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Milne spacetime with conical defect: Some holographic studies
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We initiate a holographic study of field theory in a time-dependent background with a conical defect.
We focus on the Milne spacetime to which, in the absence of cosmological constant, at late time any
hyperbolic Friedmann-Robertson-Walker metric flows. When the Milne vacuum is represented by the

adiabatic one, we are able to compute the two point correlators of operators which are dual to the massive
scalars in the bulk AdS-Milne spacetime background with a defect. We find, for both twisted and untwisted
operators, the correlators can be represented as the sum over images. This sum can be carried out explicitly

to write the results in compact forms.
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I. INTRODUCTION

AdS/CFT duality has been extremely useful in exploring
various features of strongly coupled quantum field theories
as well as in providing insights into the quantum theory of
gravity, particularly in the context of black hole physics.
However, progress has been somewhat limited in exploiting
the duality in the cosmological context. This could be due
to the fact that a cosmological spacetime typically contains
a spacelike singularity and around that region, classical
gravity becomes unreliable. Nonetheless, since such a
singularity generally runs all the way to the boundary,
one may wish to examine if the boundary gauge theory
could sense this singularity. Indeed in [1-7], in the context
of AdS cosmologies and in particular, for AdS-Kasner and
AdS-FRW (Friedmann-Robertson-Walker) spacetime cos-
mologies, such questions were addressed with various
degrees of success.

Among the class of hyperbolic FRW geometries, the
simplest is the Milne spacetime where the scale factor has a
linear dependence on time. On one hand, since by a
coordinate transformation the Milne spacetime can be
expressed as the future wedge of the Minkowski metric,
the geometry is free of curvature. On the other hand, as the
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time dependence of the metric is relatively simple, one may
hope to have some analytical handle [8,9]. Further, in the
absence of a cosmological constant, we note that all the
hyperbolic FRW geometries approach the Milne spacetime
at late time as the expansions in these models drive the
mass-energy density to zero. In this paper, our focus will be
on the Milne spacetime. Within the holographic setup, we
will represent the boundary by the Milne geometry. The
corresponding bulk dual will be the AdS-Milne spacetime.
The precise nature of the gauge theory on this boundary
will depend on the spacetime dimensions.

A generic difficulty that arises while working with
quantum field theories on a curved, especially time-
dependent, background is that the choice of the vacuum
becomes ambiguous. Consequently, the correlation func-
tions constructed out of the quantum fields start to depend
on the choice of the vacuum. Even though the Milne
spacetime is a patch of Minkowski, there exists multiple
complete sets of modes which are related by Bogoliubov
transformations. Fock space built out of the corresponding
creation and annihilation operators are necessarily inequi-
valent and corresponding vacuum states carry different
physical properties. Two preferred choices for the vacuum
states in the Milne spacetime are the adiabatic and the
conformal vacuum. Other less commonly used vacua can
also be defined, see for example [10]. Among these vacua,
the adiabatic vacuum is particularly appealing because of
its similarity with the familiar vacuum in the Minkowski
spacetime.

In the present work, to start with, we perform several
computations in the AdS-Milne spacetime background and
extract the corresponding gauge theory quantities. For a
massive minimally coupled scalar field we compute the
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bulk Wightman and the other Green’s functions in the case
when the Milne part of the vacuum is represented by the
adiabatic one. Subsequently, following the holographic
prescription, the corresponding boundary correlators are
extracted. An important issue here is whether the subregion
duality [11] holds. We find that, at least for the cases we
study, the bulk and the boundary correlators seem to respect
the subregion duality. Next we turn our attention to the one
where the Milne part is represented by the conformal
vacuum. Here, we have not been able to find a closed form
expression for the Wightman function. However, we see
that the retarded Green’s function has the same form as the
one obtained in the adiabatic vacuum. This is indeed
expected as the retarded correlator is supposed to be a
state-independent function. Equipped with these computa-
tions, we turn our focus on the Milne spacetime in the
presence of a conical defect.

Field theory on spacetime with a conical defect has been
of interest for a long time [12—18]. Lately, with the advent
of the holographic correspondence, exploring the proper-
ties of a class of strongly coupled field theories on conical
spacetime has become possible [19-22]. For example, this
correspondence can be exploited to compute the correlation
functions of operators in a strongly coupled field theory,
admitting large N expansion, on a spacetime with a conical
defect once the gravitational dual is known. As a simple
illustration, let us consider a field theory on a three-
dimensional background given by

ds? = —dT? + dR? + R2d6”, (1.1)

R2 + R/Z

—2RR'cos(0 — 0 —27k/q) +

where the angular coordinate 6 has a periodicity of 2z/q.
For any value of ¢ other than 1, there is a singularity at
R =0. For g > 1, to which we would restrict to, the
spacetime has an angle deficit. In the large N limit of
the field theory, the leading contribution to the two point
correlation of a scalar operator would come from examin-
ing appropriate the scalar field on the AdS spacetime with
the conical singularity. Written in the Poincare coordinates,
the bulk geometry in question is therefore

1
ds* =~ [d? —dT? + dR> + Rd6”),  (12)
4

where z = oo represents a horizon and z =0 is the
boundary where the gauge theory lives. The details of this
theory follow from the M2 brane of the M-theory com-
pactified on §;. Note that the singularity present on the
boundary now extends for all values of the radial coordinate
z. The Wightman function of a minimally coupled massive
scalar @ of mass m on this spacetime can be read out from
[23]. Denoting the coordinates (z, T, R, #) together as x and
restricting to the integer values of g, it is given by

1 a u 1/2(W/<
T Ty
wk—l

where Q! . (w,) is the associated Legendre function and
v—=1/2\"k g

G (x,x) = (0]@(x)@(x) 0) =

(z=2)P-(T-T)

Wk:1+

andv = +/9/4 + m?. On the boundary, this field is dual to
a scalar primary operator O with scaling dimension
A = v+ 3/2. The correlator can then be extracted follow-
ing the Banks-Douglas-Horowitz-Martinec (BDHM) pre-
scription [24], namely,

(P|O(T,R,0)O(T'.R'.0")|¥)

q-1 Nl
— ey [ LS4 Caao0)

2.7/ =0 47? —0 u% -1
Re Ca
- &[~(T=T')*+R*>+R?-2RR cos(0—0' —2zk/q)]*
(1.3)
where

277 '

2284 (A)T(A = 1)

C pr—
4 2r(2A - 2)

Here |¥) is the appropriate boundary state of the field
theory with the conformal symmetry broken by the defect.
Though the sum above can be performed, written in this
way, the correlator has an interpretation in terms of the sum
over images.

The metric (1.2) can arise due to the presence of a cosmic
string. In the weak field approximation and in the thin
string limit, the parameter g gets related to the mass density
of the string. If we wish to model the formation of such a
defect and examine the particle creation during the for-
mation of the defect, we need to go beyond this static
spacetime and replace it by an appropriate dynamical one
[25,26]. One possibility could be to consider a geometry of
the form
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ds* = Ziz[dz2 —dT? + dR* + f(T)R*d6?], (1.4)
where f(T) = [1 —tanh(7/T)]/2, and @ is a coordinate of
period 2z. It represents a quench of the angular coordinate
around 7" = 0, lasting for a time T,. One may hope to gain
some insights into the behavior of the strongly coupled
field theory on the boundary by examining the bulk
representing this dynamic cone. Difficulty arises immedi-
ately however due to the absence of an analytical handle.
For example, for a generic function f(T), the Klein-Gordon
equation would not admit a separation of variables of the
field. In order for that to happen we need to assume that the
field is independent of the coordinate . While, even with
such a cylindrical symmetry, it might be interesting to
explore the dual field theory, in this work we take a modest
step. Here we intend to study aspects of strongly coupled
gauge theory on the Milne geometry in the presence of a
conical defect.! With the choice of the adiabatic vacuum,
the correlators of the operators dual to the massive scalars
in the bulk can be computed. The final form turns out to be
similar to the one given in (1.3) written in the Milne
coordinates but we work this out explicitly starting with the
quantization of a minimal massive scalar in the AdS-Milne
spacetime background. Because of the presence of the
defect, on the boundary we can have twisted scalar
operators that are dual to the bulk scalar fields with twisted
boundary conditions (3.19). It follows from [28] and
subsequently from [29] that the twisted scalars can be
defined on a nonsimply connected spacetime. These scalars
satisfy the same equations of motion as that of the
untwisted scalars but differ in their boundary conditions.
We end our exploration with the computation of the
boundary correlators involving the twisted operators dual
to these scalars.

II. ADS-MILNE SPACETIME

We start out with the computation of the bulk and the
boundary correlators in the AdS-Milne spacetime. This, in
turn, will set the stage for a similar, but more involved,
calculation of correlators in AdS-Milne spacetime with a
conical defect. This is analyzed in a subsequent section.
Mode expansions of a massive scalar field in this geometry
turn out to be sensitive to the spacetime dimensions.
Therefore we carry out our study both in four and five
dimensions. The later has been provided in the Appendix.

A. (3+1)-dimensional AdS-Milne spacetime

In the Poincare coordinates, the AdS-Milne spacetime
metric in four dimensions takes the form

'The possible occurrence of topological defects in the early
universe and various cosmological consequences due to their
presence have been an active area of research in the past, see for
example [27].

1
2

ds? = — (—di* + 2dr* + 1*sinh® rd6* + dz?),  (2.1)
6 being a periodic coordinate with period 2z. We see that we
have a Milne spacetime for every value of the bulk radial
coordinate z. The fact that the AdS-Milne spacetime is a
subregion or a patch in the AdS can be seen from the
coordinate transformations, 7 = tcoshr,R = tsinhr.
These transformations cover only the part 7 >0, R >0
of the AdS. Even though the Poincare AdS spacetime and
AdS-Milne spacetime written in Poincare coordinates are
related by coordinate transformations, we must be careful
while studying field theory in these backgrounds as corre-
sponding propagators need not be related by similar
coordinate transformations. Therefore, in the holographic
setup, we should independently define the Green’s func-
tions in each coordinate system.

The equation of motion of a minimally coupled scalar of
mass m on AdS-Milne spacetime is

%__ga,,w——ggw«m —mp=0.  (22)
Written explicitly, it takes the form
- 2—52 0.p — 2202 + j—jcoth ro, ¢ + f—ja%qs
tzsizjhzrag(/) —220.¢ + 22 —mip=0.  (2.3)

For generic values of v = N/ m*+ 9/4, the solutions are
either

(2)
H: (A .
Bran(21.7.0) = a3, (1)) | 2| pon (cosh et
\/Z ia—3
(2.4)
or
- J_ . (A .
Bran(21.7.0) = Cpanl, (3201|720 v (cosha e,
\/E ia—3
(2.5)

In these equations, J,(x), HE? (At). and P} »(u) are the
Bessel function, Hankel function of the second kind, and
the associated Legendre function respectively. The con-
stants A > 0, a > 0, and n take integer values. In writing
down these solutions, we used the boundary conditions
that the solutions are regular at z =0 and r = 0. Since
these solutions are normalizable modes, they are dual to
operators of conformal dimension A=A, =3/2+ .
Looking at the large ¢ behavior of the Bessel and the
@)

Hankel functions, it is easily seen that the choice H;,  is
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similar to working with the Minkowskian positive energy
modes. The vacuum defined with respect to these modes is
called the adiabatic vacuum. On the other hand, if we take
J_iq(At), we are in the conformal vacuum [8]. We first work
with the former. The normalization constants C,,, are
determined by the following condition:

[ dzdrdo =g iz 1.7.0)05, 170

- ¢j’a’n’(z’ Lr, g)atd)lan (Z’ tr, 9)]

=—i6(A=2)6(a— )6, (2.6)
Using (2.4), we get
A sinh 7
Chon = i /%’r[ia +1/2 4 n) % (2.7)

To get to this, we have used the property (A4). The
canonical quantization proceeds by defining the field
operator

D= Z[‘piai + ‘M“”v

where a,?, a; are the creation and the annihilation opera-
tors respectively and i includes the set of quantum numbers
A, a, n. The summation above represents integrations over
A, a and a sum over n.

We start by computing the Wightman function. It is
defined as

G_;,.(Z, t,r,0; Z/, t’7 r/’ 91) — <0|<1>(z, t,r, g)q)(zl’ t/, r/’ 9/)|0>
= $ile.t.r0)pi (1.1 0).

(2.8)

Here, |0) includes the Minkowski vacuum for the Milne
part. The other Wightman function can be obtained from
the relation G_(x,x’) = G%(x,x’). Denoting the set of
coordinates (z, 1, r, 9) together as x, we get

G.(rnx)= A " didag(z, r,1,0)* (2. 7, 1.0

4 tf

1 O
—- / d/lda<(zz i) sinh(zza)e”“) 1,(42)J, () B (4 HY) (41

X Z Clia +1/2 4 n]U[=ia + 1/2 + n]P;l, ,(coshr) Pl ,(cosh r/)e™ =)

n=—0oo

(z2)?

- " didaah tanh(za)J, (32)J, (3 ) K (i2)K 1y (—i3 ) Pig_1 j2(cosh ).

Vil Jo

The identities used to reach here have been presented in the
Appendix, see (A5). In the above, K,(z) is the modified
Bessel function and y is defined as

coshy = cosh rcosh 7’ — sinh rsinh 7/ cos(6 — @').  (2.10)

Equation (2.9) can be further simplified using (A6) to
arrive at

1 3 [ 3
G, (x,x)= o d E/ A, (Az)J (A7
) = @) [ @, (2)0,62)
K%(/l\/—t2 — 1”2 + 2t coshy)
V/—1* =2 4 2tf coshy
1 1
__ 01, (w), 211
20— 1) Q,_1p(u) (2.11)
where

(2.9)

u (=12 = 1% + 2t coshy + 22 + 7 + iesgn(t — 1)),

277

(2.12)
the geodesic distance between two points in AdS-Milne
spacetime, and Q! /2(14) is the associated Legendre
function. To arrive at the last line of (2.11), we have used a
result from [30]. In the conformal limit, when the mass

m? = =2 (and consequently v = 1/2), the correlator sim-

plifies. Owing to the property that Q) = —1/Vu*> -1,
2
we get

1

G+(X, )C/) = m

*We have calculated the Wightman function for normalizable
modes that is G, . There is a corresponding Wightman function
G,_ for the non-normalizable modes as shown in [31]; it is the
sum G, + G,_ which corresponds to a simple power solution in
the conformal limit.
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1. Boundary correlator

Having obtained the bulk Wightman function, we can
use the BDHM prescription to construct the boundary
correlator,

lim (z2)~ /2@ (2, ., 1,0)D(2 . 1 1. 0)) ags _mimne

2,7 -0

= (Y|O(r,1,0)O(r, 7, 0)|¥).

Here O is the scalar primary operator of dimension
A =3/2+ v, dual to the bulk scalar ®. On the left the
subscript indicates that the bulk computation is done on
AdS-Milne spacetime, and on the right, |¥) is the corre-
sponding state of the boundary conformal theory.
Implementing the above, we get

(P|O(1,r,0)0(t, ., 0)|¥)

= lim (zz')~H/2 G, (x, %))

7,7 =0
B (A —2)24 /00 cosh 8 i
4 (= — 1% 4 2t/ coshy)® Jo (1 + cosh )2

Ca

_ , 2.13

(=2 = 1 + 211 cosh y)~ (2.13)

where
22A=4r(Ar(A =1
Cp = (A)F@A=1) (2.14)

7 T(2A = 2)

To arrive at the final line, we have used (A7).
A similar computation can be carried out for the AdS-
Milne spacetime in five dimensions where the metric is

1
ds* = — [—di* + *dr* + * sinh® rd6*
z

+ 12 sinh? rsin” 0d¢p* + dz?]. (2.15)

The details of the computation is provided in the Appendix.
The Wightman function turns out to be

i 3/2
3/4 Qy—1/2(“)’

Gy(xx) = (27[)5/2(u2 -1

(2.16)

where

u (=12 — 12 + 2t coshy + 22 + 7?),

© 277

leading to the boundary correlator

(P|O(t,7,0.¢),0(t . .6 ,¢')|P)
:22”‘11“(%—1-1/)1“(1/4—2) 1
(ZCQ2u+1) @
2270 (54v)0(v+-2) 1
~ (@(Qu+1) (= =7 +2r coshy) T

(2.17)

Before proceeding to the next subsection, we end with the
following note. In a new coordinate system z, p, defined as
t = be”/? and r = p/b with b being constant, the metric in
(2.1) becomes

1
ds? = = [d2? + /P (~de® + dp? + b sinh? (p/b)d6?)].
Z

Now, in the limit b — o0, the boundary becomes flat. The
quantity u defined in (2.12) reduces to u = 51 [—(r — 7')*+

277
p>+p?=2pp'cos(0—@)] and the boundary correlator
becomes the one in the Minkowski spacetime.

B. Comparison with Poincare-AdS

Since the metric as well as the vacuum state are invariant
under full Poincare-AdS symmetries, the final expression
can be written in terms of the geodesic distance, which
facilitates a comparison with the Green’s functions in
Poincare-AdS.

For AdS-Milne spacetime in 3 + 1 dimensions we get
the geodesic distance d(z, w) = [ ds as

1+4/1-£
—

d(Z1,l‘1,V1,91;Zz,t2,"2792) =1In

where £ is given by

B 2Z1Z2 _1
G+ —-t-6+2nncoshy  u

¢

Using the relation between the hypergeometric function
and the associated Legendre function of the second kind,
namely

T (w4 pu+ 1)I(1/2)

H — 2 _ 1 1/2 —v—p—1
0.(2) 210w + 3/2) (- 1)"%
vtpu+l v+pu+2 1
X F( 2 ) 2 sV + 3/27 Z2 ’
we find
1 1 1/2
where
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272 (v 4 3/2)
Gl/+%(§) = 7T3/2F(I/+ 1)

3 vS5 v )
XF<Z+§,Z+E,U+1,§)

is the scalar propagator for the normalizable modes in
Poincare-AdS as given in [32].

For AdS-Milne spacetime in 4 + 1 dimensions we can
write the geodesic distance in a similar way,

V=g
—

§u+3/2

d(z1,t1.71.01, 1520, 12, 12,02, ) =1

where £ is now given by

f 2Z1Z2 1

B+ B -1 —86+2tcoshy u

Again, we can convert from associated Legendre func-
tions to hypergeometric function

1 1 3/4
() =it (1) Gust

where

(ZZ1)3/2

27 (v 4 2)

3
Guaald) = Ty +1) 2 +

§v+2F(1+ 'v+l;§2>

v v
2 2’

is the scalar Green’s function given in [32].

C. AdS-Milne spacetime in conformal vacuum

As we discussed previously, working in conformal
vacuum is equivalent to choosing J_;,(4¢) in the ¢ part
instead of the Hankel function. The basis of the mode
expansion is therefore given by (2.5) rather than (2.4)

—n in6
Pia—l/z(COSh r)e?,

Q’)(Z, t’ }”,9) = C/lan [23/2-]1/ (lZ)] |:J—ia</1t):|

Vit
(2.18)

where the normalization constant, up to a constant phase
factor, is given by

i A
Coron = i) LT lia + 1/2 + .
dr

Now doing manipulations similar to what was done in
the Minkowski vacuum, we arrive at

G. (x,x') :% / d/lda[ = aﬂ] 1,(2)0, (A2 )T _ia(20)] (3

—+o0
x Y T(ia+1/2+ n)(—ia+ 1/2+ n)Py, ,(coshr)Pl, ) (cosh r’)e(®=0)

n=—00
(ZZ/)3/2

N

where y is defined by (2.10). The other Wightman function
is given by G_(x,x") = G*_(x,x').

In 4+ 1 dimensions, the right solution of the scalar
equation of motion turns out to be

J—ia(ﬂt)
t

Pzt 0. 0) = Coal20,(32) [ } Y (0. 9)

where the normalization constant is given by

- 7
Cr =\ e
Aa 2 sinh 7«

The Wightman function is then

dada add,(22)T (A2 )J —iq (A1) T (A1)

Pio_1/2(coshy) (2.19)

cosh za

[
G, (x.x) = Z/m/l dida”— " (A2)J,(A2))
L o 2(t)?sinhza”

X J—ia()“t)‘]ia(’lt/) Yalm(r’ 9’ ¢) Yalm(rl’ 9/7 ¢/)

As was done for the Minkowski vacuum, we can use the
completeness relation of the spherical harmonics (A2) to
cast the above function as

1 ()

4z (t')? sinh nax

asinay

G.(x.x) = / * Adida J,(2)J,(32)
0

X J_iq(At)Ji(A') 27 sinhy°

where y is given, as before, by (A3). Unfortunately, we
have not succeeded in carrying out all the integrals in (2.19)
and (2.20). However, we could make some progress
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while considering the retarded propagator. This is
given by Gg(x,x') =6(t—1)G(x,x’) where G(x,x') =
G, (x,x") — G_(x,x') is the difference between the positive
and the negative frequency Wightman functions.

To explicitly calculate the retarded propagator, we
first consider the (3 + 1)-dimensional AdS-Milne space-
time in conformal vacuum. In this case, we are able to write

(ZZ/)3/2

4/l
- J_ia(/ltl)-]ia (At»

Glx,x) = / didat 1,020, (32)(J i (3)J 10 (28)

WP, 1 (cosh )

cosh za

We can straightforwardly show that the G(x,x’) in this
vacuum is the same as that in the Minkowski vacuum.
To this end, we first write the Bessel function in terms of

the Hankel function using J,(x) = %(Hél)(x) + HY (x)).

Further, since H';? = e*i7af(!?) e can then write

4["—1’&(}1)11'01(’“/) _J—ia(’lt/)‘]ia(ﬂtﬂ
=sinhza(H? 0t HY) 0y = HP 0 H'Y (41)).

io io io ia

(2.20)
Therefore,

N3/2
G(x.x') = / dida (ZZ),
tt

X tanh 7aPy,_ ;5 (coshy) (H\) (A1) H\Y) (37

L (An)).

11e4

ard ,(Az)J, (A7)

—HP (O H

This is same as the one we get for the Minkowski vacuum.
Likewise, in 4 4+ 1 dimensions, in the Minkowski vacuum
G(x,x') is
n(z7')?
41t

G(x.x') = / Adidal,(22)J, (22 ) (HE (an)HY (ar')

io ia
asinaé

(2) 9D
—H:(A)H:  (At)) ———,
(') Hig (41)) 272 sinh &

io ia

and for conformal vacuum, the corresponding expression is

n(z7)?
Glx. x) = 4t

/ Adadal ,(22)J,(A2') (J _ia(A0)J 10 (A7)

asin ay

Jia(At)J _ig (1)) 272 sinh zasinhy

Using (2.20), we immediately see that the last two
expressions coincide. This is not surprising. G(x, x), also
known as the Pauli-Jordan function, arises from a commu-
tator of the fields and is supposed to be a state-independent
function.

We can also give a general check that the retarded
propagators or the Pauli-Jordan functions are the same in
both vacua. We start with

G (x.y) = Y i ()hi().
G (x.y) =D _4i(n)i(x).

Here ¢; are modes calculated in one vacuum (e.g.,
Minkowski vacuum) and summation represents the inte-
gration over all continuous indices and the sum over the
discrete indices. Using the Bogoliubov coefficients, we can
express one set of modes ¢; in terms of another set ¢ as

451'(}’) = Z(A;k'i&j(Y) - Bji&;’()’))’

J

$i(x) = Zk:(Akii’Z(X) — Bj;(x)), (2.21)
where Bogoliubov coefficients satisfy [8]
;(AikA;k - BikB;k) = by,
Z(AikBjk - BikAjk) =0. (2-22)

k

It is easy to check that Bogoliubov coefficients in our case
indeed satisfy these identities.” Further, putting the expan-
sion (2.21) in the Wightman functions, we get

G+(x, y) = Z(AkiA;i$Z(x)€5j(y) + BjiB;Qin; ()’)ik(x)
ijk
— AiB i (x)5(y) — Bj A3 (X);(y)).
and
G_(x.y) = Z(AkiA}fi@lt()’)(?)j(x) + BjiBltia’; (X)de(y)
i.jk
- AkiBji{blt(y)a’; (x) = BltiA;i(’]ak(y)a)j(x))'
Subtracting the above two expressions and using (2.22), we
get the Pauli-Jordan function G(x,y),

G(x.y) = Z(cb?(xm(y) —$i (¥)di(x))
= Z(@?‘ ()@i(y) = ¢ ()i (x)).-

*In 3+ 1 dimensions, we see that the transformation equation is
¢/10m = Z (A/lanxl’a’n’¢&’a’n’ + B/I(ml’(z’n’gb;a’n’)'
ANan
Using (2.4) and (2.5) we see that the Bogoliubov coefficients are
B/Ian/l/(r'n’ = 5/1/1/ 6n.—n’5aa’d(a)'
Using the relationship between Hankel and Bessel functions,

fi) = e"’"/H(_Zi)a,, we get

A/l(m/l/(t'n’ = 5/1/1/ érm’ 5{1{1’6(6() ’

along with H

e% e‘%
cla) = —, da) = ———.
(@) v/ 2 sinh 7o (@) v/ 2 sinh za
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Equipped now with these results, in the next section, we
analyze scalar field theory on the AdS-Milne spacetime
containing a conical defect. Here this defect runs all the
way to the boundary. Our primary aim would be to find a
boundary two point correlator of operators dual to the bulk
field in a closed form.

D. AdS-Milne spacetime in other vacua

So far we have focused on the adiabatic and the con-
formal vacua. Recently, in [10], a more general class of
vacua, similar to the alpha-vacua of the de Sitter spacetime,
was considered. We end this section with a computation
of the Wightman function in these vacua. Our result is
similar to the one of [10], namely, the Wightman function
picks up a dependence on the coordinates in a non-Poincare
invariant manner.

To proceed, we start with the general solution of (2.3)

C/lanH(2> (’”) + C/lanH(l) (’Itl):|

(2,1, 7,0) = [22],(A2)] [ ia NG i

x P7" (coshr)e™?.
l(l—i

(2.23)

The normalization condition (II A) for the above solution
gives

- v 1 2
|Cran2e™™ = |CplPe™ = =T n 4=+ i )| sinhza.
87 2
(2.24)
It can be checked that the choice
i Jak 1
= — /=T | | -
Cian B 47[6 (la + ) + I’l) s
= ] A 1
Corm = % \ /Z—”e-mr<ia +5+ n> (2.25)

gives the solution (2.18) in the conformal vacuum with
the correct normalization factor. Related to the adiabatic
modes is a two-parameter family of modes, called
alpha modes. We can write the normalization constants
of these in terms of a two-parameter family of constants
labeled by p, o as

A/ i h na 1
C,lan:icoshpwia — ﬂaeTF ia+=+n|,
8z 2
~ . /sinh ra 1 -
Cjan = isinhpe'®y | We‘ﬂ“ (ia+§+ n) Vsinhza.
T

(2.26)

For p, o set to zero, we get back the adiabatic modes (2.4)
with the correct normalization constant. The above nor-
malization constants satisfy the relation (2.24). Since p, ¢
are constants, independent of «, we can see that this family
does not contain the conformal modes given by (2.25). We
can calculate the Wightman function for these alpha modes

by putting (2.23) in the relation (2.8) along with the
normalization constants in (2.26) and using the appropriate
alpha vacua states. The Wightman function for the field in
the alpha vacua then comes out as

cosh? PQ,i_l/z(ul ) sinh? PQi_l/z(uz)

G, (x,x)=
+(5 ) 472 (ud - 1) 42 (ud 1)
e—i{i 1 u
+ isinhpcoshpy;l/z(?)
47 (u3 — 1)z
isinhpcoshpeQ]_, ,(uy)
+ )
47 (ud — 1)
where
hw=5 (=12 — 1% + 211 coshy + 2> + 7 +iesgn(t—1')),
b4
Uy =5 (=12 — 1%+ 2t coshy + 722 + 7> —iesgn(t—t')),
b4
1
uy =—(—1* =1 =2t coshy + 2% + 7% + ie),
2z7
1
Uy =~ (—1> =12 =2t coshy + 22 + 22 — ie)).
2zz

The first term is just cosh? p times the Wightman function
in the adiabatic vacuum (2.11). The second term is sinh? p
times the Wightman function in the adiabatic vacuum, but
with t <> 7. The other two terms are not Poincare invariant
and are analogous to the dependence on antipodal distance
as discussed in [10].

III. ADS-MILNE SPACETIME
WITH A CONICAL DEFECT

The AdS-Milne spacetime background in the presence of
a conical defect has the same form as before except that the
angular coordinate has a different periodicity. In 3 + 1
dimensions, the metric is given by

1
ds? = > [dz* — di* + *dr* + 1* sinh?rd6?],

(3.1)

where 0 < 6 < 27/q. We will take g > 1.

The above geometry may arise in the presence of an
infinite string in a four-dimensional AdS-Milne spacetime.
This can be seen by closely following the treatment of [22].
Consider the Nambu-Goto action

Sy = _M/daodal\/mv

0X* (o) 0X* (o)
do* dc®

P[gab] = gpw(X) (32)
Here y is the tension associated with the string. We choose
a gauge such that ¢°,6!' =, z and consider the string
extended along the z direction. Embedding coordinates will
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then be X*(t,z) = (t,z,7(t,2),0(t,z)). In general, we can
vary the Nambu-Goto action with respect to embedding
coordinates to get the equations of motion. But we are
interested in a particular solution corresponding to a string
at the origin of the (r,0) plane, represented by a delta-
function source &(r).

The corresponding Nambu-Goto action and its variation
with respect to the metric is given by

_ K / didzdrd0/~grg=5(r).

5
_ 1 / didzdr d&(—g“ Jur ¥ 9 g“)a(r). (3.3)
vV "Y91t9z;

Comparing this with the general relation between metric
variation and stress tensor

1
65 =3 / dtdzdrd0\/=gT5g,,, (3.4)

we can get a read off the stress tensor corresponding to the
string configuration. Equivalently, we can do a coordinate
transformation of the result given in [22]. We get

g;' 0 0 O
o(r)t 0O 0 0 O
e — - O (3.5)
”\/grrgé’a 0 0 0 0
0 0 0 g

Taking this as the stress tensor for the string, we solve the
coupled Einstein-Hilbert and the Nambu-Goto action

| 6
- /=G R+
16ﬂG4/ * g( +L2>

—u / doydo\/—detP[g)- (3.6)
Variation of the above leads to
R 3
RH — Egﬂ - ng = 87TG4T” . (37)
Solving this system of equations we get the metric
1
ds* = = [dz* — d* + 2dr* + P sinh’rd6®],  (3.8)
Z

with 0 <t,r < oo and 0 <0 < 27(1 — 4uG,). This is the
same as (3.1) once we identify ¢ = (1 —4uG,).

We now turn to the scalar propagator on this geometry
in the Minkowski vacuum. In the following we will
primarily restrict ¢ to be an integer. The scalar field now

needs to satisfy ¢(z,1,r,0) = ¢(z,t,r,0 + 2z /q). Solving
the equation of motion, we find

A sinh
$ztr.0) = Mp(,a+2 +qn) a2

2

HY (1)

x [22],(22)] { N }P;j_"% (cosh r)ee.

Therefore, now the Wightman function takes the form

N3
2

7,2 H? ()5 (3¢
x [C(ia+1/2 + gn)|*P., ,(coshr)

x Pi_a—]/z(COSh r )gtqn(a )

/ Y Adiadae™sinh(a)J,(Az)

n=-—oo

Further, using

4
= e K o iA)

HY (n)H") () =
T

K (=idt"),

we can rewrite

G (x. ) =

/ Z Adiadae™ sinh(za)J,(Az)

MW et
X J, (A2 Ko (i21) K jo (—idl")
x [C(ia+1/2 + gn)|*P, ,(coshr)

x P71 _(cosh #)ei"(0=0),

ia—1/2 (39)

Using (A8), we can simplify (3.9) as

3

q(z7')?

4\ 2mtt
X J,(32')el 550, (xsinh 7 sinh )

% e—Xcoshrcosh r eiqn(e—a’) .

G4 (x. ) =

" ada Z / dxx~2J,(2z)

n=—00

(3.10)

Now the A integral can be performed using (A9) to get, after
a little algebra,4

*Some of our manipulations here are similar to that of [23].
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_qlzz /i)
B dn/2r

X exp[

2

In arriving at the last equation, we have used s> =

2
s

) =2 ei”“’“”’inlq(

n=—00

i eiqn(9—9’)

n—=-—00

G (x.x)

21
2z

20

Vi¥s

(22 +77 -1

ds 2

—e 4squ <

S4

t¢' sinh rsinh ¥/ tf

252

oo’

2Zcos

[Se]

Z exp

9%=0

1

252

(

In 3.11),

V2 =72+ 7% -1 =%+ 2t/ coshrcosh 7.

The prime on the sum in Eq. (3.12) means that the
contribution from the n =0 term should be halved.
Since we are working with integer values of ¢, the k
sum will take integer values from 0 to ¢ — 1. We can now
carry out the integration over s using (A10) to get the final
expression of the Wightman function

4 1 &0 ()
Gilx,x) =) ———. (3.14)
AT Jud -1
k
Here u; is defined as
e =5 (2 + 27— =17 421 coshyy,),  (3.15)
and

coshyy , = coshrcosh 7’ —sinhrsinh 7’ cos(0 -6 —27k/q).

The expression for the Wightman function is reminiscent
of the method of images. In the coincident limit, GZ (x, x')
diverges. This divergence comes from the k = 0 term of the
|

I](q’%e_a/) -

tt' sinh r sinh r

[nq(6 - &)1,

tt' sinh r sinh 7

qlly + Vr* 1) —1]

T X

/
1t >

/ ™ dxy/xl},, (x sinh rsinh /)1, (
0

— 1" 4 217 cosh r cosh r’)}

ZZ

P) (3.11)

i

252

!
IL and

sinh r sinh r

)
I

tt' sinh r sinh 7/
252
Jeos(o-0-27))
q

sum. We can define a renormalized function subtracting
this contribution and write

(3.12)

(3.13)

b

Gy(r ) = ——

N
3

A. Boundary correlator

The boundary correlator is constructed as before

(P,|0(t,r.0)0(r. 7. 6)|%,)

= lim (zz) 3G9 (x, )
Z, Z

Cy
— 1% 4 211 coshy ,)*

(3.17)
k=0

where C, is a constant defined in (2.14).
The summation over k can be performed and the final
result comes out as

(P,|0(t,r.0)0(.r.0)%,)

(=1)*'Cy
~ T'(A)(2t sinhrsinh )2

aA—l
ayA—l

>11(q,y,6—9’), (3.18)

where

V7A-1[1

+ (V7 =12 =2cosq(0-0)(y + /7 - 1)

q]] ’
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and

2 — 12 4+ 2¢¢ cosh rcosh r
2¢tt' sinh r sinh 7/

}/ =
The details are provided in the Appendix.

B. Twisted scalar

Having come thus far, we end this section with a study of
the correlators involving twisted fields. These fields satisfy
the same equations as the untwisted scalars but differ in
their boundary conditions. The quasiperiodic boundary
condition that the twisted scalars obey is given by

2 .
¢<z, t,r,0 +—”> = e 7P p(z,t,1r,0), (3.19)
q

where 0 < f < 1. Such twisted scalar fields arise, for
example, when we consider a charged scalar field in AdS
in the presence of a cosmic string carrying internal magnetic
flux. As is well known (see, for example [33] and references
therein), the corresponding gauge field component can be
eliminated by a gauge transformation and then one is left with
a scalar with twisted boundary conditions. For earlier studies
along this direction, see for example [17,34].

The normalized solution of the equation of motion
iS now

3 At _ .
d(z,1,1,0) = C0,22J ,(A2) Hiy )P?a_lfz(coshr)e"1<”‘/’)9,
\[
where
ie™/?  |gasinh(za
Cuan =\ [T D 1y 1 ) i 1/2),

The calculation is quite similar to the previous case of
f = 0 and as before the Wightman function takes the form

22 wds 22 tt' sinh rsinh 7/

(4;:) NS 257

7z
X Iy <2—S2 s
where now

tt' sinh rsinh

Sqﬂ 2

2s

4(0-0)] tt' sinh r sinh 7/
el s
Z ‘”—/3“1 2S2 ’

n=-—oo

Wi(x,x') =

(3.20)

and

V2=72472—2—¢24+2¢ coshrcoshr.

We can now use the following relation to carry out the s
integration [35]:

(o] ! o3 : /
Z POV (_zz Smgr;mhr)
A

n=-—oo

_ Z |:1 eltt sinhrsinh 7/ cos(27m/q—€+9’)]/2s2eiﬂ(27m—q9+q€’)

2 Z Je]mqﬁ / dye—tt’ sinh r sinh coshy/2s2f(y):|
7Z'l

x e—'qﬂ<9—9>, (3.21)
where
1y — Coshlay(1 = )] = coshgpy)e a0
cosh(gy) —cos[qg(0 — &' + jr)]
Here the sum over n runs as
—%+L _Z:I)q <n< +g+L ;j)q. (3.22)

Once we have substituted (3.21) into (3.20), we can
integrate over s using

ds

[s+]
_e_
0 st

_ 2 )
- (ZZ/)3/2\/7_;\/M%—_1 QI/—I/Z(un)v

where u,, is defined as in (3.15), to finally arrive at

[VTz—tt’ sinh rsinh ' cos(2zn/q-6+6")]/(25%) f Z_Zl
“\2s?

v 1/2( )

—2igpn =V—1/ 2N 7
27[ (27)? Z ’ Jur =1
( ] —tqﬂG —-0') Z Jejmqﬁ’

==

" Aw ayf () 22

1/uf,—1

where u, has the same structure of (3.15) with coshy,
replaced by coshy. This is the general form of the
Wightman function.

When ¢ and ¢f are both integers, the second term
vanishes and we get

Wi (x, x')

(3.23)

1/ 1/2( )

Vi1

Wi (x,x')

2 Z —2ifgn =V—1/2N 7

(3.24)
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The twisted bulk scalar is dual to a twisted scalar
primary Oy of dimension A with the same periodicity
(3.19) along € inherited from ¢. The boundary correlator is
therefore,

(Wpq|Op(t, 1, Q)Oﬂ(t’, 7. 0)|Ys,)

=2

—2i/37m

. (3.29)
t’2 —|— 21t coshy,, )"

where the constant C, has been defined earlier. This series
can be summed to get

(Ppg|Op(1,7,.0)O4( .1 .0')|¥p,)
(-1)A7'Cy

aA—l
- Jq 70_0/ 5 326
[(A)(2t! sinhrsinh /)2 (ayA—l> pr ). (3.20)

where J(y,0 — 0') = J is given by

qe” POy + VP = 1) = (r + V2 = D% + 26497 (y + \/y* = 1)7 sinh( q/)’ln7+\/7 -

J =

J—

and

—12 — 1?2 4+ 2¢f cosh rcosh ¥
2tt' sinh r sinh 7/

}/ =
The details are provided in the Appendix.

IV. CONCLUSIONS

We have initiated a holographic study of field theory on
the time-dependent background with a conical defect. In this
work, our focus has been on the Milne spacetime to which, in
the absence of a cosmological constant, any hyperbolic
FRW metric flows to at late times. When the Milne vacuum
is chosen to be the adiabatic one, we are able to compute the
two point correlators of operators which are dual to the
massive scalars in the bulk AdS-Milne spacetime back-
ground with defect. We find, for both twisted and untwisted
operators, the correlators can be represented as the sum over
images in the covering space. This sum can be carried out
explicitly to write the results in compact forms. If we restrict
ourselves to the adiabatic vacuum, our computations suggest
that the field theory defined on a part of the boundary of AdS
is dual to a subregion in the AdS bulk. Though it may not be
entirely obvious, there are indications that the subregion
duality may hold in general [36-38].

Evidently, our exploration is incomplete. First of all,
Milne spacetime offers another natural vacuum known as
the conformal vacuum. We have not been able get a closed
form expression of correlators in this vacuum. Further, the
renormalized stress tensors, which one calculates from the
two point correlators, for the conformal vacuum are known
to be nontrivial in Milne spacetime. This remains to be
computed in the presence of the defect in this holographic
framework.

In case of the AdS-Rindler foliation of AdS, interesting
progress has been made in understanding the relationship
between entanglement and spacetime [39]. Since AdS-
Milne spacetime is another foliation of AdS, albeit, time
dependent, it will be instructive to study the relationship
between spacetime and entanglement structure for the

+ @+ V=12 =2cosq(0—-0)(y + /7> -

I
time-dependent situation. Apart from these considerations,
our results also connect with recent studies of conical
defects in AdS;, for example, [40]. We believe our results
will also be useful in the study of entanglement entropy in
time-dependent situations in a holographic context.

We are currently exploring some of these issues and hope
to report on them in the near future.
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APPENDIX 5-DIMENSIONAL ADS-MILNE
SPACETIME AND ADDITIONAL DETAILS

1. (4 +1)-dimensional AdS-Milne spacetime

Since mode expansions of a massive scalar are sensitive
to the spacetime dimensions, it is instructive to carry out a
computation in 4 4+ 1 dimensions. The metric is given in
(2.15). The relevant solution of the equation of motion for
the Minkowski vacuum turns out to be

¢(Z, t, 1,0, d)) = Calmzz‘]v(lz)

2
H? (2t
lt( )Yalm(r’97¢)’

where v = V4 + m?* and we have defined [41,42]

Flia+1+1) «a
I'(ia+1) +/sinhr
x P72 (cosh 7)Y, (0. ).

Y(llm(r’ 63 ¢) =

The spherical harmonics Y,,,,(y.0.¢), for 0 < p < oo,
form a complete orthonormal set of square integrable
functions on the unit hyperboloid [41,42]

/ * dy sinh? / dQY 1) (1. QY3 (7.Q)
0

= 5(]7 - p/)éll’émm”
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where the harmonic functions satisfy

A a’;(smh)(P”7 lg(cosh;()Pi_[f,jZ(cosh;()
IC(ip)?

= —5 —p .

T(ip +1+1)]? (p=7)

The normalization constant C,;,, turns out to be

: V 7A ﬂ(l/Z‘

Calm =1 2 4

Putting everything together, we therefore have

21,10, :i/ood/lda
o h=i| [Z;

S Y(llm(r7 0’ ¢)

HY ()

A
—\/ﬂ_ e™272] (12)

Consequently the Wightman function is

o)=L |

HS!) (ALY i (7,0, ) Yot (7.0 ).

Jr/I (z7)

dada™ 232 1 (A2)J, (32 )H'D (31)

Using the completeness of the spherical harmonics

Zyalm ()(9
Im

we can write the Wightman function as

Q)Y (', Q) = ol (A2)

2% sinhy’

n(z2)?

G+(‘x’ 'xl) = 4tt/

/ AdAded,(Az)J, (22 )VH'2 (41)

(1) g a sin ay
i ( )2772 sinhy

where

coshy = cosh y cosh y’ — sinh y sinh ¥’ cos w,

cosw = cos@cosf +sinfsinf cos(¢p —¢').  (A3)

Further, performing the a integral, we get

Gy (x,x) =—

(-2 oo
i(z7) / W2did,(Az)], (42
4 0

Kl (A/—1* =
N

Finally, after completing the A integral we reach (2.16).

4 2t cosh y)
21t coshy

2. Deriving (3.18) and (3.26)

We start with the formula [43]
1-p?
1 —2pcos(Af —

2k 2
7)+P
- 2rk
=1 +22pmcos[m<A9—Z>}
m=1

From the above, it follows that

q-1 1=
; 1-2p cos(Ae 228 + p?
2k
=q+2 p’"cos{ (AQ——)}
Now since
a 2rk
Z p\m|etm AO-2rk/q) _ ZZP cos |: (Ag_i>:| ,
m=—00,#0 q
we get
£<1-2p cos(Ae ) + p?
-1 R ixmk
=g+ |m|elmA6 —M'
k=0 m:Zo;,;é()

Further, using

-1

s}

[Se]
_2izmk
e 1 =dq E 6—m,nqv

k=0 n=-—coo
we arrive at
£ 1= 2pcos(A0 —224) - p?

=qg+gq Z Z P|m|eimA65—m,nq

n=—00 m=-—00,#0

=qg+gq Z palnl g=ing0
n=—00,#0

=q+2q Z pa" cos(gnA6)
n=1
1—p*
—at4q L —2p9cos(gAd) + p*

_ q(1-p*)
1 —2p9cos(qAf) + p*~

Therefore,
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q-

Z

o =L — cos(AQ 2”k)

_ 2qp(1 - p*)
(1= p?)(1 —2p9cos(qAf) + p*)’

Taking % =y, we get (3.18).

Similarly, we can sum the series for the twisted scalar to
get (3.26). Since f =0, 1 cases reduce to an untwisted
scalar case, we will restrict to 0 < # < 1. Again, we start
with

q-1 —2mﬁk(1_ )
1 —2pcos(Af— 2’”‘) p?

OM

—1

= e~ 2mibk 4 qz: io: 2m'ﬂkpm cos [ ( 60— @)] .

k k=0 m=1 q

S

I
o

The first sum on the right-hand side vanishes for the
range of f# that we are considering while the second term
can be evaluated using the same methods as before to get

g-1 —2mﬁ'k(1 p2>
£—1—2pcos(Af - 2”") + p?
=g Z pil-n=plg=ilna-+qp) a0
n=—o00,#—f

Since n takes integer values while £ is not an integer,
there is no restriction on the sum. Expanding the sum,
we get

27[1/)’k(1 p2)
<1 —2pcos(Af — 2”]‘) + p?

?v- Q
._.

1
= gpPeilah)do 4 4 Z pal=n=pl g=ilna+ap)a0

n=—00

(e8]
_|_ q Z pq‘_”_ﬂ‘e_i(nq+qﬁ)Ae

n=1

Relabeling n — —n in the second term, we get

q-1 —2;ziﬁk(1 _ pz)
;1 2p cos(AQ — Z£) + p?

©
— qpq/)’e—iq[)’AH + qe—iq/)’A() (p—q[)’ Z pqneinqu)

n=1
4 pqﬂ Z pqne—inqA6'> '

n=1

Now we can do the final sums using the formula

_ —ix
inx 1 se

l’le —

N

i NgE

- o

1 —2scosx+ s2°

BT

2wk (] — p?)
1 —2pcos(Af — 2”")—#—172

k=0
= qp*

/ e_lq/}A'g

| — pleiaht

1 —2p9cos(qAd) + p* )
| — pleitad

1 —2p4cos(qAd) + p* >

Simplifying we finally get

-1 o
q e 2ripk

M

o 1;— — cos(Af — 2”k)
 2gpe'PAO(paP — p24 — 2 piei4h9 sinh(gf In p))
(1= p?)(1 —2p4cos(qAf) + p*)

Taking 5 “" =7, we get (3.26).

3. Identities used in the main text

Here we collect a number of identities used in the
main text.

First, to get the normailzation of C,,,,, we have used the
following properties of 7", »(x) [44]:

. =iz +m+1/2]

Piaip(n) = [[—iz—m+1/2]
Lliz+m+1/2]

“Tiz—mr 12 e

Py (u)

and

[ duP " ()P, ) (u)

oz 6(z—17)
zsinh(zz) [C(m + 1/2 +iz) >

(A4)
To get to (2.9), we have used

HY () =HY) HD 00y H"Y) (21)

1124 i’ l(l 11¢4

4
= — e_ﬂaKia(l},t)K_ia(_l},t,),
/4
and

23 (-
n=1

+Pia—l/2(COShr)Pia—l/Z(COShr/):P

cosn(0—0')P 5 (coshr) Py, ,(coshr’)

i(l—l/Z(COSh){)‘ (AS)
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To reach to Eq. (2.11), we used [43]

Aoo daa sinh(za) coshra Kio(a)Kio(b)Piq_y(coshy)

)
2\\/a® + b* + 2abcoshy

24 12
XK%<\/a +b +2abcosh)().

(A6)

This identity is valid when |arg(a)| < z/2 and so we
replace ¢ with te~, with limit € — 0.
Equation (2.14) uses the identity

o cosh 2yt 41
dt = B b,x—y/b).
A cosh?* bt b (et y/b,x = y/b)

(A7)

Here B(x,y) represents the beta function.
We used the relation [45]

[C(ia+ng+1/2)PP", ,(coshr) P, ,(coshr)

2 [ ,
= \/;/ dxx™'21,, (xsinhr sinh /) K, (x)emcoshreoshr’,
0

where I, (x) is the modified Bessel function and [46]

2 ,
z _%(%"'S""f_g) (

A " esinh () K, (@)K 1 (0)K () dx =" e A8)

to get (3.10).
Using [43]

|7 e epvm e =1, (W> B,
0 a a
(A9)

we can perform the A integral in (3.10) to get (3.11).
Using the known result [43]

o 1 2ei-1/dn
/O e~ (x)x4 dx = . v &0 5(w). (A10)

we perform the integral over s to go from (3.11))—(3.14).
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