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In tensor networks, a geometric operation of pushing a bond cut surface toward a minimal surface
corresponds to entanglement distillation. Cutting bonds defines a reduced transition matrix on the bond cut
surface and the associated quantum state naturally emerges from it. We justify this picture quantitatively by
evaluating the trace distance between the maximally entangled states and the states on bond cut surfaces in
the multiscale entanglement renormalization ansatz (MERA) and matrix product states in a canonical form.
Our numerical result for the random MERA is in a reasonable agreement with our proposal. The result
sheds new light on a deeper understanding of the Ryu-Takayanagi formula for entanglement entropy in
holography and the emergence of geometry from the entanglement structure.
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I. INTRODUCTION

It has been a long-standing problem in spacetime physics
to resolve the mysterious relationship between information
and gravity. In accordance with this fundamental mystery,
an efficient approach is to examine complementarity
between quantum entanglement and geodesic structures
in the context of the holographic principle [1,2]. Originally,
the principle is a relationship between a certain class of a
conformally invariant theory known as the holographic
conformal field theory (CFT) and spacetime with a constant
negative curvature. The complementarity was strongly
motivated by the so-called Ryu-Takayanagi (RT) formula,
where entanglement entropy in holographic quantum field
theory is proportional to the area of the minimal (extremal)

surface in its gravity dual called the RT surface [3]. The RT
formula is essentially a holographic extension of the famous
Bekenstein-Hawking formula for black hole entropy [4–6].
A very important feature of a black hole is the presence of
radiation of Hawking pairs inside and outside the event
horizon. Then, the theory is described by the Bogoliubov
transformation in superconductivity to connect both sides of
the event horizon. Thus, the RT surface should be charac-
terized by the condensation of entangled pairs from
elementary objects, which have critical information about
the holographic spacetime. Therefore, the characterization
by extraction of the entangled pairs at the surface is crucial
for a comprehensive understanding of the RT formula
including previous extensive research.
In quantum information theory, entanglement entropy

can be defined operationally. Entanglement entropy of a
state asymptotically equals the number of extractable
Einstein-Podolsky-Rosen (EPR) pairs via local operations
and classical communication in the limit of the large number
of state copies. This procedure of extraction is called
entanglement distillation. To further clarify the information
theoretic aspect of holography, it is important to understand
how the RT formula is derived from the operation-based
definition of entanglement entropy. However, the previous
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derivation of the RT formula [7] relies on the state-based
definition and the relation to the operational definition
remains unclear (although see Ref. [8] for some progress
regarding one-shot entanglement distillation). The bit thread
formalism, a mathematically equivalent formulation of the
RT formula, suggests EPR pairs across the RT surface [9].
While this picture supports the operational definition in
holography, the physical origin of the EPR pairs is still
unknown in contrast to the case of a black hole. In this
paper, we address this issue in terms of quantum operational
techniques based on tensor networks, which we will
describe in the following.
The construction of tensor networks, variational wave

functions that orient quantum information viewpoints, is
deeply examined in statistical physics and condensed
matter physics. A tensor network can be constructed by
contracting internal bonds between tensors defined on each
lattice site of our model system. The hidden degrees of
freedom carried by the internal bonds represent how
nonlocal quantum entanglement is shared between two
distant sites. By controlling the dimension, we can sequen-
tially increase the resolution of the variational optimization
to obtain the true ground state. Mathematically, the network
of the tensors is reformulated as projected entangled-pair
states (PEPS) [10], in which we define maximally
entangled states among artificial degrees of freedom on
each bond and then take some physical mapping on each
site. The well-known matrix product state (MPS) is a one-
dimensional (1D) version of PEPS.
The PEPS construction is closely related to the afore-

mentioned proposal for the condensation of entangled pairs
at the RT surface in holography, except that the PEPS do
not contain the extra holographic dimension. However, the
multiscale entanglement renormalization ansatz (MERA)
[11] has an extra holographic dimension representing the
coarse graining of information. Such tensor networks with
an extra dimension have been proposed to be toy models of
holography [8,12–27] and have facilitated an information
theoretic understanding of holography. To further gain
insights, coarse graining is key to connect the boundary
theory with the RT surface. In the MERA, the smaller edge
of the exclusive causal cone corresponds to a discrete
version of the RT surface.
A recent proposal for a better understanding of the RT

surface stated that the maximally entangled states charac-
terize the surface [9,28–32]. The proposal suggests that the
surface may emerge from entanglement distillation by a
deformation of the boundary. One of the goals in this paper
is to provide a concrete method to achieve this procedure in
the MERA and discuss a possible extension to other tensor
networks such as MPS.
Motivated by the possible relationship with distillation

and the minimal bond cut surface, we examine geometric
operations in tensor networks with and without a holo-
graphic direction. In special circumstances, previous

literature has established the relation between the discrete
version of the RT formula and a (one-shot) entanglement
distillation in tensor networks. These tensor networks are
perfect [15] or special tree tensor networks [8,33–35].
Using the isometric property of their composing tensors,
we can show the state equals a collection of EPR pairs
across the minimal surface via the so-called greedy
algorithm. However, these tensor networks are still inad-
equate to achieve conformally invariant states, which are
usually assumed in holography. For instance, a correlation
function in perfect tensor networks does not decay as the
distance increases and its entanglement spectrum is flat.
This is contradictory to the result for CFTs. Thus, we focus
on MERA in this paper as it is known to efficiently
approximate critical ground states. Furthermore, it has a
capacity to express various wave functions via a variational
optimization, which is also missing in the holographic
tensor network toy models in previous literature. Despite
MERA being neither a perfect nor a tree tensor network,
our method enables us to discuss entanglement distillation
in the MERA. Moreover, we claim that the methodology is
also applicable to an MPS. There is no direct bulk/
boundary correspondence in MPS since it lives on the
lattice of our target model. However, when we define a
partial system, a minimal bond cut surface can always be
defined as the edge of the partial system. By appropriately
distilling over each matrix, we can find a state close to the
EPR pair. Our goal is to show analytical and numerical
evidence for these procedures in relation to a minimal bond
cut surface and EPR pairs.
In Sec. II, we describe our proposal of entanglement

distillation achieved by a geometric procedure in MERA
and quantify this using a trace distance. In Sec. III, we
numerically demonstrate the procedure in the so-called
randomMERA. In Sec. IV, we extend our proposal to MPS.
Finally, we summarize our work and discuss possible future
directions.

II. ENTANGLEMENT DISTILLATION FOR MERA

In this section, we define geometric operations in a tensor
network, MERA in particular, and relate it with entangle-
ment distillation. We consider a binary MERA state jΨi
represented by Fig. 1. It is composed of unitaries (blue
squares), isometries (green triangles), and a top tensor (red
circle). The isometric regions shaded blue in Fig. 2 are
called future or exclusive causal cones [11,17,36,37]. We
denote them by CðAÞ for a subregion A and CðĀÞ for the
complement Ā. Their edges are denoted by γA ≡ ∂CðAÞ and
γĀ ≡ ∂CðĀÞ. We call the smaller one, a minimal bond cut
surface γ� ¼ minðγA; γĀÞ. This surface γ� in MERA corre-
sponds to the RT surface, a minimal surface in a holographic
spacetime. From the PEPS perspective, there are EPR pairs
across the surface. Since isometries do not affect entangle-
ment, the EPR pairs carry all of the entanglement of the state
if all the projection tensors are isometries. This is true for a
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perfect tensor network, which consists of isometries. In
contrast, MERA has nontrivial projection degrees of free-
dom carried by each tensor. As a result, this naive view of
EPR pairs across the surface becomes subtle.
The quantum correlation between A and Ā is captured by

entanglement entropy SðρAÞ ¼ −trAρA log ρA, which is
defined as the von Neumann entropy of the reduced density
matrix ρA ¼ trĀjΨihΨj. When the state is described by a
MERA, given the fixed bond dimension χ, entanglement
entropy satisfies the following inequality:

SðρAÞ ≤ ð# of bonds cuts by γ�Þ × log χ: ð1Þ

When (1) is saturated, it is interpreted as a discrete version
of the RT formula.
In the following, we first present a way to define a state

on a surface across internal bonds in the MERA. Then, such
a state is shown to preserve the amount of entanglement
with an appropriate choice of a family of bond cut surfaces.
As the minimal bond cut surface has the least number of
bonds, we expect the entanglement per bond is concen-
trated to be maximal. Thus, we identify pushing a bond cut
surface toward the minimal surface as entanglement dis-
tillation. We quantify the process by examining the trace
distance between each state and an EPR pair.
Given a MERA state jΨi (Fig. 1), its reduced density

matrix ρA for a subregion A is obtained by cutting the
physical bonds on A in the norm hΨjΨi as shown in
Fig. 3(a).
In the following, we consider a deformed surface γ from

A such that the endpoints are common, ∂γ ¼ ∂A. This is a
discrete version of the homology condition. We call such a
surface a foliation. As an initial condition, we have γ ¼ A.
A minimal bond cut surface γ� equals a foliation with a
minimum number of bond cuts, i.e., dimHγ ≥ dimHγ� ,
where Hγ is the Hilbert space of bonds across γ.
Deforming γ from A, we obtain a norm hΨjΨi with

bonds cut on γ. For example, when we choose a foliation γ

as shown in Fig. 3(b), the tensor network defines a reduced
transition matrix [38]

ργ ¼ trĀðjΨðγÞihΦðγÞjÞ ∈ LðHγÞ; ð2Þ

where LðHÞ denotes a set of linear operators on a Hilbert
space H. Figure 4 shows the states jΨðγÞi ∈ Hγ ⊗ HĀ

and hΦðγÞj ∈ H�
γ ⊗ H�̄

A. It immediately follows that
hΦðγÞjΨðγÞi ¼ tr ργ ¼ 1 for an arbitrary foliation γ.
hΦðγÞj and jΨðγÞi are created by adding and removing
tensors Mγ bounded by A and γ in the tensor network
representation:

hΦðγÞj ¼ hΨjMγ

MγjΨðγÞi ¼ jΨi: ð3Þ

For example, if we consider a configuration shown in
Fig. 3(b), Mγ ¼ U1 ⊗ U2 where U1;2 are shown in
Fig. 4(b).
Using the relation (4), we can show that any reduced

transition matrices ργ have common positive eigenvalues
with the original reduced density matrix ρA. This can be
shown as follows. We denote trĀðjΨðγÞihΨjÞ by Sγ and the
positive eigenvalues and eigenvectors of ργ are denoted by
fλngn and fjniγgn. Then,

ργjniγ ¼ SγMγjniγ ¼ λnjniγ: ð4Þ

By multiplying Mγ from the left, we obtain

MγSγMγjniγ ¼ λnMγjniγ ð5Þ

whereas MγSγ ¼ trĀðMγjΨðγÞihΨjÞ ¼ ρA from (3). Since
(4) is by definition nonzero, Mγjniγ ≠ 0. Therefore the
positive eigenvalues of ρA coincide with those of ργ for an
arbitrary γ.

FIG. 1. A MERA tensor network is composed of binary
unitaries (blue squares), isometries (green triangles), and a top
tensor (red circle). Yellow circles represent physical indices. A
and Ā denote a subregion and its complement, respectively. For
this symmetric bipartition, both γA and γĀ become minimal bond
cut surfaces γ�.

FIG. 2. In a MERA tensor network, the future or exclusive
causal cone CðAÞ [CðĀÞ] of a subregion A [Ā] covers tensors that
can affect only A [Ā] seen from the top to bottom. The edge of
CðAÞ [CðĀÞ] is called a causal cut [17] or a minimal curve [12,13]
and is denoted by ∂CðAÞ [∂CðĀÞ]. In the aforementioned example,
the minimal bond cut surface γ� is given by γĀ.
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Since ρA and ργ share common positive eigenvalues, it
immediately follows that the von Neumann entropy of a
reduced transition matrix SðργÞ known as pseudoentropy
[38], equals entanglement entropy:

SðργÞ ¼ SðρAÞ; ∀ γ s:t: ∂γ ¼ ∂A: ð6Þ
This identity is interpreted in twoways. The first is a type of
the bulk/boundary correspondence like the RT formula.

While the right-hand side represents the entanglement
entropy of the boundary quantum state jΨi, the left-hand
side is given as a function of an operator in the bulk. The
second is interpreted as a conservation of entanglement
during the deformation of γ. From the PEPS perspective,
SðργÞ effectively counts the amount of entanglement
carried by bonds across γ. Then, the equality (6) indicates
the amount of entanglement across each foliation is
retained during the deformation of γ.
Throughout the procedure, the number of bond cuts at γ

changes and it minimizes at a minimal bond cut surface γ�.
Thus, the diluted entanglement over jΨi is concentrated
into a smaller number of strongly entangled bonds across
γ�. Next, we evaluate the degree of this concentration in
terms of the trace distance.
Before moving on, let us comment on the similarities and

differences between our procedure and previous proposals.
In our procedure, we define a reduced transition matrix on
each foliation and identify pushing the foliation as entan-
glement distillation. Compared with the previous studies of
entanglement distillation in holography [8,15], pushing the
foliation can be regarded as a type of operator pushing. In
[15], an operator pushing of an operator O through an
isometry V iso is defined by

OV iso ¼ V isoÕ; ð7Þ

(a)

(b)

FIG. 4. When the foliation γ is chosen as shown in Fig. 3(b),
jΨðγÞi is given by (a) and hΦðγÞj is given by (b). They are
related to the original state jΨi by either removing or
adding tensors U1 ⊗ U2 ∈ LðHAÞ.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Reduced transition matrices corresponding to various foliations. When the subsystem A is half of the whole system, there are
two minimal bond cut surfaces γ� ¼ γA; γĀ. (a) Cutting the physical bonds of A in hΨjΨi gives ρA. (b) The foliation γ is pushed toward
γA. (c) The foliation equals γA. (d) The foliation is pushed toward the other minimal bond cut surface γĀ. (e) The foliation reaches γĀ.
(f) Finally, the foliation cuts the physical bonds in Ā and it gives the reduced density matrix ρĀ.

MORI, MANABE, and MATSUEDA PHYS. REV. D 106, 086008 (2022)

086008-4



where Õ ¼ V†
isoOV iso. While O is usually state-indepen-

dent, in our procedure, the pushed operator is the reduced
transition matrix defined from the state. The mapping
between two reduced transition matrices ργ and ργ0 on the
foliations γ and γ0 respectively is an operator pushing, i.e.,

ργM ¼ Mργ0 ; ð8Þ

where M represents tensors bounded by γ and γ0. Although
our procedure can be interpreted as a type of operator
pushing, one important difference is thatM is not necessarily
isometric while V iso was assumed to be isometric or unitary.
This difference arises because our procedure deals with
a reduced transition matrix rather than a state vector. For a
state vector, the only operations that preserve entanglement
entropy are isometry and unitary ones. This requirement
severely restricts possible tensor network states. They must
be composed of perfect [15] tensors or dual unitaries [39,40]
or isometric tree tensor networks [8,33–35]. Such states can
be distilled by removing the composing tensors by applying
a greedy algorithm. In our procedure, we deal with a reduced
transition matrix. The operations that preserve entanglement
(6) are not limited to isometries. In this way, we can consider
entanglement distillation using reduced transition matrices
on various bond cut surfaces in a more general tensor
network like MERA, which has nonisometric M. This
enables us to consider a state on an arbitrary bond cut
surface even beyond the region a greedy algorithm can reach
(called a bipartite residual region [15] or causal shadow [41]
in the literature) while retaining the amount of entangle-
ment SðργÞ.
To evaluate how much entanglement is distilled from the

original state jΨi, we should quantify the closeness of a
properly defined state across γ to a maximally entangled
state (the EPR pair). However, since ργ is an operator, we
cannot compare it with the EPR state directly. Thus, we
define a distilled state on γ as a state vector in Hγ ⊗ Hγ

using the same idea with the purification,

jρ1=2γ i≡N γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimHγ

q

ðρ1=2γ ⊗ 1ÞjEPRγi; ð9Þ

where N γ ¼½trðρ†1=2γ ρ1=2γ Þ�−1=2 and jEPRγi¼ðdimHγÞ−1=2
PdimHγ

i¼1 jii⊗ jii. Then, we can define the closeness between
the distilled and EPR states as the trace distance between
them:

Dγ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jhEPRγjρ1=2γ ij2
q

: ð10Þ

On the basis of this trace distance, we propose that the
minimal bond cut surface γ� provides entanglement distil-
lation such that jρ1=2γ i becomes closest to the EPR pair
jEPRγi among other foliations γ.

For a later discussion, let us further rewrite (10). First, ρA
is represented by

½ρA�IJ ¼
X

r

α0¼1

SIα0σ2α0S
†
α0J; ð11Þ

where S is an isometry, σ is a singular value matrix of jΨi,
and r is the Schmidt rank. Note that r ≤ dimHγ� . Then, as
the positive eigenvalues are common between ργ and ρA,
the inner product in Dγ can be written as

hEPRγjρ1=2γ i ¼ N γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimHγ

p trρ1=2γ

¼ N γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimHγ

p

X

r

α0¼1

σα0 ð12Þ

≤
N γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimHγ

p r1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

r

α0¼1

σ2α0

s

¼ N γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
dimHγ

r

: ð13Þ

The last line comes from the normalization tr ρA ¼ 1. The
inequality is saturated only when σ ∝ 1. We can further
rewrite (12) in terms of the nth Rényi entropy

Sn ≡ 1

1 − n
log tr ρnA ¼ 1

1 − n
log

X

r

α0¼1

σ2nα0 :

Since S1=2 ¼ 2 log
P

r
α0¼1

σα0 , (12) is rewritten as

jhEPRγjρ1=2γ ij2 ¼ N 2
γ

dimHγ
eS1=2 : ð14Þ

In any cases, the γ-dependence in Dγ only appears through
N γ and dimHγ .
When γ ⊂ CðAÞ ∪ CðĀÞ, Mγ is either isometric or uni-

tary. Thus, we can apply a standard greedy algorithm in this
case. Since the tensors inside the causal cones are reduced
to an identity after contractions, a removal of tensors in
CðAÞ ∪ CðĀÞ from a state is equivalent to pushing the
foliation in CðAÞ ∪ CðĀÞ. This means we can perform
entanglement distillation that is perfectly consistent with
the previous proposals. Let us see this from the view point
of the trace distance. By contracting isometries and
unitaries in the MERA, this indicates that

ρ†γ ¼ ργ ⇒ N γ ¼ 1: ð15Þ

From these expressions, the following statements can be
derived for ∀ γ ⊂ CðAÞ ∪ CðĀÞ. First, the inner product (12)
monotonically increases as we push γ toward a minimal
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bond cut surface γ�. This is because log dim Hγ is propor-
tional to the number of bonds cut by γ. Then, from the
definition (10), the trace distance monotonically decreases

Dγ0 −Dγ < 0 ð16Þ

as we push γ to γ0 toward a minimal bond cut surface γ�.
Second,

γ ≠ γ� ⇒ Dγ > 0 ð17Þ

since from (13)

hEPRγjρ1=2γ i ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
dim Hγ

r

< 1; ð18Þ

where we used r ≤ dim Hγ� < dim Hγ . The first statement
(16) supports distilling a state closer to the EPR state by
pushing γ toward γ�. The second statement (17) indicates
that we cannot have Dγ ¼ 0 (distillation of the EPR pair)
unless γ ¼ γ�. The vanishing trace distance is equivalent to
either a flat entanglement spectrum

r ¼ dim Hγ� and σ ∝ 1 ð19Þ

from (13) or

S1=2 ¼ log dim Hγ� ð20Þ

from (14), which is expected from holography [8].

III. NUMERICAL RESULTS FOR RANDOM MERA

In this section, we demonstrate the aforementioned
procedure of entanglement distillation in a particular
MERA called the random MERA by again calculating a
trace distance. The random MERA is prepared with Haar
random unitaries Uαβ

γδ , where each index runs from 1 to χ.
Isometries are given by Wα

βγ ¼ Uα1
βγ and the top tensor is

given by Tαβ ¼ U11
αβ.

The random MERA is particularly suitable to verify our
proposal of entanglement distillation. Preceding studies
have pointed out that a random tensor network can saturate
(1) in the large bond dimension limit, realizing a discrete
version of the RT formula [13,19,23,42]. The goal of our
method is to extract pure EPR pairs on γ� in this limit as
expected from holography, and more importantly, whether
this way of entanglement distillation really works even in a
finite bond dimension, which is less trivial.
Numerical calculations have been done for 8-site and

16-site random MERAs with bond dimension χ. For the 8-
site MERA, we choose a subregion A and foliations as
shown in Figs. 1 and 3. For the 16-site MERA, we choose
6-site and 8-site subregions and foliations at their minimal

bond cut surfaces. Then, we calculate the trace distance
(10) to investigate the closeness between each state and the
EPR state. We change the value of χ to see the trend of
distillation in the large-χ limit. Tensor network contractions
were performed using quimb [43] and cotengra [44].
Figure 5 shows the random-averaged trace distance Dγ

for each foliation γ in the 8-site random MERA. Each Dγ

is calculated using ten samples. The trace distances for
the states on foliations (a) and (b) are the same due to
the equivalence up to a unitary transformation on ργ. The
distances for the states on (a) and (f) are also the same as A
and Ā are complement to each other in the pure state. It is
the same for (c) and (e) which are related via a common
unitary transformation from (a) and (f), respectively. The
state on foliation (d) corresponding to neither ρA, ρĀ nor ργ�
has a trace distance in between others. Note that any greedy
algorithms can never reach foliation (d) but our method
enables us to compute the trace distance even for such a case
in a well-defined manner. We can see the foliation γ ¼ γ�
(c,e) exhibits the smallest trace distance among all the
foliations for bond dimensions from 2 to 8. The trace
distances for (c,e) monotonically decrease as the bond
dimension increases, which is consistent with [19]. These
trends are also seen in the situation of the 16-site random
MERA (Fig. 5 inset). This indicates this distillation pro-
cedure succeeds on the minimal bond cut surfaces γ� for
each bond dimension even when the bond dimension is not
large. However, the trace distance on the other foliations
increases as we increase the bond dimension. In this way,
the minimal bond cut surface can be characterized from the
perspective of distillation.
The behavior in the large-χ limit can be analytically

understood as follows. The previous study [19] found

FIG. 5. Random-averaged trace distance Dγ for each foliation
in Fig. 3 with respect to the bond dimension χ for the 8-site
random MERA. The inset is Dγ on the minimal bond cut surface
for the 16-site random MERA (green dotted line with an 8-site
subregion and purple dashed line with a 6-site subregion).

MORI, MANABE, and MATSUEDA PHYS. REV. D 106, 086008 (2022)

086008-6



lim
χ→∞

Sn ¼ log dim Hγ� ð21Þ

for a non-negative integer. Assuming its analytical
continuation to n ¼ 1=2

lim
χ→∞

S1=2 ¼ log dimHγ� ; ð22Þ

holds as expected from holography [19], (14) and the
Jensen’s inequality leads

lim
χ→∞

jhEPRγ� jρ1=2γ� ij2 ¼ lim
χ→∞

1

dimHγ�
expðS1=2Þ

≥ lim
χ→∞

1

dimHγ�
expðS1=2Þ ¼ 1: ð23Þ

Since the inner product between normalized states is at
most one, we can conclude the distilled state approaches
the EPR state for a large bond dimension. Even at a finite
χ, the existence of a gap between the distance for γ ¼ γ�
and others is consistent with (16).

IV. ENTANGLEMENT DISTILLATION
FOR MATRIX PRODUCT STATES

Numerically we have seen our distillation method indeed
works for the random MERA. To look for a possible
extension to other classes of tensor networks, we focus on
MPS, which belongs to a different criticality from MERA.
An MPS with open boundaries is shown in the first and

second lines in Fig. 6. For simplicity, we focus on the case
when the subregion A is on the left and its complement Ā is
on the right. The boundary between A and Ā is denoted by
γA. The bond dimension for internal bonds is denoted by χ.
We can always transform an MPS in a so-called mixed
canonical form [45], shown in the third line of Fig. 6, by a
successive singular value decomposition of matrices. In the

mixed canonical form, every matrix is isometric except for
the singular value matrix σ.
Figure 7 shows a structural similarity between MPS in

the form and MERA. The isometric parts of the MPS,
V 0;W0, correspond to those of the MERA, V, W, in
CðAÞ; CðĀÞ. The singular value matrix σ in the MPS
corresponds to Σ̂ in the MERA (or the Python’s lunch in
a holographic context [46]). From this viewpoint, the MPS
is not only another class of tensor networks than MERA,
but a simpler model sharing a common isometric structure
with the MERA. In the following, we will consider the
MPS analogue of the entanglement distillation in MERA
and compare the results between the two.
Through the correspondence in Fig. 7, we can consider

foliations in MPS similar to those within CðAÞ in MERA.
Figure 8 shows a family of foliations fγðτÞgτ in the MPS
such that their endpoints are always fixed at the boundary of
the subregion ∂A. Then, γA can be characterized as a
minimal bond cut surface, a foliation that cuts the minimum
number of bonds in hΨjΨi. The foliations are chosen so that
the location of the internal bond cut becomes monotonically
closer to the minimal bond cut surface γA. The number
τ specifies the number of matrices between the foliation
and γA, parametrizing each foliation γðτÞ. The previous

FIG. 6. A matrix product state jΨi is shown in the first and
second lines. The third line represents its mixed canonical form
[45] via a successive singular value decomposition for each
matrix. Every matrix in the form is isometric (green triangle) and
the singular value matrix σ is placed in the center. The boundary
between A and Ā is denoted by γA.

FIG. 7. MERA can be divided into two isometries, V and W,
and the remaining Σ̂. This structure of MERA is in analogy with
that of MPS, whose isometry on the left (right) of σ is collectively
denoted by V 0 (W0). The lower right tensor network is equivalent
to a so-called one-shot entanglement distillation tensor network
discussed in [8,35].

FIG. 8. Foliations interpolating the boundary subregion A and
the minimal bond cut surface γA are denoted by fγðτÞg, where τ is
an integer parametrizing each foliation.
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discussion for the trace distance Dγ only relies on the
diagonalization of ρA and a similarity transformation
between ργ . Thus, (14) is also applicable to MPS. Given
the Rényi-1=2 entropy S1=2 of ρA, the trace distances are

DγðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
eS1=2

χτþ1

s

; τ ¼ 0; 1; 2 ð24Þ

Dγð3Þ ¼ Dγð2Þ ð25Þ

since dimHγðτÞ ¼ χτþ1 for τ ¼ 0; 1; 2 and dimHγð3Þ ¼
dimHγð2Þ. From this, it is apparent that the distance Dγ

decreases as the foliation approaches γA, i.e., τ decreases.
However, for the MPS case, it is more explicit to check
entanglement distillation by following a state on each
foliation. The resulting reduced transition matrix on γðτÞ
is represented by Fig. 9. It can be written as

ργðτÞ ¼ VγðτÞσ2V
†
γðτÞ ð26Þ

using an isometry VγðτÞ composed of τ layers of isometries.
Since only isometries act on the singular value matrix, the
entanglement spectrum does not change while the size of
each ργðτÞ decreases during the distillation, which is in
accordance with the necessary condition for entanglement
distillation. When the foliation is a minimal bond cut surface
(τ ¼ 0), Vγ becomes an identity matrix. This indicates that
the distilled state via our procedure becomes diagonal
Pχ

α¼1 σαjααi by removing isometric, redundant degrees
of freedom from the original state. In particular, the EPR
state jEPRχi is distilled on γA whenever σ ∝ 1. Examples of
such a state described by the MPS includes the thermody-
namic limit of the valence-bond-solid state, i.e., the ground
state of a gapped Hamiltonian called the AKLT model
[47,48].
Despite the difference of criticality, the distillation in

MPS has common features compared with that in MERA.
In a general MERA, we discussed the monotonicity of the
trace distance (16) toward γ�. Furthermore, the distillation
of the EPR state in MERA was equivalent to the flat

entanglement spectrum (19). All of these were shown for
the MPS as well.
Overall, our distillation procedure in MERA can be

extended to the MPS, where pushing the foliation toward
the minimal bond cut surface corresponds to removing
extra degrees of freedom, and a distillation of EPR pairs
yields a flat entanglement spectrum.

V. CONCLUSION AND DISCUSSION

For a deeper understanding of the RT surface in
holography, we have investigated how the minimal bond
cut surface in tensor networks can be characterized through
entanglement distillation. We proposed a geometric pro-
cedure in MERA which is interpreted as entanglement
distillation and extended it to MPS in this paper. Cutting
bonds in the norm on a surface, which we call a foliation,
defines a reduced transition matrix and a corresponding
state. To evaluate how close the state is to the EPR state, the
trace distance between the EPR pair and a state on
foliations has been computed. For a MERA, we found
that the trace distance is monotonically decreasing as we
push the foliation toward the minimal bond cut surface. The
numerical result also suggests that the distance was the
smallest for a minimal bond cut surface. Compared with
previous studies, our method enables us to investigate states
on various bond cut surfaces even beyond a causal cone.
For MPS, we extended our distillation method by

properly choosing a family of foliations. Then, the boundary
of the subregion is interpreted as a minimal bond cut
surface. In a mixed canonical form of the MPS, we found
that the proposed distillation process is equivalent to
removing isometries, indicating a monotonic entanglement
distillation toward the minimal bond cut surface. For the
MPS, we considered changing the singular value distribu-
tion σ rather than changing the bond dimension as in the
random MERA. We observed when σ ∝ 1, the EPR state
can be distilled. This is a common feature both in the MPS
and MERA. In this way, we confirmed entanglement
distillation toward the minimal bond cut surface in both
the MPS and MERA despite each belonging to a different
criticality. The minimal bond cut surface is special in a sense
that we can perform entanglement distillation toward it.
For a future direction, a numerical calculation of a larger

system is desirable to relax the finite size effect.
Furthermore, it is important to test our distillation procedure
with variational wave functions of real ground states or
analytic solutions of tensor networks like exact MPS
representations [49–51] or wavelet representations of
MERA [52–54]. While the validity of our proposal should
be inspected, it is intriguing whether our proposal of
entanglement distillation can be understood from the opera-
tional meaning of each constituent tensor. The physical
interpretation of each tensor is important for a generalization
to field theory as an infinitesimal transformation gives a
corresponding generator for entanglement distillation. In the

FIG. 9. Reduced transition matrix associated with the foliation
γðτÞ in Fig. 8.
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case of MERA, previous studies [55,56] suggest that a part
of MERA may be interpreted as a path integral in CFT or
local conformal transformations. In the case of MPS, half of
the MPS acts on the state to obtain the completely distilled
state (ργð0Þ in Fig. 8). Previous literature suggests it
corresponds to a corner transfer matrix [57,58] or a π=2
Euclidean modular flow [59–61] when the MPS is prepared
by transfer matrices or the Euclidean path integral. As there
is a formal analogy between the MPS and MERA (Fig. 7),
we could gain insights for entanglement distillation inside a
causal cone in MERA from the analysis of MPS.
Our results suggest a certain geometric deformation

could achieve entanglement distillation in holographic
CFTs. The geometric deformation should push the boun-
dary into the bulk. One of the candidates for such
deformations is TT̄ deformation in holographic CFTs, dual
to a finite cutoff anti-de Sitter spacetime [62]. Since the
entanglement distillation we discussed preserves pseudoen-
tropy, it also motivates us to consider a spatially inhomo-
geneous TT̄ deformation as a holographic realization of
pushing a foliation. These observations may provide an
alternative operational interpretation of our proposal.
Finally, our work motivates the development of a novel,

systematic way of constructing tensor network ansatz. We

discussed how entanglement distillation arises from geom-
etries of tensor networks. If we can reverse the procedure, a
better tensor network ansatz could be constructed on the
basis of algorithms of entanglement distillation [63–66].
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