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While the ten-dimensional type IIB supergravity action evaluated on AdS5 × S5 solution vanishes, the
five-dimensional effective action reconstructed from equations of motion using the M5 × S5 compacti-
fication ansatz is proportional to the AdS5 volume. The latter is consistent with the conformal anomaly
interpretation in AdS=CFT context. We show that this paradox can be resolved if, in the case of M5 × X5

topology, the ten-dimensional action contains an additional 5-form-dependent “topological” termR
F5M ∧ F5X. The presence of this term is suggested also by gauge-invariance considerations in the

Pasti-Sorokin-Tonin formulation of type IIB supergravity action. We show that this term contributes to the
ten-dimensional action evaluated on the D3-brane solution.
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I. INTRODUCTION

Many discussions of applications of the maximally
supersymmetric case of AdS=CFT duality [1] start with
a classical action of five-dimensional (5D) gauged super-
gravity or simply 5D gravity with a cosmological term

S5 ¼ −
1

2κ25

Z
d5x

ffiffiffi
g

p ðR5 þ 12L−2 þ � � �Þ: ð1:1Þ

Evaluating this action on the AdS5 vacuum solution with
radius L gives a factor of volume of AdS5 space. Assuming
S4 as a boundaryofAdS5, the regularizedvalueof thevolume
reproduces the planar part of the UV-divergent (conformal a-
anomaly) term in the free energy of N ¼ 4 SUðNÞ super
Yang-Mills theory on S4 (see, e.g., Refs. [2–4]),1

S5 ¼
8L4

2κ25
volðAdS5Þ ¼ N2 logðΛrÞ: ð1:2Þ

The action like (1.1) is also a starting point of investigations
of anti-de Sitter (AdS) black hole thermodynamics [5–8].
The 5D gauged supergravity action is assumed to follow

from the ten-dimensional (10D) type IIB supergravity
action compactified on S5 [9,10]. However, the actual
compactification procedure involves starting with the
10D field equations [11,12], substituting there an S5

compactification ansatz, and then reconstructing the cor-
responding action for the 5D fields (cf. Ref. [13]). The
bosonic part of the 10D type IIB action may be written as2

Ŝ10 ¼ −
1

2κ210

�Z
d10x

ffiffiffiffi
G

p �
e−2ϕ

�
Rþ 4ð∂μϕÞ2 −

1

2
jH3j2

�

−
1

2
jF1j2 −

1

2
jF3j2 −

1

4
jF5j2

�
−
1

2

Z
B2 ∧ F3 ∧ F5

�
þ � � � ; ð1:3Þ

F1 ¼ dC0; F3 ¼ dC2 − C0H3;

F5 ¼ dC4 −
1

2
C2 ∧ H3 þ

1

2
B2 ∧ F3: ð1:4Þ

Here, as usual, the self-duality conditionF5 ¼ �F5 is relaxed
[14] and is imposed by hand at the level of equations of
motion (alternative approaches that involve auxiliary fields
where the self-duality condition follows from the equations
of motion are discussed in Refs. [15–20]).
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1Here, we use that 1
2κ2

5

¼ L4volðS5Þ
2κ2

10

, 2κ210 ¼ ð2πÞ7g2sα04, and L4 ¼
4πgsα02N. To recall, volðSnÞ ¼ 2π

nþ1
2

Γðnþ1
2
Þ→n¼5 ¼ π3, volðAdS2nþ1Þ ¼

2ð−1Þnπn
Γðnþ1Þ logðΛrÞ→2nþ1¼5 ¼ π2 logðΛrÞ, andR5 ¼ −20L−2. r is the
radius of boundary 4-sphere, andΛ is an IR cutoff on the AdS side
(corresponding to UV cutoff on the super Yang-Mills side).

2Here, jFpj2 ¼ 1
p!Fμ1…μpF

μ1…μp . The extra 1
2
in the normaliza-

tion of the F5 kinetic term has to do with the requirement that the
corresponding analog of the Einstein equation should contain the
contribution of the stress tensor of only the self-dual half of F5.
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Comparing (1.1) and (1.3), we arrive at the following
apparent paradox: the 10D action (1.3) evaluated on the
vacuum AdS5 × S5 solution

ds210 ¼ L2ðds2AdS5 þ dΩ2
5Þ; F5 ¼ 4L−1ðϵ5 þ �ϵ5Þ;

L4 ¼ 4πα02gsN ð1:5Þ

is clearly vanishing (R¼−20L−2þ20L−2¼0;jF5j2¼0),3

while the value of the 5D action (1.1) on the AdS5 solution
is nonzero (1.2) and consistent with the AdS=CFT duality.
It is of course well known that substituting some special-

symmetry ansatz for a subset of fields into the action is not
the same as doing this in the equations of motion and then
reconstructing the corresponding dimensionally reduced
action for the remaining field variables. However, the
values of the actions on the full solutions are expected
to match. Furthermore, the problem is that the 10D action
and, in particular, its on-shell value should be more
fundamental; it should follow from (a properly defined)
quantum string theory path integral. Thus, using the 10D
approach is important if one is to go beyond the leading
order in α0, in particular, in the context of AdS=CFT.
One may wonder if this issue has to do with the subtlety

of implementing self-duality of F5. However, this is not the
case; similar disagreement between the on-shell values of
the reduced three-dimensional (3D) action and the 10D
action is found in the case of AdS3 × S3 × T4 background
supported by a 3-form flux. Here, the 10D action is well
defined off shell for a generic 3-form field, and the effective
six-dimensional (6D) self-duality of the latter (implying the
vanishing of the 10D action) is just a feature of a particular
solution.
A natural way to resolve this problem is to assume that

the 10D action (1.3) is missing some “boundary term” that
restores the equivalence of its on-shell value with that of the
5D action (1.1). However, such a term cannot be one of the
familiar choices like the Gibbons-Hawking-York (GHY)
one [21,22]4 or boundary terms that may be added to the 5D
action (1.1) to make it IR finite when evaluated on a
classical solution with AdS5 asymptotics (see, e.g.,
Refs. [2,7,23,24]).
An important general point is that boundary or topo-

logical terms may not be universal; they may depend on a
choice of vacuum (near which one expands in order to find
an effective action for fluctuations) or asymptotic boundary
conditions. For example, in the type IIB string theory, there
are two maximally supersymmetric vacua—the flat space
R1;9 and AdS5 × S5 [11]—that have different asymptotic
symmetries. The corresponding effective actions may, in
principle, contain different boundary terms.

In what follows, we will be interested in the case when
the topology of 10D space-time is that of a product
M5 × X5 where M5 is noncompact and X5 is a compact
space. We will suggest a novel 5-form dependent “topo-
logical” term that should be added to the 10D action (1.3) to
restore its on-shell equivalence with the reduced 5D
action (1.2).5

Let us stress again that the reason why one would like to
understand the 10D origin of the on-shell value of the
reduced action like (1.2) is that it should have a string
theory origin (being related to string partition function on a
2-sphere). For example, the tree-level bosonic string
effective action may be written as6

SD ¼ Sbulk þ Sbndry; Sbulk ¼ ŜD ¼ ϰ

Z
dD x

ffiffiffiffi
G

p
e−2ϕ β̃ϕ;

ϰ ¼ 2

κ2Dα
0 ; ð1:6Þ

β̃ϕ ¼ c0−
1

4
α0
�
Rþ 4∇2ϕ− 4∂μϕ∂

μϕ−
1

2
jH3j2

�
þOðα02Þ;

c0 ¼
1

6
ðD− 26Þ; ð1:7Þ

Sbndry ¼ −
1

2
ϰα0

Z
dD−1 x

ffiffiffi
γ

p
e−2ϕðK − 2∂nϕÞ

¼ −
1

2
ϰα0

Z
dD−1 x

ffiffiffi
γ

p ∇aðe−2ϕnaÞ: ð1:8Þ

Here, the integrand (1.7) of the bulk part is proportional to
the generalized conformal anomaly coefficient β̃ϕ and thus
must vanish on-shell7 not only to first two leading orders
[25] but also to all orders in α0 [26].8 The boundary term
(1.8) which is a dilatonic generalization [28] of the standard
GHY term may, in general, produce a nonzero on-shell
value for the total action.
Similar remarks apply to the NS-NS part of the type IIB

superstring effective action. Note that the boundary term
that should be added in general to the bulk type IIB action
(1.3) [with the second-derivative dilaton term in (1.7)
integrated by parts and thus not automatically vanishing

3Note that a self-dual 5-form is real in the case of Minkowski
10D signature but is imaginary in the Euclidean signature case.

4This term does not contribute in the case of AdS asymptotics.

5In the case of solution of 6D theory (obtained by compacti-
fication on T4) supported by self-dual 3-form flux, one will need
to add a topological term built out of H3. In the case of the
AdS3 × S3 × T4 solution supported by 5-form flux discussed in
Sec. III, one will need the same F5-dependent topological term.

6This action may be reconstructed also from scattering
amplitudes near asymptotically flat vacuum, with the boundary
term required for a consistent definition of the graviton/dilaton S
matrix.

7Strictly speaking, this is true for backgrounds for which there
is no source in the dilaton equation; cf. discussion of brane
solutions in Appendix B.

8The same conclusion was reached for the on-shell value of the
closed bosonic string field theory action [27].
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on solutions with nonconstant dilaton] is given by (1.8)
without the ∂nϕ term, i.e.,

Sbndry ¼ −
1

κ210

Z
dD−1 x

ffiffiffi
γ

p
e−2ϕK: ð1:9Þ

As for the R-R terms in the second line of (1.3), they may
lead to additional nontrivial boundary contributions when
evaluated on a classical solution.9 Given that the bulk jF5j2
term vanishes identically upon use of the on-shell self-
duality condition, an extra F5-dependent contribution to
10D action would be required to get a nonzero contribution
for solutions with only F5 flux being nonzero. This new
term should not change the equations of motion; i.e., it
should be a topological or boundary term.10

We shall suggest such a topological term in Sec. II. In
Sec. III, we shall compute the value of the full 10Kathy
action [containing the bulk term (1.3), the boundary term
(1.9), and the topological term] on the extremal D3-brane
solution and its nonextremal generalization. We shall also
note the nonzero value of the topological term on solutions
describing BPS intersections of two and four D3-branes
that in the near-core limit reduce to AdS3 × S3 × T4 and
AdS2 × S2 × T6 backgrounds, respectively. Section IV will
contain some concluding remarks. In Appendix A, we shall
argue that the presence of the same topological term is
suggested also by gauge invariance requirement in the
Pasti-Sorokin-Tonin (PST) formulation [16,17] of type IIB
supergravity action. In Appendix B, we shall discuss the
computation of the value of the 10D action on fundamental
string, NS5-brane, and D5-brane solutions.

II. TOPOLOGICAL TERM

While the obvious guess for the 10D topological
invariant

R
F5 ∧ F5 is identically zero, a nontrivial candi-

date is possible if we assume that the 10D space has a
particular topological structure. Namely, let us specify to
the backgrounds for which the 10D space-time is a product
M5 × X5 where M5 is noncompact (e.g., asymptotically
AdS5) while X5 is compact and a similar factorization
applies to the 5-form field strength (for simplicity, we shall
ignore all other fields),

M10 ¼ M5 × X5; F5 ¼ F5M ⊕ F5X; ð2:1Þ

and also its potential C4 ¼ C4M ⊕ C4X. Then, consider the
following topological term

Stop ¼ γ

Z
F5M ∧ F5X: ð2:2Þ

As M5 is noncompact and F5M ¼ dC4M while dF5X ¼ 0,
this term reduces to a boundary contribution and thus does
not affect the bulk equations of motion.
Integrating over the compact X5 then gives

Stop ¼ γq
Z
M
F5M; q ¼

Z
X
F5X: ð2:3Þ

The integral of a 5-form F5M is effectively equivalent to an
extra M5 volume term. Equivalently, using the on-shell
condition of self-duality of F5 giving F5X ¼ �F5M, we
conclude that Stop ¼ γ

R
F5M ∧ �F5M ∼ volðX5Þ RM jF5Mj2,

which again produces, as is well known [30], a contribution
to 5D cosmological term.
More generally, the assumption of simple “5þ 5”

factorization of F5 may be relaxed: provided F5 can be
split into an “electric” part (involving time differential)
and its dual magnetic part, the topological term may be
written as

Stop ¼ γ

Z
FðelÞ
5 ∧ FðmagÞ

5 ; FðmagÞ
5 ¼ �FðelÞ

5 : ð2:4Þ

The value of the coefficient γ in (2.2), (2.4) required to
match the coefficient of the cosmological term in (1.1) is11

γ ¼ −
1

4ð5!Þ2κ210
; ð2:5Þ

so the topological term in (2.4) takes the form

Stop ¼ −
1

4ð5!Þ2κ210

Z
FðelÞ
5 ∧ �FðelÞ

5

¼ 1

4κ210

Z
d10x

ffiffiffiffi
G

p
jFðelÞ

5 j2: ð2:6Þ

The total 10T action is then given by the sum of the bulk
term (1.3), the new topological term (2.2), and the
boundary term (1.9):

S10 ¼ Ŝ10 þ Stop þ Sbndry: ð2:7Þ

Note that the jF5j2 term in the bulk action (1.3)
may be written (before imposing self-duality) as

9For example, the jF3j2 term reduces to a boundary term upon
use of the field equation ∇μFμνλ þ � � � ¼ 0; cf. also Ref. [29].

10Note that the fact that particular topological or boundary
terms may or may not be relevant depending on boundary
asymptotics of the fields is not unfamiliar. For example, the
GHY boundary term complementing the Einstein action is
relevant in the asymptotically flat space but may not be
contributing in the AdS case (e.g., it vanishes for the AdS
Schwarzschild black hole because the black hole correction to the
AdS metric vanishes too rapidly at infinity [5]).

11Note that in our notation (with Minkowski signature
10D metric) for a general 5-form one has

R
F5 ∧ �F5 ¼

−ð5!Þ2 R d10x
ffiffiffiffi
G

p jF5j2.
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1
8κ2

10

R
d10x

ffiffiffiffi
G

p ðjFðelÞ
5 j2þjFðmagÞ

5 j2Þ. Adding the topological

term (2.6) corresponds effectively to reversing the sign of
the magnetic part in jF5j2, thus doubling the contribution of
the electric part once going on shell (the self-duality

condition implies jFðelÞ
5 j2 ¼ −jFðmagÞ

5 j2).
As a result, the value (1.2) of the tree-level type IIB

action on the AdS5 × S5 vacuum solution comes entirely
from the topological term (2.2), (2.5): using (1.5), we get

S10jAdS5×S5 ¼ StopjAdS5×S5

¼ −
1

4ð5!Þ2κ210

Z
FAdS5 ∧ FS5

¼ −
4L8

κ210
volðAdS5Þ; ð2:8Þ

which is the same result that follows from the 5D
action (1.2).
This has straightforward generalization to the case of

AdS5 × X5 solutions where X5 is an Einstein manifold as in
Ref. [3]: instead of (1.2), one gets S5 ¼ kN2 logðΛrÞ, with
k≡ volðS5Þ

volðX5Þ and L4 ¼ 4πα02gs kN.

As we will show in Appendix A, the same term (2.2)
with precisely the same coefficient (2.5) is also required for
gauge invariance in the PST formulation [16,17] of the 10D
supergravity action where the 5-form self-duality condition
follows from the equations of motion.
To provide further evidence that adding the term (2.2) to

the type IIB action (1.3) restores its on-shell equivalence
with the 5D reduced action like (1.1), let us consider the
following M5 × S5 ansatz for the metric and F5 (with its
self-duality condition relaxed and all other fields set to
zero):

ds210 ¼ L2½e−10
3
νðxÞgmnðxÞdxmdxn þ e2νðxÞdΩ2

5�;
F5 ¼ 4L−1½aðxÞw5 þ bw5�: ð2:9Þ

Here, x ¼ fxmg (m ¼ 0; 1;…4), w5 and w5 are the volume
forms onM5 (with metric gmn) and S5, and we extracted the
factors of the overall scale L. Following Ref. [31], we
introduced the warp factors depending on a “fixed scalar”
νðxÞ.12 The condition dF5 ¼ 0 implies that a ¼ aðxÞ and
b ¼ const. Then, the R − 1

4
jF5j2 part of the 10D action

(1.3) compactified on S5 becomes

Ŝ5¼−
1

2κ25

Z
d5x

ffiffiffi
g

p �
R5−

40

3
ð∂mνÞ2−VðνÞþ���

�
; ð2:10Þ

VðνÞ ¼ L−2ð−20e−16
3
ν − 4a2e

40
3
ν þ 4b2e−

40
3
νÞ: ð2:11Þ

The three terms in the potential V originate from the scalar
curvature of S5 and the jF5j2 term in (1.3) (cf. Refs. [1,31]).
Using the on-shell self-duality of F5 that gives a ¼ e−

40
3
νb,

we find that the last two terms in the potential (2.11)mutually
cancel, and thus, as was already mentioned above, we do not
reproduce the value of the cosmological constant in (1.1).
If instead one plugs the ansatz (2.9) into the 10D

equations of motion for (1.3) (that imply that b2 ¼ 1;
a ¼ e−

40
3
ν) and then reconstructs the corresponding effec-

tive action for the remaining 5D fields gmnðxÞ and νðxÞ,
one finds instead the action (2.10) with the following
potential [31]:

VðνÞ ¼ L−2ð−20e−16
3
ν þ 8e−

40
3
νÞ: ð2:12Þ

This potential has the minimum at ν ¼ 0 and where it
reproduces the cosmological term 12L−2 in (1.1).
Comparing to (2.11), the potential (2.12) has the sign of
the middle a2 term in (2.11) effectively reversed so that it
doubles the coefficient of the last b2 term upon use of the
on-shell condition a ¼ e−

40
3
ν.

This is precisely what happens if we add to (2.10) the
contribution of the topological term (2.2), (2.5) and then
use the self-duality of F5. We conclude that adding this
term to the type IIB action ensures the equivalence between
the 10D and 5D actions not only for AdS5 × S5 but also for
more general solutions of M5 × S5 topology.

III. 10D ACTION ON D3-BRANE SOLUTIONS

Let us now generalize the above discussion of the on-
shell value of the type IIB action (1.3) with the topological
term (2.2) added to the case of the extremal and nonex-
tremal D3-brane solutions that also have the product
topology as in (2.1).
The extremal D3-brane solution is given by [33,34]

ds210 ¼ h−1=2ðrÞdyμdyμ þ h1=2ðrÞðdr2 þ r2dΩ2
5Þ;

hðrÞ ¼ 1þ L4

r4
; L4 ¼ 4πα02gsN; ð3:1Þ

CðelÞ
4 ¼ ½h−1ðrÞ − 1�dt ∧ dy1 ∧ dy2 ∧ dy3;

F5 ¼ FðelÞ
5 þ FðmagÞ

5 ; FðmagÞ
5 ¼ �FðelÞ

5 ; ð3:2Þ

FðelÞ
5 ¼ 4r3L4

ðr4 þ L4Þ2 dt ∧ dy1 ∧ dy2 ∧ dy3 ∧ dr;

FðmagÞ
5 ¼ 4L−1w5: ð3:3Þ

Here, yμ ¼ ðy0 ≡ t; y1; y2; y3Þ are coordinates along the
D3-brane, and w5 ¼ ffiffiffiffiffiffi

gS5
p

dz5 ∧ … ∧ dz9 is the volume

12The specific dependence on ν in the metric is required to
decouple ν from the 5D graviton; this generalizes the graviton
mode decomposition in Refs. [10,32] where νwas identified with
the zero mode of the trace of the perturbation of the metric of S5.
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form of S5. The near-core limit h → L4

r4 corresponds to the
AdS5 × S5 case.
As discussed in the Introduction, the bulk part of the type

IIB action (1.3) has zero on-shell value (once again, the
self-duality of F5 implies jF5j2 ¼ 0 and thus also R ¼ 0).
A nontrivial contribution may come from the topological
term (2.2) and also from the GHY boundary term (1.9) that
may be nonvanishing in this asymptotically flat case. From
(2.2) and (2.3), we find [cf. (2.8)]13

StopjD3 ¼ −
1

4ð5!Þ2κ210

Z
F5M ∧ F5X

¼ −
1

4ð5!Þ2κ210

Z
FðelÞ
5 ∧ FðmagÞ

5

¼ −
volðS5Þ
2κ210

Z
∞

0

dr8L8r3

ðr4 þ L4Þ2
Z

d4y

¼ −
volðS5Þ
κ210

L4

Z
d4y ¼ −

1

2
Nμ3

Z
d4y: ð3:4Þ

Here,

μ3 ¼
2volðS5ÞL4

Nκ210
¼ 1

ð2πÞ3gsα02
ð3:5Þ

is tension of a unit-charge D3-brane (cf. Footnote 1 andR
d4y is the integral over the D3 world volume directions.

Compactifying ðy1; y2; y3Þ on a torus with volume V3,
we get

StopjD3¼−
1

2
NM3

Z
dt; M3¼μ3V3; V3¼

Z
d3y; ð3:6Þ

where M3 is the mass of a single D3-brane.
The GHY boundary term (1.9) (that did not contribute in

the AdS5 × S5 case) happens to give the same result as in
(3.4) (here, the asymptotic boundary is at r ¼ ∞)14:

SbndryjD3 ¼ −
volðS5Þ
κ210

L4

1þ L4

r4

				
r→∞

Z
d4y

¼ −
1

2
Nμ3

Z
d4y: ð3:7Þ

Then, the on-shell value of the 10D action (2.7) on the
D3-brane solution is given by

S10jD3 ¼ ðStop þ SbndryÞjD3 ¼ −Nμ3

Z
d4y: ð3:8Þ

In addition, one may consider the value of the D3-brane
source action that provides the delta function in the
equation for the harmonic function hðrÞ,

Ssource ¼ −Nμ3

Z
d4y

ffiffiffiffiffiffi
G4

p
þ Nμ3

Z
C4: ð3:9Þ

More generally, considering this as an action of a static
probe D3-branes placed at distance r parallel to the source
branes at r ¼ 0, one finds from (3.1) and (3.2) that the h−1

factors from the two terms in (3.9) cancel each other,15

leaving simply

SsourcejD3 ¼ −Nμ3

Z
d4y ð3:10Þ

coming from the −1 in C4 in (3.2). This is equal to the free
brane action at r ¼ ∞, and the same expression is thus also
at r → 0.
As a result, the total action on D3-brane solution is

given by

Stot ≡ Sbulk þ Stop þ Sbndry þ Ssource;

StotjD3 ¼ −2Nμ3

Z
d4y: ð3:11Þ

Similar computations of the value of 10The action on some
other p-brane solutions are presented in Appendix B.
Next, let us consider the nonextremal (black) D3-brane

solution [33] generalizing (3.1)–(3.3),16

ds210 ¼ h−1=2ðrÞ½−fðrÞdt2 þ dyidyi�
þ h1=2ðrÞ½f−1ðrÞdr2 þ r2dΩ2

5�; ð3:12Þ

hðrÞ ¼ 1þ L̃4

r4
; fðrÞ ¼ 1 −

r40
r4
;

L̃4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L8 þ 1

4
r80

r
−
1

2
r40; ð3:13Þ

CðelÞ
4 ¼σ½h−1ðrÞ−1�dy0∧…∧dy3; σ≡L4

L̃4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r40

L̃4

s
;

FðelÞ
5 ¼ 4σL̃4r3

ðr4þ L̃4Þ2dy
0∧…∧dy3∧dr; FðmagÞ

5 ¼4σL̃−1w5;

F5¼FðelÞ
5 þFðmagÞ

5 ; ð3:14Þ13If we focus on the near-core limit (r ≪ L) of (3.1) and (3.2),
we get the same expression as in (2.8) with the volume of AdS5
written in Poincaré coordinates.

14Here and below, when evaluating the boundary term (1.9),
we neglect contributions that are independent of the parameters of
the solution.

15This is, of course, a manifestation of the BPS condition of the
vanishing force; see, e.g., Ref. [35].

16We use the same parametrization as in Ref. [36].
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where L is the same as in (3.1). We shall consider this
solution for r0 ≤ r < ∞ and should not introduce an
explicit brane source.
The value of the topological term (2.3) is found as in

(3.4):

StopjblackD3 ¼ −
1

4ð5!Þ2κ210

Z
FðelÞ
5 ∧ FðmagÞ

5

¼ −
volðS5Þ
2κ210

σ2
Z

∞

r0

dr8L̃8r3

ðr4 þ L̃4Þ2
Z

d4y

¼ −
volðS5Þ
κ210

L̃4

Z
d4y: ð3:15Þ

Once again, we see that the topological term gives a
nontrivial contribution to the action.
The expression (3.15) may be written also as

StopjblackD3 ¼
1

2
Nμ3C

ðelÞ
4 ðr0Þ

Z
d4y; ð3:16Þ

CðelÞ
4 ðr0Þ ¼ −

σL̃4

r40 þ L̃4
;

Nμ3 ¼
2volðS5ÞL4

κ210
¼ 2volðS5ÞσL̃4

κ210
; ð3:17Þ

i.e., proportional to a product of the electric potential CðelÞ
4

at the horizon and the black D3-brane charge. This is
analogous to what one finds in the case of the Reissner-
Nordstrom black hole [22].17

The calculation of the asymptotic r → ∞ boundary
GHY term (1.9) here gives [cf. Eq. (3.7)]

SbndryjblackD3 ¼ −
volðS5Þ
κ210

�
L̃4

1 − r4
0

r4

1þ L̃4

r4

þ 3r40

�
r→∞

Z
d4y

¼ −
volðS5Þ
κ210

ðL̃4 þ 3r40Þ
Z

d4y: ð3:18Þ

As the bulk 10D action (1.3) is again vanishing, the total
action (2.7) computed on the nonextremal D3-brane sol-
ution then follows by combining (3.15) and (3.18):

S10jblackD3¼ðStopþSbndryÞjblackD3
¼−

2volðS5Þ
κ210

�
L̃4þ3

2
r40

�Z
d4y

¼−
2volðS5Þ

κ210

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L8þ1

4
r80

r
þr40

�Z
d4y: ð3:19Þ

The same result should be found by first compactifying on
S5, finding the reduced 5D action generalizing (1.1), and
then evaluating it on the corresponding 5D black brane
solution.18

A similar discussion can be repeated for the type IIB
solutions describing BPS intersections of D3-branes—
D3⊥D3 [37] and D3⊥D3⊥D3⊥D3 [38]. In the near-core
limit, they reduce (in the extremal case) to AdS3 × S3 × T4

and AdS2 × S2 × T6 backgrounds, respectively. Here, the
bulk part of type IIB action is again vanishing, with
possible nonzero contribution coming from the topological
term (2.4) defined in terms of

FðelÞ
5 ¼dCðelÞ

4 ; FðmagÞ
5 ¼�FðelÞ

5 ; F5¼FðelÞ
5 þFðmagÞ

5 ð3:20Þ

and also the GHY term (in the case of the full asymptoti-
cally flat solution).
The D3⊥D3 solution is the following generalization of

the D3 background (3.1)–(3.3):

ds210 ¼ ðh1h2Þ1=2½ðh1h2Þ−1ð−dt2þ dy21Þþ h−11 ðdy22þ dy23Þ

þ h−12 ðdy24þ dy25Þþ dr2þ r2dΩ2
3�; hi ¼ 1þL2

i

r2
;

CðelÞ
4 ¼ ½h−11 − 1�dt∧ dy1 ∧ dy2 ∧ dy3

þ ½h−12 − 1�dt∧ dy1 ∧ dy4 ∧ dy5: ð3:21Þ

Here, ðy1; y2; y3Þ and ðy1; y3; y4Þ are spatial coordinates
along the two D3-branes intersecting over the y1 direction.

In the near-core limit hi →
L2
i

r2 , this background reduces to

AdS3 × S3 × T4 with ds2AdS3 ¼ r2

L2 ð−dt2 þ dy21Þ þ L2

r2 dr
2,

ds2S3 ¼ L2dΩ2
3 (where L2 ¼ L1L2), and ds2T4 ¼

L2

L1
ðdy22 þ dy23Þ þ L1

L2
ðdy24 þ dy25Þ.

Note that here F5 does not have a simple 5þ 5
decomposition so the topological term is defined by
Eq. (2.4) or, equivalently, Eq. (2.6). Computing it gives
a nonzero value consistent with the one of the dimension-
ally reduced 3D analog of the action (1.1) that admits AdS3
as its solution. Explicitly, in the AdS3 × S3 × T4 limit, we
find that Stop ¼ − 2

κ2
10

volðAdS3ÞvolðS3ÞvolðT4Þ (where we

did not extract the dependence on the scale L ¼ ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
).

17In the context of black brane thermodynamics, the topological
term will thus contribute to the part of the “thermodynamic
potential” related to the product of the chemical potential and
the corresponding conserved charge.

18For comparison with the extremal case (3.6), let us note
that the ADM mass of black D3-brane is given by M̃3 ¼
μ3V3

L̃4þ5
4
r4
0

L4 ¼ M3½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r8

0

4L8

q
þ 3r4

0

4L4�.
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Similarly, the four D3-brane solution is given by

ds210 ¼ ðh1h2h3h4Þ1=2½−ðh1h2h3h4Þ−1dt2 þ ðh1h2Þ−1dy21
þ ðh1h3Þ−1dy22 þ ðh1h4Þ−1dy23 þ ðh2h3Þ−1dy24
þ ðh2h4Þ−1dy25 þ ðh3h4Þ−1dy26 þ dr2 þ r2dΩ2

2�;

hi ¼ 1þ Li

r
;

CðelÞ
4 ¼ ½h−11 − 1�dt ∧ dy1 ∧ dy2 ∧ dy3

þ ½h−12 − 1�dt ∧ dy1 ∧ dy4 ∧ dy5

þ ½h−13 − 1�dt ∧ dy2 ∧ dy4 ∧ dy6

þ ½h−14 − 1�dt ∧ dy3 ∧ dy5 ∧ dy6: ð3:22Þ

This reduces to AdS2 × S2 × T6 with the 6-torus formed by
ðy1;…; y6Þ. Here, the topological term (2.4), (2.6) produces
again a nonzero contribution to 10D action.

IV. CONCLUDING REMARKS

Depending on topology of space-time or asymptotic
boundary conditions, the 10D supergravity action (or, more
generally, string effective action) may need to be supple-
mented by particular boundary or topological terms specific
to a type of backgrounds considered.
Here, we considered the case of M10 ¼ M5 × X5 with

5-form flux and showed that adding the topological term
(2.2) or (2.4) to the bulk type IIB action (1.3) restores its
equivalence with the 5D reduced action (obtained via
equations of motion by compactifying on X5). This leads
to consistent on-shell values of the full 10D action (e.g., for
AdS5 × X5 or D3-brane solution). Similar terms are to be
added in cases of other topologies, e.g.,

R
6 F3M ∧ F3X

for M10 ¼ M3 × X3 × T4.19

The string theory origin of the term (2.2) and whether it
may receive α0 corrections remains to be understood. One
particular case when the contribution of this term may be
important is the computation of α0 corrections to near-
extremal D3-brane entropy as in Ref. [39].
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APPENDIX A: TOPOLOGICAL TERM
IN F5 ACTION ON M5 × X5

FROM PST FORMULATION

In the PST formulation [16,17] of the 5-form action, the
condition of self-duality is derived from an action. This is
achieved by introducing an extra scalar field aðxÞ along
with extra gauge invariance so that the number of dynami-
cal degrees of freedom is unchanged. For a closed 5-form
F5, let us consider the following action20:

SPST¼
Z

ðF5∧ �F5þivF ∧� ivF Þ

¼−
Z

2v∧F5∧ ivðF5−�F5Þ; F≡F5−�F5: ðA1Þ

We assume that F5 can be expressed locally as F5 ¼ dC4

[we ignore all the other fields that may contribute to F5 in
(1.4)]. v ¼ vμdxμ is defined in terms of a scalar aðxÞ as

vμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

−j∂aj2
p ∂μa; vμvμ ¼ −1: ðA2Þ

The variation of (A1) over C4 and a then leads to equations
that imply the self-duality condition F5 ¼ �F5. The depend-
ence on the scalar a drops out of the equations of motion.
The reason for this is that apart from the standard gauge

symmetry of a 4-form potential C4 → C4 þ dε3 the action
(A1) is invariant (up to boundary terms; see below) under
the following gauge transformations:

δηa ¼ η; δηC4 ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

−j∂aj2
p ivðF5 − �F5Þη; ðA3Þ

δξa¼ 0; δξC4¼ ξ3 ∧da; δξF5¼ dξ3 ∧ da: ðA4Þ

Here, the scalar ηðxÞ and the 3-form ξ3ðxÞ are the gauge
parameters. The first symmetry (A3) implies that a is a pure
gauge field. The second is effectively reflecting the fact that
the number of degrees of freedom of C4 is halved on shell
(where F5 becomes self-dual).
Let us consider the variation of the action under arbitrary

δC4 and δa:

19Note also that an analogous example is found in the case of
the extremal dyonic black hole in four-dimensional Einstein-
Maxwell theory. Here, the AdS2 × S2 vacuum is supported by
F2 ¼ FðelÞ

2 þ FðmagÞ
2 , and the on-shell value of the action is zero

(R4 ¼ 0; jF2j2 ¼ 0). Adding the standard topological termR
F2 ∧ F2 then produces a cosmological term in the effective

two-dimensional action. This example is related to the near-core
limit of the four D3-brane background discussed in the previous
section.

20As usual, iv denotes the contraction of a differential form
with a vector field, obtained from the coefficient of 1-form v by
raising the index with the help of the metric. In (A1), we ignore an
overall normalization factor.
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δSPST¼−
Z

2vffiffiffiffiffiffiffiffiffiffiffiffiffi
−j∂aj2

p ∧dδa∧ ivF ∧ivF

−
Z

4v∧δF5∧ ivF −
Z

2F5∧δF5

¼−
Z

2δad

�
vffiffiffiffiffiffiffiffiffiffiffiffiffi

−j∂aj2
p ∧ivF ∧ ivF

�

−
Z
4δC4∧d½v∧ ivF �þ

Z
∂

�
2vffiffiffiffiffiffiffiffiffiffiffiffiffi
−j∂aj2

p δa∧ivF ∧ ivF

þ4δC4∧v∧ ivF
�
−
Z

2F5∧δF5: ðA5Þ

Assuming that δC4 ¼ 0 at the boundary, the resulting
equations of motion may be written as

δa∶ d
�

vffiffiffiffiffiffiffiffiffiffiffiffiffi
−j∂aj2

p ∧ ivðF5− �F5Þ∧ ivðF5− �F5Þ
�
¼ 0; ðA6Þ

δC4∶ d½v ∧ ivðF5 − �F5Þ� ¼ 0: ðA7Þ
Under the transformation (A4), the expression in brackets
in (A7) changes as

δξ½v ∧ ivðF5 − �F5Þ� ¼ −δξF5 ¼ −dξ3 ∧ da; ðA8Þ
so (A4) is a symmetry of (A7). Furthermore, using (A2), we
may choose such ξ3 that ivðF5 − �F5Þ ¼ 0. Then,

F5 − �F5 ¼ −v ∧ ivðF5 − �F5Þ þ� ðv ∧ ivðF5 − �F5ÞÞ
¼ 0: ðA9Þ

Therefore, the symmetry (A4) makes all solutions of (A7)
equivalent to the self-dual solution F5 ¼ �F5 (and all of
them lead to the vanishing on-shell value of SPST).
Under (A4), the integrand of (A1) changes as21

δξL ¼ −2½v ∧ ivðδξF5 − �δξF5Þ ∧ F5

þ v ∧ ivðF5 − �F5Þ ∧ δξF5

þ v ∧ ivðδξF5 − �δξF5Þ ∧ δξF5�: ðA10Þ
Using that δξF5 ∧ da ¼ 0, the variation of the action (A1)
may be written as

δξSPST ¼ −2
Z

F5 ∧ δξF5: ðA11Þ

This vanishes if 10D space has no boundary [as dF5 ¼ 0
we have F5 ∧ dξ3 ∧ da ¼ −dðF5 ∧ ξ3 ∧ daÞ] but other-
wise produces a boundary term.
Let us now assume as in (2.1) that the 10D space has a

product structure, i.e., M10 ¼ M5 × X5, where X5 is a

compact Euclidean space with no boundary while M5

(with Minkowski signature metric) may be noncompact,
and also that a similar factorization applies to the 4-form
potential and the parameters of the transformations in
(A4), i.e.,

C4 ¼ C4M ⊕ C4X; F5 ¼ F5M ⊕ F5X;

δξC4 ¼ δξC4M ⊕ δξC4X: ðA12Þ

In this case, Eq. (A11) takes the form

δξSPST ¼ −2
Z

F5X ∧ δξF5M

¼ 2

Z
δξFM ∧ F5X

¼ 2

Z
X
F5X

Z
M
δξF5M; ðA13Þ

where we used that δξF5X is exact so its integral over X5

vanishes. The integral
R
M δξF5M ¼ R

∂M ξ3 ∧ da depends
on the boundary values of the gauge parameter ξ3 and the
scalar field a. If these are nontrivial and if F5 has a
nontrivial value of the “magnetic” charge

R
X F5X ≠ 0, then

the variation (A13) may be nonzero.
Away to maintain the invariance of the action (A1) under

(A4) is to add to (A1) the topological term defined in (2.2),

Stop ¼ −2
Z
M
F5M ∧ F5X ¼ −2

Z
X
F5X

Z
M
F5M: ðA14Þ

The variation of this term under the gauge transformation
(A4) will then cancel the change (A13) of the PST action.
Assuming F5M ¼ dC5M is valid globally on M5, the term
(A14) may be expressed as an integral over the boundary
∂M5 × X5 and thus does not affect the equations of motion
for F5. Let us note that a similar argument suggesting to add
the term (A14) to maintain gauge invariance can be given
[20] also in the formulation of self-dual F5 field suggested
in Ref. [19].
Using that the equations of motion for (A1) imply the

self-duality of F5, i.e., F5M ¼ �F5X, the on-shell value of
(A1) plus (A14) may be written also as

ðSPST þ StopÞjF5¼�F5
¼ StopjF5¼�F5

¼ 2

Z
F5X ∧ �F5X

¼ −2
Z

F5M ∧ �F5M: ðA15Þ

Replacing the jF5j2 term in the 10D action (1.3) by (A1),
one gets the corresponding PST analog of the type IIB
action to which now we should add also (A14) with the
corresponding coefficient being as in (2.5). It is interesting

21Here, v ∧ ivδξF5 ∧ F5 ¼ −δξF5 ∧ F5 þ v ∧ δξF5 ∧ ivF5

and v∧iv�δξF5∧F5¼v∧� ðδξF5∧vÞ∧F5¼−δξF5∧v∧ iv�F5.
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to note that the condition of the symmetry under (A4) fixes
also the relative coefficient between the kinetic 5-form term
(A1) and the Chern-Simons type term [

R
B2 ∧ F3 ∧ F5 in

(1.3)] in the resulting version of type IIB action [17].

APPENDIX B: 10D ACTION ON F1, NS5,
AND D5 BRANE SOLUTIONS

For comparison with the case of the D3-brane solution
discussed in Sec. III, here we will discuss the values of the
10D action (3.11) on the fundamental string, NS5-brane,
and D5-brane extremal solutions. In these cases, F5 ¼ 0,
so the topological term (2.2) will not play a role. These
p-brane solutions are supported by sources given by the
corresponding brane actions that have the structure (see,
e.g., Ref. [40])

Ssource¼−NTp

Z
dpþ1ye−qϕ

ffiffiffiffiffiffiffiffiffiffiffi
Gpþ1

p þNTp

Z
Apþ1; ðB1Þ

where Tp is a tension of a single brane and Apþ1 is the
corresponding NS-NS or R-R potential. The dilaton cou-
pling constant is q ¼ 0, 2, and 1 for F1, NS5, and D5, cases
respectively. The total action will be

Stot ¼ Sbulk þ Sbndry þ Ssource; Sbulk ¼ Ŝ10; ðB2Þ
where the bulk part is given by (1.3) and the boundary one
by (1.9).
The F1 solution [41] is electrically charged with the

respect to the B2 field (T1 ¼ 1
2πα0),

ds2 ¼ H−1ðrÞð−dy20 þ dy21Þ þ dxadxa; HðrÞ ¼ 1þQ
r6
;

Q ¼ NT1κ
2
10

3volðS7Þ ¼ 32Nπ2α03g2s ;

B2 ¼ ½H−1ðrÞ− 1�dy0 ∧ dy1; e2ϕ ¼ H−1ðrÞ: ðB3Þ
Substituting this solution into (B2), we find

SbulkjF1 ¼ SbndryjF1 ¼ 0; SsourcejF1 ¼ −NT1

Z
d2y;

StotjF1 ¼ −NT1

Z
d2y: ðB4Þ

The magnetic dual of F1-brane—the NS5-brane solution
[42]—may be considered as electrically charged with
respect to the dual field B̃6, dB̃6 ¼ e−2ϕ�H3, i.e.,

Ssource ¼ −NT5

Z
d6ye−2ϕ

ffiffiffiffiffiffi
G6

p
þ NT5

Z
B̃6;

T5 ¼
1

ð2πÞ5α03g2s
: ðB5Þ

The corresponding background is (μ ¼ 0;…; 5; a ¼ 6, 7, 8,
9; r2 ¼ xaxa)

ds2 ¼ ημνdyμdyν þHðrÞdxadxa; HðrÞ ¼ 1þQ
r2
;

Q¼ NT5κ
2
10

volðS3Þ ¼ α0N;

B̃6 ¼ ½H−1ðrÞ− 1�dy0 ∧… ∧ dy6; e2ϕ ¼HðrÞ: ðB6Þ

Here, we find

SbulkjNS5 ¼ 0; SbndryjNS5 ¼ −NT5

Z
d6y;

SsourcejNS5 ¼ −NT5

Z
d6y; ðB7Þ

StotjNS5 ¼ −2NT5

Z
d6y: ðB8Þ

Evaluating the bulk term here and in (B4), we used the
explicit form of the solution; note that the NS-NS part of
the bulk action (1.3) or (1.6) automatically vanishes only
for solutions without a source term in the dilaton equation.
In the case of D5-brane solution that has magnetic charge

with respect to the RR 3-form F3, we may again introduce
the dual electric potential C̃6 (dC̃6 ¼ �F3) and consider

Ssource ¼ −Nμ5

Z
d6ye−ϕ

ffiffiffiffiffiffi
G6

p
þ Nμ5

Z
C̃6;

μ5 ¼
1

ð2πÞ5α03gs
: ðB9Þ

The D5-solution supported by the corresponding source at
xa ¼ 0 is [33]

ds2¼H−1
2ðrÞημνdyμdyνþH

1
2ðrÞdxadxa;

HðrÞ¼1þQ
r2
; Q¼Nμ5κ

2
10

volðS3Þ¼α0Ngs;

C̃6¼½H−1ðrÞ−1�dy0∧…∧dy6; e−2ϕ¼HðrÞ: ðB10Þ

The resulting contributions to the total action (B2) here are

SbulkjD5¼−
1

2
Nμ5

Z
d6y; SbndryjD5¼−

1

2
Nμ5

Z
d6y;

SsourcejD5¼−Nμ5

Z
d6y; StotjD5¼−2Nμ5

Z
d6y: ðB11Þ

The values of the total actions for NS5 (B8) and D5 (B11)
cases have the same structure as for the D3-brane solution
in (3.8) and also are consistent with the S-duality relation
between the two 5-branes.
Note that the bulk and boundary contributions match

only in sum: one can show that the S-duality transformation
in the formulation using the string frame metric leaves
invariant only the sum of the bulk (1.3) and boundary (1.9)
terms in the type IIB action.
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