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We find analytic solutions of hyperbolic black holes with scalar hair in anti–de Sitter (AdS) space, and
they do not have spherical or planar counterparts. The system is obtained by taking a neutral limit of an
Einstein-Maxwell-dilaton system whose special cases are maximal gauged supergravities, while the dilaton
is kept nontrivial. There are phase transitions between these black holes and the hyperbolic Schwarzschild-
AdS black hole. We discuss two AdS=CFT applications of these hyperbolic black holes. One is phase
transitions of holographic Rényi entropies, and the other is phase transitions of quantum field theories in de
Sitter space. In addition, we give a C-metric solution as a generalization of the hyperbolic black holes with
scalar hair.
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I. INTRODUCTION

The AdS=CFT correspondence provides a powerful tool
to study strongly coupled conformal field theories (CFTs)
in a given spacetime background Bd in terms of a classical
gravity whose boundary is conformal to Bd [1]. A basic
example is the Schwarzschild-AdS solution,

ds2 ¼ −
�
k −

2M
r

þ r2

L2

�
dt2

þ
�
k −

2M
r

þ r2

L2

�−1
dr2 þ r2dΣ2

2;k; ð1Þ

where k ¼ 1, 0, and −1 are for positive, zero, and negative
curvatures of the two-dimensional space dΣ2

2;k, respec-
tively. Properties of these three cases are as follows.

(i) Spherical black hole (k ¼ 1): The AdS boundary is
R × Sd−1, so the dual CFT lives on a sphere. Black
holes have a minimum temperature. There is a
Hawking-Page phase transition between a black
hole and a thermal gas [2,3].

(ii) Planar black hole (k ¼ 0): The AdS boundary is Rd,
so the dual CFT lives on a Minkowski space. There
is no phase transition at finite temperature. If a
spatial dimensional is compactified to S1, there will
be a phase transition between a black hole and the
AdS soliton [3].

(iii) Hyperbolic black hole (k ¼ −1): The AdS boundary
is R × Hd−1, so the CFT lives on a hyperboloid.
There is no phase transition [4,5]. The zero-mass
solution is at finite temperature, and the zero temper-
ature solution is reached by a negative mass [6]. The
AdS boundary is conformal to a Rindler space [6] or
a de Sitter space [7].

If we include a scalar field in the system, the hyperbolic
black hole described by (1) may have a phase transition to a
hyperbolic black holewith scalar hair. The IR (near-horizon)
geometry of the extremal hyperbolic black hole described
by (1) is AdS2 × H2, and instability will happen when the IR
Breitenlohner-Freedman (BF) bound is violated [8]. (As a
comparison, the extremal spherical or planar black hole is the
pure AdS.) Numerical solutions of hyperbolic black holes
with scalar hairwere obtained [8–10]. An analytic solution of
a hyperbolic black holewith scalar hair called theMTZblack
hole was obtained in [11].
Ageneralization of theSchwarzschild solution isEinstein-

Maxwell-dilaton (EMD) systems. There are analytic solu-
tions in maximal gauged supergravities whose special cases
are EMD systems [12]. The most notable cases in AdS4 are
1-charge, 2-charge, 3-charge, and 4-charge black holes,
which are summarized in Appendix B. The thermodynamics
of black holes in STU supergravity was studied in [13,14],
and there are phase transitions. Both gauge fields and dilaton
fields are in the system; if we set the gauge fields to zero, the
dilaton fields will also become zero, apparently. An EMD
system whose special cases intersect with STU supergravity
was found in [15–17], andmore properties of the systemwas
studied by [18–20].
We find a class of analytic solutions that describe phase

transitions of hyperbolic black holes. These solutions are
related to supergravity and do not have spherical or planar
counterparts. We observe that there are two neutral limits
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for charged hyperbolic black holes that are solutions to the
EMD system. One neutral limit is the solution (1), in which
the dilaton becomes zero. The other neutral limit is a black
hole with scalar hair. We show that there exist both zeroth-
order and third-order phase transitions between these two
hyperbolic black holes at sufficiently low temperatures.
We discuss two applications of the hyperbolic black

holes in terms of the AdS=CFT correspondence. One is
phase transitions of the Rényi entropies. Rényi entropies as
a generalization of the entanglement entropy play a key role
in describing the quantum entanglement. If the entangling
surface is a sphere, Rényi entropies can be calculated in
terms of hyperbolic black holes [21,22]. The parameter n of
Rényi entropies Sn is related to the temperature of hyper-
bolic black holes: larger n corresponds to a lower temper-
ature. Hyperbolic black holes developing a scalar hair
imply that Rényi entropies have a phase transition in n.
While previous studies constructed numerical solutions
to describe such a phase transition, this work provides
analytic examples.
The hyperbolic black holes can also be used to study

strongly coupled quantum field theories (QFTs) in de Sitter
space by the AdS=CFT correspondence, because the AdS
boundary of a hyperbolic black hole is conformal to a de
Sitter space in the static patch [7]. A hyperbolic black hole
describes a QFT in de Sitter space in the static patch at a
temperature that may differ from the de Sitter temperature.
Since there are phase transitions between hyperbolic black
holes with and without scalar hair, the dual QFTs in de
Sitter space will also have phase transitions. This result may
shed some light on phase transitions of QFTs in the early
Universe.
This paper is organized as follows. In Sec. II, we present

the analytic solution of neutral hyperbolic black holes with
scalar hair. In Sec. III, we study the thermodynamics of
these hyperbolic black holes and their phase transitions. In
Sec. IV, we give the AdS5 and higher-dimensional solutions
of hyperbolic black holes with scalar hair. In Sec. V, we
discuss two applications of hyperbolic black holes in terms
of the AdS=CFT correspondence. In Sec. VI, we give a
C-metric solution as a generalization of the hyperbolic
black holes with scalar hair. Finally, we summarize and
discuss some open questions.
In Appendix A, we use the holographic renormalization

to derive the mass. In Appendix B, we summarize some
special cases of STU supergravity. In Appendix C, we
present new insights on Einstein-scalar systems to motivate
the scalar potential. In Appendix D, we discuss some
properties of planar black holes.

II. TWO NEUTRAL LIMITS OF AN
EINSTEIN-MAXWELL-DILATON SYSTEM

We study the AdS4 case in detail, and put higher-
dimensional cases in Sec. IV. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

4
e−αϕF2 −

1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð2Þ

where F ¼ dA. The potential of the dilaton field is

VðϕÞ ¼ −
2

ð1þ α2Þ2L2
½α2ð3α2 − 1Þe−ϕ=α

þ 8α2eðα−1=αÞϕ=2 þ ð3 − α2Þeαϕ�; ð3Þ

where α is a parameter, and the values of α ¼ 0, 1=
ffiffiffi
3

p
, 1,

and
ffiffiffi
3

p
correspond to special cases of STU supergravity.

This potential was found in [15]. A derivation of this
potential with weaker assumptions is given in Appendix C,
in which we explain why this potential is “privileged”.
The three exponentials in VðϕÞ are ordered by their

importance. The ϕ → 0 behavior is VðϕÞ ¼ −6=L2 −
ð1=L2Þϕ2 þ � � �, where the first term is the cosmological
constant, and the second term shows that the mass of the
scalar field satisfies m2L2 ¼ −2. The scaling dimension of
the dual scalar operator in the CFT is Δ− ¼ 1 or Δþ ¼ 2.
The solution of the metric gμν, gauge field Aμ, and

dilaton field ϕ is [15]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ UðrÞdΣ2

2;k; ð4Þ

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r �
1

rh
−
1

r

�
dt; ð5Þ

eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 ; ð6Þ

with

f ¼
�
k −

c
r

��
1 −

b
r

�1−α2

1þα2 þ r2

L2

�
1 −

b
r

� 2α2

1þα2 ;

U ¼ r2
�
1 −

b
r

� 2α2

1þα2 : ð7Þ

The solution has two parameters b and c in addition to α.
A key observation in this work is that we can eliminate

the gauge field while keeping the dilaton field nontrivial. If
we take b ¼ 0, this solution will be reduced to a neutral
black hole described by (1). If we take c ¼ 0, only in the
case of k ¼ −1 can we obtain a black hole solution. By
taking c ¼ 0, the gauge field vanishes, but the dilaton field
is still nontrivial. This is a neutral hyperbolic black hole
with scalar hair. In sum, by taking a nontrivial neutral limit
of the above EMD system, we find analytic solutions of
hyperbolic black holes given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ UðrÞdΣ2

2; ð8Þ
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where dΣ2
2 ¼ dθ2 þ sinh2 θdφ2, and

f ¼ −
�
1 −

b
r

�1−α2

1þα2 þ r2

L2

�
1 −

b
r

� 2α2

1þα2 ;

U ¼ r2
�
1 −

b
r

� 2α2

1þα2 ; eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 : ð9Þ

Interestingly, the same type of the neutral limit of the
spherical or planar black holes in the same EMD system
does not give a black hole. The special case α ¼ 1=

ffiffiffi
3

p
orffiffiffi

3
p

gives the MTZ black hole.
Another solution to the system (2) without the gauge

field is the hyperbolic Schwarzschild-AdS black hole
(without scalar hair) given by

f ¼ −1 −
c
r
þ r2

L2
; U ¼ r2; ϕ ¼ 0: ð10Þ

For a given α, there is more than one black hole solution. At
a given temperature, the one with lower free energy is
thermodynamically preferred. In the following, we calcu-
late thermodynamic quantities of the hyperbolic black
holes with and without scalar hair and demonstrate that
there are phase transitions between the two solutions as the
temperature is varied. We set the AdS radius L ¼ 1.

III. PHASE TRANSITIONS OF HYPERBOLIC
BLACK HOLES

Consider the hyperbolic black hole with scalar hair first.
The curvature singularity is at r ¼ 0 and r ¼ b, and the
parameter b can be either positive or negative. The horizon
of the black hole is determined by fðrhÞ ¼ 0, where
rh > max ð0; bÞ. From fðrhÞ ¼ 0, the parameter b is
expressed in terms of rh,

b ¼ rh − r
3−α2

1−3α2

h : ð11Þ

The temperature is given by

T ¼ f0ðrhÞ
4π

¼ 1

4πð1þ α2Þ
�
ð3 − α2Þr

1þα2

1−3α2

h − ð1 − 3α2Þr−
1þα2

1−3α2

h

�
; ð12Þ

where we have used (11) to replace b with rh. In the
exceptional case α ¼ 1=

ffiffiffi
3

p
, we have rh ¼ 1, and the

temperature is T ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
=2π. The system is invariant

under α → −α and ϕ → −ϕ. We assume α > 0, and there
are two distinctive cases as follows. See Fig. 1.

(i) α < 1=
ffiffiffi
3

p
or α >

ffiffiffi
3

p
. The temperature reaches zero

when

rh ¼
�
1 − 3α2

3 − α2

� 1−3α2

2ð1þα2Þ
: ð13Þ

The extremal geometry is given by (8) with

b ¼ 2ð1þ α2Þ
3 − α2

�
1 − 3α2

3 − α2

� 1−3α2

2ð1þα2Þ
: ð14Þ

(ii) 1=
ffiffiffi
3

p
< α <

ffiffiffi
3

p
. The temperature can never reach

zero. There is a minimum temperature at

rh ¼
�
3α2 − 1

3 − α2

� 1−3α2

2ð1þα2Þ
: ð15Þ

For a given temperature above the minimum temper-
ature, there are two values of rh. (When α ¼ 1, the
two values coincide.) At the minimum temperature,
the geometry is given by (8) with

b ¼ 4ð1 − α2Þ
3 − α2

�
3α2 − 1

3 − α2

� 1−3α2

2ð1þα2Þ
: ð16Þ

To show that there is a phase transition between the black
holes with and without scalar hair in the canonical
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FIG. 1. Temperature as a function of rh. In the left plot (α < 1=
ffiffiffi
3

p
), there is one branch of black hole solutions, and the temperature

can reach zero. In the right plot (1=
ffiffiffi
3

p
< α <

ffiffiffi
3

p
), there are two branches of black hole solutions, and there is a minimum temperature.
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ensemble, we need to compare their free energies as a
function of temperature. Below a critical temperature, the
hairy black hole has lower free energy. Moreover, we need
to impose a sourceless boundary condition for the scalar
field at the AdS boundary. The asymptotic behavior of the
scalar field near the AdS boundary r → ∞ implies that
there is a multitrace deformation in the dual CFT [23].
To specify the boundary conditions clearly, we use the

Fefferman-Graham (FG) coordinates near the AdS boun-
dary. For details, see Appendix A or [24]. The asymptotic
expansion of the scalar field is

ϕ ¼ Azþ Bz2 þ � � � ; ð17Þ

where z is the FG radial coordinate as in (A1) below. Starting
from the alternative quantization, in which the scaling
dimension of the dual scalar operator is Δ− ¼ 1, we require
that the single-trace source is zero. The boundary condition
compatible with the solution (9) can be chosen as follows:

(i) B=A ¼ 1−α2
2ð1þα2Þ b. This corresponds to a double-trace

deformation, which is relevant.
(ii) B=A2¼−1−α2

4α , which is dimensionless. This corre-
sponds to a triple-trace deformation,which ismarginal.

We use the triple-trace deformation, for which we can vary
the temperature with a fixed B=A2.
The mass calculated by holographic renormaliza-

tion is1

M ¼ −
VΣ

8πG
1 − α2

1þ α2
b; ð18Þ

where VΣ is the area of the hyperbolic space dΣ2
2, which

needs to be regulated. The entropy is

S ¼ VΣ

4G
UðrhÞ ¼

VΣ

4G
r
2ð1−α2Þ
1−3α2

h : ð19Þ

It can be checked that the first law of thermodynamics
dM ¼ TdS is satisfied by (12), (18), and (19). The free
energy is

F ¼ M − TS ¼ −
VΣ

16πG
ðrh þ r

3−α2

1−3α2

h Þ: ð20Þ

The free energy as a function of temperature is plotted
in Fig. 2.
For the hyperbolic Schwarzschild-AdS4 black hole,

the thermodynamic quantities can be calculated by setting
α ¼ 0 and b ¼ −c. They are

T̄¼ 3r̄2h−1

4πrh
; S̄¼ VΣ

4G
r̄2h; M̄¼ VΣ

8πG
r̄hðr̄2h−1Þ: ð21Þ

The free energy is F̄ ¼ M̄ − T̄S̄. The free energy as a
function of temperature is plotted in Fig. 2. The solid line is
for the black hole with scalar hair, and the dashed line is for
the black hole without scalar hair. The two solutions (9) and
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FIG. 2. Free energy as a function of temperature for different values of α. We take VΣ ¼ 1. The solid line is for the hyperbolic black
hole with scalar hair in AdS4. The dashed line is for the hyperbolic Schwarzschild-AdS4 black hole. A crossing point of the solid and the
dashed lines is the pure AdS.

1The mass and entropy in arbitrary dimensions are (37) and
(38) in Sec. IV. They depend on Newton’s constant G. Here, we
have set 16πG ¼ 1 in the action.
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(10) share the same geometry when b ¼ c ¼ 0, which is
the pure AdS. This is at rh ¼ r̄h ¼ 1, which gives

Tc ¼
1

2π
; Fc ¼ −

VΣ

8πG
: ð22Þ

The two curves cross at this point. We can analytically
check that d2F=dT2 is continuous, and d3F=dT3 is
discontinuous at T ¼ Tc. Therefore, there is a third-order
phase transition at Tc. In addition, when 1=

ffiffiffi
3

p
< α <

ffiffiffi
3

p
(α ≠ 1), the free energy is discontinuous at the minimum
temperature Tmin, and thus, there is a zeroth-order phase
transition at T ¼ Tmin.
As the order parameter, the expectation value of the

scalar operator dual to ϕ is hOi ¼ A. Near Tc, we have

hOi ≃ 4πα

1 − α2
ðT − TcÞ: ð23Þ

Figure 3 shows the order parameter as a function of
temperature.
For special values of α in supergravity, thermodynamic

quantities of the hyperbolic black holes in AdS4 are

summarized in Table I. These cases have distinctive
features. For α ¼ 1=

ffiffiffi
3

p
and α ¼ ffiffiffi

3
p

, the entropy is linear
in temperature, and the IR of the extremal geometry is
conformal to AdS2 × H2. The hairy black holes have lower
free energy at 0 ≤ T < Tc. For α ¼ 1, the entropy is
independent of temperature, and the minimum temperature
equals Tc.

IV. HIGHER-DIMENSIONAL SOLUTIONS

The above result can be generalized to higher-dimensional
spacetimes. The (dþ 1)-dimensional action is

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
R −

1

4
e−αϕF2 −

1

2
ð∂ϕÞ2 − VðϕÞ

�
;

ð24Þ

where F ¼ dA. The potential of the dilaton field is
given by

VðϕÞ ¼ v1e
−2ðd−2Þ
ðd−1Þαϕ þ v2e

ðd−1Þα2−2ðd−2Þ
2ðd−1Þα ϕ þ v3eαϕ; ð25Þ

where

v1 ¼ −
ðd − 1Þ2½dðd − 1Þα2 − 2ðd − 2Þ2�α2

L2½2ðd − 2Þ þ ðd − 1Þα2�2 ;

v2 ¼ −
8ðd − 2Þðd − 1Þ3α2

L2½2ðd − 2Þ þ ðd − 1Þα2�2 ;

v3 ¼ −
2ðd − 2Þ2ðd − 1Þ½2d − ðd − 1Þα2�

L2½2ðd − 2Þ þ ðd − 1Þα2�2 : ð26Þ

The ϕ → 0 behavior is

VðϕÞ ¼ −
dðd − 1Þ

L2
−
d − 2

L2
ϕ2 þOðϕ3Þ; ð27Þ

where the first term is the cosmological constant, and
the second term shows that the mass of the scalar field
satisfies m2L2 ¼ −2ðd − 2Þ. Recall that the scaling dimen-
sion of the dual scalar operator satisfies ΔðΔ − dÞ ¼ m2L2,
and the BF bound is m2

BFL
2 ¼ −d2=4. The mass is above

TABLE I. Thermodynamic quantities of the AdS4 system in special cases.

α b T S F FðTÞ
1-charge BH

ffiffiffi
3

p
rh − 1

ffiffiffiffi
rh

p
2π

VΣ
4G

ffiffiffiffiffi
rh

p − VΣ
16πG ðrh þ 1Þ − VΣ

16πG ð1þ 4π2T2Þ
2-charge BH 1 rh − r−1h

r2hþ1

4πrh

VΣ
4G − VΣ

16πG
r2hþ1

rh
− VΣ

4G T

3-charge BH 1=
ffiffiffi
3

p ðrh ¼ 1Þ ffiffiffiffiffiffi
1−b

p
2π

VΣ
4G

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
− VΣ

16πG ð2 − bÞ − VΣ
16πG ð1þ 4π2T2Þ

SAdS BH 0 rh − r3h
3r2h−1
4πrh

VΣ
4G r

2
h − VΣ

16πG rhðr2h þ 1Þ

FIG. 3. Condensation of the order parameter as a function of
temperature. The blue line (lower one) is for α ¼ 0.55, for which
a third-order phase transition happens at T ¼ Tc. The purple line
(upper one) is for α ¼ 0.6, for which a third-order phase transition
happens at Tc, and a zeroth-order phase transition happens at a
lower temperature Tmin.
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the BF bound for d ≥ 3 except d ¼ 4, in which case the
mass saturates the BF bound. The two solutions of Δ are
Δ� ¼ 2, d − 2.
The solutions and their thermodynamic quantities

were obtained in [15–20]. We observe that neutral
hyperbolic black holes can be obtained by taking a neutral
limit of the EMD systems while the dilaton field is kept
nontrivial. We put a backslash on the parameter c to
indicate that it will be set to zero in this neutral limit.
The solution is

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þUðrÞdΣ2

d−1;k; ð28Þ

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þb=c

2ðd − 2Þ þ ðd − 1Þα2

s �
1

rd−2h

−
1

rd−2

�
dt; ð29Þ

eαϕ ¼
�
1 −

b
rd−2

� 2ðd−1Þα2
2ðd−2Þþðd−1Þα2 ; ð30Þ

with

f ¼
�
k − =c

rd−2

��
1 −

b
rd−2

�2ðd−2Þ−ðd−1Þα2
2ðd−2Þþðd−1Þα2

þ r2

L2

�
1 −

b
rd−2

� 2ðd−1Þα2
ðd−2Þ½2ðd−2Þþðd−1Þα2 �;

g ¼ fðrÞ
�
1 −

b
rd−2

� 2ðd−3Þðd−1Þα2
ðd−2Þ½2ðd−2Þþðd−1Þα2 �;

U ¼ r2
�
1 −

b
rd−2

� 2ðd−1Þα2
ðd−2Þ½2ðd−2Þþðd−1Þα2 �: ð31Þ

We take k ¼ −1 and c ¼ 0 for neutral hyperbolic black
holes. We set L ¼ 1 in the following.
Consider the hyperbolic black hole with scalar hair first.

The curvature singularity is at r ¼ 0 and rd−2 ¼ b, and the
parameter b can be either positive or negative. The horizon
of the black hole is determined by fðrhÞ ¼ 0, from which
the parameter b is expressed in terms of rh,

b ¼ rd−2h − r
ðd−2Þ2 ½2d−ðd−1Þα2 �
2ðd−2Þ2−dðd−1Þα2
h : ð32Þ

The temperature is given by

T¼
ffiffiffiffiffiffiffiffi
f0g0

p
4π

����
r¼rh

¼ðd−2Þ½2d−ðd−1Þα2�rph − ½2ðd−2Þ2−dðd−1Þα2�r−ph
4π½2ðd−2Þþðd−1Þα2� ;

ð33Þ

where we have used (32) to replace b with rh, and

p ¼ ðd − 2Þ½2ðd − 2Þ þ ðd − 1Þα2�
2ðd − 2Þ2 − dðd − 1Þα2 : ð34Þ

In the exceptional case α ¼ ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
, we have

rh ¼ 1, and the temperature is T ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
=2π. The

system is invariant under α → −α and ϕ → −ϕ. We
assume α > 0, and there are two distinctive cases as
follows:

(i) 0 < α < ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
or α >

ffiffiffiffiffiffi
2d
d−1

q
. The temper-

ature reaches zero when

rh ¼
�
2ðd − 2Þ2 − dðd − 1Þα2
ðd − 2Þ½2d − ðd − 1Þα2�

� 1
2p

: ð35Þ

(ii) ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
< α <

ffiffiffiffiffiffi
2d
d−1

q
. The temperature

can never reach zero. There is a minimum temper-

ature at

rh ¼
�
dðd − 1Þα2 − 2ðd − 2Þ2
ðd − 2Þ½2d − ðd − 1Þα2�

� 1
2p

: ð36Þ

For a given temperature above the minimum

temperature, there are two values of rh. (When

α ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ðd−2Þ
d−1

q
, the two values coincide.)

The mass and entropy are [19]

M ¼ ðd − 1ÞVΣ

16πG

�
=cþ k

2ðd − 2Þ − ðd − 1Þα2
2ðd − 2Þ þ ðd − 1Þα2 b

�
; ð37Þ

S ¼ VΣ

4G
UðrhÞðd−1Þ=2; ð38Þ

where VΣ is the volume of the (d − 1)-dimensional hyper-
bolic space, regulated by integrating out to a maximum
radius in this hyperbolic geometry [22],

VΣ ≃
Ωd−2

d − 2

�
Rd−2

δd−2
−
ðd − 2Þðd − 3Þ

2ðd − 4Þ
Rd−4

δd−4
þ � � �

�
; ð39Þ

where Ωd−2 ¼ 2πðd−1Þ=2=Γððd − 2Þ=2Þ is the area of a unit
(d − 2)-sphere. The cutoff δ is related to the UV cutoff in
the dual CFT, consistent with the area law of the entangle-
ment entropy.
It can be checked that the first law of thermodynamics

dM ¼ TdS is satisfied by (33), (37), and (38). The free
energy is
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F ¼ M − TS ¼ −
VΣ

16πG

�
rd−2h þ r

ðd−2Þ2 ½2d−ðd−1Þα2 �
2ðd−2Þ2−dðd−1Þα2
h

�
: ð40Þ

Another solution to the system (24) without the gauge
field is the hyperbolic Schwarzschild-AdS black hole
(without scalar hair) given by

f ¼ −1 −
c

rd−2
þ r2

L2
; g ¼ f; U ¼ r2; ϕ ¼ 0: ð41Þ

For a given α, there is more than one black hole solution.
The one with lower free energy is thermodynamically
preferred. We demonstrate that there are phase transitions
between the solutions with and without scalar hair as the
temperature is varied.
For the hyperbolic Schwarzschild-AdSdþ1 black hole,

the thermodynamic quantities can be calculated by setting
α ¼ 0 and b ¼ −c. They are

T̄ ¼ dr̄2h − ðd − 2Þ
4πrh

; S̄ ¼ VΣ

4G
r̄d−1h ;

M̄ ¼ ðd − 1ÞVΣ

16πG
r̄d−2h ðr̄2h − 1Þ: ð42Þ

The two solutions (31) and (41) share the same geometry
when b ¼ c ¼ 0, which is the pure AdS. This is at
rh ¼ r̄h ¼ 1, which gives

Tc ¼
1

2π
; Fc ¼ −

VΣ

8πG
: ð43Þ

There is a third-order phase transition at Tc. In
addition, there is a zeroth-order phase transition at the

minimum temperature Tmin when ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
< α <ffiffiffiffiffiffi

2d
d−1

q �
α ≠

ffiffiffiffiffiffiffiffiffi
2ðd−2
d−1

q 	
.

As the order parameter, the expectation value of the
scalar operator dual to ϕ is hOi as in

ϕ ¼ hOi
rd−2

þ � � � : ð44Þ

Near Tc, we have

hOi ≃ 8πα

2ðd − 2Þ − ðd − 1Þα2 ðT − TcÞ: ð45Þ

We take a closer look at the AdS5 (d ¼ 4) case.
The hairy black hole solution is given by (28)–(31)
with d ¼ 4, k ¼ −1, and c ¼ 0. The temperature as a
function of rh has two distinctive cases as follows:
(i) α < 2=

ffiffiffi
6

p
or α > 4=

ffiffiffi
6

p
: The temperature can reach

zero. (ii) 2=
ffiffiffi
6

p
< α < 4=

ffiffiffi
6

p
: The temperature can never

reach zero, and there is a minimum temperature. The free
energy as a function of temperature is plotted in Fig. 4,
which is qualitatively similar to the AdS4 case. The
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FIG. 4. Free energy as a function of temperature for different values of α. We take VΣ ¼ 1. The solid line is for the hyperbolic black
hole with scalar hair in AdS5. The dashed line is for the hyperbolic Schwarzschild-AdS5 black hole. A crossing point of the solid and the
dashed lines is the pure AdS.
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asymptotic behavior of the scalar field near the AdS
boundary r → ∞ is

ϕ ¼ A
r2
ln rþ B

r2
þ � � � : ð46Þ

The boundary condition is given by the standard quantiza-
tion. The source A is zero, and the expectation valueB is the
order parameter.
For special values of α in supergravity, thermodynamic

quantities of the hyperbolic black holes in AdS5 are
summarized in Table II. These cases have distinctive
features. For α ¼ 2=

ffiffiffi
6

p
and α ¼ 4=

ffiffiffi
6

p
, the entropy is

linear in temperature, and the IR of the extremal geometry
is conformal to AdS2 × H3. The hairy black holes have
lower free energy at 0 ≤ T < Tc.

V. AdS=CFT APPLICATIONS

A. Phase transitions of Rényi entropies

Consider a QFT in a state described by a density matrix ρ
and divide the system into two parts, A and B. The reduced
density matrix for the subsystem A is ρA ¼ TrBρ. The nth
Rényi entropy is defined by

Sn ¼
1

1 − n
log TrðρnAÞ: ð47Þ

The entanglement entropy SEE can be obtained by taking
the n → 1 limit of the Rényi entropy: SEE ¼ limn→1 Sn ¼
−TrρA log ρA. Rényi entropies are usually difficult to
calculate in QFTs.
In terms of the AdS=CFT correspondence, Rényi entro-

pies with the entangling surface being a sphere can be
calculated by hyperbolic black holes [21,22]. Suppose we
want to calculate the Rényi entropies of a CFTwith a gravity
dual, and the entangling surface between A and B is a sphere
of radius R. By a conformal mapping, the Rényi entropy is
related to the free energy of a hyperbolic black hole,

Sn ¼
n

1 − n
1

T0

ðFðT0Þ − FðT0=nÞÞ

¼ n
1 − n

1

T0

Z
T0

T0=n
SthermðTÞdT; ð48Þ

where T0 ¼ 1
2πR is the temperature of a zero-mass hyperbolic

black hole, Stherm the thermal entropy of the hyperbolic black

hole, and Stherm ¼ −∂F=∂T. In Secs. II–IV, we have
set R ¼ 1.
A phase transition of hyperbolic black holes at a

sufficiently low temperature implies a phase transition of
Rényi entropies in n; i.e., Sn is nonanalytic at some n ¼ nc.
As shown in Fig. 2, there is always a phase transition at
Tc ¼ 1=2π, i.e., n ¼ 1 (except for α ¼ 1). Since the phase
transition is third order, ∂nSn is continuous. and the Rényi
entropies give a well-defined entanglement entropy in the
n → 1 limit; see also [25]. For 1=

ffiffiffi
3

p
< α <

ffiffiffi
3

p
(α ≠ 1),

there is a minimum temperature Tmin for the hairy black
hole, and there is a zeroth-order phase transition at
T ¼ Tmin, corresponding to another nc of Rényi entropies.
For general α, the explicit Sn as a function of n is

complicated. However, Sn is strikingly simple for the
dilatonic systems in supergravity. From Tables I and II,
we can see that the free energy as a function of temperature
is F ¼ − VΣ

16πG ð1þ 4π2T2Þ for the α ¼ 1=
ffiffiffi
3

p
and α ¼ ffiffiffi

3
p

cases2 in AdS4 and the α ¼ 2=
ffiffiffi
6

p
and α ¼ 4=

ffiffiffi
6

p
cases in

AdS5. By (48), the Rényi entropies are

Sn ¼
1

8G

�
1þ 1

n

�
VΣ; ð49Þ

where VΣ is the regulated volume of the hyperbolic space.
As a comparison, the Rényi entropies for 2D CFTs are

Sð2DÞ
n ¼ c

6

�
1þ 1

n

�
log

R
δ
: ð50Þ

The n dependence of the Rényi entropies for dilatonic
systems in supergravity is exactly the same as 2D CFTs,
while the Rényi entropies calculated from hyperbolic
Schwarzschild-AdS black hole contain higher orders
in 1=n.

B. Phase transitions of QFTs in de Sitter space

Strongly coupled QFTs in de Sitter space can be studied
in terms of the AdS=CFT correspondence. The goal is to
find an AdS solution whose boundary is conformal to a de
Sitter space in static coordinates,

TABLE II. Thermodynamic quantities of the AdS5 system in special cases.

α b T S F FðTÞ
1-charge BH 4=

ffiffiffi
6

p
r2h − 1

rh
2π

VΣ
4G rh − VΣ

16πG ðr2h þ 1Þ − VΣ
16πG ð1þ 4π2T2Þ

2-charge BH 2=
ffiffiffi
6

p ðrh ¼ 1Þ ffiffiffiffiffiffi
1−b

p
2π

VΣ
4G

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
− VΣ

16πG ð2 − bÞ − VΣ
16πG ð1þ 4π2T2Þ

SAdS BH 0 r2h − r4h
2r2h−1
2πrh

VΣ
4G r

3
h − VΣ

16πG r
2
hðr2h þ 1Þ

2The dilatonic solution in the α ¼ 1 case does not exist
below Tc.
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dŝ2 ¼ −ð1 −H2ρ2Þdt2 þ dρ2

1 −H2ρ2
þ ρ2dΩ2

d−2; ð51Þ

where dΩ2
d−2 is the metric for a (d − 2)-dimensional sphere,

and H is the Hubble parameter. The de Sitter space has a
temperature given by [26]

TdS ¼ H
2π

: ð52Þ

The foliation of de Sitter space gives a solution,

ds2 ¼ dr2 þH2L2 sinh2
r
L
dŝ2: ð53Þ

This solution is limited to a special case, in which the
temperature T for the QFT and the temperature TdS for the
de Sitter space are the same. This solution is equivalent to a
zero-mass hyperbolic black hole; the general hyperbolic
black hole described by (1) is used for T ≠ TdS [7].
However, there is no phase transition even in this general
case [4,5].
Here, we have a more general class of neutral hyperbolic

black holes. The solution of the hyperbolic black hole in
AdS4 is (8) and (9). After a coordinate transformation by
Hρ ¼ tanh θ, the hyperbolic space dΣ2

2 can be written as3

dΣ2
2 ¼ dθ2 þ sinh2 θdφ2 ¼ H2dρ2

ð1 −H2ρ2Þ2 þ
H2ρ2

1 −H2ρ2
dφ2:

ð54Þ

By substituting (54) to (8), the hyperbolic black hole in
AdS4 can be written as

ds2 ¼ H2UðrÞ
1 −H2ρ2

�
−

fðrÞ
H2UðrÞ ð1 −H2ρ2Þdt2

þ dρ2

1 −H2ρ2
þ ρ2dφ2

�
þ dr2

fðrÞ : ð55Þ

The conformal boundary is at r → ∞, where fðrÞ → r2=L2

andUðrÞ → r2. The QFT lives on the AdS boundary, which
is conformal to

ds2
∂
¼ −

1

H2L2
ð1 −H2ρ2Þdt2 þ dρ2

1 −H2ρ2
þ ρ2dφ2: ð56Þ

According to Sec. III, there are phase transitions between
hyperbolic black holes with and without scalar hair.
Therefore, there will be phase transitions of QFTs in de
Sitter space (56).

In the case of AdS5, the AdS boundary of the spacetime
is conformal to dS4, which can be made explicit by the
following coordinates:

ds2 ¼ H2UðrÞ
1 −H2ρ2

�
−

fðrÞ
H2UðrÞ ð1 −H2ρ2Þdt2

þ dρ2

1 −H2ρ2
þ ρ2dΩ2

2

�
þ dr2

gðrÞ : ð57Þ

VI. C-METRIC SOLUTION AS A
GENERALIZATION

When a black hole solution is available, we can try to
find a C-metric solution as a generalization with one more
parameter. We obtain the C-metric solution for the hyper-
bolic black holes with scalar hair. As a comparison, the
C-metric without scalar hair in Ricci-flat spacetime is

ds2 ¼ 1

a2ðx − yÞ2
�
GðyÞdt2 − dy2

GðyÞ þ
dx2

GðxÞ þ GðxÞdφ2

�
;

ð58Þ
where

GðξÞ ¼ 1 − kξ2 − 2amξ3: ð59Þ

The a → 0 limit of this solution gives the Schwarzschild
solution. The C-metric solution with a cosmological con-
stant and different k was given in [27].
The C-metric solution for an EMD system with VðϕÞ ¼

0 was given in [28]. The C-metric solution for the EMD
system with VðϕÞ as (3) in the k ¼ 1 case was given in [29].
A charged C-metric is significantly more sophisticated than
a neutral one, and thus, it is desirable to analyze a neutral C-
metric with scalar hair before the charged one.
We keep the gauge field and the general k ¼ 0;�1 in the

following solutions. Only in the k ¼ −1 case can we obtain
a neutral black hole with scalar hair in the a → 0 limit. The
C-metric solution to the system (2) with (3) is

ds2 ¼ 1

a2ðx − yÞ2
�
h

2α2

1þα2

x

�
−FðyÞdτ2 þ dy2

FðyÞ
�

þ h
2α2

1þα2

y

�
dx2

GðxÞ þ GðxÞdφ2

��
; ð60Þ

with

F ¼ −ð1 − γy − ky2 − acy3Þh
1−α2

1þα2

y þ 1

a2L2
h

2α2

1þα2

y ;

G ¼ ð1 − γx − kx2 − acx3Þh
1−α2

1þα2

x ;

hy ¼ 1þ aby; hx ¼ 1þ abx;

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r
ydt; eαϕ ¼

�
hy
hx

� 2α2

1þα2 ; ð61Þ3The static patch of dS3 is conformal to the Lorentzian
hyperbolic cylinder R × H2 [7].
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where γ is an arbitrary constant as a gauge choice. There are
two neutral limits: one is b ¼ 0, in which the dilaton field
vanishes; the other is c ¼ 0. When we take c ¼ 0 and
k ¼ −1, we obtain the C-metric generalization of the
solution in Sec. II.
After a coordinate transformation [30],

y ¼ −
1

ar
; τ ¼ at; ð62Þ

the above solution can be written as

ds2 ¼ 1

ð1þ arxÞ2
�
h

2α2

1þα2

x

�
−FðrÞdt2 þ dr2

FðrÞ
�

þ r2h
2α2

1þα2

r

�
dx2

GðxÞ þGðxÞdφ2

��
; ð63Þ

with

F ¼
�
k −

c
r
− γar − a2r2

�
h

1−α2

1þα2

r þ r2

L2
h

2α2

1þα2

r ;

G ¼ ð1 − γx − kx2 − acx3Þh
1−α2

1þα2

x ;

hr ¼ 1 −
b
r
; hx ¼ 1þ abx;

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r �
1

rh
−
1

r

�
dt; eαϕ ¼

�
hr
hx

� 2α2

1þα2 : ð64Þ

The a → 0 limit of this solution is explicitly the same
as (4)–(7).
We find that there are two cosmic branes with non-

constant tension at x ¼ 0 and y ¼ 0, respectively, provided
that γ is

γ ¼ 1 − 3α2

1þ α2
ab: ð65Þ

The extrinsic curvature and the induced metric of the
hypersurface x ¼ 0 satisfy (assuming y < 0)

Kμν ¼ λyhμν; λy ¼ −
a½1þ ð1þ abyÞα2�
ð1þ α2Þð1þ abyÞ α2

1þα2

: ð66Þ

The brane tension is

T ¼ −
λy

2πG4

; ð67Þ

whereG4 is the four-dimensional Newton’s constant. When
α ¼ 0 [31,32], we have λy ¼ −a. Similarly, the extrinsic
curvature and the induced metric of the hypersurface y ¼ 0
satisfy (assuming x > 0)

Kμν ¼ λxhμν; λx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a2L2

p
½1þ ð1þ abxÞα2�

Lð1þ α2Þð1þ abxÞ α2

1þα2

: ð68Þ

VII. DISCUSSION

We have found a class of hyperbolic black holes with
scalar hair in AdS space, by taking a particular limit of an
EMD system. For the spherical and planar black holes in
the EMD solution, the same type of limit does not give a
black hole. The main conclusions are summarized as
follows:

(i) For the Einstein-scalar system we consider, there is
an analytic solution for hyperbolic black holes with
scalar hair. The system is obtained by taking a
neutral limit of an EMD system whose special cases
include maximal gauged supergravities, while the
dilaton field is kept nontrivial.

(ii) There are phase transitions between the hyperbolic
black hole with scalar hair and the hyperbolic
Schwarzschild-AdS black hole. Phase transitions
can be zeroth or third order.

(iii) By holography, the system we study describes
(i) phase transitions of Rényi entropies and (ii) phase
transitions of QFTs in de Sitter space.

(iv) We give a C-metric solution as a generalization. This
neutral C-metric is less complicated than the full
EMD solution, while the dilaton field is nontrivial.

(v) We propose two constraints for Einstein-scalar
systems. Consequently, the potential of the scalar
field is highly restricted, and analytic solutions are
available. See Appendix C.

The following topics need further investigation: (i) the
special cases of α ¼ 1=

ffiffiffi
3

p
, 1,

ffiffiffi
3

p
for the charged hyper-

bolic black holes, (ii) the dual CFT of the hyperbolic black
holes [33], (iii) the relation to QFTs in cosmological
backgrounds [34], and (iv) the black funnels and droplets
[35,36] from the C-metric solutions.
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APPENDIX A: HOLOGRAPHIC
RENORMALIZATION

We closely follow [24] to calculate the mass of the black
holes in Einstein-scalar systems by holographic renormal-
ization. The boundary condition for the scalar field corre-
sponds to a multitrace deformation in the dual CFT.
In the Fefferman-Graham gauge, the AdS4 metric is

written in the form

ds2 ¼ L2

z2
ðdz2 þ gijðx; zÞdxidxjÞ; ðA1Þ
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where z is the FG radial coordinate, and gij is a three-
dimensional metric, which raises/lowers the i, j indexes.
The asymptotic expansions of the metric and scalar field are

gijðx; zÞ ¼ gð0Þij þ zgð1Þij þ z2gð2Þij þ � � � ; ðA2Þ

ϕðx; zÞ ¼ zΔ−φðx; zÞ ¼ zΔ−ðφð0Þ þ zφð1Þ þ � � �Þ; ðA3Þ

where Δ− ¼ 1 for the solution we consider. The boundary
condition for a multitrace deformation is specified starting
from the alternative quantization. The single-trace source is
written as

JF ¼ −L2φð1Þ − F 0ðφð0ÞÞ; ðA4Þ

where F ðφð0ÞÞ is a polynomial, and JF ¼ 0 specifies the
sourceless condition. With a general boundary condition
for the scalar field, we need to add an additional finite
boundary term SF to the renormalized on-shell action,

Sren ¼ lim
ϵ→0

ðSbulk þ SGH þ Sct þ SF Þ; ðA5Þ

where Sbulk is the action (2) with r being integrated from the
horizon rh to the cutoff z ¼ ϵ, and

SGH ¼
Z
z¼ϵ

d3x
ffiffiffiffiffiffi
−γ

p
2K; ðA6Þ

Sct ¼ −
Z
z¼ϵ

d3
ffiffiffiffiffiffi
−γ

p �
4

L
þ LR½γ� þ 1

2L
ϕ2

�
; ðA7Þ

SF ¼
Z
z¼ϵ

d3x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ðJFφð0Þ þ F ðφð0ÞÞÞ: ðA8Þ

Its variation is

δSren ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p �
1

2
hT ijiδgijð0Þ þ hOΔ−

iδJF
�
: ðA9Þ

The boundary stress tensor is given by [24]

hT iji ¼ 3L2gijð3Þ þ ðF ðφð0ÞÞ − φð0ÞF 0ðφð0ÞÞÞgijð0Þ: ðA10Þ

For the solution (8) with (9), the relation between the
coordinates r and z is

r¼L2

z
þ α2b
1þα2

þ
�
1

4
þ α2b2

4L2ð1þα2Þ2
�
z

þ
�

c
6L2

−
ð1−α2Þb

6L2ð1þα2Þþ
α2ð1−α2Þb3
9L4ð1þα2Þ3

�
z2þ��� : ðA11Þ

The metric and the scalar field in the FG expansion are

gij ¼

0
B@

−1 0 0

0 L2 0

0 0 L2s2θ

1
CAþ z2

0
BB@

1
2L2 þ α2b2

2L4ð1þα2Þ2 0 0

0 1
2
− α2b2

2L2ð1þα2Þ2 0

0 0 ð1
2
− α2b2

2L2ð1þα2Þ2Þs2θ

1
CCA

þ z3

0
BB@

2c
3L4 − 2ð1−α2Þb

3L4ð1þα2Þ þ
4α2ð1−α2Þb3
9L6ð1þα2Þ3 0 0

0 c
3L2 − ð1−α2Þb

3L2ð1þα2Þ −
4α2ð1−α2Þb3
9L4ð1þα2Þ3 0

0 0 ð c
3L2 − ð1−α2Þb

3L2ð1þα2Þ −
4α2ð1−α2Þb3
9L4ð1þα2Þ3 Þs2θ

1
CCA

þ � � � ; ðA12Þ

ϕ ¼ −
2αb

L2ð1þ α2Þ z −
αð1 − α2Þb2
L4ð1þ α2Þ2 z

2 þ � � � ; ðA13Þ

where sθ ≡ sinh θ. From (A13), we can read

φð0Þ ¼ −
2αb

L2ð1þ α2Þ ; φð1Þ ¼ −
αð1 − α2Þb2
L4ð1þ α2Þ2 : ðA14Þ

The solution (9) is compatible with a triple-trace defor-
mation with a marginal coupling ϑ,

F ¼ 1

3
ϑφ3

ð0Þ; ϑ ¼ 1 − α2

4α
L2: ðA15Þ

This gives an AdS-invariant boundary condition despite the
fact that the metric falls off slower than usual [37]. The
choice of the boundary term (A8) ensures that the first law
of thermodynamics is unmodified by a scalar charge,
consistent with [38]. By (A10), the extra terms of F cancel
the b3 terms in gijð3Þ, and the boundary stress tensor is

traceless. The energy density is given by

ε ¼ L2hT tti: ðA16Þ
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Consequently, the mass of the hyperbolic black hole is
given by (18), and the free energy is given by (20). As a
crosscheck, directly evaluating the on-shell action (A5)
gives SEren ¼ −iSren ¼ βF (β ¼ 1=T), which is in agree-
ment with (20).4

The solution (9) is also compatible with a double-trace
deformation,

F ¼ 1

2
ϑφ2

ð0Þ; ϑ ¼ −
1 − α2

2ð1þ α2Þ b: ðA17Þ

The mass is

M ¼ VΣ

8πG

�
−
1 − α2

1þ α2
bþ α2ð1 − α2Þ

6ð1þ α2Þ3 b
3

�
: ðA18Þ

However, we cannot change the temperature or entropy for
the analytic solutions if we fix ϑ, since b and rh are related
by (11). Instead, we can obtain numerical solutions of
hyperbolic black holes at different temperatures by fixing
the double-trace deformation parameter.

APPENDIX B: SPECIAL CASES OF
STU SUPERGRAVITY

In STU supergravities, there are Uð1Þ4 gauge fields in
AdS4, Uð1Þ3 gauge fields in AdS5, and Uð1Þ2 gauge fields
in AdS7 [12]. Special cases of them can be reduced to EMD
systems. They are 1-charge, 2-charge, and 3-charge black
holes in AdS4; 1-charge and 2-charge black holes in AdS5;
and 1-charge black hole in AdS7.
The AdS4 Lagrangian is

L ¼ R −
1

2
ð∂ϕ⃗Þ2 þ 8g2ðcoshϕ1 þ coshϕ2 þ coshϕ3Þ

−
1

4

X4
i¼1

ea⃗i·ϕ⃗ðFi
ð2ÞÞ2; ðB1Þ

where ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ, a⃗1 ¼ ð1; 1; 1Þ, a⃗2 ¼ ð1;−1;−1Þ,
a⃗3 ¼ ð−1; 1;−1Þ, and a⃗4 ¼ ð−1;−1; 1Þ. More details can
be found in [12]. The solution is given by [40,41]

ds2 ¼ −ðH1H2H3H4Þ−1=2fdt2
þ ðH1H2H3H4Þ1=2ðf−1dr̄2 þ r̄2dΣ2

2;kÞ; ðB2Þ

Xi ¼ H−1
i ðH1H2H3H4Þ1=4; ðB3Þ

Ai
ð1Þ ¼

ffiffiffi
k

p
ð1 −H−1

i Þ coth βidt; ðB4Þ

with Xi ¼ e−
1
2
a⃗i·ϕ⃗, and

f ¼ k −
μ

r̄
þ 4

L2
r̄2ðH1H2H3H4Þ; Hi ¼ 1þ μ sinh2 βi

kr̄
:

ðB5Þ

The following special cases are obtained when some of
the Uð1Þ4 charges are the same, and others are zero:

(i) 1-charge black hole (α ¼ ffiffiffi
3

p
): H1 ¼ H, H2 ¼

H3 ¼ H4 ¼ 1. The Lagrangian is

L ¼ R −
1

2
ð∂ϕÞ2 þ 6

L2
cosh

ϕffiffiffi
3

p −
1

4
e−

ffiffi
3

p
ϕF2: ðB6Þ

(ii) 2-charge black hole (α ¼ 1): H1 ¼ H2 ¼ H,
H3 ¼ H4 ¼ 1. The Lagrangian is

L ¼ R −
1

2
ð∂ϕÞ2 þ 2

L2
ðcoshϕþ 2Þ − 1

4
e−ϕF2:

ðB7Þ

(iii) 3-charge black hole (α ¼ 1=
ffiffiffi
3

p
): H1 ¼ H2 ¼

H3 ¼ H, H4 ¼ 1. The Lagrangian is

L ¼ R −
1

2
ð∂ϕÞ2 þ 6

L2
cosh

ϕffiffiffi
3

p −
1

4
e−

1ffiffi
3

p ϕF2: ðB8Þ

(iv) 4-charge black hole (α ¼ 0): H1 ¼ H2 ¼ H3 ¼
H4 ¼ H. This is the RN-AdS4 black hole.

The AdS5 Lagrangian is

L ¼ R −
1

2
ð∂φ⃗Þ2 þ 4g2

X
i

X−1
i −

1

4

X4
i¼1

X−2
i ðFi

ð2ÞÞ2: ðB9Þ

The solution is [42]

ds2 ¼ −ðH1H2H3Þ−2=3fdt2
þ ðH1H2H3Þ1=3ðf−1dr̄2 þ r̄2dΣ2

3;kÞ; ðB10Þ

Xi ¼ H−1
i ðH1H2H3Þ1=3; ðB11Þ

Ai
ð1Þ ¼

ffiffiffi
k

p
ð1 −H−1

i Þ coth βidt; ðB12Þ

with

f ¼ k −
μ

r̄
þ 4

L2
r̄2ðH1H2H3Þ; Hi ¼ 1þ μ sinh2 βi

kr̄
:

ðB13Þ

The following special cases are obtained when some of
the Uð1Þ3 charges are the same, and others are zero:

4Unlike planar black holes, the bulk Lagrangian is not a total
derivative for hyperbolic black holes, and thus, the on-shell action
inevitably contains an integral from the horizon to the AdS
boundary. For more details on the difference between planar and
hyperbolic/spherical black holes, see Appendix A of [39].
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(i) 1-charge black hole (α ¼ 4=
ffiffiffi
6

p
): H1 ¼ H, H2 ¼

H3 ¼ 1. The Lagrangian is

L ¼ R −
1

2
ð∂ϕÞ2 þ 4

L2
ð2e 1ffiffi

6
p ϕ þ e−

2ffiffi
6

p ϕÞ − 1

4
e−

4ffiffi
6

p ϕF2:

ðB14Þ

(ii) 2-charge black hole (α ¼ 2=
ffiffiffi
6

p
): H1 ¼ H2 ¼ H,

H3 ¼ 1. The Lagrangian is

L ¼ R −
1

2
ð∂ϕÞ2 þ 4

L2
ð2e− 1ffiffi

6
p ϕ þ e

2ffiffi
6

p ϕÞ − 1

4
e−

2ffiffi
6

p ϕF2:

ðB15Þ

(iii) 3-charge black hole (α ¼ 0): H1 ¼ H2 ¼ H3 ¼ 1.
This is the RN-AdS5 black hole.

In the AdS7 case, a similar analysis can be done. There
will be 1-charge black hole and 2-charge black hole, and
the latter is the RN-AdS7 black hole.
If we set μ ¼ 0 in the above solutions, both gauge fields

and dilaton fields will vanish. However, in the above EMD
systems, it is possible to make the gauge field vanish while
keeping the dilaton field nontrivial in the k ¼ −1 case,
which is a key observation made in this paper. To see this
explicitly, we can replace β with iβ and make the following
coordinate transformation:

r ¼ r̄þ μ sin2 β: ðB16Þ

APPENDIX C: CONSTRAINTS ON
EINSTEIN-SCALAR SYSTEMS

We find that the Einstein-scalar system is significantly
simplified under some reasonable constraints. We consider
the AdS4 spacetime and the generalization to higher-
dimensional cases is straightforward. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
; ðC1Þ

where VðϕÞ is the potential of the scalar field ϕ. We
consider the following metric ansatz:

ds2 ¼ e2Aðr̄Þð−hðr̄Þdt2 þ dΣ2
2;kÞ þ

e2Bðr̄Þ

hðr̄Þ dr̄2; ðC2Þ

where r̄ is the AdS radial coordinate, and the metric for the
two-dimensional sphere, plane, and hyperbloid can be
written as

dΣ2
2;k ¼

dx2

1 − kx2
þ x2dy2; ðC3Þ

where k ¼ 1, 0, and −1, respectively. There are four
unknown functions Aðr̄Þ, Bðr̄Þ, hðr̄Þ, and ϕðr̄Þ and one
gauge degree of freedom.

We propose the following constraints: (i) The potential V
is independent of k. (ii) The function h depends on k, and
other functions are independent of k. In other words, for a
given VðϕÞ, the only difference between the k ¼ 0 solution
and the k ≠ 0 solution is some terms hðkÞ in h. Justification
of these constraints includes special cases of STU super-
gravity in Appendix B. We draw the following statements:
For a given cosmological constant Vð0Þ ¼ −6=L2, the

general potential satisfying the above constraints is a two-
parameter family of the potential given by

Vα;βðϕÞ ¼ VαðϕÞ þ βðVαðϕÞ − V−αðϕÞÞ; ðC4Þ

where α and β are parameters, and VαðϕÞ is a one-
parameter family of the potential given by

VðϕÞ ¼ −
2

ð1þ α2Þ2L2
½α2ð3α2 − 1Þe−ϕ=α

þ 8α2eðα−1=αÞϕ=2 þ ð3 − α2Þeαϕ�: ðC5Þ

For the one-parameter family of the potential VαðϕÞ, the
general solution under the above constraints for the hyper-
bolic black hole is obtained as (8) and (9) in Sec. II, and he
solution under the above constraints for the spherical or
planar black hole does not exist.
A brief proof is as follows. The Einstein-scalar system

has a weak form of integrability, which was presented in
[43] and [44,45]. We review this procedure and give more
insights that enable us to find a “privileged” potential.
Consequently, we find a way to derive the potential (C5) by
relating the k ¼ 0 and k ≠ 0 solutions.
Equations of motion are obtained by the action (C1) with

the metric ansatz (C2). The Einstein’s equation gives

A0B0 ¼ 1

4
ϕ02 þA00; ðC6Þ

ðe3A−Bh0Þ0 þ 2eAþBk ¼ 0: ðC7Þ

The first equation comes from eliminating the potential V
from Gtt ¼ 1

2
Ttt and Gr̄ r̄ ¼ 1

2
Tr̄ r̄. The second equation

comes from eliminating the potential V from Gr̄ r̄ ¼ 1
2
Tr̄ r̄

and Gxx ¼ 1
2
Txx. Solving V from Gr̄ r̄ ¼ 1

2
Tr̄ r̄ gives

V ¼ 1

2
e−2Bðϕ02h − 12A02h − 4A0h0Þ þ 2ke−2A: ðC8Þ

There is a gauge freedom, which is fixed by ϕ ¼ r̄. Other
equations can be derived from (C6), (C7), and (C8).
Starting from a given Aðr̄Þ, we can obtain Vðr̄Þ in the
following way:

A⟶
ðC6Þ

B⟶
ðC7Þ

h⟶
ðC8Þ

V: ðC9Þ
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The function Aðr̄Þ plays the role of a generating function.
Finally, replacing the function Vðr̄Þ with VðϕÞ gives the
potential. This method can be generalized to EMD systems
in a straightforward way. Only with careful choices of A
can we obtain a relatively simple VðϕÞ. Related methods
are used in [46,47], in which the potential can be generated
by choices of either the metric or the scalar field.
Let hð0Þ be the solution of h at k ¼ 0, and we can

decompose h into two parts:

hðr̄Þ ¼ hð0Þ þ hðkÞ: ðC10Þ

The potential V solved by (C8) apparently depends on k.
Constraint (i) requires that the terms dependent on k must
cancel,

V ¼ Vð0Þ þ VðkÞ; VðkÞ ¼ 0: ðC11Þ

If A, B, and hð0Þ satisfy the equations of motion with V ¼
Vð0Þ in the k ¼ 0 case, then A, B, and hðkÞ satisfy the
equations of motion with V ¼ 0 in the k ¼ 1 case. The key
point is that these two cases share the same generating
functionA, and the latter one is simpler to solve. A solution
with V ¼ 0 and k ¼ 1 has been given in [48].
The solution for h from (C7) is given by

h ¼
Z

e−3AþB

�
−2k

Z
eAþBdr̄þ C2

�
dr̄þ C1; ðC12Þ

where the C1 ¼ C2 ¼ 0 solution is the solution for the
system with V ¼ 0. To satisfy constraint (i), h can only
linearly depend on k. If we take C1 ¼ 1 and C2 ∝ k, we
obtain the potential V as (C5). Let VαðϕÞ be the potential
(C5) with parameter α, the general solution for the
potential is

VðϕÞ ¼ β1VαðϕÞ þ β2V−αðϕÞ; ðC13Þ

where β1 and β2 are constants. This potential can be
rewritten as (C4), where the terms proportional to β do
not change the cosmological constant and the mass of the
scalar field. A nonzero β will give a cumbersome solution
of h, in which C1 ¼ 1, and C2 is related to β. This potential
is expected to be consistent with [47], in which (C16)
below was used as an assumption.
Since (C6) and (C7) are independent of the cosmological

constant, the two integration constants C1 and C2 are
related to the cosmological constant. A shortcut to obtain
the potential (C5) is as follows. Start from a solution with
VðϕÞ ¼ 0 and k ¼ 1, and then use the procedure (C9) with
h ¼ 1 and k ¼ 0.
To solve the equations of motion with V ¼ 0 and k ¼ 1,

it is more convenient to choose another gauge, B ¼ −A.
The metric ansatz is (4). Consider Einstein’s equation with

the left-hand side being Rμν, and we take the following
procedure:
(a) From the tt and θθ components, a simple equation is

obtained ðfUÞ00 ¼ 2. So fU is a second-order poly-
nomial of r, and we can parametrize it as

fU ¼ ðr − r1Þðr − r2Þ: ðC14Þ
(b) The tt component gives ðf0UÞ0 ¼ 0. The general

solution for f is

f ¼ f0

�
r − r1
r − r2

�
ν1
; ðC15Þ

where f0 and ν1 are integration constants. At the AdS
boundary r → ∞, f ¼ 1 gives f0 ¼ 1.

(c) The equation of motion for the scalar field is
ðfUϕ0Þ0 ¼ 0. The general solution for ϕ is

eϕ ¼ eϕ0

�
r − r1
r − r2

�
ν2
; ðC16Þ

where ϕ0 and ν2 are integration constants. At the AdS
boundary r → ∞, ϕ ¼ 0 gives ϕ0 ¼ 0.

(d) Equations (C14)–(C16) are solution to the equations
of motion, provided that the condition ν21 þ ν22 ¼ 1 is
satisfied.

(e) The coordinate r̄ in the ϕ ¼ r̄ gauge and the coor-
dinate r in the A ¼ −B gauge are related by ϕðrÞ ¼ r̄.
By comparing (4) and (C2), we have

eA ¼ ðr1 − r2Þðe
1þν1
2ν2

r̄ − e−
1−ν1
2ν2

r̄Þ−1: ðC17Þ

After taking r1 ¼ b, r2 ¼ 0, and α ¼ ð1 − ν1Þ=ν2, we
obtain the generating function for the potential (C5) as

eA ¼ bðe 1
2αr̄ − e−

α
2
r̄Þ−1: ðC18Þ

For higher-dimensional cases, the potential (25) can be
generated by the same procedure. We replace dΣ2

2;k with
dΣ2

d−1;k in (C2), and the generating function is

eA ¼ bðe d−2
ðd−1Þαr̄ − e−

α
2
r̄Þ− 1

d−2: ðC19Þ

APPENDIX D: PROPERTIES OF THE
PLANAR SOLUTION (k = 0)

The hyperbolic black hole solution is related to a planar
black hole in the following way: The action with (d − 1)
axion (massless scalar) fields χi is

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
R −

1

4
e−αϕF2 −

1

2
ð∂ϕÞ2 − VðϕÞ

−
1

2

Xd−1
i¼1

ð∂χiÞ2
�
; ðD1Þ
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where χi ¼ κxi satisfies the equation of motion of χi. This
system was used as a simple way to introduce momentum
dissipation, since κxi breaks the translation symmetry
[49,50]. As pointed out in [50], for the potential (25),
the solution to the functions with the metric ansatz (28) in
the k ¼ 0 case is the same as that of a hyperbolic black hole
without the axions χi.
For an arbitrary potential VðϕÞ with the metric ansatz

ds2 ¼ e2Aðr̄Þð−hðr̄Þdt2 þ dΣ2
d−1;kÞ þ

e2Bðr̄Þ

hðr̄Þ dr̄2; ðD2Þ

we observe that the equations of motion for a planar black
hole with axions are the same as the equations of motion for
a hyperbolic black hole without axions, provided that we
make the identification

k ¼ −
1

2ðd − 2Þ κ
2: ðD3Þ

Here,
ffiffiffiffiffijkjp

is the inverse curvature radius of the hyperbolic
space, and we set it to 1 previously. The neutral planar
black holes with momentum dissipation were studied
in [51].
The planar solution without axions has an intriguing (and

peculiar) property: for α > ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
, the gauge field

is automatically eliminated from the EMD system in the
extremal limit rh → b. In this range of α, the gauge field is
proportional to a positive power of ðrh − bÞ. Examples
include 1-charge black hole in AdS5 [52] and 1-charge and
2-charge black holes in AdS4 [53].
Consider the AdS4 solution. Starting from the charged

planar black hole, we have b > 0 and c > 0. The condition
fðrhÞ ¼ 0 gives

c ¼ 1

L2
r

4

1þα2

h ðrh − bÞ3α
2−1

1þα2 : ðD4Þ

When α > 1=
ffiffiffi
3

p
, we have c ¼ 0 when we take the

extremal limit rh → b. Consequently, the gauge field
vanishes since At ∝

ffiffiffiffiffi
bc

p
. The extremal solution is

ds2 ¼ fð−dt2 þ dx⃗2Þ þ f−1dr2; A ¼ 0;

f ¼ r2

L2

�
1 −

b
r

� 2α2

1þα2 ; eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 : ðD5Þ

This is the neutral limit of (4)–(7) in the k ¼ 0 case, i.e., the
planar counterpart of (8) and (9). This solution does not
have a horizon and has a spacetime singularity at r ¼ b. We
expect that this solution can be taken as an extremal limit of
a finite temperature solution, when the Gubser criterion

[54] is satisfied. The finite temperature solution will not
satisfy the constraints proposed in Appendix C. By a
coordinate transformation r ¼ r̄þ b, the above solution
becomes

ds2 ¼ fð−dt2 þ dx⃗2Þ þ f−1dr̄2; A ¼ 0;

f ¼ r̄2

L2

�
1þ b

r̄

� 2

1þα2 ; e−αϕ ¼
�
1þ b

r̄

� 2α2

1þα2 : ðD6Þ

The spacetime singularity is now at r̄ ¼ 0.
The planar black hole solution to the EMD system (24)

has the following distinctive IR geometries in the
extremal case:

(i) 0 < α < ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
. The IR geometry

is AdS2 × Rd−1.

(ii) α ¼ ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
. The IR geometry is conformal

to AdS2 ×Rd−1.

(iii) α > ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
. The extremal limit of the

EMD system (24) is the same as an Einstein-scalar

system. The IR geometry is a hyperscaling-violating

geometry.
If we treat the Einstein-scalar (neutral) system as the

starting point, the parameter b can be either positive or
negative. We draw the following conclusions by analyzing
the IR geometry according to [55] (see also [53]). If b < 0,
which implies αϕ > 0, the leading term in VðϕÞ in the IR is
the last term, and we have the following:

(i) 0 < α <
ffiffiffiffiffiffi
2

d−1

q
. The spectrum is gapless.

(ii)
ffiffiffiffiffiffi
2

d−1

q
≤ α <

ffiffiffiffiffiffi
2d
d−1

q
. The extremal geometry is at

T → ∞. The spectrum is potentially gapped.

(iii) α ≥
ffiffiffiffiffiffi
2d
d−1

q
. It violates the Gubser criterion and is

thus unacceptable holographically. However, the IR
geometry can be changed by introducing extra
fields.

If b > 0, which implies αϕ < 0, the leading term in
VðϕÞ in the IR is the first term. Furthermore, the potential is
invariant under the transformation

α →
2ðd − 2Þ
ðd − 1Þα ; ϕ → −ϕ: ðD7Þ

We draw the following conclusions for b > 0:

(i) α > ðd − 2Þ
ffiffiffiffiffiffi
2

d−1

q
. The spectrum is gapless.

(ii) ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi

2
dðd−1Þ

q
< α ≤ ðd − 2Þ

ffiffiffiffiffiffi
2

d−1

q
. The extremal

geometry is at T → ∞. The spectrum is potentially

gapped.
(iii) 0 < α ≤ ðd − 2Þ

ffiffiffiffiffiffiffiffiffiffiffi
2

dðd−1Þ
q

. It violates the Gubser cri-

terion and thus is unacceptable holographically.
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