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We extend our investigation on Couch-Torrence conformal inversions of black holes (BHs) and D-branes
in various directions. We analyze asymptotically flat rotating charged BHs in D = 4, in particular extremal
rotating BHs in STU supergravity, and find invariance for special choices of the charges. Due to the
dependence of the critical radii on the impact parameter(s), the relation between the scattering angle for
geodesics outside the photon-halo and the inspiraling angle for geodesics inside the photon-halo is modified
by the inclusion of a boundary term. We also consider rotating BHs in D = 5 and rotating D3-branes and
find invariance under generalized Couch-Torrence inversions for special choices of the angular momenta.
Alas we don’t find any similar symmetry for smooth horizonless geometries. Moreover, relying on the
surprising connection between classical BH perturbation theory and quantum Seiberg-Witten curves for
N =2 SYM theories, we study scalar wave equations in these backgrounds and identify the near
superradiant modes produced in near-extremal BH mergers. Finally, we study scalar fluctuations around
Kerr-Newman BHs in AdS, and find stringent conditions for generalized Couch-Torrence symmetry that are

relaxed in the extremal case or by allowing a rescaling of the wave function.
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I. INTRODUCTION

Many compact gravitating objects are surrounded by a
ring or a halo of light formed by the quasicritical geodesics
of photons surfing the potential barrier, called the photon-
sphere or photon-halo, separating the horizon from the
asymptotically flat region [1,2]. Perturbations of these
barriers reflect into the quasinormal modes (QNMs) that
dominate the gravitational wave (GW) signal during the
prompt ring-down phase that follows the merger of two
black holes (BHs), for instance [3.,4].

In [5] we have shown that D3-branes and their bound
states in lower dimensions admit a symmetry under con-
formal inversions that generalize the Couch-Torrence (CT)
transformations known to leave the metric of extremal
Reissner-Nordstrom BHs invariant up to a Weyl rescaling
[6]. CT transformations are known to exchange the event
horizon with null infinity [6—13]. Quite remarkably, we have
found that the fixed loci of the (generalized) CT trans-
formations are precisely the photon-spheres [5], thus open-
ing new paths to explore physical implications for QNMs
and other observables such as deflection angles and time
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delays, coded in the so-called radial action, and ultimately
on a bulk-to-boundary relation proposed in [14,15].

In the present investigation we will extend our analysis to
the case of rotating compact objects. In the extremal case
(zero temperature), Kerr and Kerr-Newman (KN) BHs [6] as
well as their cousins in STU supergravity (for special
choices of the charges) [12,13] are known to admit a
remnant of the CT inversion symmetry. Although the metric
is not conformally invariant, the radial equation, that results
from the separability of the dynamics, is invariant under
transformations that depend on the angular momentum of
the perturbation (or the impact parameter of probe).
Even more remarkably we will show that the fixed loci
of the conformal inversions are the photon-halos that form
the ‘asymmetric’ light-ring structures [16] familiar from the
images produced by the EHT Collaboration [17]. We will
confirm that only special choices of the charges allow
for the symmetry in its elementary form. Otherwise a
Freudenthal duality transformation of the charges would
be required [18,19]. We then study the implications for
other physical observables and find that the radial action is
formally invariant but, even in the equatorial plane § = 7 /2,
the scattering angle A¢.,; for a probe impinging from
outside the photon-halo cannot be simply related to the
inspiraling angle A¢yg,; of a probe with the same energy E
and angular momentum J falling into the horizon. We will
explain this discrepancy in terms of the dependence of the
extrema of integration on the impact parameter b = J/E
and discuss the issue for generic nonplanar motion. We also

Published by the American Physical Society


https://orcid.org/0000-0002-7591-3870
https://orcid.org/0000-0002-0149-5303
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.086009&domain=pdf&date_stamp=2022-10-13
https://doi.org/10.1103/PhysRevD.106.086009
https://doi.org/10.1103/PhysRevD.106.086009
https://doi.org/10.1103/PhysRevD.106.086009
https://doi.org/10.1103/PhysRevD.106.086009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

MASSIMO BIANCHI and GIORGIO DI RUSSO

PHYS. REV. D 106, 086009 (2022)

study scalar fluctuations in the (near extremal) STURBHs
(rotating BH in STU supergravity) and identify the near
superradiant modes that are long-lived in that their frequen-
cies have a very small imaginary parts.

We then address the fate of the CT inversions for rotating
D3-branes [20] and conclude that generalized CT trans-
formations are symmetries of massless geodesics, at least
for special choices of the rotation parameters. Extremal
rotating objects do enjoy CT invariance beyond d = 4
in the extremal [not necessarily Bogomol nyi-Prasad-
Sommerfield (BPS)] case. We illustrate our conclusions
in the case of rotating BHs in d = 5 of the Breckenridge-
Myers-Peet-Vafa (BMPV) supersymmetric BPS kind [21]
as well as their nonsupersymmetric cousins of the Cheung,
Cvetic, Lu and Pope (CCLP) family [22,23]. However their
smooth horizonless uplifts to d =6 known as JMaRT
solutions [24] or Giusto Mathur Saxena (GMS) [25,26]
‘fake’ fuzz balls (in the BPS case), lacking a horizon, fail to
admit any symmetry under conformal inversions, even
though they are endowed with a photon-halo in most cases.
A similar story applies to circular fuzz balls that represent a
class of microstate geometries of two charge systems like
D3-D3’ (or D1-D5 after T-duality), yet some embryonic
form of invariance property is enjoyed by special classes of
geodesics in a restricted subspace (e.g., € =0 plane,
orthogonal to the circle).

Finally we consider KN BHs in four-dimensional anti—
de Sitter space (AdS,) and determine the conditions for CT
invariance exploiting the recently established connection
between BH perturbation theory and quantum Seiberg-
Witten (SW) curves [27-31].

The plan of the paper is as follows. We start by reviewing
the prototypical rotating case of the KN BH in Sec. II. We
focus on null geodesics as in [5] rather than on massless
scalar wave perturbations as in [6,12,13]. Some details on
the critical parameters are given in Appendix A.

In Sec. III we then pass to consider extremal rotating
BHs in STU supergravity (eSTURBHs) and show that the
condition on the (four electric) charges for the perturbations
to be invariant under generalized Couch-Torrence trans-
formations is to the one found in [5] for nonrotating BHs.
The case O = 0, = O3 = Q4 = Q is shown to coincide
with KN BHs. The details are presented in Appendix B.

Scalar wave fluctuations of near-eSTURBHSs are studied
in Sec. IV and the frequency of the near SR modes are
determined whose expressions take a very simple form
when the conditions for CT invariance are met. Rotating
BHs of the CCLP kind in D = 5 and rotating D3-branes
are discussed in Sec. V, while circular D3-D3’ (or D1/D5)
fuzz balls are discussed in Sec. VI together with JMaRT
and GMS. The study of KN BHs in AdS and their
connection with Heun equations (HE) and quantum SW
curves is the subject of Sec. VII. Section VIII contains a
summary of our results, the conclusions we draw from
them and our outlook.

II. KERR-NEWMAN BH

Let us start with analysing CT inversions in the simplest
cases of charged rotating BHs in d = 4, namely KN BH.
Rather than studying massless neutral scalar wave per-
turbations of the geometry as in [6,12,13], in this section
we will concentrate our attention on null geodesics as
in [5]. The first important result that we find is the
identification of the fixed loci of generalized CT inver-
sions with the photon-halos, formed by the collection of
photon-rings at varying impact parameters. Indeed due to
the preferred axis of the geometry, represented by the

angular momentum 7BH = Ma, one should introduce two
independent impact parameters; b = K/E, where K is
Carter’s constant of separation [32], related to the total
angular momentum of the probe, and b; = J/E, where J
is the projection of the angular momentum of the probe

along 7BH. Due to frame-dragging one should distinguish
the two cases of corotating Ja > 0 and counter-rotating
Ja < 0 geodesics. After the simplified analysis of equa-
torial motion (6 = n/2, J = £K), that allows to ‘easily’
show that the radial action as well as the deflection angle
and Shapiro time delay are ‘formally’ invariant, we tackle
the subtleties involved with the dependence of the extrema
of integration on the impact parameter and eventually
address the general case of nonplanar geodesics. Thanks
to separability, the dynamics is encoded in an ‘angular’
action Sy in addition to the radial action S,.

The metric of KN space-time in Boyer-Lindquist coor-
dinates and in natural units of Gy, = 1, ¢ = 1 reads [32]

ds? = —% (dt — asin®0de)? + Sizj O adi— (a® + P)dg)?
+@+p2d92, (2.1)
A,
where
A, =r+a>-2Mr+ Q>  p*=r*+a’cos’0. (2.2)
The horizons are the zeros of A,
rqp=MENM - Q- a, (2.3)

while the singularity or rather ‘ringularity’, since it is a
‘ring’ in the equatorial plane, is located at p = 0, 1.e., r = 0,
0 = r/2. The external horizon is surrounded by an ergo-
region, delimited by the ergosphere, wherein the timelike
Killing vector o0, becomes spacelike thus leading to
interesting processes like Penrose mechanism [33] and
superradiance [34], to which we will come back later on for
STURBH [35].
When the extremality condition

M =Q+d (2.4)
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ismet, r, = r_ =ry = M = \/Q? + a>. For later use it is
convenient to perform the following change of radial
coordinates,

F=r—+0?*+d?,

that maps the horizon into 75 = 0. In this coordinate the
null Hamiltonian reads

H=-! {P%?z—% E(a+ (i + Vi +07)) —afr}

(2.5)

1 (aEsin*0 —J)?
Pip——— =0, 2.6
+2f)2{ ot %0 (2.6)
where E = —P, and P, =J are conserved quantities.

Following Carter [32], the null condition H = 0 can be
solved by introducing a separation constant K, representing
the total angular momentum (including frame dragging)
such that

(aEsin? @ — J)?

KZ — P2
ot sin® @
20 1 2 A 2 2)2 2
= —Pi7 +A—2[E(a + (r+ a-+ Q ) )—a]} .
r
(2.7)
Defining the impact parameters
J K
=—— b=— 2.8
(=5-a = (28)

Egs. (2.7) can be written in the form

P? —f—jn(%), R(F) = | (F+ V@ +0) —at|* - b2,

2

O(cosh), O(cos) = b*sin’*d— ({ + acos?d)?,

(2.9)

with R and © quartic polynomials of 7 and y = cosé,
respectively.

A. Geodesics in the equatorial plane

Planar motion in the equatorial plane § = /2 is allowed
for Py = p?’0 =0 ie., for b> = (% In these cases (2.7)
reduces to'

2 A4 4
_ P;¥

2 = H(;’_ 7i),

i=1

R(7)

(2.10)

'For simplicity here we indicate by b = J/E = +K/E the
relevant impact parameter that has a ‘sign’, in that ab > 0
represents corotating geodesics and ab < 0 represents counter-
rotating geodesics.

where the roots are

[+] A Al

Fp=T rp=ry, Py =1, re=1EL (211)

with

e :% [+(a=b)-2V/a + O[]

+/12 =302 + 2ab £ 4/ 1 Q2 (b - a)] (2.12)

In the extremal case under consideration, the roots satisfy

Piiy = PPy = 2a* —ab+ Q* = 77 (2.13)
which determines the critical radius as a function of the BH
parameters (Q and a) and the impact parameter b = J/E =
+K/E (in the equatorial plane). It is easy to see that

. P2 1 A
%—2R(r) = < Z ) = pg(r —7) (2.14)
is invariant under generalized CT inversion
22
~/ rC
=— 2.15
V== (2.15)

since 72/#) 5 = Fo, and #2/#34 = #43. The fixed locus of
the inversion is

P =%, =+/2a%—ab+ Q*

which depends on the impact parameter b and coincides
with the photon-sphere after setting » = b,.. Indeed 7. is the
radius of one of the two null critical geodesics satisfying

(2.16)

R(F.) =0=TR(7.). (2.17)
In the equatorial plane, for corotating geodesics (ab > 0)
one finds

77 = max{0, M —2|al|}, b; = max{2M,4(M — |a|)},

while for counter-rotating geodesics (ab < 0)

P =M+ 2lal, bl =4(M + 2|al).
We start to see the emergence of the photon-halo, but before
dwelling on that, let us consider the characteristic function
S that encodes all the observables associated to (null)
geodesics, such as scattering or in falling angles and
Shapiro time delay.

For separable axisymmetric systems like KN BHs it
reads

S=-Et+Jp+S,+ S8y (2.18)
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with

(2.19)

S, = / 7 p,dr

Or
Sy = / Pydo.
0;

For geodesics in the equatorial plane Sy = 0 and the only
nontrivial part is the radial action S,. Since P, = P; ~ £E
at large distances, S, diverges when the initial or final
points are taken to infinity. A simple regulator is to replace
rp— oo with rp=A>a, M, Q. A similar problem
emerges when the initial or final points are taken to the
horizon 7 — 0.

The ‘regulated’ radial action for scattering from infinity
reads,

and

(2.20)

A A
S (E T B A) = / Pydi =E
7y

(2.21)

Under CT inversion it transforms into the ‘regulated’ radial
action for falling into the horizon with the same energy E
and angular momentum J

fall,reg ~2 NN
Sy (E,J, 72/ A7) = P,du

#2/A
b T =7)
:E/Z VIR 4 000
RN U

insofar as motion approaches the horizon within a distance
€ = 72/ that tends to zero when the cutoff A is taken to
infinity.

The regulated deflection angle

OS2 (E, J. ri, 1))

Ad™t(r; rs) = 2.23
() Y (223)
can be computed by means of (2.21) and (2.22). Since the
end points of the regulated integration range depend on J
after CT inversion, the derivative of S,(E,J,r;(J),r/(J))

w.r.t. J involves a boundary term”

S, (E, J,r;(J), rp(J))

aJ
_/r,.(J)aP,(r,E,J)dr
() aJ
ors(J) or;(J) .
L p (r (D), E,J) = =222 P (1)), E, ).
+ 2 by, .0y =2 (1))

*We thank Alfredo Grillo for discussions on this point.

As a consequence, one finds

I A()P;, A
A¢s§§u = ll ﬁd", (2-24)
N ~ 4 ~2
g [T 0Py 072(J)\ E )
A¢fa_u/m aJ dr—A( a_] ?—3 H A —r;].
(2.25)

We conclude that the CT inversion symmetry holds only at

the level of the regulated radial actions, whereby S;*"""*

: fall, . . .
transforms into S, "® and vice versa, while equality

between scattering and falling angles is lost to some extent,
due the dependence on J of the product of the cutoffs
e\ = #2(J). Notice the analogies and the differences with
the bulk-to-boundary formula [14,15] whereby an analytic
continuation is needed.

B. Nonplanar motion, nonequatorial geodesics

When Py = p*0 #0 the angular dynamics becomes
highly nontrivial. Yet, thanks to separability the system
is integrable and one can write Hamilton principal function
as in (2.18). The angular part of the action reads

9 0
Sp = / " Pydo = E / ’ \/ b2sin20 — (¢ + acos?0)> 20
6 6y S

X in@

- xr o dy _ _
_E/m ]_—)(2\/172(1 )= (C+a??  (2.26)

with y = cos @, but will play only a marginal role in the
following.

Let us focus on the radial part. In general the four roots of
R are

P — a2+Q2+% [ﬂ:b[i} \/b2+4a¢:p4bJanQ7} .
(227)

The generalized CT inversion 7 — 72/# with

J
=M -al=2a"+Q*-a*

: (2.28)

formally leaves the radial action invariant, up to regulari-
zation. Due to frame dragging 7. depends on the impact
parameters ¢ and b. The conditions for criticality R(7,.) =
0 = R/(7.) are easier to solve for . and b, in terms of 7.
and yield

al. =M -7,

b2 =4(F. + M2 (2.29)

with M = M, = \/a* + Q? for extremal KN BHs.
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In Appendix A we (re)derive the allowed range for r,. for
(non)extremal KN BHs that characterizes the photon-halo.
In the extremal case of interest here, it turns out be

Max{0,M, —2a} <?. <M, + 2a.
Correspondingly,

Max{2M,,4(M, —a)} < b. <4(M, + a),

with |{.| < b, that is saturated on the equatorial plane as
we have seen before. Notice that for a > Q/+/3 (whereby
M, < 2a) the inner critical geodesics lies on the horizon.
This plays a role in the phenomenon of superradiance that
reflects in the presence of special (near) zero-damping
modes to which we will come back later on.

In order to visualize the photon-halo, recall that for
nonplanar motion b=K/E and { = J/E — a are related by

sin? 9y Pj, = E*[b*sin® O — ({ + acos® 6)*]  (2.30)
for an observer at infinity on a plane at fixed 6, the
collection of all points leading to a critical geodesics
delimits the edge or rim of the BH shadow. This is encoded
in the parametric curve

Y2+ (X — Xo)? = b? (2.31)

with Y = Py(?.)/E, X = J(?.)/Esin0 and X, = asin@
for 7, varying in the (sub)interval allowed by the chosen
value of y = cosf. See for instance [36-38] for further
details and the connection with chaos and Lyapunov
exponent.

III. EXTREMAL ROTATING BHS
IN STU SUPERGRAVITY

In this section we extend the previous analysis of CT
transformations to eSSTURBHSs [12,13,35,39]. For simplic-
ity we only consider charged BHs with 4 electric charges
that can be obtained adding angular momentum to bound
states of four stacks of D3-branes wrapped around (inter-
secting) 3-cycles in a torus 7° or a CY 3-fold.

A. Geodesic motion and CT inversion

Parametrizing the 4 charges as Q; = 2ms;c; with m a
mass scale, s; = sinhd; and ¢; = cosh§; and neglecting
scalar and abelian vector fields, that play no role in our
analysis, the metric reads [12,13]

2mr—p? dr? Asin® 0dg?
ds> ="——"—(dt+Bd¢)?> + W —4do* + ———
s - (di+ Bdg) + (A+ e
(3.1)
with

rHc B (r - 2m)Hs i

p> —2mr
A=7r2=2mr—+ a2,

-l T

W? = HRi + a*cos*0 + 2a’cos?0 [rz + ers%
i

(-

Itis straightforward but tedious to check thatfor Q) = O, =
03 = Q4 = Q (3.1) reproduces the KN metric. The details
are relegated in Appendix B. Let us stress that the mass
parameter m is not precisely the BH mass. The Arnowitt-

%Zi vm* + 05,

B = 2masin?6

p> = r’ + a’cos®0,
R; = r+2ms?,

2m? Y sks? 2] (3.2)

i<j<k

Deser-Misner mass is actually M =
The condition for extremality is

m=a (3.3)

so that p? — 2mr = (r —a)? — a®sin® @ and A = (r — a)?
and the event horizon is then at r = a. Setting

F=r—a (3.4)

the horizon is located at 7 = 0.
For neutral massless probes, the null mass-shell con-
dition in Hamiltonian form reads

72— a?sin%0

2p2 | p2
7P;+Py+ -
P #2sin%0

{(J+EB)2— #2sin2@W E? }

(7 —a®sin®0)?

The separation is straightforward and yields

P2 R()
B2 P

P b
_2+ s 2
E sin-@

+ a*sin’0 = 12, . (3.6)

with A% a positive constant and R (#) a quartic polynomial viz.

R(F) = H(?— 7)) =+ 2a (2 + Zﬁ) P
[Za (4+3ZS2+2;S )—12} 2 (37)
[ ( +Zs +) sts? +Zs222>

i<j i<j<k

—4a2b(1:[—1:[>]?+a2b2—4a3b<1:[+1:[>
+ 4a* |:1—|—Zs +3 522 sl

i<j i<j<k

(-1}

(3.8)
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where b = J/E. Very much as for massless neutral scalar

waves [12,13], symmetry of radial motion under general-

ized CT inversions 7 — 72/# at fixed charges requires
?‘]?2 — ?3’\4 - ?g(b,/‘t), (39)

where 7, 7 are the positive roots and 73, 74, are the negative
ones and

(3.10)

#2(b,2) = 2a* <H + H> —ab

that follows from the remarkable identity

EOWEDNE +Zs222+2<H H)H

i<j i<j<k
= <H + H) ,

where the sign in (3.10) is chosen by comparing with r, in
Kerr. This is possible if and only if the charges Q; or
equivalently the “boost” parameters §;, satisfy the condition

25

(3.11)

— 5 = 8y (3.12)

with 7 a permutation of the four indices, that is allowed
since the metric is permutation invariant. Taking a pair of
indices i and 7z(i) to be 1,2 without loss of generality,
one has

1

26, +26, = 5j =3 log (q,- + o/ + 1) (3.13)
J J

with g; =

(Ql +/ Q%‘f’az) <Q2+ \/Q%—kaQ)
= (Q3+\/Q§+a2) (Q4+\/Qi+a2),

or permutations thereof. This condition generalizes in an
interesting way the condition Q;0Q, = 030, found in [5]
for extremal nonrotating STU BHs. The special case
0, = 0, = 03 = Q4 = Q, that we have shown to coincide
with KN or, for Q = 0, with Kerr, and the special cases with
pairwise equal charges, e.g., Q; = Q3 and Q, = Q, are
simply subcases of the general case that survive the
inclusion of angular momentum a.

Although, integrality of charges and spin may not be an
issue for large ‘astrophysical’ BHs, it is amusing to observe
that a particularly simple integer solution of (3.14) is

Q;/m = Q;/a, that is satisfied when

(3.14)

0, =18, 0, =32, 03 =10, Q4 =45, a =24. It is also
easy to convince oneself that (3.14) admit an infinite
number of integer solutions.

For 4-charge extremal rotating BHs, satisfying the above
condition and thus admitting a proper (generalized) CT
symmetry, the analysis of the observables proceeds along
the same lines as in the simpler KN contexts. The radial
action is form invariant. Null infinity is exchanged with the
horizon. Since the metric is not invariant, even if one allows
Weyl rescalings, it does not make much sense to ask how
the ergoregion transforms. Yet it is quite remarkable that
the photon-halo is left fixed.

In the equatorial plane (0 = x/2), the scattering angle
Ay (E,J) is mapped into the (regulated) inspiraling
angle Agg.«(E,J) for massless neutral probes with the
same energy E and angular momentum J. While the former
is finite for noncritical values, the latter diverges due to the
#? factor in the denominator. In fact the divergence may be
imputed to a boundary contribution generated by the
dependence on J or b of the transformed extrema
¥ =#2(J,E)/

Since geodesics are generically nonplanar as in the KN
case, the relevant observable is the full action, including the
nontrivial angular part Sy, but the only part acted on by CT
transformations is the radial action S,. Even though con-
formal spatial inversions X' = —r2X’/|X|> seem to produce
an antipodal transformation @ - 7 —6 (y = cosf — —y)
the metric and the geodesics are invariant under and the
angular action f Pyd0 is unaffected, up to exchange of the
extrema of integration.

B. Critical regime

Once shown that massless geodesics in eSTURBH’s
metric (3.1) admit CT conformal inversion as symmetries,
let us focus on the critical geodesics that form the halo,
fixed under CT transformations.

Let us step back and reconsider the nonextremal case.
Later on we will refocus on the extremal case.

In general for m # a, the zero mass-shell condition in
Hamiltonian form can be written as

a?J?
A

E2 4 4
—ﬂ{a4+2HRi+az[3r2+2mr<l+2Zsl2>
i=1 =1
— 8m? (252 2 2+2H2—2HH>} —a2A}

i<j<k

2
, 2malr,

AP? — 2EJ

— (r=2m)[]]
A

J2
P2
T sin’@

— E?a’cos’0 = 0. (3.15)

If we introduce the separation constant )2, we obtain
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P3 b3
E_g =2-—L gg —a’sin’¢
S
AP? ey a’bj 4mab,[r[]. - (r=2m)[]]
E? A A

+i{a4+2iﬁRi+a2 [3r2+2mr<1 +2is?>
(-T2

i<j<k

(3.16)

where A = K/E and b; = J/E. For brevity we set

2p2
r

=r*+Ar + BrX + Cr+D — A)?,
4
AzZst%, B =2a? +4m22sl 57
i=4 i<j
C=Cb;+ C,, C1:4ma<H—H>,
, =2a st +8m32s2 2sﬁ,

i<j<k

D = a’b3 — 8m aHbJ—i—Dl,

Dl = a4 + 16m4H2

_4azmz(zs222+zﬂz_2HH)

i<j<k

(3.17)
|

In the critical regime we have

r*+Ar  + Br* + Cr+ D = A2,

4r* +3Ar* +2Br+ C =2(r—m)A*>.  (3.18)
The solutions to this system are
b " Na-2m+r)a+2m-n]]
=——|(a@a-2m+r)(a+2m—r
! a(r—m) s
VA
#r=ar+ -]
A:16a2A2[r2+st%r+m2<<H—H>
i=1 s c
4
1=y 9. (3.19)
i=1
and
4r® +3Ar? +2Br + C C
2 >+ 3Ar° + 2Br + 2, 1 b, (3.20)

2(r —m)

where for b; we choose the negative sign in order to match
with KN. In order to match with the angular equation in
(2.9), we have to redefine the angular momenta as follows:
b* = 2* —2ab,, {=b;—a. (3.21)
Thanks to the condition b > { descending from the non-
negativity of (2.9), we can identify the photon region.
In the extremal limit, i.e., when m = a, we have

(=

4
r2+a2s%r+a2<—l
i=1
4
w =2 a(2433 5 )rta (z+zs+zzs
i=1

>+ (I1-11))

SOEEERIER I}

i<j<k

—2a(3a—r>l:I—2“(“+’)1:[‘2[“_”“@:[_1:[)]

x r2+arz4:s§—a2[1+lz4l:szz— (1:[—1:[)2]

i=1

(3.22)

If we take the charges s.t. s; = s, = ¢ and 53 = 54 = 7, (3.22) drastically simplifies
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£ =~ 1[(r—aP ~a(1 +26%)(1 + 227

b* = 4[r + a(c® + %)% (3.23)

The condition for r, to be outside the horizon r; > ry = a
boils down to

(3.24)

b(ry) <{(ry) = o*7* 2%-

In the case of four different charges, the condition r; > ry
becomes

4
342) 524y s%s?s?—8H<H+H) <0. (3.25)
i=1 K c K

i<j<k

If the condition for invariance under CT inversions, that can
be written as

(3.26)

2+ 3 =2(I1-T0)

is obeyed, the expression for ¢ (and consequently for 1%)
can be simplified to

_—A-a+ 2’ ([ +]1) N 2m(m* =a®)(I]. - I1,)
a a(r—m)

¢

’

(3.27)

which is another bonus of CT invariance.

IV. WAVES IN 4 CHARGE STU BH BACKGROUND
AND SUPERRADIANT MODES

In this section we switch gear and consider the so-called
(near) superradiant modes of near-extremal STURBHs
(NESTURBHESs). The photon sphere, that is the fixed locus
of CT inversions if allowed, plays a crucial role in the linear
response of BHs and other compact objects to small
perturbations. In particular the ringdown phase of BH
mergers is known to be dominated by quasinormal modes
(QNMs). These are fluctuations that satisfy outgoing
boundary conditions at infinity and ingoing boundary
conditions at the horizon. In the WKB approximation
the frequency is given by

oo = @ — iA(2n + 1),

where w, is the frequency of critical circular null orbits,
while 1 is the Lyapunov exponent governing the chaotic
behavior of nearby critical geodesics [36-38]. A detailed
study of the full spectrum of QNMs of STURBHSs is
beyond the scope of the present investigation and we hope
to report on this soon. Exact results may be obtained

resorting to the surprising connection between QNMs and
quantum SW curves of A" =2 SYM with gauge group
SU(2) and N; hypermultiplets in the fundamental, that we
will exploit later on to some extent.

Near extremal BHs however possess a special class of
QNMs; near superradiant modes, also known as zero-
damping modes (ZDMs), since Imwyp)y; is very small and
vanishes in the extremal limit. These modes are produced
by near-extremal BH mergers and thanks to their slow
falloff in time provide a very peculiar feature of the
ringdown phase in these cases. The superradiant threshold
frequency turns out to be

Wgp = m¢QH, (41)
where Qy is the angular velocity at the horizon. Near
superradiant modes are defined by taking

@ = WgR + IJ5 (42)
with finite v =1, +iv, (to be determined) and o6 =
r, —r_<ry, the small separation between the inner
and the outer horizon.

The superradiant threshold frequency for NESTURBHs
is given by the above expression with

Q, — gt(/)(r+) o 1
g = — - _
9¢¢(’+) 3(1)(r+>
a
= . (4.3)
2m(ryJ]c = (ry =2m)[];)
Since the horizons are located at
ro=m=£ \/m, (4.4)
setting
52
m? = a®+— (4.5)
4
at zero order in 6, one has
Q ! (4.6)
r,~m~a,, ~— | .
" "7 2a(T1, + 1)

Starting from (3.1), it is straightforward to separate vari-
ables in the massless scalar wave equation [J® = 0 in this
background. Setting

& — e-io+imp _W)SG)

A(l-27) 7

, y = cos0,

and introducing the separation constant A*> bring the two
wave equations into Schodinger-like canonical form. The
angular equation determines the spheroidal harmonics
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1 _)(2 612602)(2 0)2 _’_/12 + 1— m2
Sim," () + ( X AV ) .
g (I-x%)
X Sﬂ,m¢ (){) = 0 (48)
For small a’w?, 2> = (¢ + 1) + O(a’@?) and S,,,(y) =

Ps(x) + O(a’w?) are known as spheroidal harmonics.
The problem can be solved using standard perturbation
theory in quantum mechanics, even though the wave
equation is classical, or identifying the (confluent) HE
(4.8) (with two regular and one irregular singularities) with
the quantum SW curves for A' = 2 SYM with gauge group
SU(2) and N; = 3 hypermultiplets in the fundamental (six
doublets) [27-31].

If we define A = 1> — a?w? as in [30], the radial equation
can be written as

'+ {wZA [rz + 2m<1 + Zs?)r
“or( St 1[I0+
e [coSR<r+1:[— u_zm)]j)
_w<rH—(r—2m)1:[>r—AA}Zz 0.

Cc
Far from the horizon r> r, > the radial equation
reduces to

(4.9)

2r w3 (2+Y5%)
1" 2 +"SR ivi
V() [0 2O

+ r+a)SR(7 +6Ztsl +4Zl<js

(r—r+)2

2)-A

yw(r)=0. (4.10)

Requiring w ~ e/®st” at infinity (outgoing) and as
w ~ #/2% at the horizon (regularity) one has
w(r) = cooe@ssl=r) (r — r )24 U(A, By z),  (4.11)

where ¢, is a constant and U is Tricomi confluent
hypergeometric function, while

= _ZinR(r_ "+)7
1
@ =A+ -a wSR(7+6Zs +4> sks >
i<j
N 1
A:a+§—leRa(2+ZS,Z>,

B=1+2a (4.12)

On the other hand, the radial equation in the near-horizon
limit can be approximated by defining z = (r — r,.)/5 with
0 < r,. In the variable 7 one finds

y'(7) + Q(0)y(z) = 0

eI TI)
+ua(H+H)} %
x [az +dwya? (H - H) - ﬂ } (4.14)

The solution can be written in terms of hypergeometric
functions. Imposing ingoing boundary conditions at the
horizon, one finds

(4.13)

(1 +17)

x,F\(A,B,C;-1), (4.15)
where ¢y is a constant and
| 2iav }
A =5-a- o +2zaa)SR<1:[—1:[>,
-1 2iav
B :2+a—QH—|—21aa)SR<1:[—1:[>,
2iav
C=1-—" 4.16
o (4.16)

By expanding (4.11) near the horizon, one finds

o [(=2i0)T(2a) . T(~2a)(r—r, )=
W)~ (r—r,) [ i 2l ]
(4.17)

while far away from the horizon, (4.15) reduces to

j— F(2a) 2a —%—a
w(r)~(r—ry) [m(”—m) g
I'(—2a) WY

Matching (4.17) and (4.18) one finds

*(2a B+ 1I'(A)L(C - B)

- (
€ — A2 (=2a)(A)

(;)(fz (=2iwggd) 2 = 1.

(4.19)
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Since 6 ~ 0 and Ra > 0, the factor 6% in the left hand side
diverges, so it has to be compensated by a pole of I'(B) in
the denominator’ 1.e.,

B = —n + (=2iwszd)**n (4.20)
with
G e N (o [\ N
T PRarA—B+ )IAC-B)
leading to
Qy 1
0=wsg+06 [QHCUSR (1:[—1:[> —is (n +§+a>} +
(4.22)

The imaginary part of the quasinormal frequencies is
expressed in terms of the Lyapunov exponent 4; = Ly

Tgy [36,37,40] and the overtone number n gets shizfated
by a + %

One might notice that imposing the condition for CT
invariance (3.26) allows to rewrite A and B in (4.12) in
terms of A, B, and C in (4.16) so that

A=C-AC-B=A-B+1. (4.23)
This simplification is another bonus of the CT symmetry
for NESTURBHSs with special charges, satisfying (3.14).

V. ROTATING BHS AND D3-BRANES
IN HIGHER DIMENSIONS

Very much as for nonrotating BHs and branes, one may
ask whether rotating BHs and branes in higher dimensions
enjoy invariance under generalized CT transformations. As
we will see the answer is positive and we manage to
identify at least one class of 5d extremal BHs that enjoy this
property. We will then address the issue in D > 5 and we do
not find any simple solution with this property. We do not
exclude that more elaborate constructions with various
scalars and gauge fields can enjoy CT invariance.

A. d=5 CCLP solution

Five-dimensional charged rotating BH solutions to
Einstein-Maxwell theory were found by Cheung, Cvetic,
Lu and Pope in [22,23]. They depend on four parameters;
mass M, charge Q, and two angular momenta #; and ¢».
The metric reads

3Since we want to determine the near superradiance parameter
v, we are forced to quantize B. The arguments of the other I'
functions in the denominator are independent of v.

2
ds? = —d* + A(dt — w;)? - _8 (dt — o)),
P

d 2
+p? <d92 + AL) + (12 + 2) sin® 0dg?

r

+ (r* + I5) cos? Ody?, (5.1)
while the abelian gauge field is
3
A= \/_QQ (dt — wy).
p
where
p* =r*+ [ cos> 0 + 3 sin? 0,
A (P 4+ B)(r?+13) —2Mr* +21,1,0 + Q?
r r2 ’
2M  Q?
Ar=—5-"7
pPop
w, = [ sin®> 8d¢p + 1, cos? Ody,
wy = I, sin® Od¢) + 1, cos? Ody. (5.2)

The curvature singularity of the metric is located at
p=0, ie., rf,ing = —I2cos’@ — [sin”@. The horizons
are located at

1 1
=3 OM == B) 5\ (M~ R = B - 4(Q+ 1)’

(5.3)

where A, vanishes. There is also an ergosurface that is
delimited by the larger solution of g (rer,) =0 where

A, =1 and pi,, =M + \/M* - Q%

oo = M £/ M?* — Q* — [Fcos? 0 — [3sin* 0. (5.4)
Extremality (Tgy = 0) requires r, = r_, that is
2M - It = B] = 2|0 + 1,1, (5.5)

while supersymmetry (BPS condition) requires Q = M [21].

Geodesics of massless neutral probes can be written in
Hamiltonian form H = O exploiting the conservation of
three momenta: P, = —E, P, =J,, and P, = J,. As in
the KN and STURBH cases the Hamiltonian can be
separated as

_H,+Hy

H
2p?

0 (5.6)

with
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E2

2

Py
Hy = AP} 4+ [P+ 3+ 63)(Q7 = P8 + 2M (P + 43) (P + )| + 5 (A1 = £3) (P + £3)

p
2

P 2P, E
=2£1(ME\ +Q0)| + (65 = )(P + 63) + =26,(ME, + 061 + 5%

r

r

[(? + 1) 2MZ, + 07))

r

2P,E 2P,P,
—fz(Q2+r2A,)]+ﬁ[(r2+f%)(2Mfl+Qf2)—f1(Q2+r2A,)]— ! 4[2Mf1f2+Q(f%+f%)]:—K2,

2 : Py \? Py \? 2
H9:P9+ Eflsmé’—I—m + Efzcosé’—i— = K~.

cos@

r?A

r

(5.7)

Once again, K? represents the square of the angular momentum. In a certain sense, one can then write the radial equation in

the form

0 2 R2A2p2
R(F):(L H,) == T=Ar°+Br*+Cr’+D

2E 0P,
with

(5.8)

C =206,6,+ €1 + 36165 + €3+ D> (2M — £ = £3) + (67 = £3) (b, — by) + 2b, (41 (£] + €5 — 4M) — Q7))

+2b, (£5(5 + €5 —4M) = 7)),

D = (Q + £162)X (=02 + 4byt) +4b65) +2(Q + €16,) (D301 6r + Bt 1Er + E15 + 6163 + byb, (63 + £3)
— b, (3 +20,63) = by (228, + £3)) + (2M — £3 = £3) (D263 + 2byb, f1 6 — 2D, 2,

+ B = 2byt\ B + £343),

and

ﬁ@‘
|
|
S
I
<

(5.10)

are the impact parameters. Exchanging ¢; <> ¢, corre-
sponds to exchanging b, <> by and 6 <> 7 — 0.

Looking for extremal (not necessarily BPS) solutions
with r| = r_ = ry, that enjoy symmetry under CT inver-
sions we further specialize to the case

IM=22+63 Q=—t1t, (5.11)

but we allow for Q # M and ¢; # £,. With this choice, the
horizon falls onto the origin

r =0 sothat A, =r?

(5.12)

and the parameters of the radial equation simplify to

A=1, B =20,by + 26,b, +2(£3 + £3) — b2,

c:wpfaK%-_ﬁ—Y-<b- % Y}
a_a) \masa

D=0, (5.13)

The radial equation can be written as

r4P%
R(r) = 2

A EBREC= (PR ). (5.4

The zeros of P, are located at

1
I"%’Q :E{bz —2(f%+f%) _2f1b¢—2f2bw

+ [b“ + —4b* (3 + €5+ £1by + £3by,)
+ A[b4L5 + byt + 2byt 1 (265 4 £3)

1

+2b, 65263+ £2) — 4f§f§} 7} (5.15)

so that
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VC = r2(b;. b5).
bi(by, b)) = 26,bG + 26,by, 4+ 2(£7 + £3) + 22,

rry =

(5.16)

Indeed, the criticality conditions R =0 =R’ allow to
express r, and b2 in terms of by, bc ., S0 much so that
generalized CT inversions that exchange horizon and
infinity, keep the photon-halo r = rc(bg,,b;) fixed, as
expected. For consistency one has to impose positivity
of C = r# and that means

f? 2 /3 2

or vice versa for #, > #,. Moreover b2 > 0 requires
£1by + £3by, > -2 =5 -1k

For ¢, = ¢, = ¢ only the combination b, = b, + b,
matters. In this case, choosing the plus sign and introducing
F.=r./¢ and 13“ =b, /¢, one has

~2b,.,, b2=2b,.+4+2/3-2b,,. (5.18)

The minimal value for both
#2 =0 (horizon),

=3

72 and b2 is zero. The former,

is reached for b, ,=3/2 whereby
|

Adr?
1%
i (1+55) =%

ds? = f5'/*(=hyds® + dx> )+f1/2{

+(1

4m cosh a

AL, (flsgd(ﬁl + fzcgsy,dgbz + fgcgc d¢3)}

where dx? denotes the Euclidean metric of the longitudinal
R3 and

2m 2m sinh? a
hg=1--" — e
0 A fo * A
2 3 £3
A=1 —i——lcf, + ( 2L +cl)+— 2 3 (s2¢2 + s2)
fzfz £2f2 a4,

30242
+ =25+ 2 cdsl + L2k,
A CoSy A4 Cotw
bpz LﬂZ 2
A1—1+—21 +—22s5s +—§s§
r
2 2

3,
Ay =1+ cw+r—§s§ (5.21)

-t
m+r2{Ald92+A2c§dy/2—2 2r2 3

l;% = 7. The Ilatter, 133 =0,

whereby 72 = 1 + /8 > /3.
For 7| # +£¢, the situation is much more involved.
Although it is easy to determine the minimal value of

for

E+,c =-3 _\/gv

3
#2 =0 (horizon) that is reached for b, = ff%lfz and b, =
1 2

fz whereby b = 4(¢7 + £3), the maximum is harder

fZ
3

%
fz and

to determine. In fact, for £ > #3, taking b, = =

letting l~9¢ = by —f;%i,% grow arbitrarily, both 72 and b2
grow arbitrarily.
Thanks to the previous properties of the roots, the radial

action is form invariant

S, = /P,dr

under CT inversions r — r2/r that maps the scattering
regime outside the photon-sphere into the inspiraling
regime inside it.

(5.19)

B. Rotating D3 branes

Let us now pass to consider rotating D3-branes. Thanks
to the transversal SO(6) symmetry, one can introduce three
independent angular momentum parameters ¢1,¢,, and 5.
The metric of a rotating black D3 brane is given by [20]

2 2

CoSoCy S, dOdy

2 fz fz 2m
+r—2]> sdpt + (1 2 )Cgsa,d(bz ( )cecl,,dgbz—i— N (Z1s§depy + Cachssdpy + Cschieldds)? |+

(5.20)

The parameters « and m are related to the D3-brane charge
N by

4rg,Na® = 2m cosh a sinh a. (5.22)

The horizon r = ry is given by the largest real root of

3

Hr +2)

i=1

—2mr? =0. (5.23)

The extremal configuration is reached if we take simulta-
neously @ — oo and m — 0, keeping fixed L*=2m
sinh>a. If #;#0, the limit m — 0 exposes a naked
singularity [20].
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The null Hamiltonian in the extremal case reads

[0 p2 7
A T pls?o

H— f1/2E2+f—1/2{

J3 J3
poéSi Picicy
(A, P2+2 “') +2(£3—-¢3)s,¢,19PP,

+

}, (5.24)

FA Az—(fz 2225

where p? = r? + £2. In general it is not separable.

If we restrict attention on geodesics in the 6 =y =0
plane, where 0H /00 = 0H /oy = 0 so that one can con-
sistently set Py = P,, = 0, the metric drastically simplifies

ds” == fo 12 + £ AT dr + 2 8 oA,

3 L
A3:1+?, A:AlAz, ]’l():l, f0—1+A4
(5.25)

In Hamiltonian form, the system is separable and the radial
momentum can be expressed in terms of the radial variable
r and the conserved quantities i.e., the energy E and the

relevant angular momentum J = J3, since J; = J, =0,
r*A3P? L*
E; L= Asfo - bt = A+ —— b7, (5.26)

where b=J/E. If we take for
Cr=0;=¢<L,sothat A, = A, =

simplicity ¢ =
A5, we find

2
P =

The radial action, in the coordinate z = 2 + 2 reads

S, = /P,dr:

This integral is invariant under the transformation
7> L* /z, or in the original radial coordinate

— DA 4 %) + LY. (5.27)

E dz

2 2 4
Eﬁ 7z —=bz+L". (5.28)

4

2 2
rHl o

(5.29)

The critical impact parameter and the critical radius (that
determines the photon-sphere in this plane) are the critical
points of P,, thus looking at (5.27)

1
= 502 & /bl — 4L,

So the critical impact parameter is the same as in the
nonrotating case

24 2 (5.30)

r2=1%-7¢% (5.31)
The significance of the CT symmetry in the present context
is not totally clear since the range of validity is limited to
£?r* < L* — ¢* that, reassuringly, includes the photon-
sphere for L > 7.

VI. NO HORIZON, NO CT SYMMETRY

As shown in [5] and above, CT transformations
exchange null infinity with the horizon keeping the
photon-sphere fixed. Thus we should not expect smooth
horizonless geometries like JMaRT [24] (and their super-
symmetric limit GMS [25,26]) nor (circular) fuzz balls in
D = 6 to enjoy CT symmetry despite the presence of a
photon-sphere. One may try to identify a generalization of
CT transformations that exchange infinity with the cap but
the different nature of the two regions presagite the failure
of the attempt, as we will show in the following. In order to
illustrate the problem, we briefly analyze massless geo-
desics in the smooth horizonless backgrounds of the
JMaRT (and GMS) family and in the circular fuzz balls
in D =6.

A. JMaRT and GMS limit in d=6

JMaRT solutions [24] are smooth horizonless geometries
of 3-charge systems. They are ‘over-rotating’ to be con-
sidered bona fide microstates of BHs. They are known to
undergo an ergoregion instability [41,42] and a Penrose
process [43] that should produce a BPS supersymmetric
GMS solution [25,26] as stable remnant [44]. The six-
dimensional metric of JMaRT can be written as

A2
ds2 = ds? + (dy—%> :

where in the extremal limit and in the equatorial plane
© =1/2)

(6.1)

ds? = =Z7%(dt + a)* + Zds7, (6.2)
o Rl )
A=—|-dt+YXZ (2122 4 _aya, )dg|.
zZf 2 \ay a, Q oy |49
Z—1+%, f=r—a.
a=Y2o(% %) 4 (1 +22)aa,|dp (6.3)
2f ag a, ¢
fdr? ajay,
dstene = ra-a 7 + P24 d))dg?. (6.4)

The components of the metric are easily identified
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9y =—2Z Gyy = L, 9rr =

+322f2’

o = 12Z2f2 (Z_¢ a, Q f

ap 0

gz¢:9¢t:—?2fz 2f

_ . _ 0
gty - gyl —\/—3_Zf7

32 ra, ay aza
— 0 <_W + “ + M) .
2\/§Zf a(/) ax// Q

Ipy = 9yp =

Setting for simplicity P, = 0, the relevant element of the
inverse metric are also easy to determine and the Hamil-
tonian for null geodesics reads

Ez(Zizo Azk”Zk)

P = ,
r 4a$5a5,r2(r2 - a%, + afﬁ)2

Ag = 4a$5a5,,
Ay = 4dial (af — 2aj, — b* +30).
Ay = 4aya,[-albQ? - aﬁ)b\/é(&l%, +0)
- a;}(as, -3a,0)
+ a¢(a3, + a3,(2b2 -30)+ 3aWQ2)],
Ay = —[2aga3b — al 03 + a}\/Q(-3a} + Q)2. (6.6)

So the asymptotics of the radial action at infinity and near

the cap rj = a, — aj are very different

S,NE/oodr vs S,~Eﬁ2/dlog(r—r0)
ro

P 2baja, + 03a}, —/Qa3(Q + 3aj,)
4aa,r}

: (6.7)

which seems to exclude any conceivable CT symmetry
acting by conformal inversions. The only chance would be
taking the BH limit a4 = a,, = 0 keeping their ratio fixed.

B. D1/D5 fuzz ball

With little hope, we now explore case of circular fuzz
balls of 2-charge BHs and identify a CT-like transformation
that gets close to being a symmetry, but we should
recognize our inability that can be ascribed to the absence
of the horizon that may reflect into new features in the GW
ringdown signal such as echoes [1,45-49] and modified
memories [50-55] or else in their multipoles [56-59].

The 6-d metric of a circular D1/D5 or, equivalently,
D3-D3’ fuzz ball reads [60—63]

L, @ Zf

- 2
r —l—a(/,—a

03/? (aw a, N ad)al,,) B Z72/0 [Q(

2 9
7

3 la, ay aga,)? aza’ 72 @  a 2
< ("’+—"’+ ’ "’) +Z( ’ w+r2+a§)>— Q{Q(—‘”+—¢)+(1+2z)al,,a4 ,

412

a, a
4 —"’) +(1+ ZZ)au,adj} :
a¢ a,/,

a¢ a,,,

I
ds* = H' [—(dt + wyd¢)? + (dz + o, dy)?]

d 2
+H [(p2 + a*cos?0) < 5 i 5+ d¢92> + p*cos*Ody’?
p*+a

+ (p* + az)sinzedd)z] , (6.8)
where H = \/HHs5, with

L? aL,Lss3 aL,Lsc

Hi=lt—5—55 @oy=—5—55 @&,=—3 5

p-tacy p-tacy p-ta‘cy

(6.9)

The metric (6.9) has no explicit dependence on ¢, z, ¢, and
y. As a result, the conjugate momenta P, = —E, P, = P,
Py =J, and P, = J, are conserved.

Quite remarkably, very much as for KN or STURBHS,
the system is separable [64—66]. In order to expose this
property, one introduces the conjugate momenta

p _H 4 E)

Py = H(p* + d>c3)0,
P p2+02 0 (,0 9)

(6.10)

and writes the (zero) mass-shell condition in Hamiltonian
form H = ¢*P,P, =0 that can be separated into two
equations

T 0
K? = P2+ (E? — P?)a*sin? 0 + —,
o+ Ja”sin sin?@  cos?6
PL,Ls—al,)?
_K2:(p2+(12)P%+M+

p
(EL\Ls—aJ,)? 22 72 72\ (52 _ p2
—szr—az—(p +a+ L2+ L) (E2-PY),

(6.11)

where K? is the separation constant.
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For brevity we will set

(PLlLs - Cl]w)z

2 —
BW_ 52612 ’ Bé_ 52612 ’
2
& =EF-p? p =X (6.12)
, o :

By the second (radial) equation in (6.11) the radial
action is:

L2+L3- a’B? a’B?
S /d 3 1+ J’; : + 2 /2 2
+a® PP +ad) (PP +d)
(6.13)

In terms of the variable p* = x and if B = 0 it becomes

Edx
S, = /Z\fx(xﬂﬂ) [x2+x(L%+L§ - b* +24%)
+a¥(a®+ L3+ L2+ B - bZ)} 2, (6.14)

One can envisage a generalized CT inversion of the form

(6.15)

with some x,; alas, this does not leave the radial action
invariant for any choice of x,, except for the case a = 0 that
produces a 2-charge small BH.

VII. (A)DS KN VS HEUN EQUATION
AND CT INVARIANCE

Let us pass on to consider AdS; KN BHs and study
scalar wave propagation in this backgrounds. As shown in
[30], in order to have the minimal number (i.e., four) of
regular singular points in the radial equation, it is conven-
ient to choose a tachyonic scalar with mass y?L? = —2.
The mass is above the Breitenlohner-Freedman (BF) bound
uipL? = —=9/4. Scalar fields of this kind are dual to
boundary conformal operators of dimension A = 1, 2 such
as ¢* or y? [67,68], and correspond to internal fluctuations
of the metric in the case of maximal supergravity in S7. We
spell out the conditions under which the relevant Heun
equation (HE) with four regular singular points, corre-
sponding to real and complex horizons, admit CT sym-
metry, exchanging horizons in pairs. This leads to a SHE
(special Heun equation) with restricted parameters (but no
confluence of singularities). However, quite disappoint-
ingly, when we translate the parameters of the SHE into BH
parameters we find a trivial configuration with zero mass.
We then switch to the extremal case as well as to
generalized CT transformation that rescale the wave
function.

A. Heun equation for CT invariant AdS KN BHs
The AdS-KN metric in 4d is given by

U — A, ladt — ag(a® + r?))?

A ldi = adg(1 = PP

ey ey
dr’  dy?
At (7.1)
where y = cosé and
72
A, = (r2 + az) <1 —|—L2> —2Mr + Q?
1 _
=2 (r=r)(r=r)(r-p)(r-p),
a*p
A, =(1 —)(2)<1 T ) p? = r* +a%y?
2
a
a=1- 7z (7.2)
The four roots of A, satisfy
re+r_+p+p=0 (7.3)

and the relations with the BH parameters a, Q, and M,

ror_+ PP = (ro +r ) =d*+ L?,
(P e ) =223

r_lpP? = L*(a® + Q%) (7.4)

that easily allow us to express M, Q and a in terms of r_, p,
and p at fixed L, while the inverse relations require solving

a cubic equation and are more involved. For large L > M,
a, Q two roots are real

rox®ME/M?—a*— Q%+ O(L™2 (7.5)
and two are complex conjugates
p,p=+iL —M +iO(L™") (7.6)

The wave equation for a scalar can be separated. Setting

w(9S()
J/AB,

brings both radial and angular equations in canonical form.
The eigenvalue K? = £(£ + 1) + O(a*w?) of the spheroi-
dal-harmonics equation for the angular part plays the role
of a generalized angular momentum and enters the radial
equation as a separation constant

CI)(Z, Ly, ¢) — e—irutJrim,/,(/; (77)
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" (r)+ Q. (r)y(r) =0,

0.() (@(a*>+r*)—am)? K>+u’r? 1A’;+1 AL\2

r)= — — =

' A2 A, 24, 4\a,)°
(7.8)

with & = aw, i = amy. For y?L* = =2 (7.8) has four

regular singularities where A, = 0. For different choices of
u>—including O—the resulting wave equation has more
than four regular singular points. Performing the coordinate
transformation

(r=ri)p=r)

=)o =7s) (79)

Z:

brings (7.8) in the standard form

5 Y o € afz—p B
{aﬁ <Z+Z_1+Z_t>az+z(z_l)(z_t) w(z) =0

(7.10)

which has four regular singular points at 0, 1, ¢, and oo that
correspond to r, p, p, and r_ respectively.

Since the curvature singularity at 7 = 0 and the boundary
r = oo are regular points of the radial equation, we should
look for generalized CT transformations exchanging r, <
r_ and p <> p for instance. In the standard form we should
impose invariance under z — f/z which requires

y=1-96, € =29, aff =0, (7.11)
and arbitrary ¢ and
t:(l?_r"r)(p_r—) (712)
(p=r)lp—ry)

(7.10) can be put in canonical form if we introduce

P(z) = 27 (z = 1) (z = 1),
(7.13)

and taking into account the restrictions on the parameters, it
becomes

"oy 4 1‘52+ 26— & N 26— &
iz 4722 4(z—-1)? 4(z—1)?
F—6+2p+8t—56t+(26-6

P ( 2 w(2) = 0. (7.14)

2(z=1)z(t—2)

Inverting (7.9) and comparing (7.14) with the radial
equation for a scalar with mass y’L?> = —2 in the AdS-
KN background put severe constraints on the BH param-
eters as well as on @ and my. We derive the dictionary in

Appendix C, by exploiting the recently established corre-
spondence between BH perturbation theory and quantum
Seiberg-Witten curves [27-31]. In the present case of
AdS,-KN BHs, the relevant N' = 2 SYM theory has gauge
group SU(2) and N, = 4 flavors of fundamental hyper-
multiplets with masses m,. Moreover, imposing z — t/z
invariance (a la CT) requires mq = my, and m; = m,.

Although beyond the scope of the present investigation,
let us stress here that the analysis of QNMs and other
observables associated to fluctuations around a variety of
BHs, D-branes, and fuzz balls with flat or AdS asymptotics
governed by the standard Heun equation of various kinds,
can be successfully tackled within this approach. Without
dwelling on the details, let us pause and simply list, for the
curious reader, the various interesting cases for the radial
equation” following® [27-31]

(i) Heun equation (HE) with four regular singular

points ~N; =4 = (2,,2z) SW ~AdS,; KN with
u?L? = =2 (no CT symmetry, in general).

(i) Confluent Heun equation (CHE) with 2 regular and
1 irregular singular points ~N; =3 = (2,,1g)
SW ~ flat KN or STURBH (no CT symmetry, in
general).

(iii) Reduced confluent Heun equation (RCHE) with two
regular and one irregular singular points ~N; = 2 =
(27,0) SW~ CCLP BHs and D1/D5 or D3/D3’
circular fuzz balls (no CT symmetry, in general).

(iv) Doubly confluent Heun equation (DCHE) with two
irregular singular points ~N, =2 = (1,,1z) SW ~
Extremal KN BHs, ESTURBHs and D3-D3-D3-D3
(CT symmetry).

(v) Reduced doubly confluent Heun equation (RDCHE)
with two irregular singular points ~N; =1 =
(1.,0) SW ~ extremal CCLP or BMPV BHs (CT
symmetry).

(vi) Doubly reduced doubly confluent Heun equation
(DRDCHE) with two irregular singular points
~N;=0=(0,,0g) SW ~extremal D3-branes,
D1/D5 or D3/D3” BHs (CT symmetry).

Going back to our problem, in the end it turns out that
only trivial values for the BH parameters (as for example
M = 0) are compatible with CT symmetry.

We then have two options; to consider extremal KN BH
(in Sec. VIIB) or gain some flexibility by performing a
Weyl transformation of the HE so as to introduce new
parameters in the equation (in Sec. VII C).

*Spheroidal harmonics in D = 4 (S? sphere) and D = 4 (53
sphere) are related to CHE and RCHE respectively. Nothing
special happens to these angular equations in the extremal
limit.

>For convenience we split the flavors into N = (Np,Ng) as
they appear in the Hanany-Witten setup of the N'=2 SYM
theory [69].
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B. Extremal AdS KN vs restricted confluent
Heun equation

Some simplifications occur for extremal BHs with r, =
r_ = ry still with p # p since we consider L > M. For
p = p one would get a doubly confluent HE (DCHE) that
can be easily shown to admit CT symmetry in general. The
extremal mass is [70]

L a\? 12 24>
Moy =—— 1+— ——(a? 2 )
extr 3\/6(\/( +L2> +L2(a +0 )+L2+ >

2\ 2 2 %
X <¢<1+%) +%(a2+Q2)—%—1> . (7.15)

The relevant equation turns out to be the CHE (confluent
Heun equation) that reads

{aﬁ + (Z + Z_il + £> 9. + Z‘z - f)] W(z)=0. (7.16)

If we define W(z) = e~2F(z) and impose symmetry under
7 — 1 — z, the parameters of the equation must obey to
y = 6 and a = ye. So the equation becomes

#er(iey)es (‘Zi*z(zq— )|re=o

. Y€
q4=>5-4 (7.17)

In order to establish a dictionary with extremal AdS KN
BH, we perform the mapping

v (r)+ Q. (r)y(r) =0,

0 (r)251+7—72 - | =7
T (r=rp)? 4(r=p)? A(r-p)?
eBp+p)(p+3p) | 8(a+r—r’)(p+p)

64(p—p)*(r=rp)*  Bp+p)(p+3p)(r—ry)
(y=4)rp+(4=5y)rp+2q(p+3p)
2(p=p)(Bp+p)(r—p)
(r=4)yp+(4=5r)rp+23(3p+p)
2(p=p)(p+3p)(r—p) '

+

(7.19)

In terms of radial coordinates, the exchange symmetry
7z — 1 — z translates into

(r—rp)(ry —p)(ry —p)
2p+p)r+rip—pp

r—ry—

(7.20)

We start the comparison with (7.8) by studying the residues
of the double poles in p and p. Imposing equality of the two
residues we obtain

1 +p)% 1
a2_ab¢_§|:pﬁ+(p 4/0) :| :§(a2+L2+4r%1),
L4&)2
r=1)p=—-. 721
v =y (7.21)

By comparing the residues of the order four poles in ry, we
obtain an expression for &

 H4iGLY(p - P)
T GGt (7:22)

If we compare the residues of the double and the single
poles in ry, we obtain

7= %. (7.18) L2 2L +(p+p) 723)
r—r - - — = - . .
PP (G3p+7) (37 +)
In canonical form the radial equation reads | The simple pole in p,
_8K2L*(p—p)* + (p—p)’(5p+3p) + L*(5p = p)(p + 3p)” _ (v —4)yp+ (4= 57)rp +24(p + 3p) (7.24)

200 =0y (3p +p)°

The relation that holds for p is the same as the previous one
after exchanging p and p. As aresult, § can be written (up to
p <> p exchange) as

L*@?

(p—p)*

L iL%
q= -
p f—

2[=2K*L* + (p+p)* + L*&?]
(Bp+p)(3p+p)

]

(7.25)

2(p=p)(3p+p)

|
Thus @ and K remain free parameters, while the mass is
dictated by extremality (7.15).

Notice that the critical radii in the equatorial plane are the
extremal points of

Py(r) =[r* —ala b = a)? = (a,b —a)*A,(r)  (7.26)

so that
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2
"n

r.=+ry with a;b,=a-+ o (7.27)

In the end, CT invariance works as much as possible
as in the asymptotically flat case in that it keeps the
photon-sphere fixed (r. = ry in the equatorial plane)
and exchanges the two complex horizons. Recall that
both the AdS boundary (r — oo) and the curvature
singularity (r = 0) are regular points of the wave equation
instead.

C. Transformed Heun cs AdS KN with rescalings

So far we have implicitly assumed that CT transforma-
tions (z — t/zor z —» 1 — z) preserved the wave function in
the standard HE or CHE form. In principle this is not
necessary and the function may undergo some (Weyl)
rescaling. In order to account for this flexibility let us go
back to HE in (7.10) and perform the transformation®
W(z) = z%(z = 1)"(z = 1) f(z). One gets a new HE with
parameters

y = 2a+vy, 6 —2b+0, e—2b+e,

p — (2ab+ by)(1 + 1) + adt + ae + p,
afp > af +2b2a+b+y)+ (6+¢€)(a+Db). (7.28)
Imposing symmetry under z — #/z requires
e=6, y=1-2(a+b)-6, ap=-2(a+b)s. (7.29)

In the coordinates (7.9) SHE can be put in canonical form
by introducing

1) =lr=r ) (r=r )0 p) (=) 4y (1)
(7.30)

so that

with

We allow only rescalings that keep the symmetry between p
and p, i.e., z=1and z = 1.

A27+:A2’_:—%(—1+6+5)(1 +0+0),
Az’p:Az’f,:£(2—5)5,

1
ro—ry)(ry=p)(ry=p
—(6+0—1)[-r26+r_r (1-36+0)

) 2p(r.=p)(r_=p)

Al,+:2(

+pp(1-5+a)+r2+(2+5+za)]],

1[2p+5(5+26) 8(5+0—1) 2p+5(5+0—1
A=t p+0(6+20) 8(6+o-1) 2p+5(F+o-1)
2 p=p p=ry p—r_
A=A (ryor_pop),

’

Ay, =A(ri < r_p<p), (7.31)

where ¢ = 2(a + b). From the perspective of the AdS KN
wave equation (7.8), the residues of the double poles are

LY&(r? +a3) —a;m)* 1
By; = lim[(r —r,)*Q,(r)] = P +7-
2 ror; Hj#l(rj - r,~)2 4

(7.32)

Since from (7.31) A, = A, _, we must require that
B, . = B, _ and the same for the residues of the double
poles at p and p,

2t aj=bya; _ (r_—p)(r-=p)
ri +aj—byay (ry =p)(ri=p)’
2., 2
+a;-b - —r_
'?2 a«é ¢a1 — :l:(/_) r"r)({) r )’ (733)
P —I—a]—b(/,aj ( _’”+)(P_’"—)

where by, = 71/& = m/w.By comparison, from the previous
relations we can write a constraint on by, (or equivalently w),

aj—bya;=—(p+p)ri +Ip|?

1
:_(”++r—)P+r+”—:E("+”++|ﬂ|2)- (7.34)

On the other hand, exploiting the first two relations in (7.31)
and (7.32) and plugging (7.34), we have

2iL%é 2iL%G
sto=2—""%  1-5=+""2 (735
ry—r- p=p
Equations (7.35) can be used to reexpress 0,
soL=P=lolr =) a1 (736)
p=p+L(ro—r)

The residues of the simple poles are
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1

B g
b 2ry = r ) (ry = p)2ry +r_+p)

+ LA =3rory =+ (ro+ ”+)/’+p2]é)2}’

1
20r_=p)(ry =p)(ro+ry +2p)

Bl,p =

HLA P +ror i+ 50+ )p + 3P2W}’

By =B (r. <r), B,; = By ,(p < D).

Now it is possible to compute the parameter p in two different
ways,i.e.,A; . (p) = B1.,A;_(p) = B; . The two expres-
sions for p must be equal so, if we use (7.36), one finds

(re+r)lry =r (- + 1 +2p)P(1 +0)°

+ Lo+ + (ry —r )¢+ 2p)?@* =0.  (7.38)
Excluding r_ = —r that would imply zero mass BH and
using (7.35), (7.36), as well as (7.3) the previous expression
becomes

(ro=r)p-pP1+eP=0.  (1.39)
Excluding extremality r_ = r_ = ry, that would require
M = M, already considered before, and p = p, that would
require L < M, eventually requires ¢ = —1. As a result of
(7.35) @ = 0 and 6 = 1. So the last parameter to determine is

K*L*> +ror_+pp
p= ——.
(ry=p)(r-=p)

(7.40)

K remains a free parameter, while there are no conditions on
the roots or, in other words, there are not constraints on M, a,
and Q.

Once again we get a reduced form of CT invariance,
valid only for static waves with @ =0 and my = 0.

VIII. CONCLUSIONS

We have extended our investigation on CT conformal
inversions [6,12,13] of BHs and D-branes [5] in various
directions.

First, we have analyzed asymptotically flat rotating
charged BHs in D =4, in particular (near) extremal
rotating BHs in STU supergavity (n-eSTURBHs) [35],
and found invariance for special choices of the charges.

Second, we have studied scalar wave equations in these
backgrounds and identified the near superradiant modes
ak.a. zero damping modes in that display a very slow
falloff at late times and thus represent a rather distinctive

{o = r Pl 1 2 =R ) )

: {(r_ + 1y +2p)2 2 = 2K2L: = p* + (ry +p)(ry + 1))

(7.37)

feature of the GW signal emitted in the mergers of near-
extremal BHs.

We have then considered rotating BHs in D = 5 [22,23]
and rotating D3-branes [20] and found invariance under
generalized CT inversions for special choices of the angular
momenta. Not surprisingly we have not found any similar
symmetry for smooth horizonless geometries such as
JMaRT [24], their supersymmetric GMS version [25,26]
or circular fuzz balls [60,61]. Notwithstanding the presence
of photon-rings, the lack of a horizon and the very different
behaviors at infinity and at the cap are the reasons behind
the failure.

Finally we have considered scalar perturbations of KN
BHs in AdS,; and found that the conditions for CT
invariance are too stringent for generic AdS KN BHs
unless one allows for a rescaling of the wave function and
focuses on static waves. In the extremal case (7.15), my, is
related to w and K, very much as the ‘critical’ impact
parameters of a massless probe are related to the critical
radii of the photon-rings.

In all cases CT invariance keeps the photon-halo fixed
and exchanges either the horizon and null infinity (for flat
asymptotics) or two complex horizons (for KN BHs
in AdS).

The relevant scalar wave equations can be separated and
both the radial and angular parts, that generalize the
celebrated Regge-Wheeler-Zerilli and Teukolsky equa-
tions, can be brought in the form of Heun equation or
confluent versions thereof. At various points, we have also
exploited the surprising connection with quantum SW
curves for A'=2 SYM with SU(2) gauge group and
N fundamental hypermultiplets [27-31].

Since for rotating objects generalized CT transformations
depend on the impact parameter(s), the relation between
scattering angle for geodesics outside the photon-sphere and
inspiraling angle for geodesics inside the photon-sphere
includes a boundary term A,y (E,J) = Apgy(E, J)—
Adyai(E,J), determined by dr./dJ # 0. In general, the
observables are encoded in the full action that involves both
a radial and a nontrivial angular part, although the latter
plays only a marginal role in CT inversions.
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The dynamics of rotating BHs at higher orders in Gy
(post-Minkowskian) or in v/c¢ (post-Newtonian)—the two
being related by virial theorem—is under very active
investigation [71-77]. Classical gravity may be extracted
from quantum amplitudes [78,79]. New soft theorems
[52,80,81], valid even in the string context [82,83], can
help understanding radiation reaction, GW production
[84,85] and memory effects [50-55].

Identifying (discrete) symmetries even in very special
cases, such as eSTURBHS, can prove very useful in order to
make further progress in this endeavor as well as in the
scattering off D-branes, their bound states [86—88] or highly
excited (coherent) string states [8§9-91] that can expose
chaotic behavior. Moreover, the surprising connection with
N =2 SYM and, through the AGT correspondence, with
2d Liouville CFTs may shed further light on the holo-
graphic correspondence in this contexts [92-94].
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APPENDIX A: CRITICAL PARAMETERS
FOR ASYMPTOTICALLY FLAT KN BHs

The critical conditions read

R(re,o.) = (’%_aé’cy _b%Ar(rc) 0,
Ri(ro.0,) = 4r.(7% — al,) — b0 () =

and must be supplemented with the condition

b?sin”> @ — (¢ + acos® 0)* > 0. (A2)
The solutions of (Al) are
2 4rA(r,) 1672A,(r,)
T o D)
a aly(r.) [AL(re)]
Setting X = cos26, b./a = f, {./a =y and using
. 1 ) 1
sin GZE(I—X), cos 6:5(1+X), (A4)
the condition (A2) becomes
27 (1-X) > 2y + 1+ X)? (AS)

or

X24+2X(FP+2r+1)+ 2y +1)2=282<0. (A6)

Since

A=p(p+4y+4) >0, (A7)
then, setting x = r/M, g = Q/M and @ = a/M, we obtain
the following constraints,

ﬂ2>0:>{x2x?1—1+\/1—a2—q2
xgxﬁzl—\/l—az—qz,

PP +4y +420= 22 = (¢° +3)x* +2¢°x + o = f(x) 2 0.

For consistency we must require (Schwarzschild) 0 < a? +
q* < 1 (extremal KN).

1. Nonextremal case

The extremal points of f(x) are

f/(xe) =6
q

x2=2(¢* +3)x, +2¢° =0 = x/ =1,
2

(A8)

Xe = ?
It is very easy to see that x is a minimum and x} is a
maximum. It is crucial to note that in the allowed range of
the parameters, f(x) has always one negative and two
positive real roots. Furthermore, if we denote the roots with
x1, X, and x3 with x; < 0 < x, < x3, the outer horizon x};
is always larger the biggest root x5 and the inner horizon x7
is always smaller than x,. So the positivity range of the
discriminant (A7) is

0<x<xy, x> xj;.

Xy < x < X3, (A9)

The solutions of (A6) are

Xy =—(F+2r+1) £/ (P +4r+4). (Al0)

are real with X_ < X, so that the allowed range is [X_, X, |
but one has to make sure that it intersects with [—1, +1]
since X = cos26, after all. The condition X, <1 is
equivalent to

B >ph (A11)

Setting m? = a®> + g%, f is defined for x > x}; and for

x < xg. The derivative of f is

, 2(x =3x* 4 3x —m?)
P = e -17VE, (a12)
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In the range 0 < m? < 1, 8 has only one extremal point in

3 2

X, =1=-V1-m*, (A13)

which is a minimum and is always located between zero
and x. Now we focus on

x(x* = 3x + 2m?)
== Al4d
y = |- (A14)
The zeros of this function are
3 9
=4/ =2m2 Al5
x() 2 4 m ( )
It is very easy to show that
x§ > xp, xy < xg, for0<m?<1. (A16)

In the nonextremal case is always possible to find a photon
region outside the outer horizon.

2. Extremal case

The situation changes drastically in the extremal case in
which m? = 1. The functions f and y reduce to

2x |x(2 = x)|
p=— ==
|a]

a

(A17)

{2x|a|:x(2—x) 0<x<2->x=0, x=x;=2-2|q

2x|a|=x(x=2) x>2,x<0->x=0, x=x!=2+2|a|,
(A18)

where obviously x; < x!. However, for consistency, we
must require that the lower bound of the photon region is
greater than the horizon

1
2-2la|>1= |a|:L<—é |a|§g

. (Al
a’> + Q? 2 V3 (AL9)

APPENDIX B: DICTIONARY eSTURBH TO eKN

In this appendix we discuss the map between the
parameters in the eKN metric and the ones in the
eSTURBH. Denoting by M, Q, a, r, p the parameters
and variables in KN description and by m, g, a, u, { the
corresponding parameters and variables in CPS-STU
description and setting s = sinh ¢ one finds (for Q; = Q, =

Q3 =04s=0)

a—a m? = M2 — Q2 (B1)
and
r=u+2ms?,
A=r—2Mr+a®+ Q> =12 —2mu+a® = Acps. (B2)
p* =1 +a’cos’@ =W = (u+2ms*)* +a’cos’6, (B3)
& = 2mu = u* + a® cos? 6 — 2mu
=A—a’+a*cos’0 = A — a*sin? 6. (B4)
Then
u—uH:u—[m—l— mz_az]
:r_m(1+2s2)—\/m
=r—-M—-\/M*-Q*-d®>=r—ry (BS)
that is,
r:u—uH+rH. (B6)

In the extremal limit M? = a®> 4+ Q? one has m> = a® with

uy =m=aand ry = M = \/a*> + Q.

APPENDIX C: HEUN EQUATION VS QUANTUM
SW CURVE

In order to find the dictionary between HE for scalar
fluctuations with y?L? = —2 around AdS KN in D = 4 and
quantum SW curve for N'=2 SYM theory with G =
SU(2) and N; =4 = (2,,2g) we have to introduce the

coordinate y = —z and rewrite the second term in (7.14) as
follows:
-8 26-¢6° 26 — &
= +

C0) =g 3 T Ay

P —5+2p+8t—6t+y(8*-268

2ty(y + (1 +7y)

From quantum SW curve, we have

3

- i vi+qy(o4—0,—0,—03)
Osw(y) = + . (C2)

W ;(y—yi)z y(1+y)(1+4gy)

where {y; =0,-1,—1/¢} and
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gL (mimm)? 1 (my 4 my)?
7 a2 274 a2
g L (matmy)? 1 (g —my)?
3T 42 YTy 42

4%y, = (q — 1)(R* + 4u) +2(m? + m3)
+2q | 2mymy + (my + my)(m3 + my) — thi] )
(C3)

By comparing the various terms of (C1) and (C2), we find
the following dictionary

52— (my —my)? _ (m3 = my)?
I
(6-1) = (m, +2m2)2 _ (m3 +2m4)2’
n h
1
r=—. (C4)
q
If we take the square root of the first two relations in (C4),
we have to introduce the signs ¢; = £1 for i =1, ...,4.

Finally the last element of the dictionary is

2

u=z<th——1){—2p+<1—5)[1+6+83e4<1—5>+83+84>1}-
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