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Holographic Meissner effect

Makoto Natsuume® **

e

KEK Theory Center, Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

Takashi Okamura®’
Department of Physics and Astronomy, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan

® (Received 17 July 2022; accepted 22 September 2022; published 11 October 2022)

The holographic superconductor is the holographic dual of superconductivity, but there is no Meissner
effect in the standard holographic superconductor. This is because the boundary Maxwell field is added
as an external source and is not dynamical. We show the Meissner effect analytically by imposing the
semiclassical Maxwell equation on the AdS boundary. Unlike in the Ginzburg-Landau (GL) theory,
the extreme type I limit cannot be reached even in the ¢ — oo limit where e is the U(1) coupling of the
boundary Maxwell field. This is due to the bound current which is present even in the pure bulk Maxwell
theory. In the bulk 5-dimensional case, the GL parameter and the dual GL theory are obtained analytically

for the order parameter of scaling dimension 2.
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I. INTRODUCTION

The AdS/CFT duality or holography [1-4] is a useful tool
to study strongly coupled systems (see, e.g., Refs. [5-10]).
Let us consider the (p + 2)-dimensional AdS,,,, spacetime
and the (p + 1)-dimensional boundary theory. In the boun-
dary theory, one can add a curved metric and a U(1)
Maxwell field, but in most applications, they are not
dynamical: one adds them as external sources to the
boundary theory. The procedure to promote them to classical
dynamical fields was discussed in [11]. Consider the
(p 4 1)-dimensional Einstein equation and the Maxwell
equationl:

1
R — Egﬂ,,R = 82G(T ). (1.1a)
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V,Fr = e2{J"). (1.1b)

All quantities are the (p + 1)-dimensional ones. The
Newton’s constant G and the coupling e are the ones for
the boundary theory. Here, (7 ,,) and (J*) are expectation
values of the boundary energy-momentum tensor and the
boundary U(1) current computed by a standard AdS/CFT
procedure [Eq. (2.7)]. In other words, one adds the
following action to the boundary CFT:

dey = /derlX\/ —g(LR—L}—W}-’”’). (12)

167G 42

In standard applications, one imposes the Dirichlet
boundary condition on the AdS boundary. For example,
for the bulk Maxwell field A;,;, one imposes

‘A'/l :Aﬂ|u:0 (13)
on the AdS boundary u — 0. Instead, we impose the
holographic semiclassical equation (1.1) as the boundary
condition: we impose the “mixed” boundary condition.

While the procedure has been known, it has not been
studied extensively. One has to consider the bulk equations
of motion and the mixed boundary condition simultane-
ously, and the latter is now a differential equation. In
general, it is a difficult task (see, e.g., Ref. [12] for a recent
application). In this paper, we impose the holographic
semiclassical equation on the holographic superconductors
and show the Meissner effect analytically.

Published by the American Physical Society
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A holographic superconductor is typically an Einstein-
Maxwell-scalar system [13—15]. For T > T, the solution is
a standard black hole with no scalar, but for T < T, the
solution becomes unstable and is replaced by a solution
with scalar hair. Thus, the scalar corresponds to the order
parameter of the phase transition. This is a superconducting
transition. For example, the dc conductivity diverges and
the London equation holds.

However, in the standard discussion, the boundary
Maxwell field is added as a source so is not dynamical.
As a result, there is no Meissner effect. The Meissner effect
arises from the London equation and the Maxwell equation:

1
ezji = —FA,', (14&)
0,Fi =7, (1.4Db)

Because the latter is absent in the standard holographic
superconductor, the Meissner effect does not arise, and a
magnetic field can penetrate the holographic superconduc-
tor. In a sense, the standard holographic superconductor
is the “extreme” type II superconductors. Or one would
regard the system as a superfluid.

The holographic semiclassical equation for holographic
superconductors has been investigated previously [16]. The
paper studies the issue by constructing a single vortex
solution numerically (see, e.g., Refs. [17-21] for holo-
graphic vortices). However, it is desirable to show the
Meissner effect analytically. Our results are summarized as
follows:

(1) We first consider the case where the condensate is
approximately constant and add a magnetic field
perturbatively (Sec. III). The boundary current has
the supercurrent as well as a contribution from the
normal component which exists even in the pure
Maxwell theory. The contribution can be interpreted
as the bound current, and it changes the magnetic
permeability (magnetic constant) from the vacuum
value yy = e*> to u,. The magnetic penetration
length A and the Ginzburg-Landau (GL) parameter
k have a nontrivial e dependence from the magnetic
permeability. When e < 1, the result reduces to the
standard GL result, but it deviates as one increases e.
In the e — oo limit, A remains finite, and the extreme
type I limit (4 — 0) cannot be reached.

(2) One often imposes the Neumann boundary condi-
tion (J%) = 0 in literature. This corresponds to the
e — oo limit because 0,F"7 = ¢*(J'). The non-
trivial ¢ — oo limit explains why one can obtain a
type II superconductor rather than the extreme
type I superconductor under the Neumann boundary
condition.

(3) In Sec. IV, we consider the case where the magnetic
field is near the upper critical magnetic field H.,. We

obtain the holographic vortex lattice and show that
the magnetic field decreases by the amount |y|?,
where y is the condensate: this also implies the
Meissner effect.

(4) We focus on the p = 2 case, but the analysis of the
p = 3 case is similar. For p = 3, an analytic solution
is available [22,23], so one is able to obtain the GL
parameter explicitly (Sec. V). Whether the holo-
graphic superconductor is type I or type II depends
on e as well as the temperature. Also, we determine
the dual GL theory.

II. PRELIMINARIES

We consider the bulk 4-dimensional s-wave holographic
superconductor:

Sbulk = /d4x\/—g(R - 2/\) + Sm’ (213)

1 1
S = _92/ d4x\/——g{4F§4N + | Dy P? + m2|‘{’|2},

(2.1b)
where
3

Below we take the probe limit g> 1 where the
backreaction of the matter fields onto the geometry is
ignored. Then, the background metric is given by the
Schwarzschild-AdS, (SAdS,) black hole:

2

d
ds? = P(—fdi* + dx® + dy?) + Trf (2.3a)
I

_ (7Y (= far + dx® + dy?) L (2.3b)

= {7 'y ey .

3
f=1- <@> =1-u, (2.3¢)
r

where u = r(/r. For simplicity, we set the AdS radius L = 1
and the horizon radius ry, = 1. The Hawking temperature is
given by 22T = 3ry/(2L?). The bulk equations of motion
are given by

0 = D*¥ — m?¥, (2.4a)

0 = VyFMN — M, (2.4b)
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Iy = —i{¥'Dy¥ —¥(D,¥)'} (2.4¢)

=23(¥'Dy, ). (2.44)
In the A, = 0 gauge, the static bulk equations become
0=(=foi — A+2lp*)A, (2.5a)

0= {~0,(fd,) — A +2|p|*}A; — 23(¢"9,0) + 0;(3 - A),

(2.5b)
A

={=0,(f0,)+V - - 81D,D; v, (2.5¢)
0= 9,(9-A) = 23(¢'du0). (2.5d)

where A i= 02 + 02, (0-A) = 570,A;, and
¥ =:ugp, (2.6a)

2 2f — /

V= M (2.6b)

u

In the A, = 0 gauge, the asymptotic behaviors of matter
fields are given by

Ay~ A+ A, (2.7a)

P~ PO yA P A (2.7b)
3 9

A:t = E + v, UV = Z —+ mz. (27C)

A, = u is the chemical potential, and AEH represents the
charge density (p). Similarly, .4; is the vector potential, and
A(+>

.7 represents the current density (7;). ¥(*) represents the
order parameter <ZO>, and W) is the external source for the

order parameter.” According to the standard AdS/CFT

dictionary,
1
(Tu) = ?FW\FO, (2.8a)
1
(0) = =209, (2.8b)
g

where one needs a standard counterterm action for the scalar
field but the counterterm action for the Maxwell field makes
no contribution for p = 2. Although we take the probe limit,
we set g = 1 below for simplicity.

*For simplicity, we do not consider the “alternative quantiza-
tion” where the role of ¥(~) and W) is exchanged [24].

We impose the mixed boundary condition:

0, F = (). (2.9)

Note that the vacuum magnetic permeability u, and the

vacuum electric permittivity €, are given by ug = 1/¢, = €.

III. SMALL MAGNETIC FIELD

We would like to know whether a magnetic field can enter
the holographic superconductor. Below the critical temper-
ature, a uniform condensate @y = @(u) is a solution, and
we apply a magnetic field there perturbatively. For simplic-
ity, we consider A, = A, (x,u) and B = F,, = d,A,. We
make the Fourier transformation:

dqg . -~
A, = | —=e¥A,. 3.1
= [ e o
Then, the bulk Maxwell equation becomes
0= {_au(fau) + q2 + 2|(00|2}Ay' (32)

A. Dirichlet boundary condition

First, let us start with the standard Dirichlet boundary
condition. In this case, there should be no Meissner effect,
and the magnetic field can enter the superconductor
however small the magnetic field is. One can formally
integrate Eq. (3.2) as

foh, = — / (4 2goA ). (3.3)

Note that the right-hand side has a zero of degree 1 at the
horizon u# = 1. Further integrating the equation from the
AdS boundary gives

1 -1 _ « du' ! o) 2\ A "
A= a4, [0 [ 2P A G

— 7 _ ud_u’ : 1"( 2 2 }
Ay{l A f(u’) A/ du (‘] +2|(/’0| )+

(3.4b)
~ u du’
=A<l —-qg? R
>{ 1 /) T+ +u?

u du/ /1
— [ au2)g)? + - }
/0 f(u/) u' |€00|

We do not evaluate the integral explicitly, but one can
obtain the regular solution in principle. The u’ integral
involves 1/f(u’), which may give a logarithmic divergence

(3.4¢c)
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at u’ = 1, but the u” integral has a zero there, so the solution
is regular.

The first term represents the magnetic induction
B= iq.;ly. From the above result, a B # 0 solution exists
even when ¢, # 0, and the magnetic induction does not
decrease. This implies H,.; = 0 for the holographic super-
conductor under the Dirichlet boundary condition.

The remaining terms represent the current. The current is
given by

<\~7v> = auAy|u:0

~ 1
=Ay(—q2—2/ du|<po|2+~-~>.
0

This is the London equation with added normal component.

(1) The second term represents the supercurrent. Thus,

the supercurrent itself exits, but there is no Ampere

law V x B = €27 on the boundary, so there is no
Meissner effect.

(2) The first term exists even in the pure Maxwell theory
with ¢y = 0. The term is interpreted as the bound
current which produces a diamagnetic current as we
see below.

(3.5a)

(3.5b)

B. Holographic semiclassical equation

We now change the boundary condition and impose the
holographic semiclassical equation:

0, Fii = (). (3.6)

However, the holographic semiclassical equation gives

A, = —e*(¢* + 2I).2ly - .Zly =0,

1
1= [ auiol
0

Namely, an inhomogeneous magnetic field is not allowed.
A similar result holds in the GL theory.

In order to obtain a nontrivial solution, one must add an
external source:

(3.7a)

(3.7b)

0, F7 = (T + 2Ty (3.8)

First, let us consider the first term in Eq. (3.5), the bound
current part. The semiclassical equation is rewritten as

PA, = —FA, + 2T, (3.9a)
27 e t Zrext
=g A = 1+ e? TV = IV, (3.9b)

62

=—s. 3.9
o (3.9¢)

= Hm

The left-hand side of Eq. (3.9b) is Vx B=V(V - A)-
V2A — ¢?A, so the equation describes the Ampere law
V x B = u,,J. Thus, the net effect of the bound current is
to shift the magnetic permeability from the vacuum value
Uy = € to ﬂm.3 The magnetic permeability p,, and the
magnetic susceptibility y,, are related by

o = Ho(1 + Zm), (3.10a)

p 2
= _1=- <0. 3.10b
== T2 (3.10b)

If y,, < 0, amaterial is diamagnetic. If ,, > 0, a material is
paramagnetic. In this case, the bound current produces a
diamagnetic current.

We now include the supercurrent, and the semiclassical
equation becomes

PA, = (=20 A, + T3, (3.11a)
A : (3.11b)
R — )
YU+ 2ul
When 1 # 0,
Ay o e, (3.12a)
1 14e
PR (3.12b)
2u,d  2e°1

which implies the Meissner effect with magnetic penetra-
tion length 4.
In the standard GL theory (Appendix A),

1
S — 3.13
GL 2e2|W|2 ( )

and a superconductor is classified by the GL parameter xg; :

2 b
K% = 2722 (3.14)
where ¢ is the correlation length of the order parameter. In
the GL theory, a superconductor is type I when k%; < 1/2,
and a superconductor is type II when k%, > 1/2.
(1) At weak coupling ¢ < 1, the e dependence coin-
cides with the GL theory. But the result deviates it as

The magnetic permeability has been discussed in holographic
optics [25], but it differs from our definition. One can show that
we essentially use the Landau-Lifshitz definition [26].
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one increases e because of the nontrivial magnetic
permeability g,

(2) In particular, in the e — oo limit, Ag, — 0, so
kgL — 0. Namely, it is the extreme type I limit
and shows the strong Meissner effect. However,
our holographic result shows that A remains finite
and it imAplies that the extreme type I limit cannot be
reached.

Restoring the horizon radius r, gives

82

SR 3.15
Hom 1+€2/r0 ( a)
e*/rg
S VA - 3.15b
Xm 1—|—€2/r0 ( )
I 1+erl
2 = _1te/nl (3.15¢)

- 2/,tmrol - 2621 ro
Note that e? has scaling dimension 1 in (2 + 1) dimensions
and the horizon radius (or temperature) has scaling
dimension 1.

C. Single vortex

In a type II superconductor, the magnetic field can enter
the superconductors keeping the superconducting state.
The magnetic field enters by forming vortices. As one
increases the magnetic field, the magnetic field begins to
penetrate into the superconductor, and vortices appear at
the lower critical magnetic field H ;.

Far from the vortex, the condensate is approximately
constant and the magnetic field is small. We consider this
region and obtain the magnetic field. We take the polar
coordinate dx3 = dr* + r*d¢?*. The Ay = A,(u,r) equa-
tion becomes

1
0 =0,(f0,A,) + ro, <—0,A¢,> —2lpol*A4. (3.16)
r

Using the ansatz A, = U(u)R(r), one obtains

1 r 1
—0,(f0,U) = 2lgol> = —=09,( -0,R
U u(f u ) |(ﬂ0| R r<r r >

1
=7 (3.17)

where A is the separation constant. The R equation is the
standard equation for the vortex, so
R o \/re™"/%, (3.18)

(r - o).

“The correlation length ¢ is obtained by solving the bulk scalar
equation of motion, so it has no e dependence as we see explicitly
in Sec. V.

Thus, 4 is the magnetic penetration length. The U equation
gives

1
fauU_/ du (122 = 2|2\ U, (3.19a)

u du
U—U{l—l—[) f(u/)l/ldu”(l//12—2|(p0|2)—l—...}.

(3.19b)
The current is given by
1
(J9) = —zauA(,ﬁ‘ . (3.20a)
r u=
RU [1
=3 | du(1/22 =2|po)*) +---.  (3.20b)
Imposing the semiclassical equation, one gets
0=-V,F¥ +e*(J?) (3.21a)
1 1 5
=-0,(-0,4, + e2(J?) (3.21b)
r r u=0
U_ /1 R
:—0,(—0,R> + e 50,U (3.21c)
r r r u=0
o« 1/22 + e*(1/2* =2I), (3.21d)
where I = || du|gpy|*. Thus,
1+e?
2= 3.22
2e%1 ( )

Again, A remains finite in the e — oo limit. This limit
corresponds to the Neumann boundary condition (7%) = 0
because 0, F" = €*(J'). In fact, Eq. (3.20b) gives A* =
1/(2I) under the Neumann boundary condition.

IV. NEAR UPPER CRITICAL MAGNETIC FIELD

We discuss a single vortex in the previous section. As
one increases the magnetic field further, more and more
vortices are created, and the vortices form a lattice which is
called the vortex lattice. Eventually, the superconducting
state is completely broken at the upper critical magnetic
field H.,. Such holographic vortices have been investi-
gated, and we follow Ref. [19] for the construction of the
holographic vortex lattice.

The vortex lattice produces a supercurrent. However, in
the standard holographic superconductor, there is no
Maxwell equation on the AdS boundary, so the magnetic
field can enter the superconductor not only at vortex cores.
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We impose the holographic semiclassical equation and
show the Meissner effect.

Near the upper critical magnetic field, the scalar field
remains small, and one can expand matter fields as a series in
€, where € is the deviation parameter from the critical point:

p(X,u) = epV) 4., (4.1a)
AGEu) =AY 4+ 2A? 1. (4.1b)
A ) =AY + 4% 1 (4.1c)
A. Zeroth order
At zeroth order, Eq. (2.5) becomes
0="rAY, (4.2a)
0=2LyAY +0,3-47), (4.2b)
0=20,3-47), (4.2¢)
where
L, =—f0>—A, (4.3a)
Ly ==0,(f3,) - A, (4.3b)
so the Maxwell equation gives5
A = u(1 - w), (4.4a)
AY = o, (4.4b)
AY = Hx (4.4¢)

B. First order

At first order, the bulk scalar equation becomes

0= {—au(fau) + V—M—@% —(0y - in)2}(p<1>.
(4.5)

Using the ansatz
oV = '@y, (x)p(u), (4.6)

*It is not clear if one should impose the semiclassical equation
for these zero mode solutions. The zero modes satisfy 9, F* = 0,
so they are not induced by currents. For definiteness, we impose
semiclassical equations only on nonzero modes in this paper.

one obtains

{—au<fau> Lv- ’%}p — B (47

2
{—ag + H? <x - %) };(q — Ey,  (47b)

where E is a separation constant. The regular bounded
solution is given by Hermite function H,, as

f= Q. = VA(x-2) 4y

with the eigenvalue

E=(2n+1)H. (4.9)
Below we set n = 0, so
H q\?2
)(q—exp{—5<x—ﬁ> } (4.10)

What we obtained is the “droplet solution,” but super-
positions of the droplet solution give rise to a vortex lattice
solution where a single vortex is arranged periodically. So,
consider the general solution

oV = po(u)E(x, y), (4.11a)
S(x,y) = /_ Y dq C(g)e vy, (x).  (4.11b)

Here, py is the solution of Eq. (4.7a) with E = H. One can
obtain the vortex lattice solution by choosing C(q) appro-
priately. As discussed in Ref. [19], the most favorable
solution thermodynamically is the triangular lattice for
standard holographic superconductors.

The first order solution (4.11a) satisfies

(0, — iAoV = i(a, —iAT)p),  (4.12)

SO
23[(p) D9V = =0l . (4.13a)
23[(p1) D] = a2, (4.13b)

or
23[(M)' D" o] = —€lo;lp M, (4.14)

where €,, = 1.
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C. Second order
The construction so far has been discussed in Ref. [19].
Let us proceed to the second order solution. We now solve
the Agz) equation and obtain the current (7;). We then
impose the holographic semiclassical equation 9;F" =

e*(J") and show the Meissner effect.
The Maxwell equation at second order is given by

0= LyA? + ooV 2 +0;(3- AP), (4.15a)

0=20,(3-4%), (4.15b)

where we use Eq. (4.14). From Eq. (4.15b), (5 . A(z)) does

not depend on u. Thus, one can choose a-4% =0 by the
gauge transformation which does not depend on u so that
one can keep the A, = 0 gauge. In momentum space,

0= EVAI('Z) + iﬁ{‘]ﬂfﬂm

2, (4.16a)

EV = _au(fau) + q2' (416b)

Note that |¢(!)|? is the Fourier transformation of |¢(!)|> and
is not |@(|2.

The second order solution can be constructed exactly,
but it can be shown that it is a nonlocal function in the
boundary direction [19]. This is because holographic
results correspond to all orders in effective theory expan-
sion. The GL theory takes only the first few terms in the
expansion. In fact, at short wavelength, the London
equation is replaced by a nonlocal expression known as
the Pippard equation. In order to show the Meissner effect,
it is enough to take the long-wavelength g — O limit.

One could use the coordinate u, but it is simpler to use
the tortoise coordinate u,:

1 du?®
ds2:2<—fdt2+u> + ... (4.17a)
u f
= f( dr* + du?
=L (- W)+ - (4.17b)
u
d
du, =7”. (4.17¢)

Here, we take u, :0 — o0, and u, — oo corresponds to the
horizon. Then,

0=r,A%+g, (4.18a)
L= -+ ¢*f, (4.18b)
g = ie{qj'f“ﬂ“”z- (4.18c¢)

Using the bulk Green’s function, the solution is formally
written as

A% = g - / Tl Glu g (i), (4.19)
0

LG(u,, ul,) = 6(u, — ul,). (4.19b)
We impose the boundary conditions (1) G(u, = 0, u},) = 0,
and (2) 0G|, _, =0. The first term a; is the homo-
geneous solution:

(=0 + ¢*f)a; = 0. (4.20)

We impose the boundary conditions (1) regular at the
horizon and (2) a; = A atu=o0.

1

One can construct the homogeneous solution by the ¢
expansion:
ai:F0+q2F2+---. (421)

The solution which satisfies the boundary conditions is
~ u du’
=AY (1= 2/ — ) +4+0(¢") (422a
a 1 q 0 1+ u/+ u/2 + (q ) ( )

~AP (M= @u+-), (u—0). (4.22b)
The function g; is O(q), and it is enough to construct the
Green’s function at g = 0:
—0°G = 6(u, — u). (4.23)
Such a Green’s function is obtained from two homo-
geneous solutions. The homogeneous solutions are

Ay = u,, (4.24a)
A, =1, (4.24b)
W i= A0.A, — (0,A,)A, = 1. (4.24¢)

The solution A,, satisfies the boundary condition at the AdS
boundary and A, satisfies the boundary condition at the
horizon. Then, the Green’s function is given by

Ap(u)Ap (i) = u
Ap(u)Ap(u,) = u,

(v, < u, < )

Gl = {

0<u, <u))

Thus,
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ASZ) =da;— M*/ du*gl ) / du, u*gl + 0( )

(4.25)

The current is given by
(T = |u 0= 0. A |u 0 (4.26a)
—o.a;- / ™ dug,(u) (4.260)
=AY =iy, [P+ 0@)  (4260)
=T+ T (4.26d)

The second term of Eq. (4.26¢) is the supercurrent. Once
again, the supercurrent itself exists even under the Dirichlet
boundary condition, but there is no Meissner effect. The
first term of Eq. (4.26¢) exists even for the pure Maxwell
theory, and it is interpreted as the bound current.

D. Holographic semiclassical equation

We now impose the semiclassical equation as the
boundary condition:

0,F = eX(J"). (4.27)
In momentum space, 0,7 = ~AA; = ¢>A; in the gauge
0; A" = 0. Thus, the holographic semiclassical equation
becomes

PAY = 2+ 78, (4.28a)
&2
- qu 5 TS =TS, (4.28Db)
T l+e
So,
~(2 ﬂm s
AP = Em 5y (4.29a)
q
1 —_—
= —L@e"q,/ du e 2. (4.29b)
q 0
B is then obtained as
P2) _ i 32 LR
B =ieVqi A" = —py dulpW|)?.  (4.30)
0
Going back to the real space,
1
B = =y [l (431)
0

By adding the zeroth order solution,

1
B=H - éeu, / dulp? (4.32)
0
with H := B,.
Finally, let us rewrite the result in terms of the operator
expectation value (O). Recall

¥ = ugp, (4.33a)
@ =cpV) + - =epy(u)X+---,  (4.33b)
po~ P A 4 g, (4.33¢)
SO
(0) = 209 = 2uepl s (4.34)
Then,
1
B=H-uyl=p [ dulpf (4.350)
Hm 2 ! (+),2
—H--t"_|0 d , 4.35b
L0 [ dulofl P (@50)
2
e
= 435
hn =102 (4.35¢)

Just like in the GL theory (A37), the magnetic induction B
reduces by the amount [(O)|> which implies the Meissner
effect.
(1) At weak coupling e < 1,
B~ H - e*{0) (4.36)
apart from numerical factors, and the ¢ dependence
coincides with the GL theory. But the result deviates
it as one increases e.
(2) In particular, in the ¢ — oo limit,

1
(2v)?

Unlike in the GL theory, there is a nontrivial e — co
limit.

We discuss vortex lattices, but the analysis itself does
not tell whether the holographic superconductor is type I or
type II. Using the GL parameter , H ., and thermodynamic
critical magnetic field H, are related by

H., = V2kH,.

1
B H-— | / dulpo/ oS (4.37)

(4.38)

When x> > 1/2, H, > H,, and the superconductor is
type II. When «*> < 1/2, H,, < H,, and the superconductor
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is type 1. The existence of a vortex solution itself does not
imply that the superconductor is type II. Let us lower the
magnetic field. For a type I superconductor, the material
can ‘“supercool”; namely it can remain the normal state
even for H < H.. Then, at H = H_,, nucleation occurs,
and the vortex lattice forms. In order to determine that our
holographic superconductor is type I or II, one needs to
determine k.

V. BULK 5 DIMENSIONS

The analysis of the bulk 5-dimensional holographic
superconductor is similar, but an analytic solution is
available for a particular value of m? [22,23], and one
can obtain /, the correlation length &, and the GL parameter
k explicitly.

A. The GL parameter

We again consider a small magnetic field. In this case,

~ - uy'dy 1 1 (q?

A, = 1- —_— du"— | = +2 2 cee

y ‘Ay{ /0 f(’/l/)l’ u I/t” <}"%+ |(/7()| > + }
(5.1)

For SAdSs, ro =x#T. For p =3, one must add a
counterterm action

1
Ser = — / d4x4—92\/—yy””yp"FﬂpFw x In(u/ry), (5.2)

where y,, is the (p + 1)-dimensional boundary metric. The
current is then given by

) =B0,A, -,y xnu/ry) (53)

- |
= A, (qzlnro—Zr%/ du—|(po|2+~~~). (5.3b)
0 u

Again, the first term of Eq. (5.3b) is a bound current, and
the second term is the supercurrent.

We again impose the holographic semiclassical equation
with an external source:

PA, = (g =23 A, + 2T, (5.4a)
Cq :lnro, (54b)
L |
1= / du—|¢po|*. (5.4c)
0 u
The bound current part is rewritten as
(1-ci?)P?A, = 2T, (5.5a)

62

27 Fext _, 7
= PA = T TR (55h)
e’ e’
= = . 5.5
T cie?  1—e?In(xT) (5:5¢)
The magnetic susceptibility y,, is given by
ce? e’ In(zxT
=2 = D) (56)

T 1-c&¢ 1-éIn(al)

At T=0, y, <0 or diamagnetic. As one increases

temperature, y,, > 0 or paramagnetic. Then, y,, diverges

at e2In(zT) = 1, and y,, < 0 at high temperatures.
Then,

~ 1
—_—, 5.7
VS 2l 37
Ay o e™/4, (5.7b)
1 1
/12 = mr—%, (5.7C)

which implies the Meissner effect.

When (p,A) = (3,2), there exits a simple analytic
solution at the critical point [22]. The scalar solution is
parametrized by a dimensionless parameter u/7, and
u/T = 2r is the critical point. We fix T and vary p. The
solution is

24 u
=/ —W—p,)—. 5.8
P " O (5.8)
See Appendix B for details. The factor (u — )"/ shows

the mean-field behavior with critical exponent f = 1/2.
The solution is a special case of a one-parameter family of
holographic Lifshitz superconductors [23]. Then, one can
evaluate / explicitly:

1] 6
1= [Cauglol =2 G-p). (59)
0 u ro
1 1
PR —— 5.9b
2u,,1 r% ( )
_1—¢e?In(xT) 1 1 (5.9¢)
; e 12(u—p)aT’ '
On the other hand,
1 1
e, 5.10
2(u — pe) nT (3-10)
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SO

2

2 1-ée*In(aT
R en(ﬂ)'

2 % (5.11)
The factor 1/6 was found previously [23].
(1) Focus on e*In(zT) <1 where u, and A*> are
positive. First, consider a fixed 7. At weak coupling
e < 1, the e dependence coincides with the GL
theory. But the result deviates it as one increases e.
(2) In particular, in the ¢ — oo limit, Ag, — 0, so
kg, — 0. But in the holographic superconductor, 4
remains finite and the extreme type I limit cannot be
reached [when e? In(zT) < 1].
(3) In general, whether the holographic superconductor
is type I or type II depends on T as well (Fig. 1). As
T — 0, k = o0, so it is the extreme type II. As one
increases T, k decreases. A similar result holds in
many superconducting materials including high-T,
materials [27].
The boundary between type I or I is given by k> = 1/2, so

(5.12a)

(e > ).

(5.12b)

/o'.'z—" 0.4 0.6 0.8

Type II

0.2 0.4 0.6 0.8

FIG. 1. The magnetic susceptibility y,, (top) and the GL
parameter x> (bottom) for e?In(zT) < 1 with e = 1.

B. The dual GL theory

From the results we obtained, one is able to determine
the dual GL theory. Writing w = (O), the GL theory is
given by

b 1
F= [exdciowp ar St oo

—Wﬁ+wn} (5.13)

where J is the source of the order parameter. From the GL
theory, one obtains the following (see Appendix A for the
details):

(1) The spontaneous condensate: |y|> = —a/b.

(2) The penetration length: 12 = 1/(2cu,,[wol|*)-

(3) The correlation length: & = —c/a.

Also, &% = b/(2u,,c?).

Our holographic results are as follows:

(1) According to the standard AdS/CFT dictionary,
(O) = =¥*), The spontaneous condensate is
ly|> = 24¢,, where ¢, =y — ..

(2) The penetration length: A% = 2/ (u,,|w|?).

(3) The correlation length: & = 1/(2¢,).

(For simplicity, we set ry = 1.) Comparing these results
fixes all GL parameters:

1 € 1
F: 3 _D_ 2__” 2 JR— 4 F2

1
du

m

-—(WJT+-WTJ)}. (5.14)

Just like in the GL theory, this free energy should be
regarded as leading terms. For example, we do not include
the O(y®) term and higher, and the numerical coefficients
are leading ones. Note that the order parameter does not
have the canonical normalization. Rather, the normalization
is chosen from the GKP-Witten relation. Namely, we fix
the normalization of y so that the source term is given by
wJ' +y'J) with J =),

VI. DISCUSSION

(1) Reference [16] studies the holographic semiclassical
equation by constructing a single vortex solution
numerically. However, there is a puzzle in previous
analysis. For the p = 2 holographic superconductor,
they consider the Neumann boundary condition
(J") = 0. This is equivalent to the e — oo limit
because 0,F" = e?(J'). Then, one expects the
extreme type I superconductor, but they obtain a
type II superconductor. This was explained in terms
of S-duality [28].

Our analysis gives an alternative interpretation.
This is because the holographic magnetic penetration
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length has a nontrivial ¢ — oo limit. A similar
analysis can be done for the p = 3 case. Thus, the
Neumann boundary condition should be possible for
the p = 3 case as well.
(2) In the above analysis, we focus on e In(zT) < 1,
but it is interesting to consider ¢? In(zT) > 1, where
Uy, < 0. Using €, p,,, one can classify a material as
follows:
(a) In the vacuum, €, p,,, > 0, and the speed of light
c is given by ¢? = 1/(eu,,).
(b) For metals, ¢ < 0, u,, > 0, and it implies that the
material is not transparent to light.
(¢) When € < 0, y,, < 0, the material is transparent
to light. Such a material is called a metamaterial
and shows the negative refractive index [25].
(d) When € > 0, u,, <0, the material is not trans-
parent to light again.
The N = 4 plasma has y,, < 0 for e?In(zT) > 1. Also,
one can show that € > 0 for the plasma. Thus, the plasma
corresponds to (d) and is not transparent to light. It is
interesting to study the implications for the quark-gluon
plasma. On the other hand, 4> < 0 in this case, so it implies
that the Meissner effect does not occur. Namely, the
magnetic field can enter the material. We are unaware if
such an effect is discussed in superconductor literature.
(3) One limitation of our analysis is that we take the
probe limit g>> 1. g appears in the combination
e/ g%, and the e — oo limit really means the e/g— co
limit. It is certainly interesting to take the back-
reaction into account, but it is difficult to study the
system analytically.
(4) Finally, we apply the holographic semiclassical
equation to the Meissner effect, but it is interesting
to explore the other backreaction problems.
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APPENDIX A: GINZBURG-LANDAU THEORY
The GL theory is given by

b 1
F= [ ax{cowl +awP + 3w+ L (Al
2 4, Y

Di = 0,- - iAi, (Alb)
where u,, is the magnetic permeability. In the standard GL
theory, p,, = e*>. Namely, we slightly generalize the GL
theory where the material has a magnetization (not due to
supercurrent) and there exists a bound current. We take
a=ay(T—T.)+---.

(ap>0), (A2a)

b="by+ -, (by > 0). (A2b)
The equations of motion are given by

0 = —cD*y + ay + by|y|?, (A3a)
0=0;F7—p,j, (A3b)

OF

: 1//

Ji SAI
= —ic{y' Dy —yDy'} =23y D). (A3c)

Below T < T, a homogeneous spontaneous condensate is
a solution:

a
lwol* = 5T T (A4)

There are two characteristic scales for a superconductor:

(1) One is the correlation length of the order parameter.
This comes from the order parameter mass and is
given by

(AS)
(2) The other is the magnetic penetration length. This
comes from the gauge field mass and is given by

1 1 b

2= — 2.
2Cﬂm|l//0|2 2C/’lm |Cl|

(A6)

Then, a superconductor is characterized by a dimensionless
parameter k, the GL parameter:

2

2 A _ b (A7)
& 2uye

A superconductor is classified by the value of «:

() type It k2 < 1/2 or &> /2.

(i) type Il: k2 > 1/2 or & < V24
The factor 1/2 is determined from the free energy analysis
below. In a type I superconductor, the penetration length
is shorter than the correlation length, and the magnetic
field cannot enter the superconductor. As one increases the
magnetic field, eventually superconductivity is broken. In a
type II superconductor, the penetration length is longer
than the correlation length, and the magnetic field can enter
the superconductor keeping the superconducting state. The
magnetic field enters by forming vortices.

Below T < T, a homogeneous condensate is a solution.
Then, apply a small magnetic field. For simplicity, consider
a 2-dimensional superconductor in the (x,y) plane, and
apply a magnetic field in the z direction: A, = A,(x) and
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B = F,,. We also add an external source j3*'. The Maxwell
equation becomes

G*A, = p(=2clyoPA, + 5, (A8a)
A ! (A8b)
X
T g+ 2epplyol
The inverse Fourier transformation gives
A, x e, (A9)

1. Single vortex

Far from the vortex, y = v is approximately constant.
In the cylindrical coordinate ds> = dr?> + r’d¢? + - - -, the
A, = Ay(r) equation becomes

1/1 1A
0=-(-4) -=22.
r<r ¢> 222

Then, the solution is given by the modified Bessel

(A10)

function K:
Ay = ::Kl (r/2) = 4 /%e-r/ﬁ, (A11)
where we used the asymptotic formula
|
K(z) » 2—6_1, (z > ). (A12)
Z

2. Critical magnetic field

The critical magnetic field H,. is defined by the condition
that the homogeneous condensate is thermodynamically
favorable compared with the normal state. It is convenient
to write = pe’ and use the gauge-invariant variable 12\,-:
A i = A

;= 0,0. (A13)

The free energy becomes

n b 1
F= /df’x{c(aip)2 +(a+ Ao +5p" + —F?j}-
U

Aty
(A14)
The equations of motion are given by
0= —cd?p + (a+ cA})p + bp?, (Al15a)
0= 0,F" + 2cu,p*A,. (A15b)

The variation of F includes the term

1 -
+— [ dS; FUA,.
Hon

SF = --- (A16)

Then, F is appropriate when one fixes A,» on the boundary
but is not appropriate when one fixes the external magnetic
field F;; = a,A = ajA,-. In order to obtain H ., one fixes the
external magnetic field, so one should use the Gibbs free
energy. We define the Gibbs free energy by

1 A
G=F ——/ ds; FA; (Al7a)
Him
1 o
=F—— | dPx ai(F’fAj). (A17b)
luﬂ’l
Then, the variation becomes
1 A
0G =---—— [ dS;5F"A;. (A18)
Hm

Using the Maxwell equation, the on-shell Gibbs free energy
becomes

. b
G = /cl”x{C(aip)2 + (a+ cA})p* + o

1
F2}
Aty Y

In the superconducting phase, p> = —a/b and A,» =0
(due to the Meissner effect), so

+2cA?p? - (A19)

2

G,=-2

—=V
Y

(A20)

P

where V, is the p-dimensional volume. In the normal
phase, p =0 and F,, = H, so

1
2u,,

G,=-—HV,. (A21)
When G, < G,,, the superconducting phase is favorable, so

Hm

H<H. =-a["" (A22)
As we see below, H,, = —a/c, so
Heo =2 = VakH,. (A23)

c

When x> < 1/2, H, < H,, and the superconductor is
type I. When x> > 1/2, H., < H,, and the superconductor
is type IL
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3. Upper critical magnetic field

Near the upper critical magnetic field H.,, w remains
small, and one can expand matter fields as a power series:

w=ep) +..., (A24a)
A =A0 + AP + ... (A24b)
At zeroth order, the Maxwell equation is
0= 0;F(f), (A25)
so one has a homogeneous magnetic field
AY = Hx. (A26)
At first order, the order parameter field obeys
0 =—c(9; —iA”)2yD) + ayV), (A27)
Using the ansatz
W) = ey, (x). (A28)
the equation becomes
2
c{—&%—l—Hz(x—%) })(,1 = —ay,. (A29)

This is the Landau problem, and the solution is given by the
Hermite function H,, as

Xg=e¢ 7 PH,(2), 7= \/ﬁ<x - %) (A30)
The eigenvalue is given by
En:(2n+1)H:_7a. (A31)
H takes the maximum value when n =0 or H,, = —a/c.
The general solution is written as
y = / " dq Clg)e (). (A32)
The first order solution (A32) satisfies
(9, —iAl )V = i(0, — AP M, (A33)
)
1P = 2e8[(p ) Dy W] = —co, [P, (A34a)
I = co P, (A34b)

or
1 =263 V) DY) = —cebayly VP, (A35)

where the Latin indices a, b run though x and y, and
€xy = 1. Then, at second order,

0=0"F2 —p,J? (A36a)

= e (F& = cptly V). (A36b)

One can integrate the equation. Asymptotically, [y(V)| — 0,
SO ny — H. Then,

F., =B=H-cp,ly"V > (A37)

Thus, the magnetic induction B reduces by the amount
ly(V|?> which implies the Meissner effect. We discuss its
holographic counterpart in Sec. IV.

APPENDIX B: ANALYTIC SOLUTION OF
HOLOGRAPHIC SUPERCONDUCTOR

For the SAdS, |, background, the Hawking temperature
is 2T = (p + 1)ry/4. In the gauge A, = 0, the static bulk
equations become

1 A
0= _fup—Zau <——2 aMA’) - _ZAI + 2|(/7|2Az’ (Bla)
u? N
A
ub r}
0
) 7 A2 §IDD,
u u <Mp_2 u® + }%f ’% ®
(Blc)
1 > 7 o~
0=50,(0-4) =23(s'0,0). (B1d)
Whe[‘e A = 5”610], (5 N IK) = 5l]alA]$ and
lP:: l/l(p, (Bza)
f . 1 _ up+l (B2b)
2 _ /
Ve m* + p]; uf (BZC)

For simplicity, we set ry =1 below. The asymptotic
behaviors of matter fields are given by
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Ay~ A+ A (B3a)
L ONL LSS (ST (B3b)

1 1)?
A, = % ty, v= w +m?.  (B3c)

When the Breitenlohner-Freedman (BF) bound [29] is
saturated or

= -, B4
Mpg 4 (B4)
the asymptotic behavior is replaced by

P~ P Inu 4+ P uA, (BS)

At high temperature, the equations of motion admit a
solution

A, =p(l —ur™h), ¥ =0. (B6)
But the ¥ = 0 solution becomes unstable at the critical
point and is replaced by a W # 0 solution.

When (p,A) =(3,2), there exits a simple analytic
solution at the critical point [22,23]. In other words, this
is the case where the scalar mass saturates the BF bound.
We briefly discuss the solution for completeness.

1. Low-temperature background

Consider the solution of the form

¥ =Y¥(u), A, = A (u), A;=0. (B7)
Near the critical point, the scalar field remains small, and
one can expand matter fields. Namely, we construct the

low-temperature background perturbatively:

¥(u) =¥ + 3P0 4. (B8a)
Aw) =AY + 24P . (BSb)
At zeroth order,
A = (1 =), (BY)
At first order, there exists a simple solution:
"
Y = — — atpy. =A=2. B10
T Atk (B10)

This is the solution only at the critical point. Also, this is the
solution of the linear equation of motion, so the overall

constant ¢ is undetermined. To resolve these issues, one
needs to proceed to higher orders.

We impose the following boundary conditions:

(1) W™ no fast falloff (n > 3) and no slow falloff. The
former means that @ comes only from ¥(!). The
latter is the condition for a spontaneous condensate.
At the horizon, we impose the regularity condition.

@) A™: A" = 0 at the horizon.

Namely, we fix the fast falloff O, but the chemical potential
is corrected as

Bo= e+ Syt (B11)
At higher orders,
2 2
(2) 5 u (1 —Uu )
A = (1 o) B12

1 ( u ) ﬂz 4(1 +u2) ( a)
~ Sy +~ (=1 —46u)u> +---,  (B12b)

—2u* 2(1 Y 1n(1 2
o - 220 E ) In(l ) gy

24(1 + u?)

Oy (B13b)

Here, 6u, is determined from the boundary condition.
Then, at O(e?), the chemical potential becomes

1
H=Alo=2+457€ 4, (B14a)
V¥~ eu?, (u—0). (B14b)

This fixes the overall constant of the condensate ¢ as

e’ = 24(u — pc). (B15)

2. Correlation length

At high temperatures, the background solution is given
by Eq. (B6). Consider the linear perturbation from the
background ¥ = 0 + 6¥. We consider the perturbation of
the form e~™*i4*, When ¥ = 0, 6A, and 5A; decouple
from the ¥ equation, and it is enough to consider the 6V
equation. We impose the boundary conditions (1) regular at
the horizon and (2) no slow falloff. Namely, we obtain
quasinormal modes. Set €, = u — u. < 0 and employ the
(€4, q) expansion:

Y=y, +tew.+qw,+ . (B16)

The solution is given by
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uz 1+u2
5\P X m (_qZ lnu +4 - 2€” In ) (Bl7a)
L2 —2e)u21 2 B17b
N_Z(q —2¢,)u”Inu + u’. ( )

Thus,

-1

q2_26ﬂ2q2+§_2:0—>€2:2—. (BIS)
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