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We compute the pseudocomplexity of purification corresponding to the reduced transition matrices for
free scalar field theories with an arbitrary dynamical exponent. We plot the behavior of complexity with
various parameters of the theory under study and compare it with the complexity of purification of the
reduced density matrices of the two states jψ1i and jψ2i that constitute the transition matrix. We first find
the transition matrix by reducing to a small number (1 and 2) of degrees of freedom in lattice from a lattice
system with many lattice points and then purify it by doubling the degrees of freedom (2 and 4 respectively)
for this reduced system. This is a primary step towards the natural extension to the idea of the complexity of
purification for reduced density matrices relevant for the studies related to postselection.
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I. INTRODUCTION

Quantum entanglement continues to attract attention
across multiple disciplines. Recently, a generalization of
entanglement entropy called pseudo entropy was proposed
in [1,2]. There, instead of starting from a usual density
matrix, the authors define a matrix using two pure quantum
states jψ1i and jψ2i,

τ1j2 ¼ jψ1ihψ2j
hψ2jψ1i

; ð1:1Þ

which is dubbed the transition matrix. The interest in this is
twofold. First, in the case of postselection in quantum
experiments, the transition matrix becomes important once
one specifies the initial state as jψ1i and the final state as
jψ2i, given that they are not orthogonal to each other. In the
postselection experiment, the transition matrix then plays
the role of the density matrix while computing the weak
expectation value hOi ¼ TrðOτ1j2Þ of an observable O.
The second motivation comes from the AdS=CFT corre-
spondence [3,4], where pseudo entropy is proposed to be
the dual CFT quantity to the area of a minimal hypersurface

in Euclidean AdS spacetime. In holography, this is con-
structed in the path integral technique by dividing a
Euclidean time slice into two regions corresponding to
the two states. Dividing the entire system into A and its
complement AC, the pseudo entropy of A (relative to AC) is
defined as

Sðτ1j2Þ ¼ −TrA½τ1j2A log τ1j2A �; ð1:2Þ

where τ1j2A ¼ TrACðτ1j2Þ is called the reduced transition
matrix, in analogy with existing literature on entanglement
entropy derived from the reduced density matrix. When the
two states are the same, the transition matrix reduces to the
usual density matrix, and pseudo entropy reduces to usual
entanglement entropy.
Quantum circuit complexity is another quantum infor-

mation (QI) theoretic quantity that has been at the center of
interest for the last few years. Recently, circuit complexity
has been explored in the context of quantum field theory
[5–25].1 Complexity is usually defined as the number of
elementary structural components needed to construct
either an evolved state or operator from a simple initial
state or operator. Here, we try to compute the circuit
complexity of the reduced transition matrix. This reduced
transition matrix is an analogue of a mixed state corre-
sponding to a reduced density matrix, although it can be
non-Hermitian, in general. The methods that we use for
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computing circuit complexity are those for the complexity
of purification [28–34].
First, given a transition matrix, which is written in

density matrix form, a state can be associated with this
operator by writing the transition matrix in the vectorized
form. Then, we compute the circuit complexity for this state
using Nielsen’s method [35–37]. This vectorization means
changing the bra part of the transition matrix to a ket part,
which amounts to a doubling of the Hilbert space [38–40].
Hence, the corresponding transition state looks like

ψ1j2 ¼
jψ1ijψ2i
hψ1jψ2i

; ð1:3Þ

which, as mentioned in [2], for a transition matrix, turns
the corresponding state into a tensor product of the two
states. Then, the corresponding complexity, following the
approach of [5], of the state dual to the transition matrix is

Cðτ1j2Þ ¼ Cðjψ1iÞ ⊕ Cðjψ2iÞ: ð1:4Þ

Note that the complexity defined using canonical
purification in (1.4) is simply the direct sum of two
complexities of two individual states jψ1;2i. The direct
sum is representative of the fact that the vectorized version
is a tensor product. It is quite unlikely that this will have
any nontrivial holographic interpretation, as typically holo-
graphic duals involve some sort of minimization. Motivated
by this, we want to define some notion of pseudocom-

plexity of purification [Cðτ1j2A Þ] in this paper, extending the
notion of complexity of purification [29–34] for this case.
We first purify the reduced transition matrix and compute
the minimal complexity among all possible purifications.2

We do these computations for free scalar field theories and
Lifshitz field theories in (1þ 1) dimensions.
Physically, pseudocomplexity is related to the idea of

postselection as suggested in [1,2,41] while defining
pseudo entropy. The idea is that if, along some physical
process, one starts with a state jψ1i and somehow the final
state is postselected to be jψ2i, which is not necessarily
a result of a simple unitary evolution with a simple
Hamiltonian, the process can still be approximated as a
result of an operator jψ2ihψ1j operating on the initial state.
In general, jψ2i might be a result of many unitary and
nonunitary steps along the way.3 Hence, this operator
jψ2ihψ1j might very well be a non-Hermitian operator.

This operator is considered to be a transition matrix, similar
to a density matrix in this treatment. The reason is that this
operator does not have any nontrivial information about
the system other than the outer product of the initial
and the postselected state, similar to a density matrix. Then,
the reduced transition matrix, defined after a reduction in
degrees of freedom, can associate a notion of entropy
similar to the entanglement entropy of a reduced density
matrix. Similarly, the pseudocomplexity should measure
the complexity of this operator, whereas the pseudocom-
plexity of purification should measure the complexity of
forming such a reduced transition matrix once the two
states jψ1;2i are given. Another way of looking at this
problem is to relate it to the averaged number of maximally
entangled pairs of qubits to be distilled from the inter-
mediate state once the final state is postselected [1]. While
pseudo entropy measures this number, pseudocomplexity
of purification measures the amount of work (of course, in
terms of resources or gates) needed for this distillation
starting from the reduced transition matrix.
The rest of this article is organized as follows: In Sec. II

we first review a path-integral calculation of Gaussian
transition matrix following [41] and propose a definition of
pseudocomplexity of purification. We then use our new
definition and calculate this quantity in a simple setting of
coupled harmonic oscillators on a lattice. The results of our
numerical analyses are collected in Sec. III. We conclude in
Sec. IV with discussions and an outlook.

II. PSEUDOCOMPLEXITY OF PURIFICATION

The concept of purification originates from quantum
information theory (considered to be a close cousin of
Schmidt decomposition as a process). The process of
purification refers to constructing a pure state from a
mixed reduced density (transition) matrix such that if
one traces out the auxiliary degrees of freedom added
while constructing the purified state, one gets back the
original reduced density (transition) matrix. While both the
actual and purified states generate the same reduced density
matrix, the purified state only has important information
about the density matrix because the extra parameters
added in the process of purification are random. The only
constraint on them is that the purified state should follow
the standard quantum mechanical postulates and properties
of a pure state. As mentioned already, we consider random
purification by all possible values of parameters for which
the purified state can be consistently formed. However, we
choose a specific purification among them by minimizing
the complexity functional [30]. This is motivated by the
definition of complexity, where minimal resources play
an important part. In terms of quantum gates, this means
choosing the minimum number of gates so that the
resources needed are minimized. Now we describe our
main setup.

2The state in (1.3) can be obtained by using “operator-state
mapping,” a particular example of purification, namely, “canoni-
cal purification.”

3By nonunitary, we mean that there might be measurements
made along an evolution due to which the state might collapse to
a different state, which results in an overall nonunitarity. It is
worth noting that the process of purification by itself is a
nonunitary one, which, however, is different from the nonun-
itarity caused by the postselection.
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A. Setup

We consider a system of scalar fields which is governed
by the Hamiltonian

H ¼ 1

2

Z
dx½π2 þ ð∂zxÞ2 þm2zϕ2�: ð2:1Þ

This theory exhibits an anisotropic (Lifshitz) scaling
symmetry t → λzt, x → λx in the m → 0 limit; for z ¼ 1,
this is an ordinary relativistic scalar field theory. For
practical purposes, it is useful to consider the discretized
Hamiltonian

H ¼
XN
i¼1

�
π2i
2
þm2z

2
ϕ2
n þ

1

2

�Xz

k¼0

ð−1Þzþk

�
z

k

�
ϕi−1þk

�
2
�
;

ð2:2Þ
with N being the total number of points in the lattice.
We consider a collection of coupled linear harmonic

oscillators on a lattice of space points, labeled by capital
Latin indices. Any two Gaussian states jψαi (α ¼ 1; 2) of
this system can be generically expressed in their position
representation as

hqAjψαi ¼ NðαÞ exp
�
−
1

2
qAW

ðαÞ
ABqB

�
; ð2:3Þ

where qA denotes displacement of the Ath oscillator,WðαÞ
AB is

a positive-definite matrix, and Nα is the normalization
constant,

NðαÞ ¼
�
det

�
WðαÞ

AB

π

��1
4

:

We divide the entire system into a part A and its comple-
ment AC; the lattice points within the subsystem Ω are
labeled by lowercase Latin letters, while lowercase Greek
indices label those outside it. We adopt the notation

WðαÞ
AB ¼

�WðαÞ
ab WðαÞ

aβ

WðαÞ
αb WðαÞ

αβ

�
¼

�
AðαÞ BðαÞ

BðαÞT CðαÞ

�
; ð2:4Þ

to denote submatrices of WðαÞ
AB. The reduced transition

matrix for the subsystem Ω in this representation is found
by integrating over the rest,

hqajTrACðjψ1ihψ2jÞjqbi ¼
Z

dqαhqa; qαjψ1ihψ2jqb; qαi:

ð2:5Þ

This is a Gaussian integral. Finally, the matrix elements of
the reduced transition matrix can be expressed in a simple
form [2]:

hqð1Þjτ1j2A jqð2Þi

¼ N0ffiffiffiffiffiffiffiffiffi
det C̄π

q × exp
�
−
1

2
ðqð1ÞT qð2ÞT ÞM

�
qð1Þ

qð2Þ

��
; ð2:6Þ

where

M ¼
�
Xð1Þ 2Y

2YT Xð2Þ

�
ð2:7Þ

and

XðαÞ ¼ AðαÞ −
1

2
BðαÞC̄−1BðαÞT;

Y ¼ −
1

4
Bð1ÞC̄−1Bð2ÞT;

C̄ ¼ 1

2
ðCð1Þ þ Cð2ÞÞ;

N0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
det

W̄
π

r
;

W̄ ¼ 1

2
ðWð1Þ þWð2ÞÞ: ð2:8Þ

B. Auxiliary parameters and purification

We use Nielsen’s method for the computation of circuit
complexity [5,35–37] and choose the F1 norm for the
complexity functional [5,42]. For a pure (or purified) state,
this is written in terms of the (unentangled) reference state
frequency and the frequency of the normalized version of
the coupled oscillator system in the lattice pictures. We start
from various numbers of initial oscillators and reduce to
transition matrices after tracing out all but one or two of the
oscillators. Afterwards, we purify this reduced transition

matrix τ1j2A by adding parameters corresponding to adding
one or two more oscillators (similar to the doubling of
degrees of freedom in qubit purifications). However, we do
not choose canonical purification since it always returns the
original transition state as mentioned in (1.3), the complex-
ity of which is trivial, as explained before.4 For the reduced
transition matrix, the parameters that arise while matching
the original reduced transition matrix with the reduced
density matrix of the purified state take care of all possible
purifications. In this optimal picture of purification, the
number of unknown arbitrary parameters is much higher
than the number of unknowns needed to purify ρA1 or ρA2 .
This is because the information of not one but two pure
states goes into the transition matrix and hence the reduced
transition matrix.

4As mentioned in (1.4), for canonical purification the complex-
ity of the purified state is simply the sum of the complexity of
jψ1i and jψ2i.
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In order to define pseudocomplexity, we begin by

introducing purification of the transition matrix τ1j2A . We
consider a (fictional) auxiliary system Ã whose Hilbert
space is of the same dimension as our original subsystem A,
and we consider two Gaussian states in the enlarged Hilbert
space HA ⊗ HÃ,

hqA; qÃjΨαi

¼ NAÃ exp

�
−
1

2
ð qTA qT

Ã Þ
�

JðαÞ KðαÞ

KðαÞT LðαÞ

��
qA
qÃ

��

ðα ¼ 1; 2Þ: ð2:9Þ

Then, proceeding exactly as above, we calculate a tran-
sition matrix in the enlarged Hilbert space. This particular
choice of Gaussian purification is primarily motivated by
the study done in [43] in the context of entanglement of
purification. This simplifies the numerical analysis as well
as the computation of circuit complexity. We consider that
this is a purification of our original reduced transition
matrix (2.6) for the subsystem A; in this case, the following
constraints must be obeyed:

JðαÞ −
1

2
KðαÞL̄−1KðαÞT ¼ AðαÞ −

1

2
BðαÞC̄−1BðαÞT; ð2:10Þ

Kð1ÞL̄−1Kð2ÞT ¼ Bð1ÞC̄−1Bð2ÞT; ð2:11Þ

where L̄ ¼ 1
2
ðLð1Þ þ Lð2ÞÞ. In our numerical analysis, we

adopt the following conditions to satisfy these constraints:

JðαÞ ¼ AðαÞ; ð2:12aÞ

L̄ ¼ ðKð2Þ−1Bð2ÞC̄−1ðKð2ÞBð2ÞÞTÞ−1; ð2:12bÞ

Kð2Þ ¼ ðL̄Kð1Þ−1Bð1ÞC̄−1Bð2ÞTÞT: ð2:12cÞ

This particular choice leaves only Kð1Þ and Lð1Þ
undetermined.
For the particular model of our choice, the matricesWðαÞ

AB
are given by

WðαÞ
AB ¼ 1

N

XN
C¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zα

α þ
�
2

�
1 − cos

2πn
N

��
zα

s

× exp
�
2πiCðA − BÞ

N

�
ðα ¼ 1; 2Þ; ð2:13Þ

where N is the total number of lattice points. Here, mα and
zα are the mass and dynamical exponent of the respective
theory. The matching of J; K; LðαÞ matrices with their
corresponding counterparts introduces a few arbitrary
parameters in the purified state. These parameters denote
the infinitely many possible Gaussian purifications of

the reduced transition matrix. Afterwards, we define the
complexity of purification as the complexity of the specific
purification for which the complexity functional is mini-
mized in terms of all the parameters of the purified version
of the reduced transition matrix. This involves purification
parameters for both jψ1;2i states, constituting the transition
matrix. Finally, we compare the complexity of purification

of the reduced transition matrix Cðτð1j2ÞA Þ with the complex-
ity of purifications for the individual reduced density
matrices (ρ1A and ρ2A) derived from the initial and final
states jψ1i and jψ2i, respectively.
We propose that the pseudocomplexity of purification is

given by

CP ¼ min
Ã

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

X2
α¼1

log

�ΩðαÞ
j

ω2

�vuut ; ð2:14Þ

where ΩðαÞ
j denotes the jth eigenvalue of the matrix

ð JðαÞ
KðαÞT

KðαÞ
LðαÞÞ, and the functional is minimized over the param-

eters associated with the auxiliary system Ã. This means
choosing a particular purification associated with minimiz-
ing parameter values.
Let us point out a few attributes of our method of

computation. Most of our numerical analyses are per-
formed for the simplest case of a reduced system made
of only one oscillator, where the above functional is to be
minimized over two unknown parameters. In general, when
the reduced system consists of n number of linear harmonic
oscillators, the J,K, and Lmatrices are of dimension n × n.
The choice II B always leaves two of them undetermined,
and therefore we end up with a total of 2n2 unknown
parameters. On the other hand, to calculate the more well-
known complexity of purification from a reduced density
matrix, the number of unknown parameter values over
which one is required to perform a minimization scales as
n2 with the reduced system size. It is easy to conclude that
the calculation of the new functional (2.14) is at least twice
as hard since the transition matrices have information of
both the initial and the final state.
However, there exists a way to purify the system mode

by mode [30]. Thus, it might be possible to reduce the
number of unknown parameters to 2n. Even then, the
problem is twice as hard as computing complexity of
purification from density matrices, where the associated
number scales as n.
It may also be of relevance to note that any purification

we consider takes into account only Gaussian states, and
the auxiliary system always has the same dimension as the
original one, motivated by the usual doubling of Hilbert
space typically done in purification using Schmidt decom-
position. These are restrictions we invoke in order to keep
the numerical job simple. There may exist ways to relax the
conditions.
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III. RESULTS AND DISCUSSION

A. Pseudocomplexity of purification

In this subsection, we report our numerical results after
the minimization with different variables of the theory. In
the primary Hamiltonian (2.2), we choose a general version
which applies to both the ordinary free scalar QFTs ðz1 ¼
z2 ¼ 1Þ and Lifshitz scalar field theories ðz1 ≠ 1 ≠ z2Þ. The
variables considered are the dynamical exponents z1;2, the
masses m1;2, the number of oscillators before tracing out,
the number of oscillators of the reduced system, and the
frequency of the unentangled reference state.
(1) Varying z2 and m2: From the plots of pseudocom-

plexity of purification against reference frequency in
Figs. 1(a) and 1(b), we notice that as the reference
frequency is increased, the pseudocomplexity of
purification primarily decreases and then shows a
polynomial growth and saturation. When the scaling
factor z2 is increased in the same plots, the pseudo-
complexity of purification for higher values of refer-
ence frequency decreases for higher z2. However, the
behavior is opposite for small reference frequency
values. Hence, there is a crossover in complexity after
which the small to large behavior changes. A similar
change is observed from Fig. 1(b), where the mass
parameterm2 is varied. We find that at large frequen-
cies, the pseudocomplexity of purification decreases
as the mass is increased, whereas, at very small
frequencies, the behavior is again opposite.

(2) Pseudocomplexity of purification vs z2 plots: From
Fig. 2(a) we observe that as z2 is increased, the
pseudocomplexity of purification primarily de-
creases and then grows linearly. By looking at
multiple plots for various values of z1, we find that
with increasing z1 as z2 is varied, the pseudocom-
plexity of purification decreases. In this case, there is

no change of behavior or crossover between differ-
ent plots, which we saw earlier.

(3) Pseudocomplexity of purification vs m2 plots: As
shown in Fig. 2(b), we find that one of the mass
parameters is varied from zero to one, and the
pseudocomplexity of purification does not change
much. Although the plots are not completely parallel
to the x axis, their variance is relatively small
compared to what we have observed for other param-
eters. On the other hand, if we vary one of the scaling
parameters z2, we find that with increasing values of
z2, pseudocomplexity of purification increases.

(4) Varying number of oscillators before tracing out:
All the above plots are given for the case where the
total number of oscillators associated with the states
ψ1;2 before tracing out degrees of freedom is 2. So
we trace out one of the two oscillators in each of the
states. This begs the question of how the results
might possibly change if the number of oscillators is
increased. This is more relevant when thinking about
quantum field theories, which can be written as the
lattice of infinitely many coupled harmonic oscil-
lators. However, we find that the pseudocomplexity
of purification does not vary much at all when the
number of oscillators of the actual system is varied.
This can be seen from Fig. 3.

(5) Varying number of oscillators in the reduced
system: All of our results so far are for the case
when there is one oscillator in the reduced transition
matrix. The reason is twofold: First and foremost, as
we have mentioned before, the number of unknown
parameters for pseudocomplexity of purification in
terms of which the complexity functional is mini-
mized is much more than the case of usual complex-
ity of purification. This makes the problem much
more challenging numerically as the number of

(a) (b)

FIG. 1. Behavior of CP with increasing ω2 for (a) m1 ¼ m2 ¼ 0.5, z1 ¼ 1 and different z2 and (b) m1 ¼ 1.0, z1 ¼ 1, z2 ¼ 2 and
different m2.
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parameters grows very quickly as one increases the
number of oscillators in the reduced system. Second,
from a physical point of view, with the motivation of
relating the entanglement entropy to some thermal
notion of entropy, one typically chooses the number
of oscillators in the reduced system to be small.
Although there is no clear motivation for complex-
ity, we stick to this particular choice.
The qualitative behavior of the pseudocomplexity

of purification with the varying reference frequency
remains similar when the subsystem size is increased
to include two oscillators as shown in Fig. 4. Hence,
we expect all of our results to be universal and hold
for larger subsystem sizes.

B. Difference ΔC: Mutual pseudocomplexity
of purification

The reduced transition matrix carries complicated mixed
information of not one but two pure statesψ1 andψ2. Hence,
while studying the complexity of purification for the

reduced transition matrix, it is natural to ask how different
it is from the complexities of individual reduced density
matrices of those two states. Inspired by the definition of
mutual complexity ð△CðρABÞÞ [30,44,45], which is defined
as the difference of complexity between the full state ρAB and
the sum of complexities of the two reduced density matrices
ρA and ρB, we define the difference as the mutual pseudo-
complexity of purification. In the following, we report some
properties of the mutual pseudocomplexity of purification
based on our numerical analysis.
(1) Subadditivity: From Fig. 5, it is easy to observe that

△Cðτ1j2A Þ ¼ Cðτ1j2A Þ − Cðρ1AÞ þ Cðρ2AÞ
2

≤ 0: ð3:1Þ

Therefore, we find that the pseudocomplexity of
purification is always subadditive to the sum of the
individual complexities of purification of the two
relevant states. Our numerical results suggest that the
term △Cðτ1j2A Þ is always negative or zero. The exact

(a) (b)

FIG. 2. Behavior of CP with increasing (a) z2 and (b) m2 for ω2 ¼ 25.

FIG. 3. Comparison of CP for different total numbers of lattice
sites (N). In all graphs m1 ¼ m2 ¼ 0.5 and z1 ¼ 1, z2 ¼ 2.

FIG. 4. Pseudocomplexity CP when the reduced system con-
tains two LHOs.
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equality is expected for the case when the two states
become the same and hence ρ1A ¼ ρ2A.

(2) Near saturation behavior: It is observed that both the
complexity of purification and the pseudocomplexity
of purification tend to saturate at a very large reference
frequency. By looking at the saturation values of the
corresponding plots from Fig. 5, we make the follow-
ing comment on the saturation of pseudocomplexity
of purification in terms of complexity of purification
of the individual reduced density matrices,

Cðτ1j2A Þ ∼ Cðρ1AÞ þ Cðρ2AÞ
2

: ð3:2Þ

This means that the quantity ΔCðτ1j2A Þ approaches
zero at large reference frequencies. This indicates that

the dependence of Cðτ1j2A Þ on the reference frequency
ω is such that for large enough values of ω, the
complexity does not distinguish between a transition
matrix and the density matrix.

(3) Varying masses: We also study the behavior of
Cðρ1AÞþCðρ2AÞ

2
− Cðτ1j2A Þ (¼△Cðτ1j2A Þ) with a change in

one of the masses m2 corresponding to the state ψ2

while keeping the other parameters (m1, z1, z2)
fixed. We look at the behavior in both a small mass
difference and a large mass difference regime. In
both cases, we find that the difference decreases as
one increases the difference between mass param-
eters; see Fig. 6. In the small mass difference
regime, the slope of the plot is linear. This means

j△Cðτ1j2A Þj ∝ −aðm2 −m1Þ in this range. On the

(a) (b)

FIG. 5. Comparison of CP with individual complexities of purification of the two relevant states ψ1 and ψ2. We let z1 ¼ 1, z2 ¼ 2 and
m1 ¼ m2 ¼ 0.5.

(a) (b)

FIG. 6. Behavior of 1
2
ðC1 þ C2Þ − CP. (a) Small mass difference and (b) large mass difference. In all results, ω2 ¼ 50.
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other hand, in the large mass difference regime, the
decay of the slope is close to exponential inspiring

us to write j△Cðτ1j2A Þj ∝ e−aðm2−m1Þ, with lower
saturation close to zero as ðm2 −m1Þ ∼ 1.

(4) Varying z2: In the same figure, we see that as the
difference between z2 − z1 is increased, the absolute

value of △Cðτ1j2A Þ increases. However, the lower

saturation j△Cðτ1j2A Þj ∼ 0, near ðm2 −m1Þ ∼ 1, re-
mains unchanged. Hence, the numerics definitely
suggests that the saturation is universal and inde-
pendent of z2 − z1.

(5) j△Cj vs z2 plot: As shown in Fig. 7, if we keep z1,
m1, and m2 fixed while varying z2, j△Cj increases
linearly:

j△Cj ∝ αz1 þ βz2: ð3:3Þ

The above expression is written in this way because
our treatment is symmetric with respect to z1;2. In the
same plot, we also notice that once z1 is chosen to
be 2 instead of 1, j△Cj increases, but the linear
behavior remains unchanged.

IV. CONCLUSION

We have studied the pseudocomplexity of purification of
the reduced transition matrix (2.14) numerically for free
scalar and Lifshitz scalar field theories. We have also
defined the mutual pseudocomplexity of purification by
comparing the pseudocomplexity of purification with the
complexity of purification of the individual reduced density
matrices of the states jψ1i and jψ2i. The main findings of
this work are listed below.

(i) Although the pseudocomplexity is supposed to be a
simple sum of the two states involved in the con-
struction of the transition matrix, the pseudocom-
plexity of purification can show nontrivial behavior
compared to with individual pseudocomplexities of

purification associated with the reduced density
matrices of the two states involved.

(2) We also find that the mutual pseudocomplexity of
purification satisfies the generally expected inequal-
ity ΔCðτ1j2A Þ ≤ 0 [30].5 Also, for all scaling expo-
nents and masses corresponding to the two states
jψ1i and jψ2i, the saturation of the pseudocomplex-
ity of purification is similar to the saturation of half
the sum of individual complexities of purification for
the reduced density matrices ρ1A and ρ2A associated
with the initial and final states. More details on the
behavior of mutual pseudocomplexity of purifica-
tion can be found in Sec. III B.

(3) From the behavior of pseudocomplexity of purifi-
cation, it appears that the qualitative behavior
remains similar to that of the usual complexity of
purification of a reduced density matrix. Hence, we
expect the general dependence of the quantity in
terms of the system parameters to be similar to that
of the complexity of purification of the reduced
density matrices. However, the pseudocomplexity
of purification, since it carries information of both
states jψ1i and jψ2i, is expected to depend on
parameters of two states instead of one. This also
results in an increment in the number of auxiliary
parameters to be added and minimized for finding
the most optimal purification. We find that the
dependence on the two states should be symmetric.
It is not surprising since the transition matrix, or
more specifically, the reduced transition matrix by
structure, does not differentiate in any way between
the two states used to define it.

(4) For the most general purification of the reduced
transition matrix with n oscillators, the number of
unknown parameters scales as 2n2. This may be
understood from Eq. II B: For a reduced system
made of n linear harmonic oscillators, the J, K, and
L matrices would be square matrices of rank n. The
choice II B always leaves any two of the six matrices
undetermined, and thus the number of unknown
parameters in the final optimization problem is 2n2.

Our analysis is mostly done for a reduced transition
matrix of one oscillator after integrating the rest. This
analysis can be extended to more reduced oscillators in
many ways. However, due to the increase of unknown
parameters, the complexity optimization problem becomes
numerically more challenging, in general. However, one
can perform a mode-by-mode purification as done in [30]
on a physical basis. There, instead of optimizing all the
modes together, one purifies each of the modes individually
and then optimizes the sum of the complexities for all
the modes. This decreases the number of unknowns

FIG. 7. Behavior of 1
2
ðC1 þ C2Þ − CP with z2 in the small mass

regime.

5Note that the equality sign is different from [30] due to our
choice of definition.
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significantly. For mode-by-mode purifications, the number
of unknowns will scale as 2n as each mode involves 2
auxiliary parameters. However, since we get similar quan-
titative behavior for pseudocomplexity of purification as for
usual complexity of purification for the reduced system of
one oscillator, we expect this to hold for the reduced system
with more modes. With this assumption, we can therefore
use a similar form for the pseudocomplexity of purification,
in terms of variables of two states instead of one,

CPðτ1j2A Þ ¼ N
2
log ðω2δÞ þ

1

2
log

�
1

f1ðm1; z1; m2; z2ÞNδ

�

−
f2ðm1; z1; m2; z2ÞN2δ2

48
þ � � � ; ð4:1Þ

where δ is the gap between two points on the lattice.6 This
expression should work for very small masses, and the
ellipses denote higher order terms. Usually, f1 ∼Oðm1;2Þ
and f2 ∼Oðm2

1;2Þ. The functions f1 and f2 are symmetric
under the exchange 1 ↔ 2 but arbitrary otherwise.7 Apart
from the symmetric dependence, the otherwise full form of
the complexity has to follow all the necessary properties,
as mentioned in Sec. III for both small and large mass
regimes. Also, the nontrivial dependence on the scaling
exponents has to abide by the plots we found and reported
in the previous section. A more detailed study for sub-

systems considering larger size (by taking mode-by-mode
purification), disjoint nature, etc., can yield more exact
behavior, which is a very natural extension of this work.
Many interesting questions arise in this direction. Since

the postselected states might be, in general, the result of a
nonunitary evolution, it might be related to studies of
complexity for open systems where the Lindbladian evo-
lution is nonunitary. One recent study in this direction is
[46], where initial steps towards studying Krylov complex-
ity have been taken. It would be interesting if one could
relate the notion of Nielsen complexity with the Krylov
complexity along these lines. Another natural direction is to
study the pseudocomplexity of purification for spin sys-
tems, e.g., in the transverse field Ising model, and check
if the complexity can probe phase transitions like pseudo
entropy.8 It would also be interesting to study conformal
systems as done for usual complexity of purification in
[32]. Finally, some holographic notions of pseudo entropy
by computing minimal surfaces in Euclidean setups were
proposed in [1]. Therefore, it would be natural to compute
the volumes below those minimal surfaces and compute
a holographic pseudosubregion complexity (similar to
holographic subregion complexity [49–53]) in those geom-
etries. We hope to address some of these problems later.
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