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It is shown that membrane and fivebrane of D ¼ 11 supergravity theory can support nongauge,
linearized spin-3=2 superhairs. Supercharges associated with these fields are calculated. We also generalize
the solutions to some overlapping cases and discuss possible implications of their existence.

DOI: 10.1103/PhysRevD.106.086016

I. INTRODUCTION

Supergravity theories are invariant under local super-
symmetry transformations which, for asymptotically flat
solutions, gives rise to new fermionic Noether currents.
Spinor charges associated with these currents can be
calculated as surface integrals at spatial infinity. In the
canonical Hamiltonian formulation, after gauge fixing,
these charges together with the total linear and angular
momenta, which can also be expressed as surface integrals,
obey the global supersymmetry algebra [1,2]. A purely
bosonic solution of a supergravity theory has zero super-
charge. When the theory is linearized with respect to
fermionic fields, a supersymmetry transformation leaves
the bosonic background invariant but, in general, generates
fermions which are solutions of the linearized field equa-
tions. This configuration can be viewed as an approximate
solution. Moreover, when the parameter of the transforma-
tion approaches a constant value at infinity, long-range
fields are generated that have appropriate falloff properties
to carry supercharges [3].
However, supersymmetry is a certain local gauge sym-

metry, and fermion fields which are obtained by trans-
formations tend to identity at infinity must be thought to
be “pure gauge”. If this is the case, then the approximate
solution obtained by supersymmetry must be identified
with the bosonic background (Gauss’s law). The long-
range fields mentioned above are not pure gauge in that
sense (since in that case the transformation is not the
identity at infinity). Recently, starting with the work [4]
large gauge transformations have been shown to imply the
existence of a rich asymptotic symmetry structure of gauge
theories that connects soft theorems [6] and memory effect
[7] (for a pedagogical review see [5]). Not surprisingly,

these results can be extended to supergravity theories
giving rise to asymptotic supersymmetry algebras [8].
In any case, one might search for fermionic perturbations

of bosonic backgrounds that cannot be obtained by any
supersymmetry transformation (from now on the terms
“nongauge” and “nontrivial” will only be used for such
fields to distinguish them from the fields obtained by
supersymmetry). This was studied for black holes of O(2)
extended supergravity theory in four dimensions. In the
papers [9–12] it was shown that among the class of Kerr-
Newman black holes only the extreme Reissner-Nordström
family admits nongauge fermionic hairs carrying nonzero
supercharges. It is remarkable that these are the only known
black hole solutions in four dimensions that can accept
supercharge as a new parameter. There are other studies
examining the superhair problem for black hole solutions in
various supergravity theories, for a recent study see [13].
D ¼ 11 supergravity theory admits various extended black

hole solutions i.e., black p-branes [14]. These solutions have
the structure of an extended object surrounded by an event
horizon, are asymptotically flat and characterized by two
parameters; the mass per unit p-volume and the charge
associated with the four-form field. Only the extreme black
p-branes, which are obtained when the mass and the charge
saturates a Bogomolny type of bound, preserve some fraction
of supersymmetry. Among the extreme solutions, p ¼ 2
membrane and p ¼ 5 fivebrane are particularly interesting.
All other extreme members can be interpreted as various
intersections of them [15,16] (for a review see also [17]).
Furthermore, they are playing a crucial role in the derivation
of various string dualities from the eleven-dimensional
M-theory (for introduction to M-theory see [18–20]).
As black p-branes are natural higher-dimensional gen-

eralizations of the four-dimensional black holes, one may
wonder how the superhair problem works out for them.
This is actually more than a pure academic interest because
of the status of string=M theory as a framework of quantum
gravity. For example, the original proposal of the AdS=CFT
correspondence uses the supergravity solution of N coinci-
dent D3 branes of type-IIB string theory [21]. Similarly, the
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near horizon decoupling limits of the intersecting brane
solutions yield various AdS=CFT dualities with a lower
number of supersymmetries and brane solutions in D ¼ 11
which are used to deduce AdS=CFT dualities involving
M-theory [21]. These obviously show the importance of
the (supersymmetric) p-brane solutions and this motivates
one to search for their new unexplored properties.
In this paper we show that, like the four-dimensional

extreme Reissner- Nordström black holes, the extreme
membrane and fivebrane backgrounds in 11 dimensions
can also support nongauge superhairs. During the inves-
tigation we do not try to solve the linearized spin-3=2 field
equations (up to supersymmetry transformations) to find
the complete set of nontrivial solutions, but we use a simple
limiting procedure, described in [22], to obtain a single
mode on each background. As we will see these modes
have the correct falloff properties as they are approaching
spatial infinity yielding nonzero supercharges. Inspired by
the structure of nontrivial fields on the membrane and
fivebrane backgrounds, we also write a general ansatz for
the overlapping solutions. By using this ansatz, we find
similar spin-3=2 fields on the two membranes overlapping
at a point and on the two fivebranes overlapping at a three
brane. We will discuss some possible implications of these
superhairs in the conclusion.

II. LIMITING PROCEDURE

The field variables of D ¼ 11 supergravity theory are
the metric gab, the four form field Fabcd, and the spin-3=2
gravitino field ψa. When the theory is linearized with
respect to gravitinos, field equations reduce to a Rarita-
Schwinger equation on a fixed bosonic background,
namely1

Rab ¼ −
κ2

36
gabðFcdFcdÞ þ

κ2

3
FacdeF:cde

b ; ð1Þ

∇mFmabc þ κ

4 × 144
ϵmnpqefghabcFmnpqFefgh ¼ 0; ð2Þ

κΓabcDbψc ¼ 0; ð3Þ

where κ is the gravitational coupling constant, Rab is the
Ricci tensor, ∇a is the usual covariant derivative of the
metric gab, andDa is the supercovariant derivative given by

Da ¼
1

κ
∇a þ

i
144

ðΓ:bcde
a − 8ΓcdeδbaÞFbcde: ð4Þ

Note that the presence of gravitinos does not affect the
background geometry; specifically its contribution to the
torsion vanishes and supercovariant derivative Da depends

only on the bosonic fields. In this approximation to the full
theory, supersymmetry transformations leave gab and Fabcd
invariant but ψa shifts as

ψa → ψa þDaϵ; ð5Þ

where ϵ is the parameter of the transformation. It can be
shown, with the help of Eqs. (1) and (2), that if ψa is a
solution of (3) then ψa þDaϵ is also a solution. This
ensures the supersymmetry invariance of the linearized
theory. We will call ψa trivial or gauge generated if it is
equal toDaϵ for some ϵ, since then it can set to be zero by a
supersymmetry transformation.
There is a simple method of obtaining nontrivial spin-

3=2 fields from covariantly constant spinors [22]. Let us
describe this for the membrane and fivebrane we are
interested in. The key point is that they are members of
a two-parameter family of solutions characterized by two
positive reals rþ and r− which are related to the mass and
charge. Generic solutions ðrþ > r−Þ break all the super-
symmetries which means that they have no Killing spinors.
Let ϵðrþ; r−Þ be a spinor field on one of these backgrounds
(which is arbitrary unless in the limit rþ → r− it becomes
the Killing spinor) of the extreme solution—in what
follows, we keep r− fixed and vary rþ. Then, the following
limit

ψa ≡ lim
rþ→r−

1

rþ − r−
Daðrþ; r−Þϵðrþ; r−Þ; ð6Þ

exists and ψa satisfies the Rarita-Schwinger equation (3) on
the extreme background, where Daðrþ; r−Þ is the super-
covariant derivative of the generic background. Moreover,
a gravitino mode obtained in this way is in general
nontrivial. It is easy to see that ψa is a solution if it exists
[take the limit after inserting it into Eq. (3)]. Thus, let us
show the existence of the limit.
Near extremality, the supercovariant derivative

Daðrþ; r−Þ and the spinor ϵðrþ; r−Þ can be expanded
around rþ ¼ r− as

Daðrþ; r−Þ ¼ D0
a þ λWa þOðλ2Þ; ð7Þ

ϵðrþ; r−Þ ¼ ϵ0 þ λβ þOðλ2Þ; ð8Þ

where λ ¼ rþ − r−, D0
a ≡Daðrþ ¼ r−Þ, ϵ0 ≡ ϵðrþ ¼ r−Þ,

Wa is an operator, and β is a certain spinor. Now ϵ0 is, by
construction, the Killing spinor of the extreme solution
i.e., D0

aϵ0 ¼ 0. Then (6) becomes

ψa ¼ Waϵ0 þD0
aβ; ð9Þ

which proves the existence of the limit. The term D0
aβ is a

manifestly pure gauge. Different choices of ϵðrþ; r−Þ
correspond to different choices of β which in turn gives

1The Γ matrices are purely imaginary and the signature of the
metric is ðþ;−;−…::−Þ.
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gauge-equivalent fields. A necessary condition for the
gravitino to be gauge generated on the extreme background
requires

D0
½aψb� ¼

1

2
Ωabϵ̃; ð10Þ

where ϵ̃ is a certain gauge spinor and Ωab denotes the
supercurvature matrix defined by

½D0
a;D0

b� ¼ Ωab: ð11Þ

The supercurvature matrix depends on the bosonic field
variables and at this moment we do not need an explicit
expression for it. In general, the condition (10) is not
satisfied by the fields obtained in the limiting procedure.

III. SUPERHAIRS ON THE MEMBRANE
AND FIVEBRANE

Let us first consider the generic black-membrane sol-
ution which is given by

ds2 ¼ ΔþΔ−1=3
− dt2 − Δ−1þ Δ−1

− dr2 − r2dΩ2
7

− Δ2=3
− ðdx21 þ dx22Þ; ð12Þ

F ¼ qe
r7

dt ∧ dr ∧ dx1 ∧ dx2; ð13Þ

where Δ� ¼ 1 − ðr6�=r6Þ, dΩ2
7 is the line element on the

7-sphere S7, and qe ¼ 18r3þr3−. This is an electrically-
charged solution with total charge qeΩ7 where Ω7 is the
area of S7. The surface r ¼ rþ is a regular event horizon
and r ¼ r− is a singular surface hidden behind this horizon.
The charge parameter qe and the mass per unit 2-volume μ
satisfies μ ≥ qe. The extreme membrane solution, in the
warped product form, is obtained by setting r0 ≡ rþ ¼ r−

ds2 ¼ Δ2=3ðdt2 − dx21 − dx22Þ − Δ−2dr2 − r2dΩ2
7; ð14Þ

F ¼ qe
r7

dt ∧ dr ∧ dx1 ∧ dx2; ð15Þ

where now, Δ ¼ 1 − r60=r
6 and qe ¼ 18r60. In this case,

the surfaces at r ¼ rþ and r ¼ r− coalesce at r ¼ r0 and
become a regular event horizon. Also, the above bound
between μ and qe is saturated; μ ¼ qe. The limit (6) gives
(after a suitable supersymmetry transformation and up to
normalization) the one-form gravitino field

ψ ¼ ψ 0̂E
0̂ þ ψ îE

î; ð16Þ

where

ψ 0̂ ¼
2

r7
Δ−1Γ0̂ r̂ϵ0; ð17Þ

ψ î ¼
1

r7
Δ−1Γî r̂ϵ0: ð18Þ

ϵ0 is the Killing spinor of the extreme membrane, and
hatted quantities and spinors refer to the basis one-forms
E0̂ ¼ Δ13dt, Eî ¼ Δ1=3dxi, Er̂ ¼ Δ−1dr, and Eθ̂ ¼ reθ,
where eθ denotes the basis one-forms of the 7-sphere.
The Killing spinor ϵ0 obeys Γr̂θ̂1…θ̂7ϵ0 ¼ −ϵ0.
On the other hand, fields of a black fivebrane may be

written as

ds2 ¼ ΔþΔ−2=3
− dt2 − Δ−1þ Δ−1

− dr2 − r2dΩ2
4

− Δ1=3
− ðdx21 þ � � � þ dx25Þ; ð19Þ

F ¼ qmϵ4; ð20Þ

where Δ� ¼ 1 − r3�=r
3, dΩ2

4 is the line element and ϵ4
is the volume form of S4 and qm ¼ 9r3=2þ r3=2− . This is a
magnetically-charged solution with total charge qmΩ4

where Ω4 is the area of S4. Again, r ¼ rþ is a regular
event horizon and r ¼ r− is a singular surface. Similar to
the black-membrane case there is a bound for the mass per
unit 5-volume μ given by μ ≥ qm. The extreme fivebrane is
obtained by setting r0 ≡ rþ ¼ r−

ds2 ¼ Δ1=3ðdt2 − dx21 − � � � − dx25Þ − Δ−2dr2 − r2dΩ2
4;

ð21Þ

F ¼ qmϵ4; ð22Þ

where now Δ ¼ 1 − r30=r
3, qm ¼ 9r30. Like for the extreme

membrane, r ¼ r0 becomes a regular event horizon and
the bound between the mass and charge is saturated
μ ¼ qm. This time the limit (6) gives (again after a suitable
supersymmetry transformation and up to normalization)
the gravitino one-form field

ψ ¼ ψ 0̂E
0̂ þ ψ îE

î; ð23Þ

where

ψ0 ¼
5

r4
Δ−1Γ0̂ r̂ϵ0; ð24Þ

ψ î ¼
1

r4
Δ−1Γî r̂ϵ0: ð25Þ

ϵ0 is the Killing spinor of extreme fivebrane, the basis
one-forms are E0̂ ¼ Δ1=6dt, Eî ¼ Δ1=6dxi, Er̂ ¼ Δ−1dr,
and Eθ̂ ¼ reθ, where eθ denotes the basis one-forms of the
4-sphere. The Killing spinor ϵ0 obeys Γr̂θ̂1…θ̂4ϵ0 ¼ −iϵ0.
The one-form spin-3=2 fields given in (16) and (23)

are static solutions of (3) on the extreme membrane and
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fivebrane backgrounds, respectively. To show that they
are nontrivial fields one may use the integrability
condition (10). For this it is enough to consider ð0; iÞ
components of the supercurvature tensor. A simple calcu-
lation shows that Ω0i ¼ 0, both for the membrane and
fivebrane. However from the spin-3=2 fields given
in (17)–(18) and (24)–(25) one can find for the membrane

D0
½0ψ i� ¼ −Δ−1=3 r60

r14
Γ0̂ îϵ0 ð26Þ

and for the fivebrane

D0
½0ψ i� ¼ −Δ−2=3 r

3
0

r8
Γ
ˆ̂i ϵ̂ϵ0: ð27Þ

Therefore, condition (10) is not satisfied for our fields
proving that they are nongauge.
Let us make a few comments about the behavior of the

gravitino modes at spatial infinity and at the event horizon.
Supercharges (per p-volumes) associated with a membrane
and a fivebrane are calculated as surface integrals on 7- and
4-spheres at infinity surrounding the extended objects. As
the transverse-radial coordinate r → ∞, one has ψ ∼ 1=r7

on the membrane and ψ ∼ 1=r4 on the fivebrane. As we
will show these are the required falloff properties for the
fields to carry supercharges. On the other hand, the
spin-3=2 hairs (17)–(18) and (24)–(25) seem to be singular
on the event horizon, when r ¼ r0. However, these are
simply coordinate singularities; the coordinates that are
used to express the metrics given in (14) and (21) are ill
defined at r ¼ r0 (yet the geometries are perfectly regular
as in the Schwarzschild black hole [23,24]). Moreover, the
tangent space bases chosen to express the spinor fields
are not regular at r ¼ r0 either [note the bases given after
(18) and (25)]. There is an indirect argument showing
that the gravitino modes obtained by the limiting procedure
are indeed regular at r ¼ r0. Clearly, the term
Daðrþ; r−Þϵðrþ; r−Þ in (6) is regular at r ¼ rþ since the
generic black-brane solution is regular at the event horizon.
Let us denote an arbitrary entry of Daðrþ; r−Þϵðrþ; r−Þ,
with respect to a regular tangent space basis, by fðrþ; r−Þ.
When rþ ¼ r−, we know that fðrþ; r−Þ ¼ 0 [remember the
definition of ϵðrþ; r−Þ]. We have previously shown that
near extremality fðrþ; r−Þ can be expanded as fðrþ; r−Þ ¼
ðrþ − r−Þg where now g ¼ gðrÞ is the corresponding entry
of ψa with respect to the same regular basis on the extreme
solution. As r → r0, gðrÞ cannot diverge, since otherwise
we can let rþ → r− with a suitable rate to obtain a nonzero
f which in turn contradicts the fact that f ¼ 0 when
rþ ¼ r−. This shows that the gravitino field must be
regular at the horizon.
For a branelike configuration, the spin-3=2 supercharge

per unit p-volume can be constructed from the behavior of
the gravitino at spatial infinity [25]

Q ¼
Z
∂E
ΓabcψcdΣab; ð28Þ

where E is the transverse space to the extended object. For
our interest ∂E is a 7-sphere and a 4-sphere at infinity
surrounding membrane and fivebrane, respectively, at an
instant of time. Thus, dΣab ¼ dΣ0̂ r̂. Remembering also the
fact that the area element of an n-sphere Sn goes like rn, the
supercharges associated with (16) and (23) can be calcu-
lated as (up to multiplicative constants which depends on
the normalization of the gravitino modes)

Q ∼ Γ0̂η; ð29Þ

where η is a constant chiral spinor satisfying Γð8Þη ¼ −η
for the membrane and Γð5Þη ¼ −iη for the fivebrane
(η is the asymptotic value of the Killing spinor thus obey
the same chirality conditions) where Γð8Þ and Γð5Þ are the
completely antisymmetric combinations of the 8- and
5-transverse gamma matrices. Thus, for each case, Q spans
a 16-dimensional subspace of spinor space. We have
mentioned that nonzero supercharges can also be obtained
by supersymmetry transformations with constant parame-
ters at infinity. For the extreme membrane and fivebrane,
since they preserve 1=2 fraction of supersymmetry,
supercharges associated with fields obtained by large
supersymmetry transformations also span a 16-dimensional
subspace. This time the parameter of the transformation
must obey the opposite chirality conditions obeyed by
Killing spinors. Supercharges corresponding to these fields
can be calculated as

Qsusy ∼ Γ0̂ηsusy; ð30Þ

where now the constant spinor ηsusy (the value of the
supersymmetry parameter at infinity) obeys Γð8Þηsusy ¼
þηsusy and Γð5Þηsusy ¼ þiηsusy. Thus Q and Qsusy appa-
rently belong to the different subspaces and they together
span the 32-dimensional spinor space.
Extreme membrane and fivebrane solutions allow gen-

eralizations to multibrane configurations. It turns out that
the gravitino modes obtained on the single membrane and
fivebrane can also be generalized to become solutions on
these backgrounds. In constructing these generalizations it
is convenient to use Euclidean coordinates for the trans-
verse spaces. For the extreme membrane one can define a
new radial coordinate R with R6 ¼ r6 − r60 and introduce
an eight-dimensional Euclidean space with coordinates yα

and R2 ¼ yαyα. In this coordinate system (14), (15), and
spin-3=2 field (16) looks like

ds2 ¼ U−2=3ðdt2 − dx21 − dx22Þ −U1=3ðdyαdyαÞ; ð31Þ

F ¼ 3U−2dt ∧ dU ∧ dx1 ∧ dx2; ð32Þ
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ψ ¼ 2

�
1

R7
U−1=2Γ0̂ r̂ϵ0

�
dtþ

�
1

R7
U−1=2Γî r̂ϵ0

�
dxi; ð33Þ

where U ¼ 1þ ðr60=R6Þ, basis one-forms are chosen

as E0̂ ¼ U−1=3dt, Eî ¼ U−1=3dxi, Eα̂ ¼ U1=6dyα, and
Γr̂ ¼ yαΓα̂=R with Γr̂Γr̂ ¼ −I. For the extreme fivebrane,
let us define R3 ¼ r3 − r30 and introduce five Euclidean
coordinates yα on the transverse space with R2 ¼ yαyα.
This time, the fields given in (21), (22), and (23) can be
reexpressed in this new coordinate chart as

ds2 ¼ U−1=3ðdt2 − dx21 � � � − dx25Þ −U2=3dy · dy; ð34Þ

F ¼ 3ð�dUÞ; ð35Þ

ψ ¼ 5

�
1

R4
U−1=2Γ0̂ r̂ϵ0

�
dtþ

�
1

R4
U−1=2Γî r̂ϵ0

�
dxi; ð36Þ

where U ¼ 1þ r30=R
3, � is the Hodge dual on the trans-

verse Euclidean space and spinors are defined with
respect to the basis E0̂ ¼ U−1=6dt, Eî ¼ U−1=6dxi, and
Eα̂ ¼ U1=3dyα. Again, Γr̂ ¼ yαΓα̂=R with Γr̂Γr̂ ¼ −I.
For U being more general harmonic functions

[U ¼ 1þP
ci=ðR − RiÞ7 for the membrane and U ¼ 1þP

ci=ðR − RiÞ4 for the fivebrane representing parallel
membranes and fivebranes located at Ri, respectively] it
can be checked that (33) and (36) remain to be solutions
of (3) on the multimembrane and multifivebrane configu-
rations. This result suggests that more general overlapping
solutions may also support nontrivial superhairs although
the limiting procedure, in the form described in this paper,
cannot be applied to these cases.

IV. GENERALIZATION TO THE
OVERLAPPING CASES

To show the existence of nongauge spin-3=2 fields on
overlapping branes we use an ansatz inspired by the
structure of the spin-3=2 fields given in (33) and (36).
For this analysis, we note that the field equation for the
linearized spin-3=2 field on a bosonic background can be
rewritten as

ΓbðDaψb −DbψaÞ ¼ 0: ð37Þ

This can be seen by using the gamma matrix identity

ΓaΓbc ¼ Γabc þ gabΓc − gacΓb: ð38Þ

Assuming (37), the identity (38) implies

ΓaΓbcðDbψc −DcψbÞ ¼ ΓabcðDbψc −DcψbÞ: ð39Þ

Contracting this with Γa gives

ΓbcðDbψc −DcψbÞ ¼ 0; ð40Þ

which also implies by (39) that ψa satisfies (3). One can
repeat the same steps to show that (3) implies (37) and thus
they are equivalent. In verifying the gravitino field equa-
tions we use (37), which saves us from considerable
gamma-matrix algebra.
Let us now consider overlapping membranes at a point,

which have the coordinates ðt; x1; x2Þ and ðt; x3; x4Þ. The
fields of that configuration are given by [16]

ds2 ¼ ðU1U2Þ−2=3dt2 −U−2=3
1 U1=3

2 ðdxiÞ2

−U1=3
1 U−2=3

2 ðdxmÞ2 − ðU1U2Þ1=3ðdyαÞ2; ð41Þ

Ft12α ¼
1

2

∂αU1

U2
1

; Ft34α ¼
1

2

∂αU2

U2
2

; ð42Þ

where (i ¼ 1, 2), (m ¼ 3, 4), ðα ¼ 5…10Þ, and U1 and U2

are harmonic functions of the coordinates yα. This solution
preserves 1=4 th of the supersymmetries of the vacuum.
For the spin-3=2 field we consider the following ansatz,

ψ t ¼ AðyÞΓt̂ r̂ϵ0; ð43Þ

ψ i ¼ B1ðyÞΓî r̂ϵ0; ð44Þ

ψm ¼ B2ðyÞΓm̂ r̂ϵ0; ð45Þ

ψα ¼ CðyÞΓα̂ r̂ϵ0; ð46Þ

where ϵ0 is the Killing spinor and the hatted quantities
refer to the obvious tangent space basis. Note that, unlike
the configurations on the parallel membranes and five-
branes, (33) and (36), we allow transverse components
for the gravitino. After some tedious algebra, the field
equation (37) can be seen to fix the unknowns in terms of
the harmonic functions as follows:

A ¼ 2

R5
ðU1U2Þ−1=2; ð47Þ

B1 ¼
1

R5
U−1=2

1 ; ð48Þ

B2 ¼
1

R5
U−1=2

2 ; ð49Þ

C ¼ −
1

2R5
: ð50Þ

Similarly, one can also consider overlapping fivebranes
over a three-brane solution. Assuming that the fivebranes
are lying on the ðt;x1;x2;x3;x4;x5Þ and ðt; x1; x2; x3; x6; x7Þ
planes, the metric and the four-form field of such a
configuration are given by [16]
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ds2 ¼ ðU1U2Þ−1=3ðdt2 − ðdxaÞ2Þ −U−1=3
1 U2=3

2 ðdxiÞ2

−U2=3
1 U−1=3

2 ðdxmÞ2 − ðU1U2Þ2=3ðdyαÞ2; ð51Þ

F12αβ ¼
1

2
ϵαβγ∂γU2; F34αβ ¼

1

2
ϵαβγ∂γU1; ð52Þ

where (a¼1, 2, 3), (i ¼ 4, 5), (m ¼ 6, 7), ðα; β ¼ 8; 9; 10Þ,
and U1 and U2 are harmonic functions of yα. This solution
preserves 1=4th of the supersymmetries of the theory.
By choosing an ansazt similar to (43)–(46), a linearized
spin-3=2 mode on the fivebranes overlapping on a three-
brane can be determined as

ψ t ¼
5

R2
ðU1U2Þ−1=2Γ ˆ̂r r̂ϵ0; ð53Þ

ψa ¼
1

R2
ðU1U2Þ−1=2Γâ r̂ϵ0; ð54Þ

ψ i ¼
1

R2
ðU1Þ−1=2Γî r̂ϵ0; ð55Þ

ψm ¼ 1

R2
ðU2Þ−1=2Γm̂ r̂ϵ0; ð56Þ

ψα ¼
−2
R2

Γα̂ r̂ϵ0 ð57Þ

where ϵ0 is the Killing spinor of the background. To see that
spin-3=2 fields (43)–(46) and (53)–(57) are nongauge we
try to find an ϵ̃ satisfying Daϵ̃ ¼ ψa. We are able to show
that such an ϵ̃ does not exist for each case by checking the
integrability condition (26) or (27). It is natural to expect
that nontrivial spin-3=2 fields having a similar structure
can be found on all overlapping solutions. Note that the
components of the gravitino along a certain brane direction
is multiplied by the inverse square root of the correspond-
ing harmonic function. Unlike parallel membrane and
fivebrane cases, the spin-3=2 field has nonvanishing
components along the transverse directions on the over-
lapping solutions. The fields also have suitable falloff
properties to support supercharges.

V. CONCLUSIONS

What are the possible physical implications of the
existence of nongauge superhairs on the brane solutions
of D ¼ 11 supergravity? At the classical level, the back-
grounds with superhairs correspond to approximate sol-
utions of the full supergravity theory involving fermionic
fields. With additional conditions like the normalizability
of the (linearized) modes, the whole set of solutions are
expected to form supermultiplets of the underlying super-
symmetry algebra, see e.g., [26]. It is not obvious how
to directly measure a classical fermionic field since
by definition it is an anticommuting variable having a

c-number and soul parts. Yet one may imagine an inter-
pretation similar to fermionic condensates or one can
search their indirect impact on measurable physical quan-
tities like the paths of test particles.
In a semiclassical description, the eigenmodes of lin-

earized field operators around a classical solution can be
interpreted as the excitations of the corresponding solitonic
object. In particular, the zero modes govern the low-energy
soliton dynamics. Generally, there are zero modes asso-
ciated with the moduli of the background solution like the
translational zero modes or the fermionic modes obtained
by large gauge transformations. These modes can be
implemented as world-volume fields and they form super-
symmetric multiplets.
The gravitino zero modes obtained in this paper look

like isolated excitations that are not related to the moduli.
Moreover, they cannot be implemented as world-volume
fields since the constant parameters characterizing the
modes cannot be imposed to be functions of the brane
coordinates as these are the parameters of the unbroken
global supersymmetries which must be kept constant from
the world-volume theory point of view. Therefore, the
existence of a nontrivial gravitino zero modes on a brane-
like soliton must simply imply the existence of a zero-
energy fermionic ground state of the world-volume theory.
Note that on the world volume there is already a balance
between the fermionic and the bosonic degrees of freedom
(usual zero modes) without the nontrivial zero modes.
However, supersymmetry allows their existence since they
only contribute to the zero-energy ground states. In general,
one may have arbitrary number of zero-energy fermionic
and bosonic states; the difference usually being equal to a
topological invariant related to the index of an operator.
These states form trivial one dimensional supersymmetry
multiplets i.e., they are singlets. It would be interesting to
study the implications of these modes in the context of
AdS=CFT duality and asymptotic symmetries.
Finally, it has been conjectured that in quantum gravity

there must be a general upper bound on the strength of
gravity relative to gauge interactions, which is called the
weak-gravity conjecture (WGC) [27]. The conjecture
implies, among other things, that there are constraints on
the mass-charge spectrum in four dimensional theories with
gravity and U(1) gauge fields. Specifically, one would
expect to find light particles whose mass to charge ratios are
smaller than the corresponding ratio for the macroscopic
extremal black holes, hence allowing the extremal black
holes to decay. Remarkably, nontrivial arguments based on
black hole thermodynamics support the WGC; as it turns
out, the higher-derivative corrections to Einstein-Maxwell
and Einstein-Maxwell dilaton theories modify the extrem-
ality condition for black holes so that the large extremal
black holes are unstable decaying to smaller extremal
black holes as predicted by WGC [28,29]. These results
show that any classical computation based on background
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supergravity solutions should be carefully examined in the
context of WGC and decaying instabilities. Not surpris-
ingly, black p-brane solutions are also modified by higher-
derivative terms and in the context of string theory these
can be expressed as α0 corrections, see e.g., [30,31].
Nevertheless, all brane solutions studied in this paper
preserve some fraction of the supersymmetries of D ¼ 11
supergravity theory and the supersymmetric solutions
enjoy various stability properties thanks to the remarkable
features of supersymmetry. For example, while the generic

black p-brane solutions suffer from the well-known linear-
ized perturbation instability [32], the supersymmetric ones
do not [33]. The stability of the supersymmetric states in
the context of WGC has been indicated in [34].
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