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String geometry theory is one of the candidates of the nonperturbative formulation of string theory.
In this paper, from the closed bosonic sector of string geometry theory, we derive path integrals of

perturbative strings on all of the string backgrounds, G, (x), B

, B,,(x), and ®(x), by considering fluctuations

around the string background configurations, which are parametrized by the string backgrounds.
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I. INTRODUCTION

String geometry theory is one of the candidates of
nonperturbative formulation of string theory. It is formu-
lated by a semiclassical path integral of string manifolds,
which belong to a class of infinite-dimensional manifolds,
string geometry [l]. String manifolds are defined by
patching open sets of the model space defined by intro-
ducing a topology to a set of strings. One of the remarkable
facts concerning string geometry theory is that the path
integral of perturbative superstrings on the flat background
is derived including the moduli of super-Riemann surfaces,
by considering fluctuations around the flat background in
the theory [1-3].

Moreover, configurations of fields in string geometry
theory include all configurations of fields in the ten-
dimensional supergravities, namely string backgrounds
[4,5]. Especially, it is shown that an infinite number of
equations of motion of string geometry theory are con-
sistently truncated to finite numbers of equations of motion
of the supergravities. That is, string geometry theory
includes string backgrounds not as external fields like
the perturbative string theories. Dynamics of string back-
grounds are a part of dynamics of the fields in the theory. It
is natural to expect to derive the path integral of perturba-
tive strings on the sting backgrounds by considering
fluctuations around the corresponding configurations in
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string geometry theory. Furthermore, a string background
that minimizes the energy of the string background con-
figurations will be chosen spontaneously, because string
geometry theory is formulated nonperturbatively [4,5].

For each background, one theory is formulated in case
of a perturbative string theory, whereas perturbative string
theories not only on the flat background but also on
nontrivial backgrounds should be derived from a single
theory in case of the nonperturbative formulation of string
theory. In this paper, from the closed bosonic sector of
string geometry theory, we derive the path integrals of
perturbative strings on all the string backgrounds G, (x),
B,,(x), and ®(x).

The organization of the paper is as follows. In Sec. II, we
briefly review the closed bosonic sector in string geometry
theory. In Sec. III, we set string background configurations
parametrized by the string backgrounds G,,(x), B,,(x),
and ®(x), and set the classical part of fluctuations repre-
senting strings. In Sec. IV, we consider two-point corre-
lation functions of the quantum part of the fluctuations and
derive the path integrals of the perturbative strings on the
string backgrounds. In Sec. V, we conclude and discuss our
results. In the Appendix, we obtain a Green’s function on
the flat string manifold.

II. REVIEW OF CLOSED BOSONIC SECTOR
IN STRING GEOMETRY THEORY

In this paper, we discuss only the closed bosonic sector
of string geometry theory. One can generalize the result in
this paper to the full string geometry theory in the same way
as in [1]. The closed bosonic sector [4,5] is described by a
partition function

Z= / DGD§DBeS, (2.1)
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where the action is given by

s— / DEDIDX(2)V=Ge 2 |R + 4V, 4V ¢p % 2|,
(22)

where |H|* = 4, HyypH"N?. The path integral is defined
by semiclassically integrating a metric G;;, a scalar ¢, and a
two-form Bj; defined on an infinite dimensional manifold,
a so-called string manifold. It will be enough to define the
path integral by semiclassically integrating classical sol-
utions and small classical and quantum fluctuations up to
the second orders around them, because string manifolds
themselves possess quantum corrections, and loops of the
fields on them do not correspond to quantum corrections as
in [1-3]. There is no UV divergence from loop integrals, by
defining the path integral semiclassically. A string manifold
is constructed by patching open sets in string model space
E, whose definition is summarized as follows. First, a
global time 7 is defined canonically and uniquely on a
Riemann surface ¥ by the real part of the integral of an
Abelian differential uniquely defined on X [6,7]. We restrict
% to a 7 constant line and obtain Z|.. An embedding of 2|
to R? represents a many-body state of strings in R, and is
parametrized by coordinates (i, X(z),7)' where h is a
metric on £ and X (7) is a map from |, to R¥. String model
space E is defined by the collection of the string states by
considering all the Z, all the values of 7, and all the X (7).
How near the two string states is defined by how near the
values of 7 and how near X (7).  is a discrete variable in the
topology of string geometry, where an e-open neighbor-
hood of [k, X(%,),7%,] is defined by

U([h.X,(,).7,].€)

={ b X@.2 - P +HIX @) - X, (3 P <e). (23)

As a result, dh cannot be a part of the basis that spans the
cotangent space in (2.4), whereas fields are functionals of /
as in (2.5). The precise definition of the string topology is
given in the Sec. Il in [1]. By this definition, arbitrary two
string states on a connected Riemann surface in E are
connected continuously. Thus, there is a one-to-one cor-
respondence between a Riemann surface in R¢ and a curve
parametrized by 7 from —oo to co on E. That is, curves that
represent asymptotic processes on E reproduce the right
moduli space of the Riemann surfaces in R?. Therefore, a
string geometry model possesses all-order information of
the perturbative string theory. Indeed, the path integral of

Tec=ss

represents a representative of the diffeomorphism and
Weyl transformations on the worldsheet. Giving a Riemann
surface ¥ is equivalent to giving a metric / up to diffeomorphism
and Weyl transformations.

perturbative strings on the flat spacetime is derived from
the string geometry theory as in [1,3]. We use the Einstein
notation for the index I, where I = {d, (45)}. The cotan-
gent space is spanned by

dx? = dz,

dx¥) .= dx*(5,7), (2.4)
foru =0,1,...,d — 1, while dh,,, with m, n = 7, 5 cannot
be a part of the basis because P_z,,m is treated as a discrete
valuable in the string topology. The summation over & is
defined by [ d &(,7), where & := \/h5 5. This summation
is transformed as a scalar under 7+ 7/(7,X(7)), and
invariant under & > &'().

From these definitions, we can write down the general
form of the metric of the string geometry as follows:

ds*(h,X(7).7)

x dX*(5,%)dX" (3',7). (2.5)
The inverse metric G (h, X, (7),7) is defined by G;,G'% =
GX G, = &K, where 5% = 1 and 5&:_:})/) = ﬁéﬁf&(& —-5).

In the following, we use D = [ d5 8] = 22d5(0), then

M = D + 1. Although D is infinity, we treat D as regulari-
zation parameter and will take D — oo later.

III. STRING BACKGROUND CONFIGURATIONS
AND FLUCTUATIONS REPRESENTING STRIGS

In this paper, we consider only static configurations,
including quantum fluctuations:

9,Gyn = 0,
9sByn =0,
3y = 0. (3.1)

In this section, we will set classical backgrounds including
string backgrounds and consider fluctuations that represent
strings around them. The Einstein equation of the action
(2.2) is given by

- 1. _ - = -

Ryn — ZHMABHNAB +2Vy Vyé

G <R—4?,$W’4§+4?,@’4’;—%H2> ~0, (32)
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where R, Ry, RMypo, and V), denote the Ricci scalar,
Ricci tensor, curvature tensor, and covariant derivative
constructed from the metric Gy, respectively. We con-
sider a perturbation with respect to the metric Gy :

Gun = Gun + by (3.3)
where h,,y denotes a fluctuation around the Oth order
background G,y We raise and lower the indices by G,y in
the following. We also consider a perturbation with respect
to the two-form B,y and the scalar ¢ around the Oth order
backgrounds O.

First, we generalize the harmonic gauge to the one when
we have the dilaton. If we define y,y as

_ - 1. » PO
Vun = hyy — 3 G"hyGyy + AGynd,  (3.4)

the Einstein equation (3.2) is expressed as

“ 1.
Ryn — _GMNR +5 ( V, V' %y + Ruyawhy + Ryawly

= 2Ry ans® + Vi Vairhy + VaVairty = V'V 5, Gy
+ Ry, Gy — Ripygy) + (2= M)V Vg
—2=NGuwV,Vig =0, (3.5)
up to the first order in the fields, %;;, B;;, and ¢. R, Ry,
R%PQ, V,, denote the Ricci scalar, Ricci tensor, curvature
tensor, and covariant derivative constructed from the metric
GMN. We set A = 2 so that the Einstein equation becomes
only for @ y. hyy is inversely expressed as

1 _
hyy = Wy + D—< ~G"Cpo +44)Gyy.  (3.6)
We impose a generalization of the harmonic gauge:
VM = 0., (3.7)

which reduces to the ordinary harmonic gauge if the dilaton
is zero. Then, the Einstein equation (3.5) becomes

N 1
Ry 3 GMNR +5 ( -,V Ty + RyaWly + Ryary

- ZRMANBJ/AB + R, Gy — Ripyy) = 0. (3.8)

Next, we set the Oth order background GMN as a flat
background:

GMN = aApmTmN (3-9)

&(5)
n(5)

where a; =1 and a(z = . Then, the gauge fixing

i

condition (3.7) becomes

/d&é 0¥ oy = 0, (3.10)

the Einstein equation (3.8) becomes a Laplace equation,
/ d5 2 050"y = 0, (3.11)

and the components of (3.6) read

- D-2 4 _
hyy = D1 V44 + /doﬂel/l//g e //; —ﬁqﬁ,
Rawz) = W)

_ & [
= Vo)) =0 ) (ﬁ Vaa

1 4
51 do.//e//wg "o H; +_¢) (3.12)

Next, the equation of motion of the scalar of the
action (2.2)

R =4V, oV p + 4V, VM p —§|H|2 =0 (3.13)

is written as

up to the first order in the fields, h;;, B;;, and ¢.

Furthermore, this can be written as
1 - =)
/ do e d,; oHo) g+ — / do e 0,5 0¥ 1

1
4/dae() )0 /do' (,OJ—O

around the flat Oth order background (3.9) under the static
condition (3.1) in the generalized harmonic gauge (3.7).
This becomes a Laplace equation,

/ d5 2 050" p = 0

if the metric satisfies the Einstein equation (3.11).
On the other hand, the equation of motion of the two-
form field

(3.15)

(3.16)

V(e 20 HMNPY = 0, (3.17)

1S written as
Vy HNP =0, (3.18)

up to the first order in the fields, /;;,, B;;, and ¢.
Furthermore, this becomes a Laplace equation
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/d&é 0<ﬂ5)0("5)BMN - 0, (319)

around the flat Oth order background (3.9) under the static
condition (3.1) in Lorentz gauge,

VyuB"N =0, (3.20)
which is written as
05/ BHN = 0. (3.21)

We consider classical backgrounds corresponding to the
string background configurations:

l/_/dd = 0, (322)
l/_/d(ﬂfi) =0, (323)

_ e’ ~
hi)we) = ﬁg/w(x (6))055 » (3.24)
By =0, (3.25)
B\ u5) = f B,,(X(5))35z (3.26)
= / do e d(X(5)) (3.27)

where g,,(x) and B, (x) satisfy gauge fixing conditions,

'y, (x) =0,
6”B”U(x) =0, (3.28)
where
1
Y = G —55 P GO + 26, P, (3.29)

which imply (3.10) and (3.21). Indeed, these are equiv-
alent to

Gy = —1, (3.30)
Gy = O, (3.31)

G (u)w#) \é/—%G (X(5))d55 (3.32)
B = O, (3.33)
Buo) = Bu (X0 (334
5= / 452 B(X(5)), (3.35)

where

G;w(x) = 5/,111 + g;w(x)' (336)

These are the string background configurations themselves
[4,5]. If we impose that g, (x), B,, (x), and ®(x) satisfy the
Laplace equations,

(3.37)

G- By, and 45 satisfy their equations of motion in string
geometry theory, (3.11), (3.16), and (3.19), and G, B,
and @ also satisfy their equations of motion of the Neveu-
Schwarz-Neveu-Schwarz (NS-NS) sector in the supergrav-
ity. Therefore, these string background configurations in
string geometry theory represent perturbative string vacua
parametrized by the on-shell fields in the supergravity as
string backgrounds.

Next, we consider fluctuations around these vacua. The
scalar fluctuation y,,; represents the degrees of freedom of
perturbative strings in the case of the flat background as in
[1-3]. Thus, we also consider the scalar fluctuation 4,
around the general perturbative vacua. We set the classical
part of y,,; as

waa= [ PX@GEX) [ da ViR (x @)

1
+ 3 GuX @)X X" . (3:38)
e

where Rj is the scalar curvature of the two-dimensional
metric ,,, and G(X;X’) is a Green’s function on the flat
string manifold given by

é/2

\/w

G(X;Xv:/v[ (X4(&) ~ X (5 ))F (3.39)

which satisfies

/da\/_1 I

20X" (5 axﬂ 6)

G(X:X)=5(X-X'), (3.40)

where A\ is a normalizing constant. A derivation is given in
the Appendix. As a result, 4, is not on-shell but satisfies

*Under (3.16), (3.11) is equivalent to [ d& & 950"y = 0,
because (3.6).
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[Vl 1o

z 0X*( )eax X, (5) V4
- [aa i {a’R,@( @)+ 5 GulX(o >>a6x*'a,;xv]
(3.41)

Furthermore, we consider the quantum part of y ,,,

D-1-
Vgg = ——=@, 3.42
Vas = 55 ¢ ( )
where B=1 is introduced for later convenience. Totally,
Gun = Gun + by + Gu, (3.43)

where GMN is given by (3.9), hy,y is given by (3.12) with
(3.38), (3.23), (3.24), and (3.27), and GMN is given by

1 —3
“D- 2[
(3.44)

IV. DERIVING THE PATH INTEGRALS
OF THE PERTURBATIVE STRINGS
ON CURVED BACKGROUNDS

In this section, we will derive the path integrals of the
perturbative strings up to any order from the two-point
correlation functions of the quantum scalar fluctuations of
the metric. In order to obtain a propagator, we add a gauge
fixing term corresponding to (3.7) into the action (2.2) and
obtain

— / DzDhDX (7)V/—Ge 2 {R+4V1¢V’¢—%|H *
L fen(z leang @ AL
-3 \Y GMN_EG G Gun+2Gyne . (4)

As explained in Sec. II, the path integral of string geometry
theory is defined semiclassically. That is, the theory is a free
theory because quantum fluctuations are defined up to only
the second order. The Faddeev-Popov ghost term does not
contribute to the two-point correlation functions of the
metrics because the theory is free. Thus, we abbreviate the
Faddeev-Popov ghost term in the action. By substituting
Eqgs. (3.43), (3.25), (3.26), and (3.27) into (4.1), this is
expressed as

= /D%DEDX(%) (Co + 1+ derg

+&S/déé/d5’ &' cno)lu

06 %/n’)?’)v (4.2)

where
4D -
co:——/daed (Ilo‘)wdd D d&éa(/ﬂ_;)a(/w)qs
—1 =5 5 —) =1 (W5
oo d5 20,50 / do’e’w(ﬁ,a,g, (4.3a)
c _! ds 0,5 0"\ 4,
2 (u5)
! 5o ) =1 - (1'5")
+m/d"ea /da 2ylie).  (4.3b)
! e (n3)
2=y d6 €0(,5)0"" ' 4a
! ;e o —y o1 = (W)
_m/daea(w)a(ﬂ )/do/ e/y/(zl&/)’ (4.3¢)

[ D-1 1 | o
(o) (W'a") — 7 d&" e (u H”//)
¢ [4(0—2)+2""’d+2(0—2)/ “ Ve

D-1
"~ 4(D-2)

_%4 503 #) FUOW) . (4.3d)

up to the first order in the classical fields and the second
order in ¢. Here, we take the regularization parameter
D — oo. Then, (4.2) becomes

= / D%DBDX(%){ / d5 20(,5,0%7) b
U [ 4520, w0y g
+E ddea(ﬂa)a” de¢
~1 o o~
+ ¢Z/ do €a(ﬂa.)a<”6)l//dd¢
~ 1 N~
¢< + = I//dd> /d5 éa(ﬂ(—,)awl’)d)
Yo [ase [ a5 2wy, o3
_Z(p oe o ey (,M(}) (”/6_/>¢ .

I?y shifting the field ¢ as ¢ = ¢’ — %, the first order term in
@' vanishes as

(4.4)

_ ~ 1 _ ~

— / DD hDX (%) [45’1 / d5 20,50 ga !
1 -
+¢ < + = l//dd + SG h[]) /d&éa(ﬂa)awl’)qﬁ/

——¢ /dae/da "ho)W'7) )a(y’5/)$,:|’ (4.5)

where surface terms are dropped and the gauge fixing
condition in (3.28) and a relation (3.4) are applied.
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By normalizing the leading part of the kinetic term as
§~b/ = 2(1 — l/_/dd —%Gljljl]‘])g)”, we have

= /'D% 'DB'DX(%) |:/ do éa(m-,)a(ﬂ&)y—,dd@u)z

+¢" | d52d,50"") P

—¢”/do-e/doe

This can be written as

a(/m)a(ﬂ’ff >€}5//] . (4.6)

_ i 10
S—-2 / Dz DhDX ()¢ H <—i_,

=X X, i_z) ¢’ (4.7)

where

H(py. X. h) :%/dﬁ\/i(p’)?)z
_l/da Vh g (X(3)) Phrk

il el

e oXH e()X

+/d(_7fl5agxﬂépﬂx

Vi
-I-/d&i?a&X”B,/‘épﬂx. (48)
Here we have added terms
_ - d
0= -2 | DtDhDX(7)g" doi® 0z X+ —
/ 7 (7)p ( / on X
\/Z 0 -
/d‘ 05 X"B ! o >¢”, (4.9)

which is true because of the gauge fixing condition (3.28).
The propagator for ¢ defined by

Ap(h, X(2); /X' (7)) = (P(h. X(2))p(R/X'(T)))  (4.10)
satisfies
H (—iéaxa(%) X(), h) Ap(h X(2): 1 X' (7))

— 5(h - W)S(X(z) - X'(7)). (4.11)

In order to obtain a Schwinger representation of the
propagator, we use the operator formalism (4, X(7)) of
the first quantization, whereas the conjugate momentum is
written as (pj,, px(7)). The eigenstate is given by |h, X(7)).

Since (4.11) means that Ay is an inverse of H, Ay can be
expressed by a matrix element of the operator A~' as

Ap(h, X(z); 1, X' (7))

= (b X(2)|H " (px(2). X(@). ). X'(®)). (4.12)
On the other hand,
a7 = i/m dTe ™!, (4.13)
0
because
lim [ dTe T+ — fim [A;e_nigﬂ) ®
e—~0+ Jo e—0+ —(iH+€) 0
= —iH™". (4.14)

This fact and (4.12) imply

Ap(h X(Z): 1. X (7)) =i A ¥ AT (R, X (3) e TH |7 X (7).
(4.15)

In order to define two-point correlation functions that are
invariant under the general coordinate transformations in
the string geometry, we define in and out states as

1 X;|hp s hy) / Dh'|I, X; = X'(7 = —)),

<Xj|hf’ ;hiHout = A Dh<ljl,Xf = X(’f = OO)|, (416)

where h; and h; represent the metrics of the cylinders at
T = +oo, respectively. [in [ Dh 1ncludes > compact topologies»
where Dh is the invariant measure’ of the metrics h,,,, on the
two-dimensional Riemannian manifolds X. 4,,, and A,,,, are
related to each other by the diffeomorphism and the Weyl
transformations. When we insert asymptotic states, we
integrate out Xy, X;, hy, and h; in the two-point correlation
function for these states;

AF(Xf;Xilhf7;hi)

=i / dT (X lhg, s hillowe™ Xty i) (4.17)

The invariant measure is defined implicitly by the most
general invariant norm without derivatives for elements 6h,,,

of the tangent s = dPo/h(h™P b +
Ch™"h?9)6h,,,6h ,, with C an arbltrary constant, and a normali-
zation [ Déhexp " = 1.
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This can be written as in [1],4
Ap(Xp Xilhy,shy)
= iA dT(X s\, s hillowe™ 21X Ay s hidin

- i/°° Dh/ Dh’ /diz,,dxn(f)
0 =1

N

H <ljlm+1 s Xm+1 (%m+1 ) |e lNTH|hmv
m=0

dT lim

N—oo

m(Tm))

) hy hy N _
=i / dT, lim / dT . / Dh / D[] / dT,dh,dX,(,)
0 N—co h; h; el

H<Xm+1 (%erl)|e_%TmI:I|Xm(%m)>5(ilm - }_lm+l)5(Tm - Tm+l)

N

m=0

) hy
:i/ dT, lim dTNH/’Dh /a’T dx,(
0 N—oo h;

/de de

. = Tm_Tm+l
X exp lZAl‘ Pr,— ;7 tPx

m=0
hyXg
=1
X,

i

DhDX (%) / DT / DprDpx(7)

xenp(i [ a0 570+ po(a(0.0) - 5 XE0.0) = TOH(x(E0.0.X(G0.0.5)) ).

where py (7(1).1)-£X (2(1).1):= [ d5e p (1(1).1) §X,,(7(1)..1).
hy =1, Xo(79) = Xz»To —00, hyyy = h, Xy i1 (Tnan) =
Xf, Tyy1 =00, and Ar: _Tlﬁ' A trajectory of points
[Z,X(7)] is necessarily continuous in M, so that the
kernel <]jlm+l’Xm+](%m+1)|e_l%TMﬁ|ilmfXm(%m» in  the
fourth line is nonzero when N — oo.

By integrating out pyx(7(¢),7), we move from the
canonical formalism to the Lagrange formalism. Because
the exponent of (4.18) is at most the second order in

pyX = [5/411 +g;w( )] T\/_ |:th1/

() EXAE f;"““’"“) =T, () X)) )

(4.18)

px(7(),1), integrating out py(7(7),7) is equivalent to
substituting into (4.18) the solution py(7(¢),t) of

d _ Vh _
—ie— X' +iTe <1‘1"0{,X" R a{,x”B/> +iTVhp!,
e

—iTVhg™ (X

which is obtained by differentiating the exponent of (4.18)
with respect to py(z(¢), r). The solution is given by

)p.x =0, (4.19)

<ﬁ‘_’a(,X” + igagxrBy”(x)ﬂ , (4.20)

up to the first order in the classical backgrounds g,,(X) and B, (X). By substituting this, we obtain

he X
AF(Xf;X,-]hf;hi)—i/ " DTDRDX(7)Dpy

hX;

i

xexp(i/_:dt(pT( )j;

/do VG, (X(

OOL " v(z
5(0.0) (35 5 OXH R0, 00X (0.1

“The correlation function is zero if h; and hy of the in state do not coincide with those of the out states, because of the delta functions

in the sixth line.
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+ 100, X*(%(1), 1)0; X (%(1), 1) + %iz“T(t)a;,Xﬂ (7(1), 1)0; X" (2(1), t))
+/d&iBm,(X(%(t),t))a,X”(%() 10, X" (7 (1), /da\fr Yo R ®(X (7(1), )))), (4.21)

where we use (3.41) and the ADM decomposition of the two-dimensional metric,

™|

e o % -5
ﬁmn_(” +gh ""), Vi =ne, /'am"—< _ > (4.22)

-2 _# 5=2 [ 2
7 € +<ﬁ)

ns e
In this way, the Green’s function can generate all the terms without 7 derivatives in the string action as in (3.41), but cannot
do those with 7 derivatives, which need to be derived nontrivially, because the coordinates X#(7) in string geometry theory
are defined on the 7 constant lines. We should note that the time derivative in (4.21) is in terms of ¢, not 7 at this moment.

In the following, we will see that ¢ can be fixed to 7 by using a reparametrization of ¢ that parametrizes a trajectory.

db(t)dc(1)
By inserting chDbef (=)

, where b(t) and c¢(r) are a bc ghost, we obtain

hy, X

x exp <— / : dt(—lpT( ) ZT(t) + ‘”;@ d(T <;>tc(r)>

4 / d5 /% G, (X(2(1). 1)) (5 EOO%a,Xﬂ(f(o, 00,X* (%(1), 1)
+ W0, X* (%(1), 1)d; X" (%(t), t) + %B”T(z)a&Xﬂ (7(1), )0, X" (%(1), t))

+ / dGiB,, (X (2(1). 1))9,X" (2(1). 1)0,X* (2(1). 1) +% / 5\ T(t)a’R,—,d)(X(f(t),t)))), (4.23)

where we redefine as ¢(¢) — T(t)c(t), and Z, represents an overall constant factor. In the following, we will rename it
Z\,Z,,--- when the factor changes. The integrand variable p(¢) plays the role of the Lagrange multiplier providing the
following condition:

Fi(t)==—T(t) =0, (4.24)

which can be understood as a gauge fixing condition. Indeed, by choosing this gauge in

he X
AF(Xf;X,-|hf;hi):z,/" "DTDhDX (7)

hiX;

xexp(—/_m (/da\/_G,,,, )<2h0°ﬁaxﬂ( (1), 1)0,X¥(2(1), 1)

+RO9,XH(2(1), 1)0, X" (2(1). 1) + %ﬁllr(r)aﬁxxt (7(1). 1)0,X* (3(1), t)>
+ / dGiB,, (X (2(1). 1))0,X* (2(1), 1)0,X* (2(1). / A5 T(1)ad R; ®(X (7 (t),t)))), (4.25)

we obtain (4.23). The expression (4.25) has a manifest one-dimensional diffeomorphism symmetry with respect to ¢, where
T(t) is transformed as an einbein [8].
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Under £ = T(r), which implies
RO — 7200 ROL ROl = Vg :%\/ﬁ XF(2(1).1) = XM (Z(1).1).  (4.26)
T(r) disappears in (4.25) and we obtain
hy Xy
A (X X i) = 7 / DIDX(7)
hiX;
X exp (—/_ (/ de fGW )<; h%0,X*(7(1), 1)0,X* (%(1), 1)
00X (R0, 02X (7(1.0) + 719, X0(0). 105" 5.0
+/d6— iB,, (X(7(t).1))0,X"(2(1), 1)0; X" (7(1). 1) —I—;/d& \/Za’R;ﬁD(X(%(t),t)))). (4.27)

This action is still invariant under the diffeomorphism with respect to ¢ if 7 transforms in the same way as ¢.
If we choose a different gauge

Fy(t):==7(t) —t =0, (4.28)

in (4.27), we obtain

h
AF(Xf;X,»|hf;h,»):Z3/ "X DhDX(7)DaDeDb

e <_ /—: dat <+a(z) (z—1) + b(1)c(1) (1 _ dZ(tf)>
/ oL E0.0) <2 7%0,X* (2(1). 1)0,X (2(1). 1) + K0 0,X¥ (2(1). 1)0,X* (2(1). 1)

+ %IZ“&;,X” (z(1). 1)0; X" (%(1), t))
-l—/d&iBﬂ,,(X(%(t),t))d,X”(%(t),t)agX”(%(t),t)+%/d& \/Za'th>(X(%(t),t)))>

:z/’ " DhDX(7)
hi X,

1- _
Xexp< / dz / ds\'h hG,,(X(5,7)) ( h*0.X*(5,7)0:X"(5,7) + h*'0:X*(5,7)0,X" (5., 7)
+5 71“0(-,X”(6-, 7)05 X" (8, %))
_. _ _ I B _
—|—/dGlBIw(X(G,T))()TX”(G,T)()O_XD(G,T) —|—§/do \/Za'R,-ﬂ)(X(a,r))). (4.29)

The path integral is defined over all possible two-dimensional Riemannian manifolds with fixed punctures in the manifold
M defined by the metric G,,, as in Fig. 1. The diffeomorphism times Weyl invariance of the action in (4.29) implies that the
correlation function is given by

hy X

i Xi

where
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T _ M
y \

—r |-

X

FIG. 1. A path and a Riemann surface. The line on the left is a
trajectory in the path integral. The trajectory parametrized by 7
from —oco to oo, represents a Riemann surface with fixed
punctures in M on the right.

/ dr/da h(o,7)

(W™ (6,7)G,,(X(6.7)) + ie""(0.7)B,,(X(0,7)))
X ()mX”(a, 7)9,X"(0,7) + d R;®(X(0,7))). (4.31)

For regularization, we divide the correlation function by Z
and the volume of the diffeomorphism and the Weyl trans-
formation V gig . wey1> by renormalizing ¢. Equation (4.30) is
the path integrals of perturbative strings on an arbitrary
background that possess the moduli in the string theory
themselves [9]. Especially, in string geometry, the consis-
tency of the perturbation theory around the background (3.3),
(3.25), (3.26), and (3.27) determines d = 26 (the critical
dimension).

V. CONCLUSION AND DISCUSSION

In this paper, in the closed bosonic sector of string
geometry theory, we fix the classical part of the scalar
fluctuation of the metric around the string background
configurations, which are parametrized by the string back-
grounds, G,,(x), B,,(x), and ®(x). We showed that the
two-point correlation functions of the quantum parts of the
scalar fluctuation are path integrals of the perturbative

1 0

and then,

Thus,

Fax, )" [ / d"’\é/—%(x”(f‘f)—X’”(é))Z]?: (2-D)N [ /

strings on the string backgrounds. In this derivation, we
move from the second quantization formalism to the first
one, where the coordinates of the two fields in the
correlation functions become the asymptotic fields that
represent the initial state X#(z = —o0, ) and the final state
X*(7 = 0, 0), respectively. All the paths on the string
manifolds from X*(r = —o0,0) to X¥(r = o0,0) are
summed up in the first quantization representation of the
two-point correlation functions. Because the paths on the
string manifolds are worldsheets with genera as shown in
Sec. II in [1], they reproduce the path integrals of the
perturbative strings up to any order, although the correla-
tion functions are at tree level.

The next task is a supersymmetric generalization of our
result. It is known to be too difficult to describe the action of
the perturbative strings on the Ramond-Ramond (R-R)
backgrounds in the Neveu—-Schwarz-Ramond (NS-R) for-
malism. Because string geometry theory is formulated in the
NS-R formalism, we should derive the path integrals of the
perturbative strings on the NS-NS backgrounds.
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APPENDIX: GREEN’S FUNCTION
ON STRING GEOMETRY

In this appendix, we will show that (3.39) is indeed
a Green’s function on the flat string manifold. If
X*(5) # X'"(5), we have

D _

>2

dETZ(X”(&)—X"‘(‘_’))Z] ,;<X”<0> X*()), (A1)

—d(2-D) [ / d"— X*(5 X’”(5))2}_75(5'—5”)
D- D)\/_m [ -xre

X (X¥(&) = X"(3)) (X,(3") = X', (3"))- (A2)
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:O’

where we use D = d [ d&'5(0

/do'\/-— —

¢’ 0X" (& ) (&)

). Hence, we find

where N is a normalizing constant.

5) — /”52
f< “(5) x<>>]

5
= /d&'é { da— (X" (6
2

-D(2-D)N [/ d&% (Xt(5) — X'"(o

2D

2

( >>] o i S (04(7) - X4(?)
(A3)
[ da—(Xﬂ 5) - X >>}22D 5(X - X (A4)
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