞcfTdef

μ ;

T̄μ
abc ↦ ðh†VÞdaðh†VÞebðh†VÞfcT̄μ

def: ð22Þ

Finally, let us further specify our formalism and our
power counting. Our Lagrangians are fully relativistic, and
we shall carry out all calculations in a relativistic manner.
Conceptually, this makes sense only if it is clear how loop
corrections are handled in the relativistic framework. This
requires us to know how important each diagram is in our
power-counting scheme. And it requires that all diagrams
contributing to a certain order in the power counting
can be calculated. Otherwise, predictive power would be
lost. Historically, it was not clear how to achieve these
requirements. As a consequence, the first systematic
scheme that was established was the heavy-baryon
formalism. Previously, decays of Ω− baryons had been
carried out in this nonrelativistic framework [8–10,34].
Meanwhile, though, it has been established how to perform
relativistic calculations that follow a consistent power-
counting scheme. Therefore, it makes sense that we
perform our calculations in a fully relativistic way. For
a review of all these developments from heavy-baryon to
relativistic chiral formulations, we refer to Ref. [43]. We
will come back to the power counting in Sec. IV.

III. NONLEPTONIC DECAYS TO CASCADES
AND PIONS

A. The two-body decays Ω− → Ξπ and the
consequences of chiral symmetry

The simplest microscopic process compatible with the
ΔI ¼ 1=2 rule is the decay of a strange to a down quark.
One starts with an Ω− state and its minimal quark content
sss. After the decay, one obtains a state with quark content
dss and spin 3=2. The strong interaction can add extra
quark-antiquark pairs. The corresponding multihadron
states have overlap with the dss configuration, but there
is also a low-lying single-hadron state (three-quark state)
with quark content dss and spin 3=2: the Ξð1530Þ
resonance [5], denoted by Ξ� in Eq. (11). Sharing the very
same flavor multiplet, it sits close by in mass to the
decaying Ω− state. Therefore, the Ξð1530Þ will contribute
significantly to the decay process Ω− → Ξπ where the final
state emerges as a strong decay process from a virtual
Ξð1530Þ.
This picture of a hadron fluctuating first into another

hadron, which is also applied to the weak decays of spin-
1=2 hyperons [34] and kaons [3], lies at the heart of the
Lagrangian (7). For the case at hand, this concerns the term
∼hC. These considerations lead to the LO diagram shown

in Fig. 1 and to the LO formula (see also [34] for the
corresponding heavy-baryon calculation)

ΓðΩ− → Ξ0π−Þ ¼ 2ΓðΩ− → Ξ−π0Þ

¼ pcm

8πm2
Ω

h2Ah
2
C

432F2
π

1

m2
ΩðmΩ −mΞ�Þ2

× ðm2
Ω − 2mΩmΞ −m2

π þm2
ΞÞ

× ðm2
Ω þ 2mΩmΞ −m2

π þm2
ΞÞ2; ð23Þ

where

pcm ¼ 1

2mΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΩ þmπÞ2 −m2

Ξ

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΩ −mπÞ2 −m2

Ξ

q
: ð24Þ

Here, one sees how the Ξ� ¼ Ξð1530Þ resonance enhances
the process by the factor 1=ðmΩ −mΞ� Þ ∼ 1=M2

K in the
amplitude.
In passing, we note that the process depicted in Fig. 1

describes the parity-conserving p-wave amplitude. The
parity-violating d-wave is phase-space suppressed [9,34].
More generally, it should be stressed that Eq. (23) is a result
valid at LO. There are chiral corrections that are, however,
hard to control beyond leading-log accuracy [9,34] due to a
plethora of LECs in the weak NLO Lagrangian that
complements the LO structures of Eq. (7). Nevertheless,
the dominant contribution is given by Eq. (23).
Of course, all this is compatible with the ΔI ¼ 1=2

rule, which amounts to the prediction ΓðΩ− → Ξ0π−Þ=
ΓðΩ− → Ξ−π0Þ ¼ 2. As already stressed, this is in disagree-
ment with the current data. The results have been used to
question the data [9,34] or to speculate on interesting new
aspects related to ΔI ¼ 3=2 processes [7]. In view of this,
our perspective is that additional experimental verification of
the present results is necessary. In addition, one learns even
more from three-body decays, to which we turn next.
As happens very often in low-energy QCD, the interesting

aspect is chiral symmetry breaking. It relates in a model-
independent way the transition amplitudes A → B to proc-
esses with n additional soft pions, A → Bþ nπsoft [46]. In
other words, given the amplitude A → B, we can predict

FIG. 1. Leading-order diagram for the decay Ω → Ξπ. Circles
indicate a strong vertex, and squares indicate a weak vertex.
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without any new parameters the strength for the amplitude
A → Bþ nπ up to chiral corrections. For strong-interaction
processes, the number of pions must be even to conserve
parity. But, for weak processes, one predicts a parity-
breaking amplitude A → Bπ from a parity-conserving
amplitude A → B and a parity-conserving amplitude from
a parity-breaking one. Diagrammatically, the processes of
Fig. 1 and diagram 3 in Fig. 2 are intimately related.
Taking the previous considerations together, the ΔI ¼

1=2 selection rule and chiral symmetry relate the strength of
the parity-conserving part of the amplitude of Ω− → Ξπ to
the parity-violating part of the amplitude ofΩ− → Ξππ. We
will use this connection to provide an estimate for the lower
limit of the ratio of decay widths for the processes Ω− →
Ξππ and Ω− → Ξπ.
Technically, the additional soft pion emerges from the

appearance of u ¼ expðiΦ=ð2FπÞÞ in Eq. (7). We are by no
means the first who use this Lagrangian. Yet, to the best of
our knowledge, it has never been pointed out before that the
ΔI ¼ 1=2 selection rule can be used for an otherwise
model-independent prediction of the ratio ΓðΩ → ΞππÞ=
ΓðΩ → ΞπÞ. Instead, it has been stressed in the literature
how uncertain the determination of hC and other parameters
is. But one can easily overestimate the uncertainties if one
does not resort to some constraints provided by chiral
symmetry.
Though chiral perturbation theory might not always

converge well [34], the order of magnitude of our lower-
limit prediction should be regarded as correct. Therefore,
we interpret a gross violation of this prediction not merely
as a challenge for chiral perturbation theory but rather as a
challenge of the ΔI ¼ 1=2 selection rule.

B. The decay Ω− → Ξ−π + π −
Meanwhile, the concepts of current algebra and partially

conserved axial-vector current [46] are encompassed and
systematized by the use of the chiral Lagrangians
[3,29,32,34,40–43,45]. We will determine some correc-
tions to the picture that we have just described. However,
the small size of these corrections will support our claims.
We start with the decay Ω− → Ξ−πþπ−. We work with

kinematic variables m2ðΞ−π�Þ¼ðpΞþp�Þ2. Alternatively,
we may choose cos θ as a second variable, instead of
m2ðΞ−π−Þ. Here, θ is the angle between pΞ and p− in
the frame where pΞ þ pþ ¼ 0. The relationship between
cos θ and m2ðΞ−π−Þ is

m2ðΞ−π−Þ ¼ ðE�
ΞþE�

−Þ2 − p2Ξ − p2− − 2jpΞjjp−jcosθ; ð25Þ

where

E�
Ξ ¼ m2ðΞ−πþÞ −m2

π þm2
Ξ

2mðΞ−πþÞ ;

E�
− ¼ −m2ðΞ−πþÞ þm2

Ω −m2
π

2mðΞ−πþÞ ;

jpΞj ¼
λ1=2ðm2ðΞ−πþÞ; m2

Ξ; m
2
πÞ

2mðΞ−πþÞ ;

jp−j ¼
λ1=2ðm2ðΞ−πþÞ; m2

Ω; m
2
πÞ

2mðΞ−πþÞ ð26Þ

are energies and momenta in the frame where pΞ þ pþ ¼ 0.
Here, λða; b; cÞ is the Källén function, defined as

FIG. 2. Diagrams contributing to the decay Ω− → Ξ−πþπ−. Circles indicate a strong vertex, and squares indicate a weak vertex.
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λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ: ð27Þ

Let us estimate the LECs. There are several conventions
for the LECs in use in the literature. In Appendix C, we
give an overview. The values given here are used through-
out the paper. Standard values are D ¼ 0.80 and F ¼ 0.46
[47]. The parameter hπ is related to kaon decays
[3,10,34,48] and is hπ ¼ −3.12 × 10−7. The value for
hA is determined from fits to different two-body decay
channels of decuplet baryons [22]. It lies within the range
1.9 ≤ hA ≤ 2.9. The value derived solely from cascade
decays is hA ¼ 2.0. There are no simple observables to pin
down HA. To that end, we average estimates from large-
NC [37,38,49,50] considerations and use HA ¼ 2.0. For a
given hA, we determine the magnitude of hC by fitting to
the decay Ω− → Ξ0π−, whose decay width is proportional
to h2Ah

2
C; cf. Eq. (23). Therefore, hC lies in the range

3.5×10−8GeV≤ jhCj≤5.4×10−8GeV. From hA ¼ 2.0,
we get jhCj ¼ 5.1 × 10−8 GeV.
With the LECs fixed, we can calculate the double-

differential decay width, given by [5]

d2ΓðΩ− → Ξ−πþπ−Þ
dm2ðΞ−πþÞdm2ðΞ−π−Þ ¼

hjMj2i
32ð2πmΩÞ3

; ð28Þ

where hjMj2i denotes the spin-averaged Feynman matrix
element. An explicit form of the Feynman matrix element is
given in Appendix A. In Appendix B, we provide some
technical notes on deriving interaction vertices. When
calculating the decay width, we use Mathematica [51]
and FeynCalc [52–54] to take traces.
As can be seen in Fig. 2, the LO Lagrangians (3), (6), and

(7) provide four tree-level diagrams contributing to the
decay. In line with the discussions in Sec. III A, the
numerically dominant term of the decay width comes from
diagram 3 and is proportional to h2Ah

2
C. In Fig. 3, we see it is

the well-known Ξð1530Þ resonance (see also Ref. [10])
which completely overwhelms all other features in the
phase space. This matches with what is known from heavy-
baryon calculations [10]. Relativistic corrections to the
branching fraction are on the order of 10% as compared to
the heavy-baryon results [55].
Our results do not match with what has been seen in the

most recent experiment [12]. There, no trace of the Ξð1530Þ
resonance has been observed. Data seem to be compatible
with statistical phase space. As discussed in Ref. [10], the
decay width is sensitive to the values of the LECs.
Therefore, we resort to the ratio of three- and two-body
decays to obtain a robust, model-independent result. We
will see that the discrepancy is not resolved by tuning
parameters.
In the spin-averaged decay width, parity-conserving

processes (diagrams 1 and 2) do not interfere with
parity-violating processes (diagrams 3 and 4). To see this,
we factor the decay width as

Γ∝ trf½ðv typeÞþðc typeÞγ5�½ðv typeÞþðc typeÞγ5�g: ð29Þ

Interference terms contain several gamma matrices and
exactly one γ5 matrix. It follows that the trace must vanish
or be proportional to a Levi-Civita symbol. The Levi-Civita
symbol must contract with the particle momenta. Since all
momenta lie in the same plane, this contraction gives zero.
Therefore,

Γ ¼ jΓcj2 þ jΓvj2 ≥ jΓvj2: ð30Þ

When the LECs are varied within their physical limits,
then we find in all cases that jΓcj2 is numerically small as
compared to jΓvj2 (on the order of a couple of percent).
Again, this supports our claim that the dominant contri-
bution to the three-body decay relates to the two-body
decay by chiral symmetry.
We can expand the parity-violating part as

jΓvj2 ¼ aðhAhCÞ2 þ bðhAhπÞ2 þ ch2AhChπ

¼ aðhAhCÞ2
�
1þ b

a
h2π
h2C

þ c
a
hπ
hC

�
; ð31Þ

where a, b, and c are numbers that depend only on the
kinematic factors and the pion decay constant, but not on
other coupling constants. The dependence on the parameter
combinations follows from the formulas in Appendix A.
For realistic values of the parameters hπ and hC, the last two
terms ∼b=a and ∼c=a stay rather small (on the order of
10%). The dominant term, on the other hand, depends on
the same parameter combination as the two-body decay
amplitude Ω− → Ξπ.
This allows us to provide a robust and parameter-

insensitive estimate for the lower bound of the ratio of
the branching fractions of the two-and-three-body decays:

FIG. 3. The fully differential distribution for the decay Ω →
Ξ−πþπ− at leading order, normalized to the total decay width.
The Ξð1530Þ resonance overwhelms all other features of the
distribution.
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BðΩ− → Ξ−πþπ−Þ
BðΩ− → Ξ0π−Þ ≳ jΓvj2

ΓðΩ− → Ξ0π−Þ : ð32Þ

For the numerical estimate, we vary the parameter hC in a
reasonable range. Recall, however, that our fit for hC fixes
only its magnitude and not its sign. So, we calculate the
lower bound for both signs of hC and pick whichever case
gives the lowest bound (this automatically covers the other
sign choice as well). We find

BðΩ− → Ξ−πþπ−Þ
BðΩ− → Ξ0π−Þ ≳ 2.9 × 10−2: ð33Þ

If we drop the terms ∼b=a and ∼c=a, we obtain

BðΩ− → Ξ−πþπ−Þ
BðΩ− → Ξ0π−Þ ≳ 3.1 × 10−2; ð34Þ

fairly close to Eq. (33).
If we use the measured branching fraction of the decay

Ω− → Ξ0πþπ− [12], we get

BðHyperCPÞ
BðΩ− → Ξ0π−Þ ¼ ð0.16� 0.03Þ × 10−2: ð35Þ

There is an order-of-magnitude difference between theory
and experiment. We stress again the intimate link between
this discrepancy and a possible violation of the ΔI ¼ 1=2
rule. Obviously, the three-body decay is much better suited
to explore this discrepancy, as the order-of-magnitude
difference for the three-body decay is much larger as
compared to the discrepancy for the two-body decays
expressed by the difference between ratios (1) and (2).
At present, though, it is unclear whether the resolution of

this tension should come from improvements on the theory
side, experimental side, or both. Within the heavy-baryon
formalism, the inclusion of higher-order terms and isospin-
3=2 contributions has yielded inconclusive results [8,10].
Empirical data are scarce. Simply put, we urge that the
decay Ω− → Ξ−πþπ− be remeasured at ongoing and
upcoming experiments, such as BESIII, LHCb, Belle-II,
and PANDA. Ideally, fully differential data will match more
closely to current results or trigger further improvements on
the theory side.

C. Other Ω− → Ξππ decays

We can extend our reasoning to the so-far unmeasured
decays Ω− → Ξ0π−π0 and Ω− → Ξ−π0π0. The diagrams
look like Fig. 2, with obvious particle replacements. There
are three additional diagrams similar to diagrams 1–3
where the pions are swapped. Hence, the decay width
has the same structure as Eq. (30), and we can make
predictions for the lower bound of the ratio of branching
fractions. We find

BðΩ− → Ξ0π−π0Þ
BðΩ− → Ξ0π−Þ ≳ 5.1 × 10−2;

BðΩ− → Ξ−π0π0Þ
BðΩ− → Ξ0π−Þ ≳ 1.2 × 10−2: ð36Þ

That the former ratio is similar in size to the ratio of the
decay Ω− → Ξ−πþπ− while the latter ratio is smaller
follows from the relative sizes of the Clebsch-Gordan
coefficients corresponding to the resonance vertices.
For completeness, let us also look at the fully differential

distributions. They are given in Fig. 4. For the decay
Ω− → Ξ0π−π0, we use m2ðΞ0π0Þ ¼ ðpΞ þ p0Þ2 and the
angle θ between pΞ and p− in the frame where pΞ þ p0 ¼ 0.
For the decay Ω− → Ξ−π0π0, we use m2ðΞ−π02Þ ¼
ðpΞ þ p02Þ2 and the angle between pΞ and p01 in the
frame where pΞ þ p02 ¼ 0. Here, we label the two neutral
pions with 1 and 2.
Both distributions are double peaked, which is not

entirely surprising. The right peak is the Ξð1530Þ reso-
nance. The left peak arises due to symmetry reasons. The
three new diagrams that our decays have compared to the
decay Ω− → Ξ−πþπ− are symmetric under exchange of
the pion momenta. This means that the fully differential
distribution in the two kinematic variables should be
symmetric as well. When we change one of the kinematic
variables to an angle, the left peak gets smeared out. This is
also visible in the distributions.
Another hard prediction, besides the lower bounds (33)

and (36), is that the resonance peaks should be clearly
visible in the fully differential distributions displayed in
Figs. 3 and 4. In turn, high-quality differential distributions
can be used to study the relative importance of the ΔI ¼
1=2 and ΔI ¼ 3=2 amplitudes. The corresponding theo-
retical study requires such an experimental input and is,
therefore, beyond the scope of the present work.

IV. SEMILEPTONIC DECAYS

While there are numerous LECs in the weak NLO
Lagrangian [56] that provides corrections to Eq. (7), the
“strong” NLO Lagrangian has been fully specified in
Ref. [21] for the strong-interaction sector plus its coupling
to external fields. We will use it to provide predictions for
the decay Ω− → Ξ0μ−ν̄μ.
Before turning to the technical aspects, we have to clarify

what NLO means in the present context. In general, we
study baryon decays of type B1 → B2 þ X, where X
denotes one or several mesons, photons, or dileptons.
Parametrically, the baryon mass is large, and the mass
difference between the baryons is small. The masses of all
particles contained in X are small. Consequently, in the rest
frame of the decaying state B1, the modulus of the momenta
of B2 and X is small. This qualitative statement about the
smallness of momenta does not change if we change to the
rest frame of B2.
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But how small are such momenta? Kinematics tells us that

jp2j ¼ jpXj

¼ 1

2m1

½ððm1 þm2Þ2 −m2
XÞððm1 −m2Þ2 −m2

XÞ�1=2

≈ ½ðm1 −m2Þ2 −m2
X�1=2; ð37Þ

which holds in the frame where B1 is at rest. Here,mi (pi) is
the mass (three-momentum) of baryon i or of the single- or
many-particle state X.
Before turning to our case, a small digression is in order

to understand the overall picture. If both B1 and B2 belong
to the lowest-lying baryon octet (10), then their mass
difference is driven by the masses of the light quarks.
Given that the strange-quark mass is significantly larger
than the masses of up and down quarks, we can approxi-
mate m2 −m1 ∼ms ∼M2

K, as pointed out in Ref. [34]. For
kinematic reasons, the final state X cannot contain kaons
(m1 −m2 < MK). One can assume that mX is parametri-
cally smaller thanMK . Either it is ∼M2

K or suppressed even
further. This leads to jp2j ¼ jpXj ∼m1 −m2 ∼M2

K . In
contrast to the typical situation studied in meson-baryon
scattering, the external momenta are not as large as the
Goldstone-boson mass, here MK , but further suppressed.
Derivative counting in the chiral Lagrangian might not go
along with kaon-mass counting. For such hyperon decays,
loop momenta count as MK while external momenta count
as M2

K [34].
But there is a twist for the decuplet. The main decay

branch of the Ω− baryon is Ω− → ΛK−. If we put MX ¼
MK in Eq. (37), we obtain the “standard” scaling

jpΛj ¼ jpKj ∼MK—provided we use mΩ −mΛ ∼MK .
Definitely, we cannot use mΩ −mΛ ∼M2

K . This would
lead to a contradiction (imaginary momentum) in Eq. (37).
For all other decays of the Ω− baryon, there is no
predefined answer about the size of the baryon mass
difference relative to the Goldstone boson mass(es). For
the present work, we have decided to deal with all Ω−

decays on equal footing. Therefore, we assign [21,22]

mdecuplet −moctet ∼MK; ð38Þ

and as a consequence jp2j ¼ jpXj ∼mdecuplet −moctet ∼MK .
All soft derivatives appearing in Eqs. (3) and (19) count as
the order of OðMKÞ. This is in full analogy to the small-
scale expansion mΔ −mN ∼Mπ in the two-flavor sector
[57]. With this power counting, the NLO calculation of the
decay Ω− → Ξ0μ−ν̄μ is a tree-level calculation. Loops start
to contribute only at NNLO.
Now, we turn to the technical aspects of the decay

Ω− → Ξ0μ−ν̄μ. The diagrams contributing at NLO are
given in Fig. 5. Our kinematic variables are m2ðμ−ν̄μÞ ¼
ðpðμÞ þ pðνÞÞ2 and cos θ, where θ is the angle between pðνÞ
and pΞ in the frame where pðμÞ þ pðνÞ ¼ 0.
At NLO, the decay width depends on two new LECs, cE

and cM. Our proposal is that they can be pinned down by an
experimental determination of the differential decay width.
To provide some concrete estimates, we use Refs. [21,22],
where the magnitude of each of these constants has been
narrowed down to one of two possible values:

cE ¼ 0.5 or − 5 GeV−1; cM ¼ �1.92 GeV−1:

FIG. 4. Fully differential distributions for three-body Ω decays, normalized by the total decay width. Both distributions are double
peaked. The right peak is the Ξð1530Þ resonance. The left peak arises due to symmetry reasons and is slightly smeared out, as can be
seen in both figures.
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As can be seen in Fig. 6, it is possible to distinguish the four
configurations of the LECs. It is also possible to distinguish
all four cases just by looking at the angular distributions, as
can be seen in Fig. 7. However, if the data are integrated
over cos θ, it is possible to pin down only the relative sign
of cE and cM.
Like the analysis done in Ref. [22] for the decay

Ω− → Ξ0e−ν̄e,
3 it appears that cM ↦ −cM is essentially

equivalent to cos θ ↦ − cos θ (forward-backward asym-
metry [2]). This is not exactly true. Closer inspection of, for
instance, Figs. 6(a) and 6(c) reveals that there is a degree of
asymmetry in this equivalence. This asymmetry arises
because the leptons have finite mass. Compared to the
electronic case, this asymmetry is more pronounced,
because muons are heavier than electrons.
When we use cM ¼ 1.92 GeV−1, the predicted branch-

ing fraction is lower by approximately 30% as compared
to the electronic case. As a function of cE, it has a
similar parabolic shape as in Ref. [22]. Its value is
BðΩ− → Ξ0μ−ν̄μÞ ¼ 3.79 × 10−3 for cE ¼ 0.5 GeV−1.

V. OUTLOOK

For the decay Ω− → Ξ−πþπ−, we have demonstrated an
order-of-magnitude discrepancy between experiment
[Eq. (35)] and theory [Eq. (33)], with the latter based on
the ΔI ¼ 1=2 selection rule. This adds to the well-known
discrepancy for the two-body decays expressed in Eqs. (1)

FIG. 6. Fully differential distribution for the branching ratio of
the decay Ω− → Ξ0μ−ν̄μ at NLO for different values of the LECs
cE and cM. Plots are normalized by the total decay width of the Ω
baryon.

FIG. 7. The normalized angular distribution for the decay
Ω− → Ξ0μ−ν̄μ at NLO. The dash-dotted blue line corresponds
to the parameter values in Fig. 6(a), the dotted blue line
corresponds to Fig. 6(b), the solid orange line corresponds to
Fig. 6(c), and the dashed orange line corresponds to Fig. 6(d).

FIG. 5. LO and NLO diagrams contributing to the decay Ω− → Ξ0μ−ν̄μ; see also Eqs. (A8) and (A9).

3In passing, we remark that the fully differential distribution in
Ref. [22] appears to be flipped with respect to ours. This is
because the authors use the angle between the cascade and the
electron, while we use the angle between the cascade and the
neutrino.
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and (2). Therefore, we recommend the decays Ω− →
Ξ−πþπ− as well as Ω− → Ξ−π0 and Ω− → Ξ0π− be
remeasured at experiments such as BESIII, LHCb, Belle-
II, and PANDA. Besides these branching fractions, the
related interesting question is the appearance or nonappear-
ance of the Ξð1530Þ resonance peak(s) in the fully differ-
ential distributions of the decays Ω− → Ξππ. If the
processes are dominated by the ΔI ¼ 1=2 selection rule,
this resonance should be visible. Therefore, differential
distributions, even if not normalized, would be highly
welcome to understand the fate of the intermediate Ξð1530Þ
state. We have also calculated lower limits for the
branching fraction of the decays Ω− → Ξ0π−π0 and
Ω− → Ξ−π0π0. Lastly, we have looked at the decay Ω− →
Ξ0μ−ν̄μ and shown that measurements thereof may be used
to pin down the low-energy constants cM and cE.
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APPENDIX A: EXPLICIT MATRIX-ELEMENT
FORMULAS

For the decays Ω− → Ξππ, the generic structure of the
Feynman matrix element is

MiðΩ− → ΞππÞ ¼ ūðpΞÞβμi uμðpΩÞ; ðA1Þ

where βμi depends on what decay i we consider. Here,
uμðp; σÞ are vector spinors [58] describing spin-3=2 states
with momentum p and polarization σ. They satisfy

X
σ

uμðp; σÞūνðp; σÞ ¼ −ð=pþmÞP3=2
μν ðpÞ; ðA2Þ

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
the energy of the spin-3=2 particle

and m its mass. The projector on the spin-3=2 subspace
[59] is defined as

P3=2
μν ðpÞ ¼ gμν −

1

3
γμγν −

1

3p2
ð=pγμpν þ pμγν=pÞ: ðA3Þ

For decay 1, Ω− → Ξ−πþπ−, we find

βσ1 ¼
hAHAhC
18

ffiffiffi
2

p
F2
π

pμ
þPT

μνðk1; mΞ� ;ΓΞ�Þ=p−γ5Pνσ
T ðpΩ; mΞ� Þ

þ hAhCðD − FÞ
6

ffiffiffi
2

p
F2
π

p−
μ =pþγ5PBðk1; mΞÞPμσ

T ðpΩ; mΞ� Þ

−
ihAhC
6

ffiffiffi
2

p
F2
π

pþ
μ P

μσ
T ðk1; mΞ� ;ΓΞ� Þ

−
ihAhπ
4

ffiffiffi
2

p
F2
π

PΦðk̃; mKÞk̃σðk̃ · pþ þ pþ · p−Þ: ðA4Þ

For decay 2, Ω− → Ξ0π−π0, we find

βσ2 ¼
�
hAHAhC
36F2

π
pμ
0P

T
μνðk1; mΞ� ;ΓΞ� Þ=p−γ5Pνσ

T ðpΩ; mΞ�Þ

þ hAhCðD − FÞ
12F2

π
p−
μ =p0γ5PBðk1; mΞÞPμσ

T ðpΩ; mΞ� Þ

þ ihAhC
12F2

π
p0
μP

μσ
T ðk1; mΞ� ;ΓΞ� Þ − ðp− ↔ p0Þ

�

þ ihAhπ
8F2

π
PΦðk̃; mKÞk̃σðk̃ · p− − k̃ · p0Þ: ðA5Þ

For decay 3, Ω− → Ξ−π0π0, we find

βσ3 ¼
�
−
hAHAhC
36

ffiffiffi
2

p
F2
π

pμ
20P

T
μνðk1; mΞ� ;ΓΞ� Þ=p10γ5Pνσ

T ðpΩ; mΞ� Þ

þ hAhCðD − FÞ
12

ffiffiffi
2

p
F2
π

p10
μ =p20γ5PBðk2; mΞÞPμσ

T ðpΩ; mΞ� Þ

þ ihAhC
12

ffiffiffi
2

p
F2
π

p20
μ Pμσ

T ðk2; mΞ� ;ΓΞ� Þ þ ðp10 ↔ p20Þ
�

þ ihAhπ
8

ffiffiffi
2

p
F2
π

PΦðk̃; mKÞk̃σð2p10 · p20 þ k̃2Þ: ðA6Þ

The intermediate momenta are k ¼ pa þ pΞ and
k̃ ¼ pa þ pb, with pa ¼ ðpþ; p0; p01Þ and pb ¼
ðp−; p−; p02Þ for decays 1–3, respectively. Note that in
the momentum-swapped terms also momenta in k get
swapped. We use the following shorthand for the scalar,
spin-1=2, and spin-3=2 propagators:
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PΦðp;mÞ ¼ i
p2 −m2 þ iϵ

;

PBðp;mÞ ¼ ið=pþmÞ
p2 −m2 þ iϵ

;

PT
μνðp;m;ΓÞ ¼ −

ið=pþmÞ
p2 −m2 þ imΓ

P3=2
μν ðpÞ

þ 2i
3m2

ð=pþmÞpμpν

p2

−
i
3m

pμpαγαν þ γμαpαpν

p2
; ðA7Þ

respectively. For decay 2, we approximate mΞ�− ≈mΞ�þ≈
ðmΞ�− þmΞ�þÞ=2 ¼ mΞ� , with an equivalent approximation
for mΞ.
Propagators that do not explicitly contain a width Γ in

their argument do not hit a pole. Formally, the width of the
resonance Ξ� is part of the self-energy of the field. The self-
energy is a higher-order effect (next-to-next-to-leading
order). Consequently, we leave out the width whenever
feasible. However, the Ξ� resonance can be populated on
shell in the decay Ω− → Ξ�π with subsequent decay
Ξ� → Ξπ. For such processes, the use of a resonance width
is indispensable. This concerns the processes described by
diagrams 1 and 3 in Fig. 2. Here, in practice we use the
constant on-shell width for our calculations. The width is
caused by the decay branch Ξ� → Ξπ. In principle, one
could also use an energy-dependent width that corresponds
to the p-wave nature of this decay. Where would this
matter? The width of the Ξ� is relatively small, about
10 MeV [5]. If one goes off shell to smaller invariant
masses of the Ξπ system, the width would be even smaller.
This cannot change much of the results. Going to higher
invariant masses, one hits the phase-space limit for the
decay of the Ω−. Therefore, the Ξ�0 in diagrams 1 and 3 in
Fig. 2 is properly described by a constant width. There is
only one other case that needs to be discussed, namely,
whether one should use a width for the virtual Ξ�− which
inherits the mass of the Ω− in diagrams 1 and 2 in Fig. 2.
From a formal point of view, this width would be a higher-
order effect there. But, it makes sense to estimate its impact.
To keep things simple, imagine the modulus square of
diagram 2 (or 1). In our calculation, it contains a factor
1=jm2

Ω −m2
Ξ� j2. Including a width, this factor changes to

1=jm2
Ω −m2

Ξ� þ imΞ�ΓΞ� ðm2
ΩÞj2; in other words, the term

becomes smaller. The p-wave width at the larger mass of
the Ω− is certainly significantly larger than the on-shell
width of about 10 MeV. In any case, the inclusion of a
width for the Ξ�− in diagrams 1 and 2 makes the values of
the diagrams smaller. Thus, it demotes these diagrams
further as compared to the dominant diagram 3 (see the
main text for the corresponding discussion of the impor-
tance of the various diagrams). In this sense, our estimates
for the impact of diagrams 1 and 2 are conservative.

Of course, this suppression by the width might be com-
pensated by extra diagrams from next-to-next-to-leading
order. Therefore, we have decided to disregard the width
effects whenever possible, since they are formally of higher
order in the power counting.
The Feynman matrix element for the semileptonic

decay is

MðΩ− → Ξ0μ−ν̄μÞ ¼ ūðpðμÞÞβ0κvðpðνÞÞ
× ūðpΞÞβ00κσuσðpΩÞ; ðA8Þ

where

β0κ ¼ −2
ffiffiffi
2

p
GFVusγκPL;

β00κσ ¼ hA
2

ffiffiffi
2

p gκσ þ ðcE − cMγ5Þð=qgκσ − γκqσÞ

−
hAqκqσ

2
ffiffiffi
2

p ðq2 −m2
KÞ

; ðA9Þ

with the Fermi constant GF and q ¼ pΩ − pΞ.

APPENDIX B: DERIVING VERTICES

In principle, it is possible to expand the chiral
Lagrangians and read off all possible interactions.
However, it is much more economical to write generic
vertices involving any meson or baryon [55,60]. To start,
we collect the different particle fields into tuples:

ðBiÞ ¼ ðΣþ;Σ−;Σ0; p;Ξ−; n;Ξ0;ΛÞ;
ðΦjÞ ¼ ðπþ; π−; π0; Kþ; K−; K0; K̄0; ηÞ;
ðTnÞ ¼ ðΣ�þ;Σ�−;Σ�0;Δþ;Ξ�−;Δ0;Ξ�0;Δþþ;Δ−;Ω−Þ:

Tuples for barred fields look the same.
For the 3 × 3 traceless matrices, we use the basis bi,

defined via the Gell-Mann matrices as [29]

b1 ¼
1ffiffiffi
2

p ðλ1 þ iλ2Þ; b2 ¼ b†1; b3 ¼ λ3;

b4 ¼
1ffiffiffi
2

p ðλ4 þ iλ5Þ; b5 ¼ b†4;

b6 ¼
1ffiffiffi
2

p ðλ6 þ iλ7Þ; b7 ¼ b†6; b8 ¼ λ8:

From the completeness relation of the Gell-Mann matrices,
one may show that

ðbiÞabðbTi Þcd ¼ ðλiÞabðλiÞcd ¼ 2δadδ
c
b −

2

3
δabδ

c
d: ðB1Þ

Note the implicit sum over i.
The building blocks of the totally symmetric 3 × 3 × 3

tensors are the tensors eabc, whose components are zero,
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except for the abc element, which is one. The basis
elements are then

t1 ¼
1ffiffiffi
3

p ðe113 þ e131 þ e311Þ;

t2 ¼
1ffiffiffi
3

p ðe223 þ e232 þ e322Þ;

t3 ¼
1ffiffiffi
6

p ðe123 þ e132 þ e213 þ e231 þ e312 þ e321Þ;

t4 ¼
1ffiffiffi
3

p ðe112 þ e121 þ e211Þ;

t5 ¼
1ffiffiffi
3

p ðe332 þ e323 þ e233Þ;

t6 ¼
1ffiffiffi
3

p ðe221 þ e212 þ e122Þ;

t7 ¼
1ffiffiffi
3

p ðe331 þ e313 þ e133Þ;

t8 ¼ e111; t9 ¼ e222; t10 ¼ e333:

The fields are split from their tensor structure as

Φa
b ¼ΦjðbjÞab; Ba

b ¼
1ffiffiffi
2

p BiðbiÞab; Tabc ¼ TnðtnÞabc:

ðB2Þ

Note that

B̄a
b ¼

1ffiffiffi
2

p B̄iðbTi Þab: ðB3Þ

As an example, suppose we want to derive at LO the
vertex between a decuplet baryon, an octet antibaryon, and
a meson (all ingoing). The relevant part of the Lagrangian is

hA
2

ffiffiffi
2

p ϵadeB̄e
cðuμÞdbTabc

μ :

By expanding the fields, we find a vertex

VT→ΦB
μ ¼ −

hA
2

ffiffiffi
2

p
Fπ

cnijpΦ
μ ; ðB4Þ

where pΦ
μ is the meson momentum and cnij a “flavor

factor”:

cnij ¼
1ffiffiffi
2

p ϵadeðbiÞecðbjÞdbðtnÞabc: ðB5Þ

A straightforward evaluation of the flavor factor reveals all
possible trilinear couplings.

APPENDIX C: REMARKS ON CHIRAL
CONVENTIONS

For the SU(3) chiral Lagrangian, there are two main
sets of notation in use. In this work, we use notation
type A (also used in Refs. [3,21,22,29,30,32,42,43]). In
Refs. [8,10,34,45,56], notation type B is used. It is
surprisingly messy to harmonize both types.
In notation A, upper indices transform according to the

fundamental representation, and lower indices transform
according to the antifundamental representation. In nota-
tion B, this is flipped. Consequently, in notation B, Φa

b
refers to the bth row and ath column. Therefore, in
translating notation A to notation B, upper indices become
lower indices and vice versa.
From the transformation rules of the particle fields, we

find that fields in notation type B gain a relative phase
compared to notation type A (i.e., ηA ¼ −ηB;…). Table I
gives a further overview. Note that (say) the matrix ΦA
contains fields of A (ΛA;…), while ΦB contains fields of
B (ΛB ¼ −ΛA;…).

TABLE I. A comparison of two common types of notation in use for the SU(3) chiral Lagrangian. Type A is used
in this work and (for example) Refs. [3,21,22,29,30,32,42,43], while type B is used in Refs. [8,10,34,45,56].

Type A Type B Type A Type B

B B Dμ Dμ

Φ 2π Fπ f
U Σ† mð8Þ mB

u ξ† mð10Þ mT

L=R L=R D D
hV U F F
Γμjlν;rν¼0 Vμ hA

ffiffiffi
2

p
C

uμjlν;rν¼0 2Aμ HA −H
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