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We study thermal transitions in a domain wall AdS/QCDmodel. The model is based on the D5/probe D7
system with a discontinuous mass profile which restricts chiral fermions to 3þ 1 dimensional domain
walls. Fluctuations on the domain wall are dual to the quark mass and condensate and reveal the relation
between domain wall separation and the quark mass. The massive quarks exhibit a second order thermal,
meson melting transition. Witten’s multitrace prescription can be used to interpret these configurations as
having a dynamical mass from a Nambu-Jona-Lasinio interaction—here the transition is first order.
Confinement can be introduced into the gauge sector by compactifying one direction of the D5.
Compactification induces chiral symmetry breaking and there is a first order thermal restoration transition.
If a NJL interaction is also introduced then the confinement and chiral symmetry breaking scales can be
separated.
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In this paper we will continue our investigation of
domain wall fermions in holography as discussed in
[1,2]. The domain wall trick [3] is now a standard piece
of lattice technology for studying chiral fermions. In
holography [4], realizing chiral fermions should also allow
the construction of duals for a wider set of theories that
includes QCD and beyond.
In [1] we studied a basic domain wall construction in the

well known D3/probe D7 system [5] that describes quarks
in N ¼ 4 super Yang-Mills theory. A quark mass that is
spatially dependent in one of the directions of the 3þ 1
dimensional theory was introduced. If the mass, m, sharply
switches sign from a large positive value to an equal
negative value then that marks the position of the domain
wall. The (one) lower dimension fermions are localized on
the m ¼ 0 contour, which can be found in the AdS space.
We found U-shaped configurations linking two neighbor-
ing domain walls. The D7 world-volume field that is dual to
the quark mass and condensate can take nonzero values on
the domain wall at next order in the computation. We
solved for this field setting the IR boundary condition from
the radial position of the tip of the U-shape. That demon-
strated that the mass of the quarks, in that example, is
inversely proportional to the separation of the domain
walls. We will see generically, that this story is more

complicated. In theories with multiple scales, such as those
described by a UV cutoff and temperature, the width to
mass identification is more complex. The ability to expli-
citly describe the quark mass and condensate via this field
is one of the benefits of this methodology. For the D3/probe
D7 system the fermions live in 2þ 1 dimensions and are
not chiral.
A holographic description of chiral fermions in 3þ 1

dimensions was constructed in [2] where we used the D5/
probe D7 system in the supersymmetry preserving con-
figuration

0 1 2 3 4 5 6 7 8 9

D5 - - - - - ð-Þ • • • •

D7 - - - - - • - - - •

ð1Þ

The x4 direction is marked in parentheses because it can
be compactified to introduce confinement in the gauge
theory on the D5 brane. This was the main focus of [2]
where we showed that the confinement led to chiral
symmetry breaking and we studied the QCD-like meson
spectrum.
In this paper we wish to study this system further by

examining its thermal transitions. The system can display
meson melting, chiral restoration and deconfinement tran-
sitions and it is important to map out these behaviors. The
D5/probe D7 system is known to have an ill behaved UV—
the coupling of the system grows into the UV and in [6] it
was shown that the mesons of the basic 4þ 1d system are
not normalizable. However, the domain wall system seems
to avoid these inconsistencies because it is dimensionally
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reduced. We will see a further sign of the odd UV behavior
in the uncompactified model—all connected domain wall
pairs asymptote to the same UV separation no matter the
quark mass they describe (a radical break from systems
where the UV width is in one to one correspondence with
different quark masses). We note this but introduce a UV
cutoff in the AdS space that at least seems to give a sensible
description for quarks of any mass up to the cutoff and
removes the ultrastrong coupled regime.
When a UV cutoff is introduced one gains the additional

ability to change the UV boundary condition of fields and,
via Witten’s multitrace prescription, this allows us to
include Nambu-Jona-Lasinio operators [7] that can also
trigger chiral symmetry breaking. We thus now have a
system with many variables to explore.
Thermal transition might be expected to occur when the

black hole horizon grows with temperature to swallow
more and more of the holographic radial direction including
the tip of any U-shaped domain wall configurations. The
preferred configuration is then two disconnected domain
walls that fall into the black hole. We briefly demonstrate
this first order transition for domain wall configurations of
fixed UV width. However, this is naive. In the presence of
temperature and a UV cutoff, we must be careful to
compare between the same theories at different temper-
atures. In particular we need theories with the same quark
mass at the UV cutoff, and we find that this is not captured
by ordering the configurations by their width. A benefit of
the domain wall method is that there is a holographic field
on the domain wall that is directly dual to the quark mass
and condensate. By solving for this fields profile we can
label configurations by the quark mass. When we do this
we find that the configurations re-assemble themselves to
give a second order thermal, meson melting transition.
Alternatively we can interpret our solutions using

Witten’s multitrace prescription as the massless theory
with a Nambu-Jona-Lasinio operator triggering chiral
symmetry breaking. Here we must label configurations
by the value of the NJL coupling g and after doing so find in
this case a first order chiral restoration transition.
Finally we can include confinement by compactifying

the x4 direction of the D5 branes. The low temperature
behavior has confinement and chiral symmetry breaking
while above a first order transition to the deconfined phase
the description returns to that of the description already
described.

I. DOMAIN WALL CONFIGURATION

Let us first consider the basic domain wall setup. The
gauge degrees of freedom are described by the geometry

generated by Nc D5 [8] (with U ¼ r=α0, K ¼ ð2πÞ3=2
gYM

ffiffiffi

N
p )

ds2

α0
¼KUð−dt2þdx21−4Þþ

1

KU
ðdρ2þρ2dΩ2

2þdx29Þ ð2Þ

where U2 ¼ ρ2 þ x29

eϕ ¼ U
K
; g2YM ¼ ð2πÞ3gsα0: ð3Þ

Note that in the 5þ 1d dual the gauge field is of energy
dimension one so 1=g2YM has energy dimension two. Here
we see that U has dimension one and the dilaton is
dimensionless.
Quark fields, initially on a 4þ 1 dimension defect in the

5þ 1 dimension gauge theory, are included via probe D7
branes. The Dirac-Born-Infeld (DBI) action of a probe D7
brane describes its position in x9 as a function of ρ and x4 is
(up to angular factors)

SD7∼
Z

dρe−ϕðKUÞρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð∂ρx9Þ2þ
1

ðKUÞ2 ð∂4x9Þ
2

s

ð4Þ

A. Domain wall locus

We now assume a solution x9 ¼ m with m very large
throughout the space except at particular values of x4 where
the sign ofm switches. At these x4 positions ∂ρx9 → ∞. We
now take the leading terms in the action in ∂ρx9 and set it
proportional to a delta function on the locus of the domain
wall x4ðρÞ

∂ρx9 ¼
ðKUÞ1=2
ð∂4ρÞ

�

�

�

�

locus
δðx4 − x4ðρÞÞ ð5Þ

where we have explicitly shown the Jacobian factor needed
in the delta function. We are left with an action for the
position of the locus of the domain wall x4ðρÞ

Slocus ∼
Z

dρe−ϕðKUÞ1=2ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðKUÞ2ð∂ρx4Þ2
q

ð6Þ

which yields an equation of motion for the locus x4

∂ρx4 ¼
�ρ5=2m

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ5 − ρ5m
p ð7Þ

where ρm is the conserved quantity which physically gives
the minimum ρ value that our solutions will reach.
Integrating gives

x4ðρÞ ¼ � 2

5
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ρ

ρm

�

5

− 1

s

: ð8Þ

Thus these solutions are U-shaped configurations where
m ¼ 0 on a 3þ 1 dimensional space with a holographic
coordinate. The dual on this locus will describe the chiral
fermions located thereon.
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The U-shaped loci cup off at ρ ¼ ρm and then all have
precisely the same width 2π=5 at large ρ. This is a distinct
behavior from the configurations we found in the D3/probe
D7 case in [1]—there any asymptotic separation could be
achieved. In fact in [2] we did not notice this peculiarity
because when a direction of the D5 is compactified to
include confinement this behavior ceases and arbitrarily
wide configurations exits. There, this behavior only man-
ifests for heavy quarks, that were not our interest. This
phenomena is a further odd behavior for the D5/probe D7
system in the far UV. Note this behavior suggests that
the UV width of the configuration cannot be taken to
directly measure a UV parameter such as the quark mass.
Our analysis of the DBI fields in the next section, which
explicitly describe the quark mass, confirms this interpre-
tation. Further at finite temperature, we will find that in a
system at a given temperature there can be two configu-
rations of equal UV width, but with different quark masses.
Below we will sort the solutions by the quark mass or NJL
interaction coupling rather than width.
A natural solution to the far UV behaviors is to simply

include a UV cutoff at some fixed ρUV. The solutions then
can take any width value in the UV up to a maximum of
2π=5 (corresponding to ρm ¼ 0). The zero width value is
when ρm ¼ ρUV. Presumably wider solutions are simply
unstable to mutual attraction in the x4 direction. Our next
test of these solutions is whether they have sensible and
consistent theories living on the loci.

B. Domain wall theory

The Lagrangian governing the fluctuations on the
domain wall locus is given by inputting the delta function
)5 ) by hand into (4). This enforces the geometry of the
locus and the resulting domain wall theory is considered a
fluctuation on the background U-shaped configuration (see
[1] for more details on the procedure). The action is

SDW ∼
Z

dρρ5=2ð∂ρx4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2 þ
1

ðKUÞ2 ð∂μx9Þ
2

s

;

ð9Þ

with the function

A ¼ 1þ 1

ðKUÞ2ð∂ρx4Þ2
ð10Þ

encoding the x4 dependence of the holographic fields. The
equations of motion for the vacuum of the theory,

1

2
ρ5=2ð∂ρx4Þ

ð∂A
∂x9
Þð∂ρx9Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2
q − ∂ρ

�

ρ5=2∂ρx4Að∂ρx9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2
q

�

¼ 0;

ð11Þ

which shows that the x9ðρÞ field has solutions with
x9 ¼ const. It is natural to set this constant to the minimum
radius ρm that the U-shaped locus reaches to—the IR mass
gap. The constant solution matches that seen in D3/probe
D7 domain wall configurations where there the fields on
the domain walls are simple states with vanishing con-
densate and no renormalization of the quark mass on their
loci [1]. We plot these solutions in Fig. 1 to display the IR
boundary conditions and show that different ρm domain
walls lead to different UV masses.
We stress again here that we have many configurations

with the same far UV width of 2π=5 but with different IR
masses ρm. The holographic field on the locus dual to the
quark mass provides supporting solutions with different
values of the UV mass. The UV width cannot be taken to
measure the quarkmass but the holographic field on the locus
does allow a clean interpretation of the configurations.
In the next section, we will repeat the above construction

in the background of a black fivebrane to describe the finite
temperature behavior of the system.

II. FINITE T-MESON MELTING TRANSITION

The supergravity solution for the near horizon geometry
around a stack of black fivebranes with Nc units of RR

6-form flux is (U ¼ r=α0, K ¼ ð2πÞ3=2
gYM

ffiffiffi

N
p ) [8]

ds2

α0
¼KUð−hdt2þdx21−4Þþ

1

KU

�

1

h
dU2þU2dΩ2

3

�

ð12Þ

where

hðUÞ ¼ 1 −
U2

0

U2
ð13Þ

eϕ ¼ U
K
; g2YM ¼ ð2πÞ3gsα0 ð14Þ

0 5 10 15 20

2

4

6

8

10

FIG. 1. Solutions for the profile of the x9 field at zero temper-
ature. The dashed line represents the IR boundary condition
x9ðρmÞ ¼ ρm. These configurations have different UV quark
masses although they all tend to the same width in the far UV.
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As before, the dual gauge field is of energy dimension one
and 1=g2YM has dimension two. Here we see that the radial
direction U has dimension one and the dilaton is dimen-
sionless. U0 is the position of the horizon and its value is
proportional to the temperature.
It is helpful to perform a coordinate transformation to

make the presence of a flat 4-plane transverse to the horizon
manifest, as naturally seen by the embedded probe D7
branes. This involves a transformation from the U coor-
dinates to a dimensionless set of v coordinates

U
U0

¼ 1þ v2

2v
: ð15Þ

U0 has dimension one and, as the position of the horizon in
the geometry, encodes the temperature of the thermal state
in the dual gauge theory. Note that v is dimensionless and
that the black hole horizon always lies at v ¼ 1. To
introduce another scale to compare to U0ðTÞ, and to
remove the strongly coupled far UV, we will introduce a
UV cutoff, vUV and work at 1 ≤ v ≤ vUV. In the spirit of
the discussion in [2], one can imagine the UV cutoff to
correspond to the scale where an asymptotically free gauge
theory such as QCD moves from UV weak coupling to IR
strong coupling. One would only expect a weakly coupled
gravity dual below this scale. Since v ¼ 1 independently of
T in the v coordinates we will vary vUV to adjust the ratio of
these two scales. Changing the ratio can be interpreted
either as moving the cutoff at fixed T or, as we will choose,
varying T at fixed cutoff.
In the v coordinates, the metric becomes

ds2 ¼ Gxð−hðvÞdt2 þ ðdx1−4Þ2Þ
þ Gvðdρ2 þ ρ2dΩ2

2 þ dL2Þ; ð16Þ

with metric factors

Gx ¼ KU0

v2 þ 1

2v
; hðvÞ ¼ 1 −

�

2v
v2 þ 1

�

2

; ð17Þ

Gv ¼
U0

K
1þ v2

2v3
; e−ϕ ¼ K

U0

2v
1þ v2

: ð18Þ

The position of probe D7s in this geometry is described by
the DBI action for the embedding Lðρ; x4Þ

SD7∼
Z

d8xhðvÞe−ϕG5=2
x G3=2

v ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð∂ρLÞ2þ
Gv

Gx
ð∂4LÞ2

s

:

ð19Þ

Here again we assume a solution L ¼ m which sharply
changes sign along a contour x4ðρÞ. Taking ∂4L of the form
of a large number times a delta function on the domain wall

locus x4ðvÞ dimensionally reduces the action of the D7
embedding to

Slocus ∼
Z

d7xhðρÞe−ϕðρÞG2
x;lG

3=2
v;l ρ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Gx;l

Gv;l
ð∂ρx4Þ2

s

;

ð20Þ

where the quantities Gx;l; Gv;l are the metric factors on the
locus (in this case, where v ¼ ρ). This action gives the
equation of motion for the domain wall locus

∂ρx4 ¼
�CG1=2

v;l

G1=2
x;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2e−2ϕG5
x;lG

2
v;lρ

4 − C2
q : ð21Þ

which can be integrated numerically to solve for the
position of the domain walls. These loci share similarities
with the domain wall loci in the nonthermal geometry. Like
(8), the numerical solutions from (21) are U-shaped and cup
off at some ρmin. The connected solutions have an upper
maximum width. There also exist disconnected solutions,
where the tip of the domain wall pair has been swallowed
by the black brane horizon, and the locus splits into two flat
pieces that are effectively screened from one another. This
disconnected solution naturally exists at all UV domain
wall separations and which the system will prefer is
determined by their respective free energies. The fluctua-
tions about the disconnected solutions are quasinormal
modes [9], indicating that mesons in the theory will
dissipate into the thermal plasma, and thus we are in a
melted phase. The following section will examine theories
that live on the connected loci and the phase transitions they
exhibit.

A. Thermal transition with respect to width

To begin to orientate ourselves to the solutions at
different U0ðTÞ=ΛUV values let us be naive and treat the
UV width of a configuration at ΛUV as a parameter. We
stress these will not turn out to be configurations that share
any UV Lagrangian parameter though.
Thus for each choice of vUV we seek solutions for the

U-shaped domain wall loci that share a particular x4 width.
Typically at large vUV (low temperature) there are three
solutions, as depicted in Fig. 2: two connected solutions
and one disconnected set of domain walls. For small
choices of vUV (high temperature) only disconnected
solutions exist for the same width—the horizon grows
out toward the UV boundary and “eats” the connected
solutions.
The free energy, in the absence of any other thermo-

dynamic variables (such as chemical potential), is simply

F ≃ −Slocus; ð22Þ
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Herewe consider a free energy that is a functionof the ratio of
the UV width and the temperature F ¼ FðW;U0ðTÞ=ΛUVÞ.
For the disconnected solutions, the free energy is indepen-
dent of the width, since they are decoupled. At a given
temperature Fdisconnected is just a constant, that is solely
dependent on the UV boundary, and can be subtracted from
every solution to remove the cutoff dependence.
Calculating these actions for this system we find the

results shown in Fig. 3 suggesting a first order phase
transition. The connected solution is favored at small
temperature; the disconnected solution at large temper-
ature; the second connected solution that lies closest to the
horizon has the highest energy of all the configurations and
must correspond to the effective potential maxima between
the two minima that interchange at the transition.
As we will now show though, this analysis is not just

naive but gets the order of the meson melting transition
wrong. To fully understand the configurations we should
require them to have the same UV Lagrangian parameters.
In systems such as the D3/probe D5 D̄5 system this
identification is hard because the configuration does not
provide a holographic field dual to the quark mass and

condensate. In the domain wall system though the field
dual to the 4þ 1 dimension quark condensate can still
fluctuate on the domain wall and provides a field to enable
this identification as we have argued in [1]. We will pursue
this line of reasoning in the next section.

B. Domain wall theory at finite T

Now we turn to the holographic theory that lives on the
domain wall loci, and set out the prescription by which we
can identify the quark mass for a given domain wall locus.
In the thermal geometry one has, after restricting the DBI
fields to the domain wall locus,

SDW ∼
Z

d6x
Z

vΛ

1

dρhðvÞe−ϕðvÞG
5=2
x ðvÞG3=2

v ðvÞ
G1=2

v ðρÞ
ð∂ρX4Þ

× ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Γð∂ρLÞ2
q

: ð23Þ

with Γ ¼ 1þ GvðvÞ
GxðvÞð∂ρX4Þ2. The equations of motion for L

then follow straightforwardly. The field L’s UV asymp-
totics gives information about the mass and chiral con-
densate in the theory with large v solution

L ∼ m̃þ c̃
v3

: ð24Þ

However, it is noted that L is in dimensionless units, and as
such does not represent the physical, dimensionful quan-
tities. For the case of the mass, we have

m
Λ

¼ 1þ m̃2

m̃
vΛ

1þ v2Λ
: ð25Þ

The condensate is proportional to c̃ [2] and, assuming the
cutoff vUV ≫ 1, we have

hq̄qi
Λ3

∝
c̃
v3Λ

: ð26Þ

In the IR, on the U-shaped loci, we again assume
LðρminÞ ¼ ρmin and L0ðρminÞ ¼ 0 so that the IR mass gap
is consistent. One then shoots out to determine the UV
mass and condensate values.
With these identifications of the UV parameters, it is

possible (numerically) to study the system at varying
temperature and categorise the observed phenomena. In
practice in any given geometry with horizon at v ¼ 1 and
some choice of UV cutoff the easiest variable to change
remains the width via the choice of ρmin. On each such
configuration we then solve the domain wall theory to
identify the UV mass. From a sequence of such tabulated
results one can identify a particular mass for a particular
U0ðTÞ=ΛUV.

UVU0(T)

2 4 6 8 10
U

−1.0

−0.5

0.5

1.0

X4

FIG. 2. A cartoon of three domain wall loci solutions at a fixed
temperature that share the same UV width.

0.1 0.2 0.3 0.4 0.5

−0.8

−0.6

−0.4

−0.2

F

FIG. 3. The free energy of the three different domain wall
configurations of fixed width—two Us (blue and black dotted)
and the disconnected (red) case—against U0 or T. We see a first
order transition with respect to temperature, here with w ¼ 0.9.
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Thus we now discuss theories at fixedm=ΛUV. When the
temperature lies far below ρmin the IR mass scale of the
U-shaped loci then the width of the locus at the UV cutoff
maps to the quark mass. As the temperature rises though the
domain wall loci that describe an equal quark mass begin to
shift and the UV width shrinks. We sketch this behavior in
Fig. 4 and show data for the width against temperature
in Fig. 5.
As one raises the temperature further the U-shaped loci

begin to “square off” and the minimum point approaches the
horizon. In the width versus temperature plot, Fig. 4, we can
see that the width of these configurations freezes at a fixed
value. Our interpretation is that these solutions, which
essentially live parallel to the black hole horizonuntil kinking
to a straight line in v, are really the systems best attempt to
describe two disconnected branes. This is a second order
transition to the meson melted phase of the system.
We stress that when ordering the domain wall loci by

equal quark mass, the first order thermal transition seen

with width changes to a continuous second order transition.
This is achieved by the width of the U-shaped loci changing
smoothly, to resort the configurations naively ordered by
width, at high temperature to allow this smooth behavior.
To emphasize the second order nature of the transition we
plot the quark condensate against temperature in Fig. 6 to
show that it changes continuously at the transition. As far as
we know, this is the first example of a second order meson
melting transition in holography.
At T ¼ 0 the system reproduces the flat solutions for the

domain wall loci field x9 of the nonthermal geometry in
the Sec. I B, where mIR ¼ mUV. Intuition suggests that the
system will exhibit a transition when T > m, which we
indeed find to be the case. We plot how the critical
temperature varies with the quark mass in Fig. 7—it shows
that there is direct proportionality between U0ðTcÞ and m.
Thus for massless quarks, the phase transition occurs for
any T > 0.

C. NJL interpretation

Witten’s multitrace operator prescription [10] teaches us
that where a solution such as those we have discussed has a
UV quark mass there are two interpretations. Either one has

UVU0(T)

0 2 4 6 8 10
U

−2

−1

1

2

X4

FIG. 4. A cartoon showing the evolution of a domain wall
system with constant m=Λ under an increase of temperature T
(red, dashed) to T 0 > T (red, solid), the connected locus begins to
“square off”. Upon increase from T 0 to Tc > T 0 (red, dotted) the
tip of the locus falls into the horizon and the locus becomes
disconnected (dotted, black).

0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

w

FIG. 5. UV widths of the domain wall configurations of mass
m=Λ ¼ 0.15. At a critical temperature U0ðTcÞ=Λ ∼ 0.08 The U
shaped loci drop into the horizon and split into two separate
screened pieces, marking the second order transition.

0.05 0.10 0.15 0.20 0.25

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

FIG. 6. The corresponding condensate for configurations with
m=Λ ¼ 0.15, at the critical temperature the condensate vanishes,
indicating the solutions have ∂ρL ¼ 0.

Melted

Stable mesons

0.1 0.2 0.3 0.4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

FIG. 7. Variation in critical temperature U0ðTcÞ=Λ with
changes in the quark mass m=Λ.
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a quark mass arising form a bare Lagrangian term, or
something like a Nambu-Jona-lasinio (NJL) interaction [7]
that dynamically generates a quark mass. We examine this
case further here. An effective four fermion interaction

ΔL ¼ g2

Λ2
UV

ψ̄LψRψ̄RψL ⟶
hψ̄LψRi

mψ̄RψL; ð27Þ

upon condensation of the ψ̄LψR operator, generates an
effective mass term for the quarks. This four fermion
interaction is a double trace operator and we can follow
the prescription in [10]. They arise as boundary conditions
on the fields in the supergravity theory, and for the case of
holographic NJL interactions, this was explored in [11]. It
was found that one could add terms to the Lagrangian to
impose

g2

Λ2
UV

hψ̄LψRi ¼ m ð28Þ

at the classical level.
Following suit, we can reinterpret each configuration in

our analysis above with m the quark mass and hψ̄LψRi the
quark condensate. The mass can be interpreted as dynami-
cally generated and we can calculate the NJL coupling g2

from the asymptotic values of the holographic field L, with

g2 ¼ 1þ m̃2

m̃ c̃
v4Λ

1þ v2Λ
: ð29Þ

Now we must again sort our U-shaped configurations at
each U0ðTÞ=ΛUV but by g2 rather than m—it is g2 that is
now defining the theory at the cutoff. In this case we find
that to each value of g2 there are three configurations: two
U-shaped configurations and one flat solution that has
fallen into the horizon. This behavior is shown directly in
Fig. 8. Here the behavior we saw at fixed width is recovered

in contrast to that at fixed mass where there was just a
single U-shaped configuration for a given mass value.
As expected where there are three solutions, i.e., three

stationary points of the action (and hence free energy) a first
order phase transition is observed. One can imagine a
system with a temperature dependent potential has three
extrema, and is bounded from below. It must have two local
minima, one local maxima, and one (or at the transition
temperature two) global minima. The U-shaped configu-
rations in this system represent one of the local minima, and
the local maxima, with the flat locus representing the other
local minimum. As the temperature changes and the two
local minima become equal the system will undergo a
discontinuous, first order phase transition. This is explicitly
realized in Fig. 9 where the transition is shown for g2 ¼ 5
and the phase transition occurs at a critical temperature
of U0ðTcÞ=Λ ∼ 0.1.
In Fig. 10 we map the critical temperature of the phase

transition as a function of g2. Note here the transition is a
chiral restoration transition as well as a meson melting
transition.

0.4 0.6 0.8 1.0
w

0.05

0.10

0.15

0.20

g2

FIG. 8. The two U-shaped solutions of different widths (each
with the same NJL coupling g2) shown for a temperature of
U0ðTÞ=Λ ∼ 0.22.

0.1 0.2 0.3 0.4 0.5

−1.0

−0.5

0.5

FIG. 9. The free energy of the three solutions (two U-shaped
and flat) for g2 ¼ 5 against temperature showing the first order
transition.

Chiral symmetry restored,
melted

Chiral symmetry broken

2 4 6 8 10 12 14
g2

0.1

0.2

0.3

0.4

FIG. 10. Critical temperature,U0ðTcÞ=Λ of the first order phase
transition with respect to g2.
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D. Confining geometry

Finally we can consider the D5/probe D7 system with a
compact x4 direction. Compactifying the D5 introduces a
confinement scale in the gauge dynamics. This system was
studied in [2] where the confinement was shown to lead to
chiral symmetry breaking in the domain wall theory. The
confining geometry is given by [12]

ds2

α0
¼ KUð−dt2 þ dx21−3 þ hdx24Þ

þ 1

KU

�

1

h
dU2 þ U2dΩ2

3

�

ð30Þ

hðUÞ ¼ 1 −
U2

C

U2
ð31Þ

Directly comparing to (30) one observes the usual story that
the free energy switches from preferring the confined
geometry at low T to the finite temperature deconfined
geometry when U0 ¼ UC. This means that our analysis
above corresponds to that of the high temperature phase of
this system. The low temperature phase is that described in
[2]. In practice this simply means that in our phase
diagrams in Figs. 7 and 10 one should draw a horizontal
line across at U0 ¼ UC and below this line the model is
confined. Note that for large g there remains chiral
symmetry breaking even above the deconfinement tran-
sition separating the phenomena.

III. SUMMARY

The domain wall method to isolate chiral fermions
should be a useful technique to build holographic models
of QCD and wider chiral gauge theories.

In this paper we have studied the thermal phase tran-
sitions in the D5/probe D7 system. Domain wall configu-
rations are generically U-shaped with two domain walls
meeting. We have studied the holographic field on the
domain wall dual to the quark mass and condensate. In the
presence of temperature this allows us to classify domain
wall solutions by mass or NJL coupling.
Our analysis shows that in the basic D5/probe D7 system

the U-shaped configurations describe massive quarks. The
meson melting transition, as a black hole horizon grows
into the bulk, occurs when the tip of the U enters the
horizon leaving two disconnected walls. We have shown
this transition, at fixed mass, is second order.
In the NJL interpretation where one fixes the NJL

coupling at the UV cutoff, the chiral restoration transition
is first order.
These configurations can also describe the high temper-

ature deconfined theory above a first order transition from
a geometry with a compact x4 direction. The low energy
theory below that transition has confinement and chiral
symmetry breaking.
In the future we hope to develop the technology

described here to also include finite density. We should
then be able to generate descriptions of the QCD phase
diagram, of heavy ion collisions and of neutron star
interiors.
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