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An effective description is presented for a Brownian particle in a magnetized plasma. In order to
systematically capture various corrections to linear Langevin equation, we construct effective action for
the Brownian particle, to quartic order in its position. The effective action is first derived within
nonequilibrium effective field theory formalism, and then confirmed via a microscopic holographic
model consisting of an open string probing magnetic fifth-dimensional anti–de Sitter (AdS5) black brane.
For practical usage, the non-Gaussian effective action is converted into Fokker-Planck-type equation,
which is an Euclidean analog of Schrödinger equation and describes time evolution of probability
distribution for particle’s position and velocity.
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I. INTRODUCTION

Brownian motion is perhaps the simplest example of
nonequilibrium phenomena, which, however, has played
a profound role in the development of nonequilibrium
statistical mechanics [1]. In the simplest case, a Brownian
particle moving in a thermal medium is effectively
described by linear Langevin equation

M
d2

dt2
qðtÞ þ η0

d
dt

qðtÞ ¼ χðtÞ; ð1:1Þ

where qðtÞ andM are the position and effective mass of the
Brownian particle, η0 is damping coefficient. A Gaussian
white noise χðtÞ could be characterized by one- and two-
point functions,

hχðtÞi ¼ 0; hχðtÞχðt0Þi ¼ 2Tη0δðt − t0Þ; ð1:2Þ

where the coefficient in the second relation is due to
fluctuation-dissipation theorem. Here, T is the temperature
of thermal medium.
For specific purpose, linear Langevin theory (1.1)–(1.2)

would be recast into an alternative formalism. For instance,
in order to avoid repeatedly solving stochastic

equation (1.1) with (infinitely) many different samplings
of noise, one could equivalently consider Fokker-Planck
equation, which is a deterministic differential equation
for probability distribution function Pðq; _q; tÞ, where a dot
means time derivative. Moreover, for a Gaussian distribu-
tion of noise, the Langevin equation (1.1) could be
reformulated as a functional integral [2], with the weight
given by the Martin-Siggia-Rose-deDominicis-Janssen
(MSRDJ) action. The functional integral formalism based
on MSRDJ action makes it natural to adopt modern field
theoretic methods to analyze more general stochastic
processes.
Indeed, linear Langevin theory (1.1)–(1.2) could be

generalized in a number of ways [2–6]. First, the linear
Langevin equation (1.1) could be made nonlinear by
adding general polynomial terms such as f1ðq; _q; χÞ, which
contains self-interactions for the dynamical variable q and
nonlinear interactions between dynamical variable q and
noise ξ. One special case is multiplicative s noise, which
amounts to making a replacement χ → f2ðq; _qÞχ in (1.1).
Second, the noise would obey a non-Gaussian distribution,
and might be colored as well, which requires us to go
beyond (1.2). Third, isotropy would be broken by an
external field, such as in a magnetized thermal medium
[7,8]. Then, beyond the linear level, the dynamics of
transverse and longitudinal modes (with respect to external
field) would get mixed. These corrections may become
relevant and/or important for more realistic systems. A
natural question arises; what is a more systematic way of
organizing these extensions? This will be pursued here
through two complementary approaches.
In this work we search for an effective description

for a Brownian particle in a magnetized plasma, with
potential applications in heavy-ion collisions in mind.
The main purpose is to reveal nonlinear corrections to
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linear Langevin theory (1.1)–(1.2) in a systematic way.
This will be achieved by nonequilibrium effective field
theory (EFT) formalism for a quantum many-body system
at finite temperature [9–12] (see [13–15] for an alternative
approach). Within such a formalism, dynamics of
Brownian particle is entirely dictated by an effective action,
which will be constructed on a set of symmetries. The
effective action may be thought of as generalization of the
MSRDJ action for a linear theory (1.1)–(1.2). Moreover,
the effective action contains “free parameters” representing
UV physics and information of the state as well.
Generically, it is challenging to compute those free param-
eters from an underlying UV theory (here, it is a closed
system consisting of the Brownian particle and the mag-
netized plasma). Given that quark-gluon plasma produced
in heavy-ion collisions is strongly coupled, we turn to a
microscopic holographic model and derive the effective
action (including values of free parameters).
Holography [16–18] is insightful in understanding

symmetry principles underlying nonequilibrium effective
action. Of particular importance is the dynamical Kubo-
Martin-Schwinger (KMS) symmetry [9–11] acting on
dynamical variable of the effective action, which guar-
antees the generalized fluctuation-dissipation theorem
[19,20] at full level. In [9–11], dynamical KMS sym-
metry is implemented in the classical statistical limit
where ℏ → 0, which corresponds to neglecting quantum
fluctuations in the effective theory. However, for a
holographic theory, the mean free path is ∼ℏ=T, which
implies that gradient expansion would generally inevi-
tably bear quantum fluctuations [21]. Via the example of
Brownian motion, we will elaborate on this point from
both nonequilibrium EFT approach and holographic
calculation. Intriguingly, imposition of a constant trans-
lational invariance (i.e., q → qþ c with c a constant)
renders the resultant effective theory to be of classical
statistical nature.
While effective action formalism is more systematic

in covering nonlinear corrections alluded above, it turns
out to be inconvenient to convert non-Gaussian effective
action into a Langevin-type equation [9]. The main
obstacle stems from non-Gaussianity in the a-variable
(to be defined below), which prohibits from carrying out
Hubbard-Stratonovich transformation [2]. Interestingly,
we are able to convert the non-Gaussian effective action
constructed in present work into Fokker-Planck-type
equation, which will be useful in a numerical study.
The rest of this paper will be structured as follows. In

Sec. II we clarify the set of symmetries and construct
effective action for Brownian particles, which is further
put into Fokker-Planck-type equation. In Sec. III we
derive effective action for a Brownian particle moving in
magnetized thermal plasma from a holographic perspec-
tive. In Sec. IV we summarize and outlook future
directions. Appendixes A and B provide further calcula-
tional details.

II. EFFECTIVE DYNAMICS FROM
SYMMETRY PRINCIPLE

Dynamics of a closed system consisting of a Brownian
particle and a thermal medium is presumably described by
an action

SC ¼ Sp½q� þ Sth½Φ� þ Sint½q;Φ�; ð2:1Þ

where Sp½q� is action for the Brownian particle, Sth½Φ�
describes microscopic theory of the constitutes (collec-
tively denoted as Φ) for the thermal medium, and Sint½q;Φ�
is the interaction between Brownian particles and constitu-
ents of the thermal medium. In principle, the effective
action for the Brownian particles would be obtained by
integrating out degrees of freedom fΦg for the thermal
medium, as illustrated below,

Z ¼
Z

½Dq�½DΦ�eiSC ¼
Z

½Dq�eiI½q�; ð2:2Þ

where I½q� is the desired effective action. For such a
quantum many-body system, the time evolution of the
state will effectively go forwards and backwards along
the Schwinger-Keldysh (SK) closed-time contour (see
Fig. 1). Apparently, when carrying out the “integrating
out” procedure in (2.2), one shall place the closed
system on the SK closed-time contour of Fig. 1.
Resultantly, the degrees of freedom are doubled,
q → ðq1; q2Þ, where the subscripts 1,2 correspond to
the upper and lower branches of Fig. 1.
Except for a few simple models [3,4,12,22–24], it is very

challenging to implement the “integrating out” procedure
illustrated in (2.2). It is thus natural to construct the
effective action based on symmetry principle, which will
be pursued here.

A. Construction of effective action

The effective action I½q1; q2� is usually presented in
ðr; aÞ-basis,

qr ≡ 1

2
ðq1 þ q2Þ; qa ≡ q1 − q2; ð2:3Þ

where qr is the physical variable and qa is an auxiliary
variable [conjugate to noise ξðtÞ]. We summarize various
symmetries and constraints obeyed by the effective action

FIG. 1. The SK closed time contour: ρ0 is initial density matrix,
and Uðtf; tiÞ is the time-evolution operator from initial time ti to
final time tf.
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I½q1; q2� ¼ I½qr; qa� for a Brownian particle moving in a
magnetized plasma.

1. Z2-reflection symmetry

Take the complex conjugate of partition function (2.2),
we find the reflection conditions,

I�½q1; q2� ¼ −I½q2;q1� ⇔ I�½qr; qa� ¼ −I½qr;−qa�: ð2:4Þ

2. Normalization condition

If we set the two coordinates to be the same
q1 ¼ q2 ¼ q, we find

TrðUðþ∞;−∞; qÞρ0U†ðþ∞;−∞; qÞÞ ¼ Trρ0 ¼ 1; ð2:5Þ

which lead to the normalization condition,

I½qr; qa ¼ 0� ¼ 0: ð2:6Þ

So, it will be convenient to present the effective action as an
expansion in number of qa-variable.
Moreover, for the path integral based on I½qr; qa� to be

well defined, the imaginary part of I½qr; qa� should be
non-negative,

ImðI½qr; qa�Þ ≥ 0; ð2:7Þ

which will constrain some parameters in the effective
action.

3. Dynamical KMS symmetry

I½q1; q2� ¼ I½q̃1; q̃2�; ð2:8Þ

where

q̃1ð−tÞ ¼ q1ðtÞ; q̃2ð−tÞ ¼ q2ðt − iβÞ: ð2:9Þ

Here, β ¼ 1=T is the inverse temperature of the plasma
medium. The dynamical KMS symmetry is crucial in
formulating an EFT for a quantum many-body system at
finite temperature. It guarantees the generalized nonlinear
fluctuation-dissipation theorem (FDT) at full quantum
level [19], which originates from time-reversal invariance
of underlying microscopic theory and relies on the fact that
initially the system is in a thermal state.
Intriguingly, it is possible to take classical statistical limit

of dynamical KMS symmetry so that only thermal fluctua-
tions in the EFT will survive [9]. Let us properly restore
Planck constant

β → ℏβ; qr → qr; qa → ℏqa: ð2:10Þ

Then, the classical statistical limit is achieved by taking
ℏ → 0 in the effective action. Consequently, the classical
statistical limit of (2.9) becomes

q̃rð−tÞ ¼ qrðtÞ; q̃að−tÞ ¼ qaðtÞ þ iβ∂tqrðtÞ: ð2:11Þ

On the other hand, when the mean free path is of order
ℏβ (as for a holographic theory), derivative expansion
adopted in the construction of effective action would
suggest considering ℏβ-expansion1 of the dynamical
KMS transformation (2.9):

q̃rð−tÞ ¼ qrðtÞ −
i
2
ℏβ∂tqrðtÞ þ

i
4
ℏ2β∂tqaðtÞ;

q̃að−tÞ ¼ qaðtÞ þ iβ∂tqrðtÞ −
i
2
ℏβ∂tqaðtÞ: ð2:12Þ

Interestingly, taking ℏ → 0 in (2.12) will recover the
classical statistical limit (2.11).
The Z2-reflection symmetry and dynamical KMS sym-

metry are generic to nonequilibrium EFT. Specific to the
problem of Brownian motion, we will impose additional
symmetries.

4. Z2-parity

I½q1; q2� ¼ I½−q1;−q2� ⇔ I½qr;qa� ¼ I½−qr;−qa� ð2:13Þ

which means the action I contains only even powers of qr;a.

5. Rotational symmetry

I½q̂1; q̂2�¼ I½q1;q2�; with q̂1¼Rq1; q̂2¼Rq2; ð2:14Þ

where R denotes rotational transformation in space.
Relevant to present work, the rotational symmetry will
be reduced into SOð2Þxy thanks to presence of a back-
ground magnetic field along z-direction.

6. Constant translational symmetry

I½q1 þ c; q2 þ c� ¼ I½q1; q2� ⇔ I½qr þ c; qa� ¼ I½qr; qa�
ð2:15Þ

where c is a constant. This symmetry is due to the
homogeneous property of the plasma medium. Under this
symmetry, the dependence of I½qr; qa� on particle’s position
will be through the velocity _qr. Interestingly, combined
with the dynamical KMS symmetry, this symmetry will
stringently constrain the form of I½qr; qa�, which will
accidently make the dynamical KMS symmetry at quantum

1Here, we keep the expansion to first order in β for later
purpose.
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level indistinguishable from its classical statistical limit, at
least valid at first order in derivative expansion.
Now it is ready to present the effective action for

Brownian particle in magnetized plasma. The effective
action I ¼ R

dtLSK will be organized by employing
amplitude expansion in qr;a and derivative expansion.
Schematically, the effective Lagrangian is expanded as

LSK ¼ Lð2Þ
SK þ Lð4Þ

SK þ � � � ; ð2:16Þ

where superscript denotes number of qr;a variables.
Here, we have imposed the Z2-parity (2.13).

First, we consider the quadratic Lagrangian Lð2Þ
SK. Recall

that the constant translational symmetry (2.15) tells us
that the effective Lagrangian should be a functional of _qr
instead of qr. After imposing the rotational symmetry
(2.14), the most general quadratic Lagrangian is2

Lð2Þ
SK ¼ −MTqiaq̈ir −MLqzaq̈zr − qiaηT _qir − qzaηL _qzr

þ i
2
½qiaξTqia þ qzaξLqza� −QBϵij _qirq

j
a; ð2:17Þ

where constants MT;L are identified with effective mass
for transverse and longitudinal modes, respectively. ηT;L,
and ξT;L are functionals of the time-derivative operator
∂t, and could be expanded in the hydrodynamic limit

CT;L ¼ CT;L
0 þ CT;L

1 ∂t þ CT;L
2 ∂

2
t þ � � � ; with C ¼ η; ξ:

ð2:18Þ

The Q term represents the Lorentz force (with Q the
charge of Brownian particle), which is not a medium
effect.
The requirement (2.7) sets inequality relations for ξT;L,

e.g., in accord with derivative expansion (2.18), we have

ξT0 ≥ 0; ξL0 ≥ 0; ξT2n ≤ 0;

ξL2n ≤ 0; n ¼ 1; 2; 3;…: ð2:19Þ

Finally, we impose the dynamical KMS symmetry (2.8)
at the full level (2.9). At quadratic order, this is equivalent
to the familiar FDT

ηTðωÞ ¼ coth
�
βω

2

�
Im½iωξTðωÞ�;

ηLðωÞ ¼ coth

�
βω

2

�
Im½iωξLðωÞ�; ð2:20Þ

where we turn to frequency domain by ∂t → −iω. Since we
will be interested in truncating the expansion (2.18) to
leading order, the linear FDT becomes

ηT0 ¼ 1

2
βξT0 ; ηL0 ¼ 1

2
βξL0 : ð2:21Þ

Through Legendre transformation [9,12], it is easy to show

that the quadratic Lagrangian Lð2Þ
SK is equivalent to a linear

Langevin theory.

Next we turn to quartic Lagrangian Lð4Þ
SK, which contains

mixing effects between transverse and longitudinal modes.
With symmetries (2.6), (2.13), (2.14), and (2.15) imposed,
the most general quartic Lagrangian is

Lð4Þ
SK ¼ κT _qirqiaðqjaÞ2 þ κL _qzrðqzaÞ3 þ κ×2 _q

i
rqiaðqzaÞ2

þ κ×1 _q
z
rqzaðqiaÞ2 þ

i
4!
½ζTðqiaÞ2ðqjaÞ2 þ ζLðqzaÞ4

þ ζ×ðqiaÞ2ðqzaÞ2�; ð2:22Þ

where we have truncated at first order in the derivative
expansion. Here, in contrast with (2.17), various coeffi-
cients in (2.22) are constants.
From the constraint (2.7), we have

ζT ≥ 0; ζL ≥ 0; ζ× ≥ 0: ð2:23Þ

Finally, we impose dynamical KMS symmetry (2.8). In the
classical statistical limit (2.11), this implies

κT ¼ −
1

12
βζT; κL ¼ −

1

12
βζL; κ×1 ¼ κ×2 ¼ −

1

24
βζ×:

ð2:24Þ

Intriguingly, it can be shown that if we had imposed
(2.12), we would obtain the same conclusion (2.24).
This seemingly implies for the Brownian motion example
considered in this work, that the classical statistical
limit (2.11) is indistinguishable from the high-temperature
limit (2.12). This is indeed attributed to the constant
translational invariance (2.15). More precisely, if this
symmetry is relaxed, the following terms shall be added
to (2.22) (each with an independent coefficient)

qrq3a; q2rq2a; q3rqa; _qrqrq2a; _qrq2rqa; � � �: ð2:25Þ

Then, it is straightforward to check that under classical
statistical limit (2.11), the dynamical KMS symmetry
(2.8) will yield the same constraints (2.24) [plus addi-
tional constraints among added terms (2.25)]. However,
imposing (2.8) under a high-temperature limit (2.12) will
give different constraints. We demonstrate this claim in
Appendix B.

2Throughout this paper, the magnetic field is along the
z-direction, and indices i, j denote transverse directions. Here,
we have ignored terms like Bϵij _qiaq

j
a;M×ϵijq̈irq

j
a since they will

not appear in our holographic model.
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B. Fokker-Planck equation from non-Gaussian
effective action

As explained in [9], inclusion of non-Gaussian terms, such

as Lð4Þ
SK of (2.22), would make it inconvenient to perform a

Legendre transformation from variable qa to noise θ, which
amounts to saying that it is generically inconvenient to cast
non-Gaussian effective action into a stochastic Langevin-type
equation.3 In this subsection we derive a Fokker-Planck-type
equation from the non-Gaussian effective action, for the
purpose of future numerical study.

With MSRDJ action for a classical stochastic system, the
derivation of the Fokker-Planck equation could be found in
e.g., the textbook [2]. This mainly relies on the following
observation; the partition function based on MSRDJ action
is proportional to the probability of finding the system at
certain configurations. Here, we will take an alternative
approach, by considering Hamiltonian formulation of the
effective action and making an analogy with quantum
mechanics. To illustrate the derivation, we truncate the
expansion (2.18) at leading order so that the effective
Lagrangian reads

L0
SK ¼ −MTqiaq̈ir −MLqzaq̈zr − qiaηT0 _q

i
r − qzaηL0 _q

z
r þ

i
2
½qiaξT0qia þ qzaξL0q

z
a� −QBϵij _qirq

j
a þ κT _qirqiaðqjaÞ2 þ κL _qzrðqzaÞ3

þ κ×2 _q
i
rqiaðqzaÞ2 þ κ×1 _q

z
rqzaðqiaÞ2 þ

i
4!
½ζTðqiaÞ2ðqjaÞ2 þ ζLðqzaÞ4 þ ζ×ðqiaÞ2ðqzaÞ2�: ð2:26Þ

In the Lagrangian formulation for the effective theory, qr satisfies a second-order differential equation. Thus, to search for
the Hamiltonian formulation, we need to consider particle velocity _qr as another coordinate [2], which can be achieved by
introducing associated multipliers

L̃0
SK ¼ L̃0

SK½qr; _qr; v; _v; qa�≡ λiaðvi − _qirÞ þ λzaðvz − _qzrÞ þ L0
SKj _qir→vi; _qzr→vz

¼ λiaðvi − _qirÞ þ λzaðvz − _qzrÞ −MTqia _vi −MLqza _vz − ηT0q
i
avi − ηL0q

z
avz −QBϵijviq

j
a

þ i
2
½qiaξT0qia þ qzaξL0q

z
a� þ κTviqiaðqjaÞ2 þ κLvzðqzaÞ3 þ κ×2 v

iqiaðqzaÞ2 þ κ×1 v
zqzaðqiaÞ2

þ i
4!
½ζTðqiaÞ2ðqjaÞ2 þ ζLðqzaÞ4 þ ζ×ðqiaÞ2ðqzaÞ2�: ð2:27Þ

Then, in the path integral based on modified Lagrangian L̃0
SK, integrating over multipliers λia, λza gives rise to delta functions

δðvi − _qirÞ and δðvz − _qzrÞ as desired. Now, the conjugate momenta for qr and v are defined as

ki ≡ −i
∂L̃0

SK

∂ _qir
¼ iλia; kz ≡ −i

∂L̃0
SK

∂ _qzr
¼ iλza;

pi ≡ −i
∂L̃0

SK

∂ _vi
¼ iMTqia; pz ≡ −i

∂L̃0
SK

∂ _vz
¼ iMLqza: ð2:28Þ

Therefore, in terms of conjugate pairs ðqr; kÞ and ðv; pÞ, the effective action can be rewritten as the anticipated Hamiltonian
formulation

iĨ0 ≡ i
Z

dtL̃0
SK ¼ −

Z
dt½ki _qir þ kz _qzr þ pi _vi þ pz _vz −Hðk; p; qr; vÞ�; ð2:29Þ

where the Fokker-Planck Hamiltonian H is

H ¼ viki þ vzkz − η̃T0p
ivi − η̃L0p

zvz − Q̃Bϵijpjvi þ 1

2
½ξ̃T0 ðpiÞ2 þ ξ̃L0ðpzÞ2�

− ½κ̃TðpiÞ2pjvj þ κ̃LðpzÞ3vz þ κ̃×2 ðpzÞ2pivi þ κ̃×1 ðpiÞ2pzvz�

−
1

4!
½ζ̃TðpiÞ2ðpjÞ2 þ ζ̃LðpzÞ4 þ ζ̃×ðpiÞ2ðpzÞ2�: ð2:30Þ

3The inverse problem, i.e., deriving the MSRDJ-type action for a nonlinear version of (1.1)–(1.2), was recently considered in [6].
However, it was found that the parameters in the MSRDJ-type action are not in simple correspondence with those in the nonlinear
Langevin equation.
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For notational simplicity, we introduced tilde coefficients

η̃T0 ¼
ηT0
MT ; η̃

L
0 ¼

ηL0
ML ; Q̃¼ Q

MT ; ξ̃
T
0 ¼

ξT0
ðMTÞ2 ; ξ̃

L
0 ¼

ξL0
ðMLÞ2 ;

κ̃T¼ κT

ðMTÞ3 ; κ̃
T¼ κL

ðMLÞ3 ; κ̃
×
2 ¼

κ×2
MTðMLÞ2 ; κ̃

×
1 ¼

κ×1
MLðMTÞ2 ;

ζ̃T¼ ζT

ðMTÞ4 ; ζ̃
L¼ ζL

ðMLÞ4 ; ζ̃
×¼ ζ×

ðMTMLÞ2 : ð2:31Þ

In analogy with quantum mechanics, we will quantize
the action (2.29) by promoting conjugate pairs to operators
and impose canonical commutation relations

½q̂ir; k̂j�¼δij; ½q̂zr; k̂z�¼1; ½v̂i;p̂j�¼δij; ½v̂z;p̂z�¼1;

ð2:32Þ

which, in coordinate representation ðq̂r → qr; v̂ → vÞ,
could be realized by the replacement rule

k̂ → −∇⃗ ≡
�
−

∂

∂qir
;−

∂

∂qzr

�
;

p̂ → −∇⃗v ≡
�
−

∂

∂vi
;−

∂

∂vz

�
: ð2:33Þ

Meanwhile, we obtain the Fokker-Planck type equation

∂tPðqr; v; tÞ ¼ Ĥð∇⃗; ∇⃗v; qr; vÞPðqr; v; tÞ; ð2:34Þ

where Pðqr; v; tÞ, analogous to the wave function of
quantummechanics, is the probability of finding the system
at configuration ðqrðtÞ; vðtÞÞ at time t. The Fokker-Planck
Hamiltonian operator Ĥ is obtained from (2.30) by making
the replacement rule (2.33). We split Ĥ into three parts

Ĥ ¼ Ĥ0 þ Ĥ1 þ Ĥ2: ð2:35Þ

Here, the familiar part Ĥ0 is

Ĥ0• ¼ −vi
∂

∂qir
• −vz

∂

∂qzr
•þη̃T0

∂

∂vi
ðvi•Þ þ η̃L0

∂

∂vz
ðvz•Þ

− Q̃Bϵij
∂

∂vj
ðvi•Þ þ 1

2

�
ξ̃T0

∂
2

∂vi∂vi
þ ξ̃L0

∂
2

∂vz∂vz

�
•;

ð2:36Þ

which corresponds to a classical stochastic model, such as
anisotropic version of (1.1)–(1.2). The rest of the pieces
Ĥ1; Ĥ2 contain higher-order velocity derivatives, and could
be viewed as non-Gaussian corrections to a classical
stochastic model. Specifically, Ĥ1 represents nonlinear
interactions between noise and dynamical variables

Ĥ1• ¼ κ̃T
�

∂

∂vi

�
2 ∂

∂vj
ðvj•Þ þ κ̃L

�
∂

∂vz

�
3

ðvz•Þ

þ κ̃×2

�
∂

∂vz

�
2 ∂

∂vi
ðvi•Þ þ κ̃×1

�
∂

∂vi

�
2 ∂

∂vz
ðvz•Þ:

ð2:37Þ

The last piece Ĥ2 corresponds to non-Gaussianity for noise

Ĥ2• ¼ −
1

4!

�
ζ̃T
�

∂

∂vi

�
2
�

∂

∂vj

�
2

þ ζ̃L
�

∂

∂vz

�
4

þ ζ̃×
�

∂

∂vi

�
2
�

∂

∂vz

�
2
�
• : ð2:38Þ

Finally, we briefly discuss the strategy of solving the
generalized Fokker-Planck equation (2.34). When the non-
Gaussian parts Ĥ1, Ĥ2 are neglected (2.34) becomes
standard Fokker-Planck equation and has been widely
studied in the literature, see e.g., [25]. Basically, the idea
is to first search for the stationary solution and then correct
it by introducing time dependence perturbatively. On top
of this, it is possible to explore consequences of the non-
Gaussian corrections Ĥ1, Ĥ2 perturbatively. A detailed
study along this direction is beyond the scope of present
work and is left as a future project.

III. STUDY IN A MICROSCOPIC MODEL

In this section we reveal systematic corrections to linear
Langevin theory (1.1)–(1.2) from a holographic perspec-
tive, hopefully shedding light on understanding properties
of strongly coupled quark-gluon plasma. On the one hand,
this study will confirm results presented in Sec. II A. On the
other hand, we compute various coefficients in (2.17)
and (2.22) as functions of the magnetic field, which might
be useful for heavy-ion collisions.
Generally, the expectation value of the Wilson-loop

operator is identified with the partition function of the
dual string world sheet [26]. In the large-Nc and large-λ
limit the duality is greatly simplified to

hWðCÞi ¼ eiSðCÞ; ð3:1Þ

where SðCÞ is the Nambu-Goto action, whose boundary
condition is that the world sheet ends on curve C of the
Wilson loop. In our work, we are interested in an uncon-
fined heavy quark, which means we should set the probe
D7-brane at the boundary of fifth-dimensional anti–de
Sitter space ðAdS5Þ. The heavy quark is dual to an open
string stretching from the horizon up to the probe D7-brane.
Then the Wilson loop turns to the Wilson line, which
represents the world line of the heavy quark. As in [27–32],
we will consider the open string moving in a target space
of magnetic AdS5 black brane, which is holographic
dual of a heavy quark in strongly coupled magnetized
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plasma,4 see Fig. 2 for illustration. The friction and noise
forces felt by the boundary quark correspond to the
ingoing mode and the outgoing one (Hawking mode)
in open string’s profile [29,44–48], respectively. Here,
adopting the holographic prescription for SK closed time
contour [49],5 we will extend this picture to nonlinear
level (see [5] for the situation without magnetic field) by
analyzing dynamics of a Nambu-Goto string in magnetic
AdS5 black brane.
The partition function for the bulk theory is

Zbulk ¼
Z

½DX�½DgMN �eiSbulk½X;gMN �; ð3:2Þ

where Sbulk is the total action for the bulk theory, gMN is the
metric of target space (magnetic brane in AdS5), and X
describes embedding profile of open string in the target
space. In probe limit, the target space does not fluctuate.
Then, the bulk partition function Zbulk gets reduced into that
of an open string in the magnetic AdS5 brane,

Zbulk ≃ Zstring ¼
Z

½DX�eiS½X�; ð3:3Þ

where S is the total string action. It will be clear that the
string embedding profileX is a functional of quark’s position
q, i.e., X ¼ X½q�. Thus, the bulk path integral (3.3) will be
eventually cast into a path integral over the position q. We
will work in the saddle point approximation:

Zstring ¼
Z

½Dq�eiS½X½q��; ð3:4Þ

where S½X½q�� is the on-shell classical string action. The
AdS=CFT conjectures that Z of (2.2) is equivalent to
Zbulk. Thus, in the probe limit, the on shell string action
S½X½q�� will be identified with the effective action I½q� for
Brownian particle in plasma medium. Therefore, holo-
graphic derivation of I½q� boils down to solving the
classical equation of motion (EOM) for an open string
in magnetic AdS5 brane.

A. Magnetic AdS5 black brane and its field theory dual

Consider a five dimensional Einstein-Maxwell theory
with a negative cosmological constant (the AdS radius is set
to unity)

SEM ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

4
F2 þ 12

�
: ð3:5Þ

The equations of motion (EOMs) for bulk theory (3.5) read

RMN þ 4gMN −
1

2
FPMFP

N þ 1

12
gMNF2 ¼ 0;

∇MFMN ¼ 0: ð3:6Þ

The theory (3.5) admits a magnetic brane solution [61]. To
utilize the prescription to integrate out the radius coordi-
nate, we work in the ingoing Eddington-Finkelstein coor-
dinates [49]. Thus the magnetic brane solution ansatz is

ds2 ¼ r2h

�
−

2

rh
dudt −

UðuÞ
u2

dt2 þ VðuÞ
u2

δijdxidxj

þWðuÞ
u2

dz2
�
; i; j ¼ 1; 2;

A ¼ Bx1dx2 ⇒ F ¼ Bdx1 ∧ dx2; ð3:7Þ

where the AdS boundary is located at u ¼ 0 and the event
horizon is at u ¼ 1. For simplicity, rh will be set to unity,
and could be restored by dimensional analysis. The
Hawking temperature of the magnetic brane (3.7) is

T ¼ −
U0ðuÞ
4π

����
u¼1

; ð3:8Þ

where T should be understood as in unit of rh. With the
ansatz (3.7), bulk EOMs (3.6) consist of three dynamical
components (3.9) and one constraint (3.10),

FIG. 2. Heavy quark in strongly coupled magnetized plasma
(left) and its gravity dual (right).

4In holographic context, dynamics of heavy quark in magnet-
ized plasma was considered in [33–40]. Anisotropic effects on
heavy quark dynamics were considered, for e.g., in [41–43].

5In recent years, the holographic SK contour [49] attracted a
lot of attention in various holographic settings [5,50–60].
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0 ¼ U00ðuÞ þ U0ðuÞ
�
V 0ðuÞ
VðuÞ þ

W0ðuÞ
2WðuÞ −

5

u

�
þ UðuÞ

�
8

u2
−
2V 0ðuÞ
uVðuÞ −

W0ðuÞ
uWðuÞ

�
−

B2u2

3VðuÞ2 −
8

u2
;

0 ¼ V 00ðuÞ þ V 0ðuÞ
�
U0ðuÞ
UðuÞ þ

W0ðuÞ
2WðuÞ −

5

u

�
þ VðuÞ

�
−

8

u2UðuÞ þ
8

u2
−
2U0ðuÞ
uUðuÞ −

W0ðuÞ
uWðuÞ

�
þ 2B2u2

3UðuÞVðuÞ ;

0 ¼ W00ðuÞ þW0ðuÞ
�
U0ðuÞ
UðuÞ þ

V 0ðuÞ
VðuÞ −

4

u

�
−
W0ðuÞ2
2WðuÞ þWðuÞ

�− B2u2

3VðuÞ2 −
8
u2

UðuÞ þ 8

u2
−
2U0ðuÞ
uUðuÞ −

2V 0ðuÞ
uVðuÞ

�
; ð3:9Þ

0 ¼ W00ðuÞ þWðuÞ
�
2V 00ðuÞ
VðuÞ −

V 0ðuÞ2
VðuÞ2

�
−
W0ðuÞ2
2WðuÞ : ð3:10Þ

where, since we have set rh ¼ 1 above, B should be understood as B=r2h.
The bulk metric shall demonstrate asymptotic AdS behavior near u ¼ 0, which requires

UðuÞ → 1; VðuÞ → 1; WðuÞ → 1; as u → 0: ð3:11Þ

Indeed, near AdS boundary u ¼ 0, the metric functions U, V, W are expanded as

Uðu → 0Þ ¼ 1þ U1
buþ 1

4
ðU1

bÞ2u2 þ
B2

6ðV0
bÞ2

u4 log uþ U4
bu

4 þ � � � ;

Vðu → 0Þ ¼ V0
b þ V0

bU
1
buþ 1

4
V0
bðU1

bÞ2u2 −
B2

12V0
b

u4 loguþ V4
bu

4 þ � � � ;

Wðu → 0Þ ¼ W0
b þW0

bU
1
buþ 1

4
W0

bðU1
bÞ2u2 þ

W0
bB

2

6ðV0
bÞ2

u4 log uþW4
bu

4 � � � ; ð3:12Þ

where we have made use of bulk EOMs (3.9)–(3.10).
Obviously, the asymptotic boundary conditions (3.11) only
give rise to two effective requirements. The regularity
requirements will yield another three conditions. Here,
as in [62] we can utilise the freedom of redefining the radial
coordinate u and set U1

b ¼ 0. Therefore, the boundary
conditions at u ¼ 0 are

U0ðu ¼ 0Þ ¼ 0; Vðu ¼ 0Þ ¼ Wðu ¼ 0Þ ¼ 1: ð3:13Þ

At the horizon u ¼ 1, we impose regularity condition

Uðu¼1Þ¼0;

U0ð1ÞV 0ð1Þ−8Vð1Þ−2U0ð1ÞVð1Þþ 2B2

3Vð1Þ¼0;

U0ð1ÞW0ð1Þ−2Wð1ÞU0ð1Þ−8Wð1Þ−B2Wð1Þ
3Vð1Þ2 ¼0: ð3:14Þ

Then, near the horizon u ¼ 1 the metric functions are
expanded as

Uðu→1Þ¼0þU1
hðu−1ÞþU2

hðu−1Þ2þ���;
Vðu→1Þ¼V0

hþV1
hðu−1ÞþV2

hðu−1Þ2þ��� ;
Wðu→1Þ¼W0

hþW1
hðu−1ÞþW2

hðu−1Þ2þ���; ð3:15Þ

where U1
h, V

0
h, W

0
h are the horizon data and all the rest

of the coefficients are fully fixed in terms of the
horizon data. In terms of horizon data, the black hole
temperature (3.8) is

T ¼ −
U1

h

4π
: ð3:16Þ

In order to determine the metric functions U, V, W, we
shall solve bulk EOMs (3.9)–(3.10) under boundary con-
ditions (3.13) and (3.14).
When magnetic field is weak, metric functions U, V, W

can be solved analytically [62,63]

UðuÞ ¼ 1 − u4 þ 1

6
B2u4 logðuÞ þ � � � ;

VðuÞ ¼ 1þ B2

48
Li2ðu4Þ −

B2ð1 − u4Þ logð1 − u4Þ
12ðu4 þ 3Þ þ � � � ;

WðuÞ ¼ 1 −
B2

24
Li2ðu4Þ þ

B2ð1 − u4Þ logð1 − u4Þ
6ðu4 þ 3Þ þ � � � :

ð3:17Þ

Meanwhile, the black hole temperature (3.16) is
expanded as
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T ¼ 1

π

�
1 −

B2

24

�
þOðB4Þ: ð3:18Þ

For a generic value of B, the metric functions are known
numerically only [61,62,64–67]. Practically, instead of
solving bulk EOMs (3.9)–(3.10) under the boundary con-
ditions (3.13) and (3.14), one could take a set of convenient
horizon data and evolve bulk EOMs (3.9)–(3.10). More
precisely, we will solve bulk EOMs (3.9)–(3.10) as an initial
value problem (3.15) with horizon data taken as (in unit
of rh ¼ 1)

U1
h ¼ −4; V0

h ¼ 1; W0
h ¼ 1: ð3:19Þ

Notice that the choice of U1
h ¼ −4 will set πT ¼ rhðBÞ.

Consequently, near the AdS boundary u ¼ 0 the bulk metric
behaves as

ds2ju→0 ¼
1

u2
½−dt2 þ vðbÞδijdx̂idx̂j þ wðbÞdẑ2�; ð3:20Þ

which is not the required one (3.11). Finally, one obtains
correct solution by rescaling of boundary coordinate

x̂i → xi=
ffiffiffiffiffiffiffiffiffi
vðbÞ

p
; ẑ → z=

ffiffiffiffiffiffiffiffiffiffi
wðbÞ

p
: ð3:21Þ

Here, we use b to denote the magnetic field in the incorrect
boundary metric (3.20). Then the physical magnetic field B
(in unit of r2h) should be

B ¼ b
vðbÞ : ð3:22Þ

Finally, we would like to point out that the background
solution obtained with initial conditions (3.15) and (3.19)
does not necessarily satisfy U1

b ¼ 0 [cf. (3.12)].
The magnetic brane solution (3.7) is dual to strongly

coupled N ¼ 4 SYM plasma exposed to an external
magnetic field. In order to add an external magnetic field
for boundary theory, we could think of gauging a Uð1Þ
subgroup of R-symmetry of N ¼ 4 SYM theory [68].
Schematically, the microscopic Lagrangian for the mag-
netized N ¼ 4 SYM plasma is [69]

Sth½Φ� ¼ SSYM;min:coupled þ Se:m:; ð3:23Þ

where SSYM;min :coupled represents action for N ¼ 4 SYM
theory minimally coupled to a U(1) gauge field, and Se:m: is
Maxwell action for U(1) gauge field. Apparently, the thermal
bath described by (3.23) preserves time-reversal symmetry,
which plays a crucial role in formulating EFT for a quantum
many-body system [9]. From the bulk perspective, the
Einstein-Maxwell theory (3.5) transparently preserves

time-reversal invariance. However, thanks to usage of
ingoing Eddington–Finkelstein coordinate system in (3.7),
the time-reversal symmetry is not simply realized as t → −t,
which will become clear in the linearized string solution. The
microscopic time-reversal symmetry will be translated into
dynamical KMS symmetry (2.8) for effective theory for
Brownian particles.

B. Dynamics of open string in magnetic brane

Classical dynamics of open string is described by
Nambu-Goto action

SNG ¼ −
1

2πα0

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðXÞ

p
; ð3:24Þ

where h is determinant of the induced metric hab on string
world sheet,

ds2WS ¼ habdσaσb ¼ gMN
∂XM

∂σa
∂XN

∂σb
: ð3:25Þ

Here, we use XM to denote embedding of string in
the target space (3.7). We will take a static gauge so that
string world sheet coordinate is σa ≡ ðσ; τÞ ¼ ðu; tÞ. Then,
embedding of the open string is specified by spatial
coordinates XiðσaÞ, XzðσaÞ. In presence of an external
Maxwell field, we shall supplement the Nambu-Goto
action (3.24) by a boundary term

Sbdy ¼ Q
Z

dτAMðXÞ
dXM

dτ

����
bdy

: ð3:26Þ

Imagine a static string with Xi ¼ Xz ¼ 0, for which the
world sheet spacetime is

ds̄2WS ¼ −
1

u2
½2dudtþ UðuÞdt2�; ð3:27Þ

which has an event horizon identical to that of the target
space (3.7). While such a static string will lose energy into
the horizon of the target space, it will also receive Hawking
radiation emitted from the horizon. Resultantly, we will
have a fluctuating string around a static configuration.
These two modes and their interactions will be translated
into effective dynamics of the quark in the boundary plasma
medium. Following [49], we double the background world
sheet spacetime (3.27), and analytically continue it around
the event horizon u ¼ 1, so that the radial coordinate u now
varies along the contour of Fig. 3.
The specific symmetries postulated for effective action

of Brownian particles, say (2.13)–(2.15), can be understood
from action of open string. Without a nontrivial back-
ground, the Nambu-Goto action for open string’s fluc-
tuation (still denoted as Xi, Xz) preserves the following
symmetries independently,
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ð1Þ Xi → −Xi; Xz → −Xz;

ð2Þ Xi → RijXj; Xz → Xz;

ð3Þ Xi → Xi þ ci; Xz → Xz þ cz; ð3:28Þ

which simply translate into (2.13)–(2.15) at the
boundary.

The classical EOM for open string, obtained from (3.24),
is highly nonlinear. Thus, we expand (3.24) to quartic order
in open string’s fluctuations Xi, Xz,

SNG ¼ Sð2ÞNG þ Sð4ÞNG þ � � � : ð3:29Þ

The quadratic part of Nambu-Goto action is

Sð2ÞNG ¼ −
1

2πα0

Z
dt

Z
02

01

du
u2

�
VðuÞ

�
−∂uXi

∂tXi þ 1

2
UðuÞð∂uXiÞ2

�
þWðuÞ

�
−∂uXz

∂tXz þ 1

2
UðuÞð∂rXzÞ2

�	
: ð3:30Þ

The quartic part of Nambu-Goto action is

Sð4ÞNG ¼ −
1

2πα0

Z
dt

Z
02

01

du
u2

�
−
1

8
VðuÞ2½2∂tXi −UðuÞ∂uXi�2ð∂uXjÞ2 − 1

8
WðuÞ2½2∂tXz −UðuÞ∂uXz�2ð∂uXzÞ2

−
1

8
VðuÞWðuÞ½ð2∂tXi −UðuÞ∂uXiÞ2ð∂uXzÞ2 þ ð2∂tXz −UðuÞ∂uXzÞ2ð∂uXiÞ2�

	
: ð3:31Þ

Based on truncated action Sð2ÞNG þ Sð4ÞNG, the EOMs for string fluctuations are

0 ¼ EOMTi ¼ ∂u

�
UV
u2

∂uXi

�
−
2V
u2

∂u∂tXi −
�
∂uV
u2

−
2V
u3

�
∂tXi − fi½Xi; Xz�;

0 ¼ EOMLz ¼ ∂u

�
UW
u2

∂uXz

�
−
2W
u2

∂u∂tXz −
�
∂uW
u2

−
2W
u3

�
∂tXz − fz½Xi; Xz�; ð3:32Þ

Here, fi, fz are cubic terms in Xi, Xz, whose exact forms will not be relevant in subsequent calculations. The string’s
EOMs (3.32) will be solved under doubled AdS boundary conditions

Xiðt; u ¼ 0sÞ ¼ qis; Xzðt; u ¼ 0sÞ ¼ qzs; with s ¼ 1 or 2: ð3:33Þ

The coupled nonlinear system (3.32) will be further linearized as

Xi ¼ αXi
ð1Þ þ α3Xi

ð3Þ þ � � � ; Xz ¼ αXz
ð1Þ þ α3Xz

ð3Þ þ � � � ; ð3:34Þ

where α is a formal book-keeping parameter. Accordingly, the boundary conditions (3.33) are implemented as

Xi
ð1Þðt; u ¼ 0sÞ ¼ qis; Xz

ð1Þðt; u ¼ 0sÞ ¼ qzs; with s ¼ 1 or 2;

Xi
ðnÞðt; u ¼ 0sÞ ¼ 0; Xz

ðnÞðt; u ¼ 0sÞ ¼ 0; with s ¼ 1 or 2; when n ≥ 3: ð3:35Þ

Then, Xi;z
ð1Þ satisfy linearized EOMs

FIG. 3. From complexified (analytically continued near horizon) double AdS (left) [70] to the holographic SK contour (right) [49].
The holographic contour infinitely close to the horizon, ϵ → 0. Indeed, the two horizontal legs overlap with the real axis.
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0 ¼ ∂u

�
UV
u2

∂uXi
ð1Þ

�
þ iω

2V
u2

∂uXi
ð1Þ þ iω

�
∂uV
u2

−
2V
u3

�
Xi
ð1Þ;

0 ¼ ∂u

�
UW
u2

∂uX
z
ð1Þ

�
þ iω

2W
u2

∂uX
z
ð1Þ þ iω

�
∂uW
u2

−
2W
u3

�
Xz
ð1Þ; ð3:36Þ

where we have turned to frequency domain via Fourier transformation,

Xi;z
ð1Þðu; tÞ ¼

Z
dω
2π

Xi;z
ð1Þðu;ωÞe−iωt: ð3:37Þ

It turns out that, under AdS boundary conditions (3.35), both Sð2ÞNG and Sð4ÞNG are fully determined by linearized fluctuations

Xi;z
ð1Þ [5,58]. Indeed, via integration by part, Sð2ÞNG of (3.30) is reduced into a surface term,

Sð2ÞNG ¼ −
1

2πα0

Z
dt

�
UðuÞVðuÞ

2u2
Xi
ð1Þ∂uX

i
ð1Þ þ

UðuÞWðuÞ
2u2

Xz
ð1Þ∂uX

z
ð1Þ

�
02

01

: ð3:38Þ

The quadratic order action is simply obtained from (3.31) by replacement rule Xi;z → Xi;z
ð1Þ,

Sð4ÞNG ¼ −
1

2πα0

Z
dt

Z
02

01

du
u2

�
−
1

8
VðuÞ2½2∂tXi

ð1Þ − UðuÞ∂uXi
ð1Þ�2ð∂uXjÞ2 − 1

8
WðuÞ2½2∂tXz

ð1Þ −UðuÞ∂uXz
ð1Þ�2ð∂uXz

ð1ÞÞ2

−
1

8
VðuÞWðuÞ½ð2∂tXi

ð1Þ − UðuÞ∂uXi
ð1ÞÞ2ð∂uXz

ð1ÞÞ2 þ ð2∂tXz
ð1Þ −UðuÞ∂uXz

ð1ÞÞ2ð∂uXi
ð1ÞÞ2�

	
: ð3:39Þ

Therefore, once linearized profiles Xi;z
ð1Þ are obtained,

evaluating (3.38) and (3.39) will give effective action for
boundary quark.
When u varies along the radial contour of Fig. 3,

linearized EOMs (3.36) have been studied in [5,58] when
B ¼ 0. The basic idea [58] is as follows: First, one cuts the
radial contour of Fig. 3 at the rightmost point u ¼ 1þ ϵ. It
is direct to find out generic solutions when u varies either
on upper branch or lower branch of Fig. 3. Then, the
generic solution on the upper branch and the generic
solution on the lower branch will be properly glued at
u ¼ 1þ ϵ. The gluing conditions can be derived from
the requirement that variational problem of (3.30) is
well defined at u ¼ 1þ ϵ. Finally, one imposes the
AdS boundary conditions (3.35). This strategy can be
directly applied to solve (3.36) when B ≠ 0. Below we
skip details and present the final solutions.
Under boundary conditions (3.35), the linearized

EOMs (3.36) are solved as

Xi
ð1Þðu;ωÞ ¼ ATðu;ωÞqirðωÞ þBTðu;ωÞqiaðωÞ;

u ∈ ½02; 01�;
Xz
ð1Þðu;ωÞ ¼ ALðu;ωÞqzrðωÞ þBLðu;ωÞqzaðωÞ;

u ∈ ½02; 01�; ð3:40Þ

where (S ¼ T;L)

ASðu;ωÞ ¼
Φig

S ðu;ωÞ
Φigð0Þ

S ðωÞ
;

BSðu;ωÞ ¼
1

2
coth

βω

2

Φig
S ðu;ωÞ

Φigð0Þ
S ðωÞ

−
e2iωχðuÞ

1 − e−βω
Φig

S ðu;−ωÞ
Φigð0Þ

S ð−ωÞ
;

ð3:41Þ

where the function χ is

χðuÞ≡ −
Z

u

02

1

UðuÞ u ∈ ½02; 01�: ð3:42Þ

Obviously, the task of solving linearized EOMs (3.36)
reduces to searching for ingoing solutions Φig

T;Lðu;ωÞ.
Expressed in the form (3.40), the linearized solutions
demonstrate explicit time-reversal symmetry [56,58].
Importantly, ingoing modes Φig

T;Lðu;ωÞ are regular over
the entire radial contour and can be constructed for u
varying on either upper branch or lower branch. In the low
frequency limit, we have formally constructed Φig

T;Lðu;ωÞ,

Φig
S ðu;ωÞ ¼ Φig

S;0ðuÞ þ ωΦig
S;1ðuÞ þ ω2Φig

S;2ðuÞ þ � � � ;
S ¼ T;L; ð3:43Þ

where
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Φig
S;0ðuÞ ¼ 1;

Φig
L;nðuÞ ¼ −

Z
u

0

dũ
ũ2

UW

Z
ũ

1

dû
2iW
û2

∂ûΦ
ig
L;n−1 þ

�
i∂ûW
û2

−
2iW
û3

�
Φig

L;n−1; n ≥ 1; ð3:44Þ

Φig
T;nðuÞ ¼ −

Z
u

0

dũ
ũ2

UV

Z
ũ

1

dû
2iV
û2

∂ûΦ
ig
T;n−1 þ

�
i∂ûV
û2

−
2iV
û3

�
Φig

T;n−1; n ≥ 1: ð3:45Þ

C. Effective action for a Brownian quark: Quadratic order

Quadratic effective action Ið2Þ for boundary quark is related to string action via

Ið2Þ ¼ Sð2ÞNG þ Sbdy; ð3:46Þ

where Sð2ÞNG is presented in (3.38). Near two AdS boundaries, linearized string fluctuations behave as

Xi;z
ð1Þðu → 0s;ωÞ ¼ qi;zs ðωÞ − iωqi;zs ðωÞuþOi;z

s ðωÞu3 þ � � � ; s ¼ 1 or 2; ð3:47Þ

where the normalizable modes Oi;z
s ðωÞ are

OiðzÞ
2 ðωÞ ¼

Φigð3Þ
TðLÞðωÞ

Φigð0Þ
TðLÞðωÞ

qiðzÞr ðωÞ þ 1

2
coth

βω

2

Φigð3Þ
TðLÞðωÞ

Φigð0Þ
TðLÞðωÞ

qiðzÞa ðωÞ− 1

1− e−βω
Φigð3Þ

TðLÞð−ωÞ
Φigð0Þ

TðLÞð−ωÞ
qiðzÞa ðωÞ þ 2iω3

3ð1− e−βωÞq
iðzÞ
a ðωÞ;

OiðzÞ
1 ðωÞ ¼

Φigð3Þ
TðLÞðωÞ

Φigð0Þ
TðLÞðωÞ

qiðzÞr ðωÞ þ 1

2
coth

βω

2

Φigð3Þ
TðLÞðωÞ

Φigð0Þ
TðLÞðωÞ

qiðzÞa ðωÞ− e−βω

1− e−βω
Φigð3Þ

TðLÞð−ωÞ
Φigð0Þ

TðLÞð−ωÞ
qiðzÞa ðωÞ þ 2iω3e−βω

3ð1− e−βωÞq
iðzÞ
a ðωÞ: ð3:48Þ

where pairing ði;TÞ or ðz;LÞ is assumed over indices. Here, Φigð0Þ and Φigð3Þ are read off from near boundary expansion of
ingoing solution

Φigðu → 0;ωÞ ¼ Φigð0ÞðωÞ þ � � � þΦigð3ÞðωÞu3 þ � � � : ð3:49Þ

Immediately, (3.46) is computed as

Ið2Þ ¼ 1

2πα0

Z
dω
2π

�
i
2
qiað−ωÞGT

rrðωÞqiaðωÞ þ qiað−ωÞ½M0ω
2 þGT

raðωÞ�qirðωÞ
	

þ 1

2πα0

Z
dω
2π

�
i
2
q3að−ωÞGL

rrðωÞq3aðωÞ þ q3að−ωÞ½M0ω
2 þ GL

raðωÞ�q3rðωÞ
	

−
Z

dω
2π

QBiω½q1rð−ωÞq2aðωÞ þ q1að−ωÞq2rðωÞ�; ð3:50Þ

where (S ¼ T;L)

GS
rrðωÞ ¼ −i coth

βω

2

�
3

2

Φigð3Þ
S ðωÞ

Φigð0Þ
S ðωÞ

−
3

2

Φigð3Þ
S ð−ωÞ

Φigð0Þ
S ð−ωÞ

þ iω3

�
;

GS
raðωÞ ¼ 3

Φigð3Þ
S ðωÞ

Φigð0Þ
S ðωÞ

þ iω3: ð3:51Þ

In (3.50) the bare quark mass M0 is related to location of probe D7-brane by M0 ¼ limu→Λ1=u. The holographic result
(3.50) is identical to (2.17) via the following identification (with 2πα0 ¼ 1),
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MSω2 þ iωηSðωÞ ¼ M0ω
2 þ GS

ra;

ξS ¼ −2iGS
rr; with S ¼ T or L: ð3:52Þ

The familiar FDT (2.20) is equivalent to

GT;L
rr ¼ coth

βω

2
Im½GT;L

ra ðωÞ�; ð3:53Þ

which is automatically satisfied.
While it is straightforward to numerically compute GT;L

rr

and GT;L
ra by scanning over ðω; BÞ, we will be limited to the

leading order results ηT;L0 (equivalently ξT;L0 ), which are
related to metric functions by

ηT0 ¼ 1þ
Z

0

1

du

�
2

u3
ðWðuÞ − 1Þ −W0ðuÞ

u2

�
;

ηL0 ¼ 1þ
Z

0

1

du

�
2

u3
ðVðuÞ − 1Þ − V 0ðuÞ

u2

�
: ð3:54Þ

When B=T2 ≪ 1, metric functions U, V, W are known
analytically, see (3.17). Thus, we have perturbative expan-
sions for ηT;L0 ,

ηT0
ðπTÞ2 ¼ 1þ B2

12ðπTÞ4 þ
π2B2

288ðπTÞ4 þ � � � ;

ηL0
ðπTÞ2 ¼ 1þ B2

12ðπTÞ4 −
π2B2

144ðπTÞ4 þ � � � ; ð3:55Þ

which are in perfect agreement with numerical results, as
demonstrated in Fig. 4. Here we restore the rh in η

T;L
0 ; B and

transform the rh to the temperature of plasma.
For generic value of B=T2, we show numerical results for

ηT;L0 in Figs. 5 and 6. Given that a strong magnetic field is
produced in off-center heavy-ion collisions, we examine
ηT;L0 when B=T2 ≫ 1, which are well fitted as

ηT0
ðπTÞ2 → 0.707þ 0.0303

B
T2

;

ηL0
ðπTÞ2 → 1.386 − 0.524

log ðB=T2Þffiffiffiffiffiffiffiffiffiffiffi
B=T2

p ; as B=T2 ≫ 1:

ð3:56Þ

Apparently, the magnetic field strengths damping
effects for both transverse and longitudinal sectors.
While the enhancement in transverse sector is linear in
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FIG. 4. Demonstration of perfect agreement between analytical (solid lines) and numerical (dots) results for ηT;L0 when B=T2 ≪ 1.
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FIG. 5. Numerical (dots) results for ηT;L0 , which are fitted to simple functions (3.56) (solid lines) when B=T2 ≫ 1.
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B (qualitatively similar to weakly-coupled QGP [7]), it
seems to saturate for longitudinal mode with an upper
bound ηL0 ≤ 1.386ðπTÞ2.
Finally, we compare damping coefficients for transverse

and longitudinal modes by plotting the ratio ηL0=η
T
0 in

Fig. 6, which is in perfect agreement with that of [34].
Interestingly, the ratio ηL0=η

T
0 shows a reasonably slow

decrease as B becomes large.

D. Effective action for Brownian quark: Quartic order

The quartic effective action Ið4Þ for Brownian quark is
related to string action via

Ið4Þ ¼ Sð4ÞNGjXi;z→Xi;z
ð1Þ
; ð3:57Þ

with Sð4ÞNG presented in (3.30). In frequency domain, quartic action becomes convolution

Ið4Þ ¼ 1

2πα0

Z
dω1dω2dω3

ð2πÞ3 δðω1 þ ω2 þ ω3 þ ω4Þ
X4
m¼1

Imðω1;ω2;ω3;ω4Þ; ð3:58Þ

where

I1 ¼
Z

02

01

du
u2

VðuÞ2
8

½2iω1Xi
ð1Þðu;ω1Þ þ UðuÞ∂uXi

ð1Þðu;ω1Þ�

× ½2iω2Xi
ð1Þðu;ω2Þ þ UðuÞ∂uXi

ð1Þðu;ω2Þ�∂uXj
ð1Þðu;ω3Þ∂uXj

ð1Þðu;ω4Þ;

I2 ¼
Z

02

01

du
u2

WðuÞ2
8

½2iω1X
z
ð1Þðu;ω1Þ þUðuÞ∂uXz

ð1Þðu;ω1Þ�

× ½2iω2X
z
ð1Þðu;ω2Þ þ UðuÞ∂uXz

ð1Þðu;ω2Þ�∂uXz
ð1Þðu;ω3Þ∂uXz

ð1Þðu;ω4Þ;

I3 ¼
Z

02

01

du
u2

WðuÞVðuÞ
8

½2iω1Xi
ð1Þðu;ω1Þ þUðuÞ∂uXi

ð1Þðu;ω1Þ�

× ½2iω2Xi
ð1Þðu;ω2Þ þ UðuÞ∂uXi

ð1Þðu;ω2Þ�∂uXz
ð1Þðu;ω3Þ∂uXz

ð1Þðu;ω4Þ;

I4 ¼
Z

02

01

du
u2

WðuÞVðuÞ
8

½2iω1X
z
ð1Þðu;ω1Þ þUðuÞ∂uXz

ð1Þðu;ω1Þ�

× ½2iω2X
z
ð1Þðu;ω2Þ þ UðuÞ∂uXz

ð1Þðu;ω2Þ�∂uXi
ð1Þðu;ω3Þ∂uXi

ð1Þðu;ω4Þ: ð3:59Þ

In contrast to computation of (3.46), quartic action (3.58)
inevitably involves contour integrals (3.59), which are
generically hard to compute. We proceed by examining
the singular behavior for the integrands of (3.59) when u is
in the region enclosed by the radial contour. Recall that Xi;z

ð1Þ
is the linear superposition of the ingoing mode and the
Hawking mode (3.40). While the former is regular when u
is inside the contour, the latter shows logarithmic singu-
larity near horizon due to the oscillating factor e2iωχðuÞ
[see (3.41)]

e2iωχðuÞ ¼ ðu − 1Þiβω=ð2πÞgðu;ωÞ; ð3:60Þ

where gðu;ωÞ is a regular function of u. This type of
singularity raises potential subtlety [49] regarding the
order of taking ω → 0 limit and taking the limit ϵ → 0
(cf. Fig. 3 for ϵ)

lim
ω→0

lim
ϵ→0

e2iωχðuÞ ≠ lim
ϵ→0

lim
ω→0

e2iωχðuÞ; as u → 1þ ϵ:

ð3:61Þ
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FIG. 6. Ratio ηL0=η
T
0 as a function of B, in perfect agreement

with that of [34].
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However, for the purpose of calculating (3.58) up to Oðω1Þ, it turns out that noncommutativity issue of (3.61)
is accidentally washed away, as demonstrated in Appendix A. Thus, it becomes valid to proceed as follows: Expand
integrands of (3.59) in low frequency limit, and then evaluate radial integrals at each order in ω, and finally take the
limit ϵ → 0.
To facilitate discussion of derivative expansion for (3.58), we introduce compact notations for each piece in (3.59)

2iωXi
ð1Þ þ UðuÞ∂uXi

ð1Þ ≡ ÂTqir þ B̂Tqia; ∂uXi
ð1Þ ≡ ÃTqir þ B̃Tqia;

2iωXz
ð1Þ þ UðuÞ∂uXz

ð1Þ ≡ ÂLqzr þ B̂Lqza; ∂uX
z
ð1Þ ≡ ÃLqzr þ B̃Lqza; ð3:62Þ

where (S ¼ T;L),

ÂS ¼ 2iωAS þ UðuÞ∂uAS; B̂S ¼ 2iωBS þUðuÞ∂uBS; ÃS ¼ ∂uAS; B̃S ¼ ∂uBS: ð3:63Þ

In terms of ÂT;L, B̂T;L, ÃT;L, B̃T;L, the contour integrals in (3.59) become

I1 ¼
Z

02

01

du
VðuÞ2
8u2

fB̂Tðω1ÞB̂Tðω2ÞB̃Tðω3ÞB̃Tðω4Þqiaðω1Þqiaðω2Þqjaðω3Þqjaðω4Þ

þ 2ÂTðω1ÞB̂Tðω2ÞB̃Tðω3ÞB̃Tðω4Þqirðω1Þqiaðω2Þqjaðω3Þqjaðω4Þ
þ 2B̂Tðω1ÞB̂Tðω2ÞÃTðω3ÞB̃Tðω4Þqjaðω1Þqjaðω2Þqirðω3Þqiaðω4Þg;

I2 ¼
Z

02

01

du
WðuÞ2
8u2

fB̂Lðω1ÞB̂Lðω2ÞB̃Lðω3ÞB̃Lðω4Þq3aðω1Þq3aðω2Þq3aðω3Þq3aðω4Þ

þ 2ÂLðω1ÞB̂Lðω2ÞB̃Lðω3ÞB̃Lðω4Þq3rðω1Þq3aðω2Þq3aðω3Þq3aðω4Þ
þ 2B̂Lðω1ÞB̂Lðω2ÞÃLðω3ÞB̃Lðω4Þq3aðω1Þq3aðω2Þq3rðω3Þq3aðω4Þg;

I3 ¼
Z

02

01

du
WðuÞVðuÞ

8u2
fB̂Tðω1ÞB̂Tðω2ÞB̃Lðω3ÞB̃Lðω4Þqiaðω1Þqiaðω2Þq3aðω3Þq3aðω4Þ

þ 2ÂTðω1ÞB̂Tðω2ÞB̃Lðω3ÞB̃Lðω4Þqirðω1Þqiaðω2Þq3aðω3Þq3aðω4Þ
þ 2B̂Tðω1ÞB̂Tðω2ÞÃLðω3ÞB̃Lðω4Þqiaðω1Þqiaðω2Þq3rðω3Þq3aðω4Þg;

I4 ¼
Z

02

01

du
WðuÞVðuÞ

8u2
fB̂Lðω1ÞB̂Lðω2ÞB̃Tðω3ÞB̃Tðω4Þq3aðω1Þq3aðω2Þqiaðω3Þqiaðω4Þ

þ 2ÂLðω1ÞB̂Lðω2ÞB̃Tðω3ÞB̃Tðω4Þq3rðω1Þq3aðω2Þqiaðω3Þqiaðω4Þ
þ 2B̂Lðω1ÞB̂Lðω2ÞÃTðω3ÞB̃Tðω4Þq3aðω1Þq3aðω2Þqirðω3Þqiaðω4Þg; ð3:64Þ

where we omitted terms that are explicitly beyond Oðω1Þ.

To leading order in ω, the coefficients in (3.40) are
expanded as (S ¼ T;L)

AS ¼ 1þOðωÞ;

BS ¼ −
1

2
þ 2

β

Φig
S;1ðuÞ

Φig
S;0ðuÞ

−
2i
β
χðuÞ þOðωÞ: ð3:65Þ

where Φig
S;0ðuÞ and Φig

S;1ðuÞ are introduced in the low-
frequency expansion of ingoing solution Φigðu;ωÞ, see
(3.43). So, in the low-frequency limit, (3.63) scale as

ÃT;L; ÂT;L∼Oðω1Þ; B̃T;L; B̂T;L∼Oðω0Þ: ð3:66Þ

To extract Oðω1Þ part of Ið4Þ, in (3.64) it is sufficient to
retain the B̂ B̂ B̃ B̃ type terms to Oðω0Þ while retaining the
Â B̂ B̃ B̃ type terms to Oðω1Þ. This means that we only
need lowest-order terms of ÃT;L, ÂT;L, B̃T;L, B̂T;L, all of
which are regular. Therefore, expressed in the form (3.64),
it is transparent that the contour integrals can be computed
by residue theorem. Eventually, the result (2.22) is recov-
ered with various coefficients given as
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κT ¼ B2 − 24ðV0
hÞ2

32π3α0
;

ζT ¼ −12β½B2 − 24ðV0
hÞ2�

32π3α0
;

κL ¼ −
3ðW0

hÞ2½B2 þ 8ðV0
hÞ2�

32π3α0ðV0
hÞ2

;

ζL ¼ 36βðW0
hÞ2½B2 þ 8ðV0

hÞ2�
32π3α0ðV0

hÞ2
;

κ×1;2 ¼ −
W0

h½B2 þ 24ðV0
hÞ2�

32π3α0V0
h

;

ζ× ¼ 24βW0
h½B2 þ 24ðV0

hÞ2�
32π3α0V0

h

; ð3:67Þ

where V0
h, W

0
h are horizon data, cf. (3.15), and we have

transformed U1
h to the inverse temperature β by (3.16).

Interestingly, the KMS conditions (2.24) are perfectly
satisfied even without knowledge of exact solution for
metric functions.
In weak field limit B=T2 ≪ 1, we analytically compute

all coefficients in (3.67)

ζT

ζT0
¼ 1þ 18þ π2

144

B2

π4T4
þ � � � ;

ζL

ζL0
¼ 1þ 21 − π2

72

B2

π4T4
þ � � � ;

ζ×

ζ×0
¼ 1þ 60 − π2

288

B2

π4T4
þ � � � ; ð3:68Þ

where ζT0 , ζ
L
0 , ζ

×
0 are values of ζT, ζL, ζ× when B ¼ 0,

ζT0 ¼ 9π

α0β5
; ζL0 ¼ 9π

α0β5
; ζ×0 ¼ 18π

α0β5
: ð3:69Þ

Here, we have restored the rh in B, ζT;L×, ζT;L×0 and
transformed it to temperature in (3.68) and (3.69). When
B ¼ 0, our result (3.69) is in agreement with [5], up to
an overall sign. However, we are confident that our
result (3.69) is more reasonable once the condition (2.23)
is concerned. As shown in Fig. 7, our analytical result (3.68)
is perfectly consistent with the numerical study.
For generic value of magnetic field, we show numerical

results for ζT;L; ζ× in Fig. 8. Obviously, all the coefficients
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FIG. 7. Demonstration of perfect agreement between analytical (solid lines) and numerical (dots) results for ζT;L;×=ζT;L;×0 , when
B=T2 ≪ 1.
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grow as magnetic field is increased. In the strong magnetic
field limit B=T2 ≫ 1, ζT;L;×=ζT;L;×0 are well fitted as

ζT

ζT0
→ −0.95þ 0.066

B
T2

þ 0.00044

�
B
T2

�
2

;

ζL

ζL0
→ 5.05 − 5.45

logðB=T2Þffiffiffiffiffiffiffiffiffiffiffi
B=T2

p ;

ζ×

ζ×0
→ −0.25þ 0.057

B
T2

; ð3:70Þ

which hold for a reasonably wide range of B=T2. The
coefficient ζL behaves similar as its quadratic counterpart
ηL0 , and shows a mild growth as B=T2 is increased, and
eventually saturates as ζL=ζL0 ≲ 5.05. However, the coef-
ficients ζT, ζ× increase more dramatically for a strong
magnetic field.

IV. SUMMARY AND DISCUSSION

From the perspective of action principle, we presented
a comprehensive study on effective description of a
Brownian particle moving in a magnetized plasma. First,

within the framework of the nonequilibrium EFT [9,11,12],
we identify all the symmetries and construct effective
action for Brownian particle, up to quartic order in
particle’s position. Then, we confirm the result through a
model study based on holographic prescription for the SK
contour. Moreover, in the holographic model, we compute
various coefficients in the effective action as functions of
magnetic field and temperature, focusing on the strong
magnetic field limit.
Due to presence of non-Gaussian terms, it becomes

inconvenient to cast the effective action into stochastic
Langevin-type equation [9]. Nevertheless, we successfully
convert the non-Gaussian effective action into a determin-
istic Fokker-Planck-type equation, which corresponds to
the truncated Kramers-Moyal master equation at quartic
order in derivatives. The Fokker-Planck-type equation
is more efficient for computing observables, such as
moments of position/velocity of Brownian particle. It will
be interesting to carry out a numerical study based on our
non-Gaussian theory and clarify phenomenological conse-
quences of non-Gaussian interactions [6].
While dynamical KMS symmetry (2.8)–(2.9) is on the

quantum level, the constant translational symmetry (2.15)
renders the effective thoery to be entirely classical, in which
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FIG. 8. The numerical values (dots) of ζT;L;×=ζT;L;×0 when B=T2 is generic. The solid lines are fitting functions of (3.70).
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quantum fluctuation is switched off. Relaxing the sym-
metry (2.15), we have realized that, from nonequilibrium
EFT perspective, the classical statistical limit (2.11) and
quantum level (2.9) of dynamical KMS symmetry will give
rise to different KMS relations among coefficients in the
effective action. It will be interesting to investigate on this
point via a direct holographic calculation, by considering
an open string moving in a slowly-varying AdS black hole
[71–74] of fluid-gravity correspondence [75]. Moreover,
this new setup is supposed to yield more realistic [76]
effective description for Brownian motion.
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APPENDIX A: SUBTLETY DUE TO
NONCOMMUTATIVITY OF ϵ → 0 VERSUS ω → 0

By adopting the method of [58], we now show that
subtlety arising from noncommutativity (3.61) becomes
accidentally irrelevant for the purpose of evaluating (3.59)
up to Oðω1Þ. With the linearized string profile Xi;z

ð1Þ pre-

sented in (3.40), it is straightforward to show that the
contour integrals in (3.59) could be classified into three
distinguished pieces

Im ¼ Iana þ Ipoles þ Inon−ana: ðA1Þ
Here, the first piece Iana vanishes since its integrand does
not contain any singularity near the horizon. The second
piece Ipoles could be simply computed by residue theorem
as its integrand contains simple poles (no branch cuts) at
the horizon. The last piece Inon−ana involves logarithmic
branch cut (maybe poles as well) at the horizon, which has
a schematic form

Inon−ana ¼
Z

02

01

du
u2

ðu − 1Þ�iω̂Hðu; ω̂Þ; ðA2Þ

where a potential factor1=u2 is factorized,whichwould bring
in UV divergence. Here, we use ω̂ to denote certain linear
combination of ω1;2;3;4. For generic value of ω̂, we do not
have analytical expression for Hðu; ω̂Þ for generic ω̂.
However, we do know that ðu − 1Þ2Hðu; ω̂Þ is finite, non-
singular and continuous inside the radial contour of Fig. 3.
Thanks to the Weierstrass approximation theorem, it is legal
to represent ðu − 1Þ2H by Taylor series

P∞
l¼−2 HlðωÞðu −

1Þlþ2 when u is inside the radial contour. Thus,

Inon−ana ¼
X∞
l¼−2

Hlðω̂ÞIl; with

Il ≡
Z

02

01

du
u2

ðu − 1Þ�iω̂ðu − 1Þl: ðA3Þ

Therefore, the original task of computing (3.59) boils down
to calculating simpler contour integrals Il of (A3), which
could be worked out analytically for generic value of ω̂.
Afterwards, we extract low-frequency limit of Il (see
Appendix B of [58]),

Il ¼∓ ω̂ 2F1ð2; nþ 1;nþ 2; 1 − ΛÞ
ðnþ 1ÞT þOðω̂2Þ; l ≥ 1;

Il ¼∓ ω̂

ΛT
þOðω̂2Þ; l ¼ 0;

In ¼ 2iπ ∓ ω̂

ΛT
þOðω̂2Þ; l ¼ −1;

Il ¼ 4iπ þOðω̂Þ; l ¼ −2; ðA4Þ

where Λ represents a UV cutoff near the AdS boundary
u ¼ 0, and 2F1 is a hypergeometric function. It is direct to
check that the results (A4) could be correctly recovered by
first expanding the integrand of (A3) in small ω̂ and then
computing the radial integral. However, this latter treat-
ment cannot correctly cover higher-order terms omitted
in (A4), which correspond to higher derivative terms in the
effective action. Therefore, in order to extracting order
Oðω1Þ part of the quartic effective action (3.58), it is valid
to first expand the integrands [including the oscillating
factor like ðu − 1Þ�iω̂] in (3.59) in small ω̂, and then
implement the radial integral.

APPENDIX B: KMS RELATIONS
WHEN (2.15) IS RELAXED

In this appendix we show that once the constant trans-
lational invariance (2.15) is relaxed, the classical statistical
limit (2.11) and the high-temperature limit (2.12) will
give different KMS relations among coefficients in the
effective action.
First, the quadratic Lagrangian (2.17) receives corrections

Lð2Þ;new
SK ¼ Lð2Þ

SK þ θ1qzaqzr þ θ2qiaqir

þ θ3Bϵijqirq
j
a þ θ4Bϵij _qiaq

j
a: ðB1Þ

Imposing dynamical KMS symmetry (2.8) under the
classical statistical limit (2.11) and high-temperature
limit (2.12), we find the same KMS relations

ηT0 ¼ 1

2
βξT0 ; ηL0 ¼ 1

2
βξL0 ; θ3 ¼ 0: ðB2Þ

Next, we turn to corrections of the quartic
Lagrangian (2.22)

Lð4Þ;new
SK ¼ Lð4Þ

SK þ δLð4Þ
SK; ðB3Þ
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where,6 due to breaking of isotropy invariance, δLð4Þ
SK looks lengthy,

δLð4Þ
SK ¼ λ0;1 _qiaqiaðqzaÞ2 þ κ1;1qirqiaðqjaÞ2 þ κ1;2qirqiaðqzaÞ2 þ κ1;3qzrqzaðqiaÞ2 þ κ1;4qzrðqzaÞ3

þ λ1;1qir _qiaðqjaÞ2 þ λ1;2qir _qiaðqzaÞ2 þ λ1;3qzr _qzaðqiaÞ2 þ
i
2!
½κ2;1ðqirÞ2ðqjaÞ2 þ κ2;2qirqiaq

j
rq

j
a

þ κ2;3ðqirÞ2ðqzaÞ2 þ κ2;4ðqzrÞ2ðqiaÞ2 þ κ2;5qirqiaqarqza þ κ2;6ðqzrÞ2ðqzaÞ2� þ λ2;1 _qirqirðqjaÞ2
þ λ2;2 _qirqiaq

j
rq

j
a þ λ2;3 _qirqirðqzaÞ2 þ λ2;4ðqiaÞ2 _qzrqzr þ λ2;5 _qirqiaqzrqza þ λ2;6qir _qiaqzrqza

þ λ2;7qirqia _qzrqza þ λ2;8qzr _qzrðqzaÞ2 þ κ3;1ðqirÞ2qjrqja þ κ3;2qiaqirðqzrÞ2 þ κ3;3qzrqzaðqirÞ2
þ κ3;4qzrqzaðqzrÞ2 þ λ3;1ðqirÞ2 _qjrqja þ λ3;2 _qirqirq

j
rq

j
a þ λ3;3qiaqirðqzrÞ2 þ λ3;4qiaqir _qzrqzr

þ λ3;5 _qzrqzaðqirÞ2 þ λ3;6qzr _qzaðqirÞ2 þ λ3;7 _qzrqzaðqzrÞ2: ðB4Þ
Imposing dynamical KMS symmetry (2.8) in the high-temperature limit (2.12), we find

λ0;1 ¼
1

8
iðβℏ2κ1;2 − βℏ2κ1;3Þ; κT ¼ 1

48
ð3βℏ2κ2;2 − 4βζTÞ;

λ1;1 ¼
1

16
ðβℏ2κ2;2 − 2βℏ2κ2;1Þ; κ×2 ¼ 1

96
ð3βℏ2κ2;5 − 4βζ×Þ;

λ1;2 ¼
1

32
ðβℏ2κ2;5 − 4βℏ2κ2;3Þ; κ×1 ¼ 1

96
ð3βℏ2κ2;5 − 4βζ0Þ;

λ1;3 ¼
1

32
ðβℏ2κ25 − 4βℏ2κ2;4Þ; κL ¼ 1

24
ðβℏ2κ2;6 − 2βζLÞ;

λ2;1 ¼
i
8
ð4βκ1;1 − βℏ2κ3;1Þ; λ2;2 ¼

i
4
ð4βκ1;1 − βℏ2κ3;1Þ;

λ2;3 ¼
i
8
ð4βκ1;2 − βℏ2κ3;3Þ; λ2;4 ¼

i
8
ð4βκ1;3 − βℏ2κ3;3Þ;

λ2;5 ¼
i
4
ð4βκ1;3 − βℏ2κ3;3Þ; λ2;7 ¼

i
4
ð4βκ1;2 − βℏ2κ3;3Þ;

λ2;8 ¼
3i
8
ð4βκ1;4 − βℏ2κ3;4Þ; λ2;6 ¼ 0;

λ3;1 ¼ −
1

2
βκ2;1; λ3;2 ¼ −

1

2
βκ2;2; λ3;3 ¼ −

1

2
βκ2;4;

λ3;4 ¼ −
1

4
βκ2;5; λ3;5 ¼

1

8
ðβκ2;5 − 4βκ2;3Þ; λ3;6 ¼

1

8
βκ2;5;

λ3;7 ¼ −
1

2
βκ2;6; κ3;2 ¼ κ3;3: ðB5Þ

On the other hand, if we impose dynamical KMS symmetry (2.8) in the classical statistical limit (2.11), we would get

λ0;1 ¼ λ1;1 ¼ λ1;2 ¼ λ1;3 ¼ λ2;6 ¼ 0;

κT ¼ −
1

12
βζT; κ×1 ¼ κ×2 ¼ −

1

24
βζ×; κL ¼ −

1

12
βζL

λ2;1 ¼
i
2
βκ1;1; λ2;2 ¼ iβκ1;1; λ2;3 ¼

i
2
βκ1;2; λ2;4 ¼

i
2
βκ1;3;

λ2;5 ¼ iβκ1;3; λ2;7 ¼ iβκ1;2; λ2;8 ¼
3i
2
βκ1;4; λ3;1 ¼ −

1

2
βκ2;1;

6For simplicity we have ignored terms containing an antisymmetric tensor ϵij, which, under KMS transformation (2.9), will not get
interference with δLð4Þ

SK. Thus, inclusion of them will not modify the main conclusion.
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λ3;2 ¼ −
1

2
βκ2;2; λ3;3 ¼ −

1

2
βκ2;4; λ3;4 ¼ −

1

4
βκ2;5; κ3;2 ¼ κ3;3;

λ3;5 ¼
1

8
ðβκ2;5 − 4βκ2;3Þ; λ3;6 ¼

1

8
βκ2;5; λ3;7 ¼ −

1

2
βκ2;6; ðB6Þ

which is actually ℏ → 0 limit of (B5).
Obviously, if we require the constant translational invariance (2.15), by setting all the coefficients in (B4) to be zero,

we will immediately see that the KMS relations (B5) and (B6) will collapse to (2.24).
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