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Score-based generative models are a new class of generative algorithms that have been shown to produce
realistic images even in high dimensional spaces, currently surpassing other state-of-the-art models for
different benchmark categories and applications. In this work we introduce CaloScore, a score-based
generative model for collider physics applied to calorimeter shower generation. Three different diffusion
models are investigated using the Fast Calorimeter Simulation Challenge 2022 dataset. CaloScore is the first
application of a score-based generative model in collider physics and is able to produce high-fidelity
calorimeter images for all datasets, providing an alternative paradigm for calorimeter shower simulation.
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I. INTRODUCTION

Detailed detector simulations are an essential component
of data analysis in particle and nuclear physics. These
simulations are used to fold particle-level predictions for
comparisons with data and are used to unfold data for
detector-effects in order to compare with predictions and
other experiments. Simulations are also a critical input for
the design of future experiments.
The most widely used detector simulations are built on

the program GEANT [1–3]. Achieving precision requires
significant computing time as propagating particles through
materials results in a large number of secondary particles
each undergoing electromagnetic and/or nuclear inter-
actions. For this reason, the most complex detectors to
emulate are calorimeters, whose purpose is to stop particles
and measure the deposited energy. An Oð1Þ fraction of all
computing in HEP goes toward simulating particle propa-
gation inside dense materials with GEANT.
The experiments at the Large Hadron Collider (LHC)

generate billions of events per run, each of which has
hundreds to thousands of individual calorimeter showers.
Within the experiments’ computing budgets, it is not
possible to run GEANT-based (‘full’) simulation for all
events. Therefore, all of the experiments have developed
fast simulation methods that replace physics models with

simpler parametric models that are tuned to the full
simulation. The fast simulation models are constructed
with relatively few parameters in order to facilitate efficient
optimization and validation. This fundamentally limits their
precision, in particular in the ability to model complex
correlations in high-dimensions. These correlations may
also not be explicitly part of an optimization that uses only
a relatively small number of one-dimensional observables.
Deep learning offers a complementary approach to

engineered parameteric models. Flexible neural networks
are used to transform random numbers (called a latent
space in machine learning) into structured data. So far,
there have been three main strategies for deep generative
modeling. Generative adversarial networks (GANs) [4]
optimize the generator network by means of an auxiliary
network (“discriminator”) that tries to classify generated
examples from real examples. Variational autoencoders
(VAEs) [5] learn a stochastic map from the data space to a
latent space and back, preserving the statistics of the latent
space and data space. Normalizing flows (NFs) [6] use
invertible transformations so that the probability density
can be computed and the generator is optimized using the
log likelihood. A number of deep generative models have
been proposed for emulating calorimeter showers and other
particle detectors [7–45].
The first proposals for generating calorimeter showers

with deep generative models used GANs (starting with
CaloGAN [7–9]). The evaluation of GANs is fast and there
are no constraints on the form of the generator function.
However, GAN optimization is challenging as it is a
minimax problem due to the competition between the
generator and discriminator networks. Furthermore,
GANs are known to suffer from mode collapse where
the generator learns to produce only a subset of the possible
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showers. Despite these challenges, the ATLAS Collabora-
tion becomes the first experiment to replace part of their
fast simulation with a GAN [46] and are already using it to
generate billions of events for Run 3. Other experiments are
also exploring the use of GANs for detector simulation
[12,18,20].
Since the first GAN studies, there have been a number of

innovations to improve the precision of deep generative
calorimeter simulation. This includes variations/modifica-
tions to the GAN setup including Wasserstein GANs
[20,47] to help with training stability and mode collapse
and refining networks [25,26] to correct the spectra of an
initial generative model. Beyond GANs, recent work with
NFs has shown great promise [44,45]. Normalizing flows
tend to be robust to mode collapse and are minimized with a
convex loss function. Furthermore, the normalization of the
resulting generative model seems to have beneficial regu-
larization properties for the training. The authors of the
CaloFlow model [44,45] showed that a post-hoc classifier
struggled to distinguish showers generated from their neural
network and showers from GEANT 4, a critical milestone in
this field.
While NFs show great promise for fast calorimeter

simulation, they have difficulty scaling to higher-dimensional
datasets. Such datasets are important for the upgraded CMS
forward calorimeter [48] as well as ultrafine calorimeters
proposed for future detectors [49]. Twoof the three datasets in
the recent Fast Calorimeter Simulation Challenge 2022
[46,50–52]have dimensionality at least an order ofmagnitude
beyondwhat has been studiedwithNFs. TheNF training time
for these data is prohibitive and would require significant
research and development.
In this paper, we examine the potential of a new class of

deep generative algorithms named score-based generative
models [53–55]. Like NFs, score-based models minimize a
convex loss function with a single generator network that
also provides access to the full data likelihood after training
(see Appendix A). However, unlike NFs, the gradient of the
data density (the “score”) is learned instead of the density.
This choice introduces more flexibility to the network
architecture, since the Jacobian of the transformation does
not need to be computed during training. This additional
flexibility, contrary to normalizing flows, also allows the
introduction of bottleneck layers (layers with fewer neurons
than the previous layer), greatly reducing the number of
trainable parameters and improving the scalability of the
model. We demonstrate this explicitly on the Fast
Calorimeter Simulation Challenge 2022 datasets [56].
This paper is organized as follows. Section II introduces

how deep generative models can be constructed using the
likelihood gradients instead of likelihoods directly.
Different choices of drift and diffusion functions inves-
tigated in this work are introduced in Sec. III. Section IV
describes how new samples are generated from the trained
model. Description of the Fast Calorimeter Simulation

Challenge 2022 datasets and network architecture are
presented in Secs. V and VI as well as a GAN model
used for comparison. Finally, numerical results are dis-
cussed in Sec. VII. The paper ends with conclusions and
outlook in Sec. VIII.

II. GENERATIVE MODELS USING
GRADIENTS OF THE DATA

Our approach most closely follows Ref. [55]. Before
providing the technical details, we briefly describe the key
method components. First, a neural network is learned to
approximate the data score, ∇x logpdata for some high-
dimensional distribution x ∈ RD described by the proba-
bility density pdata. In many high energy physics examples,
including calorimeter simulation, we do not have access to
pdata analytically—we can only sample from it. Without
access to pdata, we cannot use a loss function like the mean
squared error to directly approximate (“match”) the score.
NFs circumvent this problem by maximizing the likelihood
of the data. There is no analog of maximum likelihood for
score matching and so a different innovation is required.
For data that are smeared, it can be shown that matching

the score of the smeared data is equivalent to matching the
score of the smearing function [57]. For data purposefully
smeared by an analytically tractable smearing function
(e.g., a Gaussian), this means that all of components
required to compute the loss function are known. The
methods explored in this paper make use of purposeful
smearing, where the amount of smearing is increased/
decreased to estimate the density or generate samples,
respectively. A schematic of the idea is shown in Fig. 1.
A stochastic process that continuously corrupts data is

described by the following stochastic differential equation
(SDE):

dx ¼ fðx; tÞdtþ gðtÞdw: ð1Þ
The initial data xðt ¼ 0Þ ≔ x0 ∈ Rd sampled from the
distribution pdata evolve over time given a set of drift and
diffusion coefficients fðx; tÞ∶Rd → Rd and gðtÞ∶R → R,
respectively. The Wiener process, or Brownian motion,
wðtÞ∶R → R is indexed by the time parameter t ∈ ½0; 1�.
The goal of the generative model is to reverse this process,
generating new observations starting from a noise distribu-
tion and solving the reverse SDE defined as:

dx ¼ ½fðx; tÞ − gðtÞ2∇x logptðxÞ�dtþ gðtÞdw̄; ð2Þ
where w̄ is the Wiener process in the reverse time direction
[58] with the gradient ∇x logptðxÞ of the time-dependent
density ptðxÞ named the data score. For fixed choices of the
drift and diffusion coefficients, the only term in Eq. (2) that
needs to be estimated is the time-dependent score function.
However, since the score-function is not tractable, we use
neural networks that aim to minimize the Frobenius norm of
the difference
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1

2
EpdataðxÞ½ksθðxÞ −∇x logpdatak22�; ð3Þ

with sθðxÞ the output of a network with trainable parameters
θ. Since the true score function is not known, Eq. (3) cannot
be readily computed. Instead, a denoising score matching
[57] strategy is used. In this strategy, instead of learning the
score function of the data, we aim to learn the score function
of data that have been perturbed with a known perturbation
function since it is sufficient to match the score of the
perturbation function. Note that while matching the score of
the smeared data requires computing an expectation value
over the smeared data, matching the score of the smearing
function requires computing the smeared data and an expect-
ation value over the smeared data.
Given a Gaussian perturbation kernel pσðx̃jxÞ ≔

N ðx; σ2Þ and pσðx̃Þ ≔
R
pdataðxÞpσðx̃jxÞdx, the probability

density of the perturbed data, the loss function minimized
during training is

1

2
Epσðx̃jxÞpdata

½ksθðx̃Þ −∇x̃ logpσðx̃jxÞk22�: ð4Þ

The advantage of this strategy is that we can directly
estimate the last term in Eq. (4), since:

∇x̃ logpσðx̃jxÞ ¼
x − x̃
σ2

∼
N ð0; 1Þ

σ
ð5Þ

The time component can be made explicit by rewriting
the loss function in Eq. (4) as:

1

2
EtEpðxtjx0Þpðx0Þ½λðtÞksθðx; tÞ −∇xt logptðxtjx0Þk22�: ð6Þ

The weighting function λðtÞ∶R → R ensures the
loss function has the same order of magnitude at all
times and is chosen to be inversely proportional to
E½k∇xt logptðxtjx0Þk22�. When the drift coefficient fðx; tÞ
is chosen to be an affine function of x, the resulting
perturbation kernel is always Gaussian [59] and can be
chosen such that bothmean and variance are known in closed
form, making Eq. (6) efficient to compute during training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three different choices of drift
and diffusion coefficients that result in perturbation kernels
that are easy to calculate in closed form. The first SDE,
initially proposed in [53], is defined as:

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½σ2ðtÞ�

dt

r
dw: ð7Þ

t=1t=0 t=0.75t=0.25

Forward di usion (training)

Reverse-time di usion (data generation)

l l l l

FIG. 1. The score-based generative model is trained using a diffusion process that slowly perturbs the data. Generation of new samples
is carried out by reversing the diffusion process using the learned score-function, or the gradient of the data density. For different time
steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy deposition in a single layer
of a calorimeter (bottom), generated with our proposed CaloScore model.
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The parameter σðtÞ ¼ σminðσmax
σmin

Þt is defined with σmin ¼
0.01 and σmax ¼ 50 to ensure xð1Þ ∼N ð0; σ2MAXÞ is inde-
pendent from xð0Þ. Since the time-dependent variance of
the resulting perturbation explodes when t → ∞, this SDE
is often referred to variance exploding (VE) SDE.
The second SDE is a continuous version of the discrete

perturbation introduced in [54], defined as:

dx ¼ −
1

2
βðtÞxdtþ

ffiffiffiffiffiffiffiffi
βðtÞ

p
dw: ð8Þ

The parameter βðtÞ ¼ βmin þ tðβmax − βminÞ with βmin ¼
0.1 and βmax ¼ 20 is used, resulting in xð1Þ ∼N ð0; 1Þ. The
variance of this process is fixed to one when the initial
distribution also has unit variance, hence its is referred to as
variance preserving (VP) SDE.
The last SDE, introduced in [55], is defined as:

dx ¼ −
1

2
βðtÞxdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðtÞð1 − e−2

R
t

0
βðsÞdsÞ

q
dw: ð9Þ

When the parameter βðtÞ is chosen to be identical as the one
used in Eq. (8), the variance of the stochastic process is
always smaller than the variance of the VP SDE, hence
receiving the name subVP. Similarly to Eq. (8), xð1Þ also
follows a normal distribution.
The resulting perturbation kernels induced by each SDE

are listed in Table I.

IV. SAMPLE GENERATION

New samples are generated by solving the reverse
diffusion process defined in Eq. (2) using a numerical
SDE solver. In this work, we use the Euler-Maruyama
algorithm [60] followed by an additional corrector step that
uses the Langevin MCMC approach [61,62] to increase the
sampling quality. For each time decrement Δt, the updated
state of the system is described as:

xt−Δt ¼ xt þ ½fðxt; tÞ − g2ðtÞsθðxt; tÞ�Δtþ gðtÞ
ffiffiffiffiffiffiffiffi
jΔtj

p
z;

ð10Þ

where z ∼N ð0; 1Þ is sampled at each time step. The
corrector step takes the updated state from Eq. (10) and
applies the correction

x0t−Δt ¼ xt−Δt þ ϵsθðxt−Δt; tÞgðtÞ þ
ffiffiffiffiffi
2ϵ

p
z; ð11Þ

where ϵ is a tunable parameter that determines the strength
of the correction applied. A dimension-independent expres-
sion for ϵ is defined as a function of a signal-to-noise ratio r
parameter as:

ϵ ¼ 2r2
kzk22
ksθk22

; ð12Þ

where kzk2 and ksθk2 are the batch-average norms of the
Gaussian noise and trained score function.
High fidelity samples require the time interval Δt to be

small, possibly leading to hundreds of iterative steps and
consequently hundreds of network evaluations. We
decrease the number of function evaluations by reusing
the score function evaluated in Eq. (10) during the
calculation of the corrector step in Eq. (11). This approach
effectively decreases the number of function evaluations by
a factor two while no decrease in generation quality is
observed.

V. FAST CALORIMETER SIMULATION
CHALLENGE 2022

CaloScore is trained on the datasets created by the Fast
Calorimeter Simulation Challenge 2022 [46,50–52]. A
total of three datasets are provided, representing calorim-
eter shower simulations with GEANT of different geom-
etries and granularities. Dataset 1 [51] is based on the
ATLAS open dataset [46,63] and is similar to the current
ATLAS detector calorimeter geometry. Showers are gen-
erated at the calorimeter surface in the pseudorapidity
range η ∈ ½0.20; 0.25�. While samples consisting of both
photons and pions are provided, we evaluate our model
using only the photon dataset. The voxelization procedure
is defined such that it minimizes the amount of empty
voxels, while maintaining high fidelity compared to the
full simulation. This strategy results in different number of
voxels per calorimeter layer and a total of 368 voxels to
represent the full detector slice. Photon energies are
provided in this configuration for 15 incident energies
from 256 MeV up to 4 TeV in steps given by powers of
two. For each generated energy, 10k samples are provided
with this number reduced at higher energies due to long
simulation times, resulting in a total of 121k used during
training.
Datasets 2 [52] and 3 [50] contain each 100k examples

and are simulated using a common detector layout but with
different voxelization granularity. The detector simulated
has a concentric cylinder geometry with 45 layers, where
each layer consists of active (silicon) and passive (tungsten)
material, simulated with GEANT 4. Electrons are generated
at the detector surface with initial energy sampled from a
log-uniform distribution ranging from 1 GeV to 1 TeV. In
dataset 2, each layer consists of 144 readout cells, with 9 in

TABLE I. Perturbation kernel induced by different SDE
choices.

SDE Perturbation kernel

VE N ðxð0Þ; σ2ðtÞ − σ2ð0ÞÞ
VP N ðxð0Þe−1

2

R
t

0
βðsÞds; 1 − e−

R
t

0
βðsÞdsÞ

subVP N ðxð0Þe−1
2

R
t

0
βðsÞds; ð1 − e−

R
t

0
βðsÞdsÞ2Þ
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the radial and 16 in the angular directions. Dataset 3 is more
granular, consisting of 900 readout cells in each layer, with
18 in the radial and 50 in the angular directions.
Even though the initial voxelization is provided in

Cylindrical coordinates, we found it beneficial to convert
the voxels in datasets 2 and 3 to Cartesian coordinates. This
change allows the effective usage of 3D convolutional
neural networks (CNNs) to build the score model. While
CNNs are applicable in polar coordinates, they struggle to
learn periodic boundary conditions. Convolutional oper-
ations are also less effective, since the majority of the
energy depositions are located near r ¼ 0, or near the
corners of the image. Since the datasets are only available
after voxelization, the transformation from cylindrical to
Cartesian coordinates inevitably leads to loss of informa-
tion.1 Nevertheless, we observe improved generation qual-
ity after changing the coordinate system. See Appendix B
for more details of the transformation. The total number of
voxels after the transformation is chosen to be similar to the
original number, resulting in 12 × 12 ¼ 144 and 32 × 32 ¼
1024 voxels per layer for datasets 2 and 3, respectively.
Energies deposited in each voxel span multiple orders of

magnitude, motivating yet another transformation of the
inputs before training the generative model. First, each
voxel energy Ev is normalized by the value of the generated
energy of the particle E0 times a factor f that ensures the
normalized voxel energy E0

v ¼ Ev
fE0

lies between 0 and 1.
Naively, the factor f could be taken as 1, since energy
conservation should ensure the sum of deposited energies
to not exceed the initial particle’s energy. However, the
sampling fraction of the calorimeter may lead to a mis-
match between these numbers. This effect is particularly
important in dataset 1, when particle energies as low as
256 MeVare considered. We take f as the highest deviation
between total deposited and generated energies, fixed to
f ¼ 3.1 for dataset 1 and f ¼ 2 for datasets 2 and 3.
The normalized energy depositions are then transformed

to log-space, similarly to the strategy used in CaloFLOW. The
log-transformed value uv is defined as:

uv ¼ log

�
x

1 − x

�
; x ¼ αþ ð1 − 2αÞE0

v: ð13Þ

The value α is set to 10−6 and avoids a discontinuity
when E0

v ¼ 0. The generated particle energy, used as a
conditional input to the model, is also transformed
before training. The transformed conditional energy u0 is
defined as:

u0 ¼
e0 − emin

emax − emin
; ð14Þ

where emin and emax are the minimum and maximum
energies available in the dataset.
Finally, dataset 1 is also modified by adding an extra

dimension that encodes an overall energy normalization.
Before applying the log-transformation in Eq. (13), the total
deposited energy is calculated. Instead of normalizing each
voxel by the generated energy, the total deposited energy is
used, ensuring the sum of all voxels is equal to 1. The
additional entry is then defined as the total deposited
energy normalized by the initial particle energy times
the factor f. This strategy improves the estimation of the
total energy deposition during training, now encoded as a
single entry rather than the sum of all voxels.

VI. MODEL ARCHITECTURE
AND TRAINING DETAILS

The score function is built from a modified version of
the U-net model [64] where and encoder-decoder archi-
tecture with skip connections is used. 3D convolution
operations are used as the basic layers in CaloScore for
datasets 2 and 3, leveraging the regular geometry. Dataset
1, on the other hand, is irregular and consists of different
number of voxels per detector layer. In this case the score
function is built based on 1D convolutional operations.
This approach leads to dataset 1 requiring bigger kernel
and layer sizes compared to datasets 2 and 3, resulting in a
bigger model architecture.
Each convolutional operation uses the swish [65] non-

linear activation function, with a kernel size of 5 (dataset 1)
and 3 (datasets 2 and 3). The number of dimensions is
reduced in the encoder section of the network through
average pooling operations, reducing the total number of
dimensions by a factor 4 for dataset 1 and a factor 3 ×
2 × 2 ¼ 12 for datasets 2 and 3 after each pooling layer. In
the opposite direction, upsampling layers are used to
increase the dimensionality by repeating entries multi-
ple times.
The different network architectures used for each dataset

are shown in Fig. 2.
Conditional inputs used to train the model, namely the

time component and generated energy, are first transformed
using random Fourier features [66]. The transformed
features for each conditional input are then concatenated
and passed over 2 fully connected layers of sizes 256
(dataset 1) or 128 (datasets 2 and 3), both followed by a
swish activation function. This set of conditional embed-
dings are used during multiple stages of the model
architecture. In particular, conditional convolutional oper-
ations are created by adding the conditional embeddings as
an additional bias at the output of convolutional layers.
Additionally, we train a Wasserstein GAN (WGAN) [67]

using an additional gradient penalty (GP) term [68] to

1A one-to-one assignment between the two sets of coordinates
is possible, but requires the distance interval in Cartesian
coordinates to follow a nonlinear function since the transforma-
tion of coordinates is itself nonlinear.
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enforce the Lipschitz constraint of the critic model.
WGAN-GP is a well-established model for calorimeter
detector simulation and currently used in the ATLAS
Collaboration [46] and studied in the context of different
detector geometries applied to different experimental col-
laborations [12,20,69].
A similar network architecture to CaloScore is used to

facilitate the comparison between approaches. The gen-
erator network takes as inputs an uniform distribution with
dimensions 50, 100, 150 for datasets 1, 2, and 3 respec-
tively. The noise vector is then concatenated with the
conditional energy before passing through a fully con-
nected layer with swish activation function. The output size
of the fully connected layer is set to be the same size as last
bottleneck layer of the U-Net model used in CaloScore. After
reshaping, the same architecture that follows the last
bottleneck layer in the right-hand side of the U-net is
used. Similarly, the critic network takes as inputs real or
generated samples and uses the same convolutional layers
as the ones used in left-hand side of the U-Net model before
the last bottleneck layer. From the last bottleneck layer, an
additional fully connected layer is used with output size of
1 and no activation function. This choice results in all
CaloScore models and WGAN-GP with similar number of
trainable weights.
The implementation of all models is carried out with

TensorFlow [70] optimized with ADAM [71] in the case of
CaloScore and RMSProp in the WGAN-GP implementation, all
with initial learning rate set to 10−4. In CaloScore, the
learning rate is reduced by a factor 2 if the loss function
does not improve for a period of 100 consecutive epochs,
evaluated using an independent dataset. The evaluation
dataset is taken as 20% of the total amount of available

training events. The models are trained for a total of 2000
epochs. The epoch with lowest evaluation loss is saved for
further inspection. For all models, 16 NVIDIA A100 GPUs
are used simultaneously interfaced with the HOROVOD

package [72] on the Perlmutter supercomputer. The batch
size in each GPU is set to 128 (datasets 1 and 2) and 64
(dataset 3). The WGAN-GP model is trained for 10000
epochs with fixed learning rate. The last training epoch is
saved for further evaluation, but others epochs before the
last were checked to produce similar results as the ones
presented.
Sample generation is performed in CaloScore as described

in Sec. IV, with signal-to-noise ratio fixed to 0.2 and total
number of time steps set to 100, in dataset 1, and 200, in
datasets 2 and 3. See Appendix C for differences in
generation quality for other parameter choices. The total
number of trainable weights and the time required to
generate 100 calorimeter showers in a single GPU with
batch size fixed to 100 are listed in Table II.
The lack of a regular geometry resulted in CaloScore

requiring almost 20 times more trainable parameters for
dataset 1 compared to datasets 2. On the other hand, dataset
3 has only ∼20% more trainable weights than dataset 2,
even though dataset 3 has 7 times more voxels. This
observation suggests that the model complexity is mostly
determined by the network architecture rather than the
number of voxels present in the dataset, contrary to
normalizing flows where the complexity from the
Jacobian determinant calculation increases at least linearly
with the number of voxels.
Although the ultimate goal is for the generation time to

be significantly faster than for GEANT, the time to generate
new calorimeter showers with CaloScore is comparatively

Datasets 2 and 3Dataset 1

Conditional convolution

FIG. 2. Network architectures used for datasets 1 (left), 2 and 3 (right) based on the U-Net architecture. Values in parentheses represent
the dimensionality of the data at each layer of the network. Parenthesis after convolutional operations represent the kernel size used. The
swish nonlinear activation function is used after each convolution operation. Conditional inputs (time and energy) are used multiple
times in the model to define conditional convolution operations described in the middle.
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slow to other machine learning-based models as a result of
the hundreds of function evaluations. In this paper, we have
focused on modeling the complex data distributions and
we leave explorations of accelerating inference to future
studies.

VII. RESULTS

Multiple distributions are used to evaluate the quality of
generated samples using different CaloScore SDE implemen-
tations and additional WGAN-GP model. The total energy
deposited in the detector and the number of calorimeter hits
are shown in Fig. 3. A hit is defined as any voxel with energy
deposition above a certain energy threshold. The energy

thresholds are taken as the minimum energy observed in
each challenge dataset, set to 0.01 keV for dataset 1 and
15.1 keV for datasets 2 and 3. The 1-Wasserstein distance
between distributions, referred as the Earthmover’s distance
(EMD), is also calculated between the GEANT and different
generative model implementations.
A good agreement between the GEANT and generated

samples is observed for all diffusion models and datasets.
At low deposited energies, the difference between CaloScore

and GEANT increase and is most noticeable for dataset 3.
The subVP implementation shows a better agreement
overall, followed by VP and VE, indicating that bounding
the variance of the diffusion process is beneficial, spe-
cially as the number of voxels increase. Conversely, the

TABLE II. Number of dimensions, trainable parameter, and time to generate 100 new calorimeter showers for
each dataset studied in this work. Generation times for GEANT are based on the average time required to generate
samples over the energy range provided.

Dataset N. of voxels N. of weights

Time to 100 showers [s]

CaloScore WGAN-GP GEANT

Dataset 1 384 32M 4.0 1.3 Oð102–103Þ
Dataset 2 6480 1.4M 5.8 1.33 Oð104Þ
Dataset 3 46080 1.7M 33.4 2.06 Oð104Þ

FIG. 3. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3 (right).
Dashed red bands represent the 10% deviation interval of the generated samples when compared to GEANT predictions. The Earth
mover’s distance (EMD) between each distribution and the GEANT distribution is also provided.
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WGAN-GP implementation shows a higher EMD value
compared to CaloScore.
A similar conclusion is derived from the average energy

deposition as a function of the layer number and Cartesian
coordinates x and y shown in Fig. 4.
While the VE implementation agrees with the simulation

response in dataset 2, the prediction for dataset 3 is shifted
as seen from the layer-dependent distribution. In the case of

the WGAN-GP, the predictions are also shifted, but in the
opposite direction, predicting a higher energy fraction at the
initial layers of the detector.
Similarly, the maximum energy deposited in a single

voxel normalized to the total deposited energy is shifted in
the VE implementation for dataset 3 as shown in Fig. 5.
While the low energy fraction region for dataset 1 is well
described by all CaloScore implementations, the high energy

FIG. 4. Comparison of the average deposited energies in the x- (left), y- (middle), and z-coordinates (right) for datasets 2 (top) and 3
(bottom). Dashed red bands represent the 10% deviation interval of the generated samples when compared to GEANT predictions. The
Earth mover’s distance (EMD) between each distribution and the GEANT distribution is also provided.

FIG. 5. Comparison of the maximum deposited energy in a single voxel divided by the sum of deposited energies in datasets 1 (left), 2
(middle), and 3 (right). Dashed red bands represent the 10% deviation interval of the generated samples when compared to GEANT

predictions. The Earth mover’s distance (EMD) between each distribution and the GEANT distribution is also provided.
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fraction region starts to show deviations from the GEANT

predictions and is best described by the WGAN-GP model.
The maximum energy fraction as a function of the layer
number for datasets 2 and 3 shows a good agreement
between the different CaloScore implementations, with most
of the distributions showing deviations within the 10%
interval.
The angular distribution of the calorimeter shower is

investigated in datasets 2 and 3 in terms of the shower
width, shown in Fig. 6. The shower width σi with xi; i ∈
½1; 2� representing the x- and y-coordinates is calculated as:

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i i − hxii2

q
; ð15Þ

with energy-weighted mean defined as

hxii ¼
P

jxi;jEjP
jEj

: ð16Þ

A good agreement between all CaloScore implementations
and GEANT predictions is observed in dataset 2, with all

FIG. 6. Comparison of the particle shower width in the x- and y- directions in datasets 2 (first two figures from the left) and 3 (last two
figures from the left). Dashed red bands represent the 10% deviation interval of the generated samples when compared to GEANT

predictions. The Earth mover’s distance (EMD) between each distribution and the GEANT distribution is also provided.

FIG. 7. The 2-dimensional distribution of the mean deposited energy in layers with highest (first and third rows) and lowest (second
and fourth rows) mean energy depositions in datasets 2 (first two rows) and 3 (last two rows). Simulated samples from GEANT are shown
in the first column, compared with different diffusion models: VP (second column), subVP (third column), and VE (fourth column). The
WGAN-GP results are shown in the fourth column.
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implementations showing less than 10% deviation in all
calorimeter layers. However, for dataset 3, the VP imple-
mentations shows a disagreement at the last layers of the
detector while the shift observed in Fig. 4 for the VE
implementation leads to a similar shift in the shower width.
Nevertheless, the subVP implementation maintains the
same level of agreement as observed in dataset 2. The
WGAN-GP implementation however shows larger fluctua-
tions compared to CaloScore and consistently smaller shower
widths in dataset 3.
A qualitative assessment of the generation is shown in

Fig. 7 for datasets 2 and 3. The 2-dimensional distribution
of the average energy deposition is shown in the detector
layers with highest (layer 10) and lowest (layer 44) mean
energy depositions. Empty entries in the GEANT simulation
are a result of the initial voxelization combined with the
following transformation to Cartesian coordinates. All
voxels with an expected energy deposition above 0 are
populated in all CaloScore and WGAN-GP implementations,
an indication that the models are able to reproduce the
shower diversity from the training set. Images at layer 10
are identical for all generative models, dominated by the
central voxel. Layer 44; however, has more voxels sharing a
significant fraction of the layer energy. The subVP imple-
mentation shows a visually similar average to GEANT

compared to the other diffusion implementations, capturing
the high energy depositions along the y-axis in dataset 2
and the isotropic pattern around the center in dataset 3. The
WGAN-GP implementation, on the other hand, shows
higher energy fractions away from the center of the image,
where lower energy fractions are expected.
Finally, the assessment of generated samples using

different conditional energies is investigated in Fig. 8,
by comparing the total deposited energy versus the gen-
erated particle energy.
All CaloScore models show similar mean and spread

compared to GEANT, with the exception of the VE imple-
mentation that shows a wider spread for dataset 2 and
higher mean in dataset 3. The WGAN-GP model shows a
wider spread in all datasets compared to all CaloScore besides
the VE implementation.
We have also explored the classifier metric introduced in

CalowFlow whereby a post-hoc classifier is trained to dis-
tinguish generated showers from GEANT 4 examples. While
the classifier could not perfectly identify fake from real
showers, it did have an area under the receiver operating
characteristic curve (AUC) of about 0.98 for all three
models. The classifier was trained using the generated
calorimeter images. While this suggests that further (hyper-
parameter)optimization would be beneficial, it already

FIG. 8. Deposited energy versus generated energy in CaloScore (blue) and GEANT (orange) for the three different diffusion models: VP
(first column), subVP(second column), and VE (third column). WGAN-GP results are shown in the fourth column. First row samples
are generated using energies from dataset 1, second row from dataset 2 and third row from dataset 3.
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serves as an important baseline for other methods. It should
also be noted that compared to the dataset introduced in the
CaloGAN paper, the datasets considered in this work are
either more realistic (dataset 1) or higher dimensional (a
factor 10 for dataset 2 and 100 for dataset 3) and would be
interesting to see the classifier metric obtained from models
such as CaloFLOW.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we introduced CaloScore, a novel generative
model for calorimeter shower simulation based on score-
matching, applied for the first time in the context of collider
physics.
The performance of CaloScore is studied using the Fast

Calorimeter Simulation Challenge 2022 datasets and com-
pared to three different model implementations based on
different drift and diffusion coefficients. An additional
comparison is also provided using a Wasserstein GAN
with gradient penalty. This is the first method to produce
results for all three datasets of the challenge and we look
forward to comparisons with other models as they become
available.
For lower number of voxels, all models are capable of

producing realistic calorimeter showers, showing a good
agreement with the GEANT simulation in all datasets and for
a variety of observables. At the highest dimensional dataset,
CaloScore with diffusion process described by the subVP
stochastic differential equation is able to produce realistic
calorimeter showers while VP and VE SDEs show larger
deviations. CaloScore also shows overall better results com-
pared to the WGAN-GP implementation in all distributions
investigated in this work with exception to generation time,
where the WGAN-GP implementation is 3–16 times faster
than CaloScore. CaloScore is also shown to be scalable, with
number of trainable parameters sensitive to the overall
model architecture rather than the total dimensionality of
the dataset.
While the voxelization strategy used in dataset 1 mini-

mizes the number of empty voxels, the irregular voxeliza-
tion reduces the geometrical information present in the
calorimeter shower. The geometrical information is
included as an important inductive bias for datasets 2
and 3 and leads to an order of magnitude fewer trainable
parameters in the model compared to the one used in
dataset 1. Moreover, a regular voxelization amenable to
convolutional operations is obtained in datasets 2 and 3
only after an additional transformation of coordinates.
Since the transformation is applied on the voxelized inputs,
nonphysical artifacts are introduced, such as empty voxels
in regions that are not expected to be empty. All of these
issues could be addressed if alternative voxelization

schemes were available or if access to the datasets prior
to any voxelization was possible.
The addition of inductive biases to the model is also

expected to improve the generation capabilities of CaloScore,
possibly leading to better and even smaller model archi-
tectures. Energy conservation in particular is challenging to
enforce, since generated samples are not produced during
training time, but only at generation time when the reverse
stochastic differential equation is solved. We partially
address this issue by increasing the dimensionality of
dataset 1, introducing an additional entry that stores an
overall normalization. Since datasets 2 and 3 rely on the
geometrical description of the voxels, this strategy is not
readily applicable and would instead benefit from a two-
step approach as used in CaloFLOW, where the overall
normalization is determined separately and used as a
conditional input to a second model that learns the
normalized detector response.
The major challenge to be addressed in CaloScore is the

generation time, currently requiring hundreds of model
evaluations to solve the reverse SDE. While the total
generation time of CaloScore is still faster compared to the
GEANT simulation, we envision future works targeting high
fidelity generation with lower number of function evalu-
ations. Indeed, since this limitation is also observed in
applications of diffusion models in general, a number of
different attempts are currently being proposed to accel-
erate the generation procedure [73–77], with feasibility for
collider physics applications yet to be studied.
Finally, CaloScore introduces a new generative paradigm to

collider physics with scalable training strategy and able to
generate realistic calorimeter showers consisting of tens of
thousands of dimensions. While the generation time rep-
resents the main challenge to be overcome, CaloScore is able
to incorporate different advantages from other generative
models while addressing some of their limitations. These
include scalable and stable training schedule, based on the
minimization of the convex score-matching loss, and exact
likelihood estimation, previously only available with meth-
ods such as normalizing flows.

Scripts used to reproduce the results shown in this
document are available at [56].
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APPENDIX A: SCORE FUNCTION AND THE
CONNECTION WITH CONTINUOUS

NORMALIZING FLOWS

Full data likelihood access is obtained from the trained
score-matching model by first identifying the deterministic
ordinary differential equation (ODE) associated to the SDE
in Eq. (2) that reads:

dx ¼
�
fðx; tÞ − 1

2
gðtÞ2sθðx; tÞ

�
dt ¼ f̃θðxt; tÞdt: ðA1Þ

This ODE, named probability flow ODE by [55], has the
property of having all trajectories sharing the same mar-
ginal probability densities as the SDE in Eq. (2) and is fully
determined once the score function is estimated by the
generative model. The time evolution of the density is given
by the instantaneous change of variables defined in [78]:

logp0ðx0Þ ¼ logpTðxTÞ þ
Z

T

0

∇:f̃θðxt; tÞdt: ðA2Þ

Equation (A2) is equivalent to the change of variables often
used in continuous normalizing flows. This expression can
be estimated efficiently by first noticing that

∇:f̃θðxt; tÞ ¼ Trð∇f̃θðxt; tÞÞ; ðA3Þ

where ∇f̃θðxt; tÞ represents the Jacobian of f̃θ and using
algorithms such as the Skilling-Hutchinson trace estimator
[79,80] to approximate the trace calculation.

APPENDIX B: CYLINDRICAL TO CARTESIAN
COORDINATE TRANSFORMATION

The initial voxelization provided for datasets 2 and 3 are
in cylindrical coordinates (r,α,z0). While this set of coor-
dinates reflect the detector symmetry, we found beneficial
to convert the voxelization to Cartesian coordinates (x,y,z).
A voxel initially described in cylindrical coordinates
(ri,αi,zi) is then converted as:

xi ¼ ri cos αi ðB1Þ

yi ¼ ri sin αi ðB2Þ

zi ¼ z0i; ðB3Þ

where for simplicity we assume ri ∈ ½0; 1� and αi ∈ ½0; 2π�,
resulting in x ∈ ½−1; 1� and y ∈ ½−1; 1�. Since the overall
transformation is not linear, some voxels of the new set of
coordinates will always be empty, while others contain the
sum of multiple voxels in the initial set of coordinates.

APPENDIX C: GENERATION QUALITY FOR
DIFFERENT SAMPLING PARAMETERS

Results presented in this work are derived using the value
of 0.2 for signal-to-noise-ratio r of the Langevin corrector
[Eq. (11)] and fixed number of times steps of 100 for
dataset 1 and 200 for datasets 2 and 3. This choice of
parameters is used to balance the generation quality and the
generation time. In Fig. 9 different choices of r are
compared while maintaining the same number of steps
as before for all datasets and diffusion models, evaluated on
the distribution of maximum energy fraction in a single
voxel for dataset 1 and average energy deposition per layer
for datasets 2 and 3, the distributions that show were
observed to be more sensitive to the choice of generation
parameters used.
Different choices of r yield similar results for all

diffusion models in both datasets 1 and 2. On the other
hand, the corrector step has a stronger effect on dataset 3
and is crucial to achieve good generation quality with
minimal additional computational complexity.
Contrary to the corrector step, increasing the number of

time steps directly affect the generation time, dominated by
the number of score function evaluations. Different choices
of number of times steps are shown in Fig. 10 with r value
fixed to the baseline value.
In all cases using fewer time steps deteriorate the

agreement with GEANT while additional steps are able to
improve the agreement in both datasets 1 and 3 while
dataset 2 shows similar results compared to the baseline. In
Table III, the time required to generate 100 calorimeter
showers using different number of time steps is listed. Even
though the additional time steps improve the simulation
quality, the time to generate the same amount of new
observations increase by more than a factor 2.
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FIG. 9. Comparison of different signal-to-noise choices on the maximum energy fraction deposited in a single voxel for dataset 1 (top)
and average energy deposition per layer for datasets 2 (middle) and 3 (bottom) for the three different diffusion models: VP (left), subVP
(middle), and VE (right).
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FIG. 10. Comparison of different number of time steps on the maximum energy fraction deposited in a single voxel for dataset 1 (top)
and average energy deposition per layer for datasets 2 (middle) and 3 (bottom) for the three different diffusion models: VP (left), subVP
(middle), and VE (right).

TABLE III. Time comparison to generate 100 calorimeter showers using the baseline model and different number
of time steps.

Dataset Baseline [s] N ¼ 50 ½s� N ¼ 500 ½s�
Dataset 1 4.0 2.9 14.8
Dataset 2 5.8 2.7 13.1
Dataset 3 33.4 10.3 80.2

VINICIUS MIKUNI and BENJAMIN NACHMAN PHYS. REV. D 106, 092009 (2022)

092009-14



[1] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 506, 250 (2003).

[2] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270
(2006).

[3] J. Allison et al., Nucl. Instrum. Methods Phys. Res., Sect. A
835, 186 (2016).

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
arXiv:1406.2661.

[5] D. P. Kingma and M. Welling, arXiv:1312.6114.
[6] D. Rezende and S. Mohamed, Proc. Int. Conf. Mach. Learn.

37, 1530 (2015).
[7] L. de Oliveira, M. Paganini, and B. Nachman, Comput.

Software Big Sci. 1, 4 (2017).
[8] M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev.

Lett. 120, 042003 (2018),
[9] M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev. D

97, 014021 (2018),
[10] S. Vallecorsa, F. Carminati, and G. Khattak, EPJ Web Conf.

214, 02010 (2019).
[11] C. Ahdida et al. (SHiP Collaboration), J. Instrum. 14,

P11028 (2019).
[12] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A.

Ustyuzhanin, and E. Zakharov, EPJ Web Conf. 214,
02034 (2019).

[13] The ATLAS Collaboration, Report No. ATL-SOFT-PUB-
2018-001 (2018).

[14] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S.
Sharan, and S. Vallecorsa, EPJ Web Conf. 1085, 032016
(2018).

[15] S. Vallecorsa, EPJ Web Conf. 1085, 022005 (2018).
[16] P. Musella and F. Pandolfi, Comput. Software Big Sci. 2, 8

(2018).
[17] M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt,

Comput. Software Big Sci. 2, 4 (2018).
[18] K. Deja, T. Trzcinski, and u. Graczykowski, EPJ Web Conf.

214, 06003 (2019).
[19] D. Derkach, N. Kazeev, F. Ratnikov, A. Ustyuzhanin, and A.

Volokhova, Nucl. Instrum. Methods Phys. Res., Sect. A
952, 161804 (2020).

[20] M. Erdmann, J. Glombitza, and T. Quast, Comput. Software
Big Sci. 3, 4 (2019).

[21] L. de Oliveira, M. Paganini, and B. Nachman, Tips and Tricks
for Training GANs with Physics Constraints (2017), https://
dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf.

[22] L. de Oliveira, M. Paganini, and B. Nachman, J. Phys. Conf.
Ser. 1085, 042017 (2018).

[23] B. Hooberman, A. Farbin, G. Khattak, V. Pacela, M. Pierini,
J.-R. Vlimant, M. Spiropulu, W. Wei, M. Zhang, and S.
Vallecorsa, Calorimetry with Deep Learning: Particle Clas-
sification, Energy Regression, and Simulation for High-
Energy Physics (2017), https://dl4physicalsciences.github
.io/files/nips_dlps_2017_15.pdf.

[24] D. Belayneh et al., Eur. Phys. J. C 80, 688 (2020).
[25] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.

Kasieczka, A. Korol, and K. Kruger, arXiv:2005.05334.
[26] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B.

Nachman, and D. Shih, J. Instrum. 15, P11004 (2020).
[27] R. Kansal, J. Duarte, B. Orzari, T. Tomei, M. Pierini, M.

Touranakou, J.-R. Vlimant, and D. Gunopoulos, 34th

Conference on Neural Information Processing Systems
(2020), arXiv:2012.00173.

[28] A. Maevskiy, F. Ratnikov, A. Zinchenko, and V. Riabov,
Eur. Phys. J. C 81, 599 (2021).

[29] F. Rehm, S. Vallecorsa, V. Saletore, H. Pabst, A. Chaibi, V.
Codreanu, K. Borras, and D. Krücker, arXiv:2103.10142.

[30] F. Rehm, S. Vallecorsa, K. Borras, and D. Krücker,
arXiv:2103.13698.

[31] F. Rehm, S. Vallecorsa, K. Borras, and D. Krücker, EPJ Web
Conf. 251, 03042 (2021).

[32] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini,
M. Touranakou, J.-R. Vlimant, and D. Gunopulos,
arXiv:2106.11535.

[33] G. R. Khattak, S. Vallecorsa, F. Carminati, and G.M. Khan,
Eur. Phys. J. C 82, 386 (2022).

[34] L. Anderlini, arXiv:2110.07925.
[35] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D.

Hundhausen, G. Kasieczka, W. Korcari, K. Krüger, P.
McKeown, and L. Rustige, Mach. Learn. Sci. Technol. 3,
025014 (2022).

[36] S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede,
D. Hundhausen, G. Kasieczka, B. Nachman, T. Plehn, and
M. Trabs, J. Instrum. 17, P09028 (2022).

[37] J. W. Monk, J. High Energy Phys. 12 (2018) 021.
[38] K. Dohi, arXiv:2009.04842.
[39] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.

Kasieczka, A. Korol, and K. Krüger, EPJ Web Conf.
251, 03003 (2021).

[40] A. Hariri, D. Dyachkova, and S. Gleyzer, arXiv:
2104.01725.

[41] C. Fanelli and J. Pomponi, Mach. Learn. Sci. Technol. 1,
015010 (2019).

[42] B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Duarte,
R. Kansal, J.-R. Vlimant, and D. Gunopulos, in 38th
International Conference on Machine Learning Conference
(2021), arXiv:2109.15197.

[43] M. Touranakou, N. Chernyavskaya, J. Duarte, D.
Gunopulos, R. Kansal, B. Orzari, M. Pierini, T. Tomei,
and J.-R. Vlimant, Mach. Learn. Sci. Technol. 3, 035003
(2022).

[44] C. Krause and D. Shih, arXiv:2106.05285.
[45] C. Krause and D. Shih, arXiv:2110.11377.
[46] G. Aad et al. (ATLAS Collaboration), Comput. Software

Big Sci. 6, 7 (2022).
[47] M. Arjovsky, S. Chintala, and L. Bottou, arXiv.1701.07875.
[48] The Phase-2 Upgrade of the CMS Endcap Calorimeter,

Technical Report No. CERN-LHCC-2017-023, CERN,
Geneva, 2017.

[49] J. Repond et al. (CALICE Collaboration), J. Instrum. 13,
P12022 (2018).

[50] M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman,
D. Salamani, D. Shih, and A. Zaborowska, Fast Calorimeter
Simulation Challenge 2022—Dataset 3 (2022).

[51] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D.
Salamani, D. Shih, and A. Zaborowska, Fast Calorimeter
Simulation Challenge 2022—Dataset 1 (2022).

[52] M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman,
D. Salamani, D. Shih, and A. Zaborowska, Fast Calorimeter
Simulation Challenge 2022—Dataset 2 (2022).

[53] Y. Song and S. Ermon, arXiv:1907.05600.

SCORE-BASED GENERATIVE MODELS FOR CALORIMETER … PHYS. REV. D 106, 092009 (2022)

092009-15

https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://arXiv.org/abs/1406.2661
https://arXiv.org/abs/1312.6114
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1051/epjconf/201921402010
https://doi.org/10.1051/epjconf/201921402010
https://doi.org/10.1088/1748-0221/14/11/P11028
https://doi.org/10.1088/1748-0221/14/11/P11028
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1051/epjconf/201921406003
https://doi.org/10.1051/epjconf/201921406003
https://doi.org/10.1016/j.nima.2019.01.031
https://doi.org/10.1016/j.nima.2019.01.031
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1088/1742-6596/1085/4/042017
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://arXiv.org/abs/2005.05334
https://doi.org/10.1088/1748-0221/15/11/P11004
https://arXiv.org/abs/2012.00173
https://doi.org/10.1140/epjc/s10052-021-09366-4
https://arXiv.org/abs/2103.10142
https://arXiv.org/abs/2103.13698
https://doi.org/10.1051/epjconf/202125103042
https://doi.org/10.1051/epjconf/202125103042
https://arXiv.org/abs/2106.11535
https://doi.org/10.1140/epjc/s10052-022-10258-4
https://arXiv.org/abs/2110.07925
https://doi.org/10.1088/2632-2153/ac7848
https://doi.org/10.1088/2632-2153/ac7848
https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1007/JHEP12(2018)021
https://arXiv.org/abs/2009.04842
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1051/epjconf/202125103003
https://arXiv.org/abs/2104.01725
https://arXiv.org/abs/2104.01725
https://doi.org/10.1088/2632-2153/ab845a
https://doi.org/10.1088/2632-2153/ab845a
https://arXiv.org/abs/2109.15197
https://doi.org/10.1088/2632-2153/ac7c56
https://doi.org/10.1088/2632-2153/ac7c56
https://arXiv.org/abs/2106.05285
https://arXiv.org/abs/2110.11377
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1007/s41781-021-00079-7
https://arXiv.org/abs/arXiv.1701.07875
https://doi.org/10.1088/1748-0221/13/12/P12022
https://doi.org/10.1088/1748-0221/13/12/P12022
https://arXiv.org/abs/1907.05600


[54] J. Ho, A. Jain, and P. Abbeel, Adv. Neural Inf. Process. Syst.
33, 6840 (2020).

[55] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S.
Ermon, and B. Poole, arXiv:abs/2011.13456.

[56] V. Mikuni and B. Nachman, v1.0 (2022), https://github
.com/ViniciusMikuni/CaloScore.

[57] P. Vincent, Neural Comput. 23, 1661 (2011).
[58] B. D. Anderson, Stoch. Proc. Appl. 12, 313 (1982).
[59] S. Särkkä and A. Solin, Applied Stochastic Differential

Equations (Cambridge University Press, Cambridge, En-
gland, 2019), Vol. 10.

[60] P. E. Kloeden and E. Platen, in Numerical Solution of
Stochastic Differential Equations (Springer, New York,
1992), pp. 103–160.

[61] G. Parisi, Nucl. Phys. B180, 378 (1981).
[62] U. Grenander andM. I.Miller, J. R. Stat. Soc. 56, 549 (1994).
[63] Fast simulation of the ATLAS calorimeter system with

Generative Adversarial Networks, Technical Report
No. ATL-SOFT-PUB-2020-006, CERN, Geneva, 2020.

[64] O. Ronneberger, P. Fischer, and T. Brox, in International
Conference on Medical Image Computing and Computer-
Assisted Intervention (Springer, New York, 2015),
pp. 234–241.

[65] P. Ramachandran, B. Zoph, and Q. V. Le, arXiv:1710.05941.
[66] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-

Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J.
Barron, and R. Ng, Adv. Neural Inf. Process. Syst. 33,
7537 (2020).

[67] M. Arjovsky, S. Chintala, and L. Bottou, in International
Conference on Machine Learning (PMLR, Sydney, Aus-
tralia, 2017), pp. 214–223.

[68] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville, Adv. Neural Inf. Process. Syst. 30, 5769
(2017).

[69] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol, and K. Krüger, Comput. Software
Big Sci. 5, 13 (2021).

[70] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., in
OSDI'16: Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (2016),
Vol. 16, pp. 265–283, https://dl.acm.org/doi/10.5555/
3026877.3026899.

[71] D. Kingma and J. Ba, arXiv:1412.6980.
[72] A. Sergeev and M. D. Balso, arXiv:1802.05799.
[73] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T.
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