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We consider all 4DN ¼ 2 theories of class S arising from the compactification of exceptional 6D (2, 0)
SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4D theories has
another origin as a 6D (1, 0) SCFT compactified on a torus, which we check by identifying and comparing
the central charges and the flavor symmetry. Each 6D theory is identified with a complex structure
deformation of ðen; enÞ minimal conformal matter, which corresponds to a Higgs branch renormalization
group flow. We find that this structure is precisely replicated by the partial closure of the punctures in the
class S construction. We explain how the plurality of origins makes manifest some aspects of 4D SCFTs,
including flavor symmetry enhancements and determining if it is a product SCFT. We further highlight the
string theoretic basis for this identification of 4D theories from different origins via mirror symmetry.

DOI: 10.1103/PhysRevD.106.086003

I. INTRODUCTION

Motivated by string theory and its landscape, it has long
been a source of deep physical insight to understand how to
construct lower-dimensional field theories from higher-
dimensional theories via compactification. Utilizing the
powerful technique of geometric engineering, the compac-
tifying space provides valuable geometric and topological
data that capture some physical aspects of the lower-
dimensional theory.
A quintessential example of such a geometrization is an

understanding of the Montonen–Olive SLð2;ZÞ duality
group of 4D N ¼ 4 super-Yang–Mills. The duality inter-
changes strong and weak coupling and this makes any field-
theoretic verificationdifficult due to the lackof computational
control in strong-coupling regime. From the 6D perspective,
the 4D N ¼ 4 theory is obtained by compactifying the
6D (2, 0) superconformal field theory (SCFT) on a torus, and
the SLð2;ZÞ is made manifest as the symmetry acting on the
complex structure parameter of the torus [1].

A generalization of this example is the class S con-
struction of 4DN ¼ 2 SCFTs. Theories of class S [2,3] are
those obtained by taking a twisted compactification of the
6D (2, 0) SCFT of type g on a punctured Riemann surface.
Regular punctures are associated to codimension-two
defect operators in the 6D theory and can be characterized
by nilpotent orbits of g.1 Let

SghCg;nifY1;…; Yng ð1:1Þ

denote the 4D N ¼ 2 theory obtained from twisted
compactifications of the 6D (2, 0) SCFT of type g on an
n-punctured Riemann surface of genus g, where the
punctures are labeled by nilpotent orbits Yi. Physical
properties of the 4D theories including the central charges
and the dimensions of the moduli space are encoded in the
geometry of Cg;n and the Yi. When g ¼ sun, we can think
of the class S construction in terms of the world volume
theory on a stack of M5-branes wrapping the punctured
Riemann surface.
Another way of constructing 4D N ¼ 2 SCFTs is

utilizing the toolkit of F-theory. More specifically, we
consider a 6D (1, 0) SCFT, via Calabi–Yau compactifica-
tions of F-theory with geometric engineering, and further
compactify on a torus to get a 4D N ¼ 2 theory.
Considering string dualities, in this case the duality
between M-theory and F-theory, leads to the expectation

*fbaume@sas.upenn.edu
†monica@caltech.edu
‡craig.lawrie1729@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We focus mainly on regular punctures in this paper.

PHYSICAL REVIEW D 106, 086003 (2022)

2470-0010=2022=106(8)=086003(33) 086003-1 Published by the American Physical Society

https://orcid.org/0000-0002-7528-1519
https://orcid.org/0000-0002-0454-2064
https://orcid.org/0000-0002-8061-0751
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.086003&domain=pdf&date_stamp=2022-10-07
https://doi.org/10.1103/PhysRevD.106.086003
https://doi.org/10.1103/PhysRevD.106.086003
https://doi.org/10.1103/PhysRevD.106.086003
https://doi.org/10.1103/PhysRevD.106.086003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


that some 4DN ¼ 2 theories will have realizations as both
6D (2, 0) and 6D (1, 0) compactifications, as depicted in
Fig. 1. In this paper, we study theories which have both
such origins, and we find that 4D physical properties, such
as flavor symmetries, that are manifest in one origin can be
obscured in the other. The plurality of 6D origins reveals a
richer understanding of the 4D N ¼ 2 theories, which we
highlight later in the paper.
Let T g denote the 6D (1, 0) SCFT known as the minimal

ðg; gÞ conformal matter,2 which arises as the world volume
theory of an M5-brane probing an ADE-singularity [4].
A class of interacting 6D (1, 0) fixed points can be obtained
by performing Higgs branch renormalization group
flows from T g. Certain flows can be specified by a choice
of nilpotent orbits Y1 and Y2 inside the g ⊕ g flavor
symmetry [5]. Let T gfY1; Y2g be the 6D (1, 0) SCFT
obtained by Higgsing T g by the nilpotent orbits Y1 and Y2.
The theories T gfY1; Y2g are very Higgsable, which means
that one can repeatedly Higgs the theory and flow into
the infrared until one ends up with a theory of free
hypermultiplets.
On the tensor branch, the 6D (1, 0) theory T g consists of a

number of tensor multiplets, vector multiplets, and hyper-
multiplets. The 6D (1, 0) tensor multiplet ðBþ; χ; σÞ contains
a self-dual two-form, a Weyl fermion, and a scalar field,
whereas thevectormultiplet ðA; λÞ contains a gauge potential
and a Weyl fermion. The hypermultiplet ðζ;ϕÞ contains a
Weyl fermion and a scalar. These multiplets are summarized
in Table I. When compactified on a T2, we get a 4DN ¼ 2

theory which we denote as T ghT2i. The complex dimension
of the 4D Coulomb branch is given as the number of tensor
multiplets plus the ranks of the gauge algebras [6].
In this paper, we provide an abundance of evidence for

the following statements:

(1) The 4D N ¼ 2 theories obtained from both the 6D
(2, 0) SCFT and the 6D (1, 0) SCFT origins are
related via

SghC0;3ifY1; Y2; Ysimpleg ¼ T gfY1; Y2ghT2i ð1:2Þ

for all possible nilpotent orbits Y1 and Y2 of g.
We take SghC0;3ifY1; Y2; Ysimpleg to be 4D interact-
ing SCFTs arising from the 6D (2, 0) construction
after subtracting off any free hypermultiplets.
The Ysimple represents the subregular nilpotent orbit
of g, corresponding to the simplest nontrivial
puncture.

(2) If Y1 > Ỹ1 in the hierarchy of nilpotent orbits, then

T gfY1; Y2g → T gfỸ1; Y2g ð1:3Þ

is a Higgs branch renormalization group flow
between the two 6D SCFTs. A partial closure of
punctures between the 4D SCFTs is then given by

SghC0;3ifY1;Y2;Ysimpleg→SghC0;3ifỸ1;Y2;Ysimpleg:
ð1:4Þ

This correspondence is depicted in Fig. 2.
The two important quantities that we compare between

the theories are the central charges a and c, defined as the
coefficients appearing in the trace of the energy-momentum
tensor:

FIG. 1. The 6D (2, 0) SCFTs compactified on a punctured
Riemann surface Cg;n give rise to some 4D N ¼ 2 SCFTs, as
depicted in green. On the other hand, the 6D (1, 0) SCFTs
compactified on a T2 also give rise to 4DN ¼ 2 SCFTs, which is
depicted in blue. These two sets of 4D N ¼ 2 theories via 6D
compactifications may have overlaps, and we shade these 4D
theories with two different origins. The shaded area is the core
interest of this paper.

FIG. 2. The 4D SCFTs arising from 6D (2, 0) SCFTs of type g
on a Riemann surface C0;3, which corresponds to a 3-punctured
sphere where one of the punctures is a simple puncture, have
another origin from 6D (1, 0) SCFTs via compactifying the
nilpotent Higgs branch deformations of minimal conformal
matter on a T2.

TABLE I. The field contents of 6D (2, 0), 6D (1, 0), and 4D
N ¼ 2 theories.

6D (2, 0) 6D (1, 0) 4D N ¼ 2

Vector multiplet � � � ðA; λÞ ðA; λ;φÞ
Hypermultiplet � � � ðζ;ϕÞ ðψ ; qÞ
Tensor multiplet ðBþ;ψ ;ϕÞ ðBþ; χ; σÞ � � �

2This theory can also be called ðG;GÞ conformal matter. We
use the algebra notation throughout this paper.
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hTμ
μi ¼ c

16π2
WμνρσWμνρσ −

a
16π2

E4 þ � � � ; ð1:5Þ

whereWμνρσ is the Weyl tensor, E4 is the Euler density, and
� � � represents terms associated to flavor symmetries. It is
often useful to write the linear combinations of these central
charges

�
nv ¼ 4ð2a − cÞ;
nh ¼ −4ð4a − 5cÞ: ð1:6Þ

If there exists a weakly coupled description of the theory,
then these quantities provide the number of vector multip-
lets and the number of hypermultiplets in the theory,
respectively. A 4D N ¼ 2 vector multiplet associated to
a simple gauge algebra g contains the field content
ðAμ; λα;φÞ, where Aμ is the vector potential for the gauge
field, λ is a spinor transforming in the doublet of the
SUð2ÞR R-symmetry, and φ is a scalar. All three fields
transform in the adjoint representation of g. A hyper-
multiplet, which is associated to an algebra g and a
pseudoreal representation R of g, contains the fields
ðψα; qÞ, where ψ is a spinor and Q a quaternionic scalar
field transforming as an SUð2ÞR doublet. Each field in the
hypermultiplet transforms in the representation R. If the
representation R is irreducible, then such a hypermultiplet
is called a half-hypermultiplet. If R is reducible (for
example, whenR ¼ S ⊕ S̄ for a complex representation S),
then the hypermultiplet is called a full hypermultiplet.
We are specifically focusing on the 4D theories arising as

compactifications of the 6D (2, 0) theory on C0;3, which
implies that the space of exactly marginal couplings of such
4D theories is trivial. For each simple factor fi in the flavor
symmetry f, there is a flavor central charge ki defined as the
coefficient appearing in the two-point function of flavor
currents J [7]. In our normalization, the two point-function
of flavor currents is

hJiμðxÞJjνð0Þi ¼
3ki
4π4

δij
x2ημν − 2xμxν

x8
: ð1:7Þ

We identify the 6D (1, 0) origin of each 4D N ¼ 2 SCFT
from 6D (2, 0) theories (from tinkertoy models first
described in [8]) by these quantities: the central charges
(a, c, and ki), and the flavor symmetries. If the conformal
manifold preserving 4D N ¼ 2 symmetry is nontrivial, the
central charges (a, c, and ki) remain the same at every point
of the conformal manifold and there can be flavor sym-
metry enhancements only at points where a sector of the
theory becomes free [9,10].
We now turn to the string theoretic motivation for

equation (1.2). The minimal ðg; gÞ conformal matter theory
T g can be obtained as the world volume theory of an M5-
brane probing an ADE-singularity. Specifically, consider
the 11d spacetime

R1;5 ×R⊥ × C2=Γg; ð1:8Þ

where we include a single M5-brane, wrapping the R1;5,
placed at the origin of the final factor. This gives rise to an
effective 7d super-Yang–Mills theory with a gauge algebra
g that contains a domain wall on which the conformal
matter theory lives [4]. As a domain wall, the 6D theory
naively inherits a flavor symmetry of g ⊕ g; however, this
can be modified by a choice of boundary conditions in the
7d theory. The SUð2ÞR triplet of scalars Φi in the vector
multiplet of the 7d super-Yang–Mills theory satisfies a
Nahm equation

∂AΦi ¼ ϵijk½Φj;Φk�; ð1:9Þ

where ∂A is the covariant derivative along the semi-infinite
interval. The scalar fields can have poles at a boundary x6b:

Φi ∼� tiρ
x6 − x6b

; ð1:10Þ

where tiρ are the generators for an su2 subalgebra of g
specified by the embedding

ρ∶ su2 → g: ð1:11Þ

The choice of ρ corresponds to the choice of a nilpotent
orbit of g, by the Jacobson–Morozov theorem, and breaks
the flavor group on the M5-brane to the commutant of the
embedded su2.

3,4

We can further consider putting the M5-brane theory on
a T2, shrink one of the S1s to get type IIA theory, and then
T-dualize on the other S1 to obtain type IIB theory on

R1;3 × S1 ×R⊥ × C2=Γg; ð1:12Þ

with a single D3-brane on R1;3. This is the type IIB
realization of the 6D (2, 0) SCFT of type g, together with a
codimension-two defect from the D3-brane. This defect
corresponds to a simple puncture [6]. Shrinking the S1 from
the equation (1.12), we obtain a 5d gauge theory with a
gauge algebra g, and the Nahm pole specified by the
equation (1.10) breaks the flavor symmetry seen on the 4D
spacetime down to the commutant of the nilpotent orbit. In
the perspective of class S, this is the behavior of a puncture
associated to that nilpotent orbit. This duality chain
between M-theory and type IIB thus leads us to the
Eq. (1.2), which we explicitly verify in this paper.

3See [11] for a detailed discussion of these boundary con-
ditions in massive type IIA.

4More precisely, a nilpotent orbit of gC corresponds to a choice
of homomorphism ρ∶ sl2 → gC, and the commutant of ImðρÞ
inside of gC defines the remnant flavor algebra.
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We show explicitly that the Eq. (1.2) holds for the cases
of SCFTs of type g ¼ e6; e7; e8 holds and maintains
through Higgs flow such that

SghC0;3ifỸ1; Y2; Ysimpleg ¼ T gfỸ1; Y2ghT2i ð1:13Þ

for all Ỹ1 < Y1 in the hierarchy of nilpotent orbits.
To determine 4D N ¼ 2 SCFTs have both the 6D (2, 0)

and 6D (1, 0) origins, we compare for each of the resulting
4D theories from two 6D SCFT origins the central charges
(a and c), the flavor algebra, and the flavor central charges
(ki). The computation of these quantities from the 6D (2, 0)
origin is well-known [12], though determining the flavor
symmetry involves an explicit determination of the Hall-
Littlewood index of the 4D theory. From the 6D (1, 0)
theory perspective, the 4D central charges can be deter-
mined from the 6D anomaly polynomial and the flavor
symmetries are obtained from studying the tensor branch
geometry. More specifically, we study how the choice of
nilpotent orbits that Higgs the en ⊕ en flavor symmetry
of T en (for n ¼ 6, 7, 8) determine the geometric data
associated to the resulting 6D (1, 0) SCFT. Once we have
found the geometric data describing the tensor branch, we
can determine the flavor symmetries and the anomaly
polynomial, as we describe in detail later in the paper.
We find that the 4D N ¼ 2 SCFTs data (the central
charges, the flavor symmetry, and the flavor central
charges) from both the 6D (2, 0) SCFTs and the
6D (1, 0) SCFTs origins arrange into identical nilpotent
hierarchies, as in equation (1.13), specified by pairs of
nilpotent orbits. This provides compelling evidence for
identifying the two origins of 4D SCFTs. We further note
that the central charges and the flavor symmetries do not
necessarily uniquely specify a 4D N ¼ 2 SCFT, as it can
be seen from some examples studying the global structure
of the flavor group in [13]. However, the fact that the whole
hierarchies of nilpotent orbits, or identically the Higgs flow,
match affirms that the two 6D origins considered do
provide the same set of 4D N ¼ 2 SCFTs.
The structure of this paper is as follows. In Sec. II, we

review the class S construction of 4D N ¼ 2 SCFTs from
the 6D (2, 0) theory. In Sec. III, we describe the geometric
construction of 6D (1, 0) SCFTs from F-theory, and in
Sec. IV we describe how to determine the non-Abelian
flavor symmetry of such a 6D (1, 0) SCFT. In Sec. V, we
explain how to determine the 6D (1, 0) anomaly poly-
nomials from the geometric data. We discuss the compac-
tifications of 6D (1, 0) SCFTs on T2, and how to determine
the 4D physical data from the 6D anomaly polynomial in
Sec. VI. In Sec. VII, we enumerate and determine the flavor
symmetries and anomaly polynomials for every 6D (1, 0)
SCFT T enfY1; Y2g and their T2 compactifications, and
then we match each of those to the class S theories
SenhC0;3ifY1; Y2; Ysimpleg. Based our results, we explain
in Sec. VIII A how the flavor symmetry enhancement of the

4D N ¼ 2 SCFT is manifest from the 6D (1, 0) SCFT
origin. We further show that the it can be determined
whether the 4D N ¼ 2 SCFT is a product SCFT directly
from the 6D (1, 0) origin in Sec. VIII B. We turn our focus
to the implications in Sec. VIII C; in particular, we discuss
how our results can be utilized in the context of the AGT
correspondence to understand a potential new relationship
between 4D and 2D theories. Finally, we explain in
Sec. VIII D how the two 6D origins for a given
4D N ¼ 2 SCFT are related via mirror symmetry.

II. 4D N = 2 SCFTS FROM 6D (2, 0): CLASS S

A large class of 4D N ¼ 2 superconformal field
theories, known as class S [2,3], can be constructed as
a partially twisted compactification of the 6D (2, 0)
SCFT of type g on a Riemann surface of genus g with
punctures, which are codimension-two defects. Each type
of regular puncture is associated to a nilpotent orbit of g.5

An n-punctured Riemann surface of genus g has a (non-
unique) pair-of-pants decomposition as the gluing along
punctures of three-punctured spheres, as long as

3g − 3þ n ≥ 0; ð2:1Þ

and these three-punctured spheres are known as fixtures.
Similarly, we slightly abuse notation and refer to the 4D
N ¼ 2 SCFTs that arise from compactifications of the
(2, 0) theory of type g on a fixture also as fixtures.
The class S construction gives rise to 4D N ¼ 2

theories, where much of the physical data of the 4D theory
depends on the geometric properties of Cg;n. To determine
the central charges and the flavor algebras of the relevant
fixtures we require the following facts. For a compactifi-
cation of the 6D (2, 0) theory of type g on a genus g
Riemann surface with untwisted regular punctures
O1;…;Op the relevant 4D field theoretic data can be split
up into a global contribution and local contributions from
each of the individual punctures [12]. The dimension of the
Coulomb branch of the resulting 4D SCFT is

dimðCÞ ¼ ðg − 1Þ dimðgÞ þ
X
i

δdðOiÞ; ð2:2Þ

where δdðOiÞ is the contribution from each individual
puncture [12]. To denote a puncture we use Oi and the
associated nilpotent orbit Yi interchangeably. Of course,
dimðCÞ is required to be positive6 for the compactification
to give rise to a consistent theory. Similarly, the central
charges ða; cÞ or, equivalently, the effective numbers of
vector and hypermultiplets can be determined additively
from the individual puncture data:

5We shall consider only untwisted punctures in this paper.
6In fact, the Coulomb branch is graded and we require the

dimensions of each graded piece to be non-negative.

BAUME, KANG, and LAWRIE PHYS. REV. D 106, 086003 (2022)

086003-4



nv ¼ ðg − 1Þ
�
4

3
h∨g dimðgÞ þ rankðgÞ

�
þ
X
i

δnvðOiÞ;

nh ¼ ðg − 1Þ
�
4

3
h∨g dimðgÞ

�
þ
X
i

δnhðOiÞ: ð2:3Þ

Furthermore, the manifest flavor symmetry fðmanifestÞ can be
determined additively from the punctures O1;…;Op such
that

f ⊇ fðmanifestÞ ¼ fðO1Þ ⊕ � � � ⊕ fðOpÞ; ð2:4Þ

where fðOiÞ is the flavor symmetry associated to the ith
puncture. The actual flavor symmetry of the 4D theory f
may be larger than the manifest flavor symmetry (i.e.
f ⊇ fðmanifestÞ) and this can be determined by the computa-
tion of the first terms of the Hall-Littlewood index [14].
The untwisted punctures for the 6D (2, 0) theory of type

e6 were first enumerated in [15], for type e7 was done in
[16], and for type e8 has been studied in [17].7 The
punctures were studied in the context of the “tinkertoy”
program [8]; all 4D N ¼ 2 SCFTs obtained from com-
pactifying the 6D (2, 0) SCFT of type g on a three-
punctured sphere are enumerated in the tinkertoy models
for all three types e6, e7, and e8. We extract the punctures
that can appear in a fixture together with a simple puncture
such that the 4D N ¼ 2 SCFT obtained after compacti-
fication of the 6D (2, 0) SCFT on this fixture is consistent.
These punctures are labeled with the Bala-Carter notation
for nilpotent orbits [18,19] and we list them together with
their relevant physical data in Tables II, III, and IV for the
different types e6, e7, and e8, respectively.
There exists a partial ordering on the nilpotent orbits

for a given semisimple Lie algebra, which translates into a
partial ordering on the possible punctures.8 If Y1 and Ỹ1 are
related as Y1 > Ỹ1 under this partial ordering, then one can
consider the partial closure of the puncture Y1 to Ỹ1. That
is, we can begin with a class S theory

SghCg;nifY1; � � �g; ð2:5Þ

and give a nilpotent vacuum expectation value to the
moment-map operator, the scalar, highest-weight compo-
nent of the flavor supermultiplet, and then flow into the
infrared to obtain the class S theory

SghCg;nifỸ1; � � �g: ð2:6Þ

This procedure is described in [21] and we review it
briefly here.
Consider a 4DN ¼ 2 theory of class S where one of the

punctures has an associated flavor symmetry f. There exists a
scalar fieldϕ, transforming in the triplet representation of the
SUð2ÞR, which is the superconformal primary of the multi-
plet in which the flavor current of f lives. Letϕþ be the chiral
operator corresponding to the highestweight of the 3.We can
give a nilpotent vacuum expectation value to ϕþ,

TABLE II. The untwisted punctures for the 6D (2, 0) theory of
type e6 that can appear in a fixture together with a simple
puncture. The last row is the simple puncture.

Bala-Carter label ðδnv; δnhÞ δd Flavor symmetry

0 (588, 624) 36 ðe6Þ24
A1 (565, 590) 35 ðsu6Þ18
2A1 (548, 568) 34 ðso7Þ16 ⊕ u1

3A1 (533, 549) 33 ðsu3Þ24 ⊕ ðsu2Þ13
A2 (521, 536) 33 ðsu3Þ12 ⊕ ðsu3Þ12
A2 þ A1 (510, 523) 32 ðsu3Þ12 ⊕ u1

2A2 (484, 496) 30 ðg2Þ12
ð0; ðF4Þ12Þ (614, 624) 13 ðf4Þ12
E6ða1Þ (167, 168) 11 ∅

TABLE III. The punctures for the 6D (2, 0) theory of type e7
that can appear in a fixture together with a simple puncture. The
last row is the simple puncture itself.

Bala-Carter
label ðδnv; δnhÞ δd Flavor symmetry

0 (1533, 1596) 63 ðe7Þ36
A1 (1498, 1544) 62 ðso12Þ28
2A1 (1471, 1508) 61 ðso9Þ24 ⊕ ðsu2Þ20
3A00

1 (1452, 1488) 60 ðf4Þ24
3A0

1 (1448, 1479) 60 ðusp6Þ20 ⊕ ðsu2Þ19
A2 (1430, 1460) 60 ðsu6Þ20
4A1 (1429, 1457) 59 ðusp6Þ19
A2 þ A1 (1411, 1436) 59 ðsu4Þ18 ⊕ u1

A2 þ 2A1 (1394, 1416) 58 ðsu2Þ16 ⊕ ðsu2Þ28 ⊕ ðsu2Þ84
A3 (1343, 1364) 57 ðso7Þ16 ⊕ ðsu2Þ12
2A2 (1367, 1388) 57 ðg2Þ16 ⊕ ðsu2Þ36
A2 þ 3A1 (1379, 1400) 57 ðg2Þ28
ðA3 þ A1Þ00 (1332, 1352) 56 ðso7Þ16
2A2 þ A1 (1352, 1370) 56 ðsu2Þ36 ⊕ ðsu2Þ38
ðA3 þ A1Þ0 (1328, 1345) 56 ðsu2Þ13 ⊕ ðsu2Þ24 ⊕ ðsu2Þ12
D4ða1Þ (1316, 1332) 56 ðsu2Þ12 ⊕ ðsu2Þ12 ⊕ ðsu2Þ12
A3 þ 2A1 (1317, 1333) 55 ðsu2Þ13 ⊕ ðsu2Þ24
D4ða1Þ þ A1 (1305, 1320) 55 ðsu2Þ12 ⊕ ðsu2Þ12
A3 þ A2 (1294, 1308) 54 ðsu2Þ12 ⊕ u1

A4 (1239, 1252) 53 ðsu3Þ12 ⊕ u1

A00
5 (1132, 1144) 48 ðg2Þ12

ð0; E6Þ (1588, 1596) 64 ðe6Þ12
ð3A00

1; F4Þ (1695, 1704) 69 ðf4Þ12
E7ða1Þ (383, 384) 17 ∅

7We only consider the untwisted punctures. If we were to
include the twisted punctures, they only exist for e6, not e7 or e8.

8See [20] for more details on nilpotent orbits of Lie algebras.
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hϕþi ¼ JY; ð2:7Þ

where JY is the Jordan normal form associated to nilpotent
elementY. Each nilpotent element of a simple Lie algebra f is
associated to a homomorphism ρY∶ su2 → f. Givingϕþ the
vacuum expectation value (vev) as in the Eq. (2.7) breaks the
flavor symmetry

f → f0; ð2:8Þ

where f0 is the centralizer of ρY . The breaking of the flavor
symmetry leaves behind Goldstone bosons, and their super-
partners, however we can then flow into the infrared and end
up at a new interacting fixed point with flavor symmetry f0.9

III. GEOMETRIC CONSTRUCTION
OF 6D (1, 0) SCFTS

We discussed the construction of 4D N ¼ 2 theories
arising as compactifications of the 6D (2, 0) SCFTs of type g
in Sec. II. There are two infinite series of such 6D (2, 0)
SCFTs and they are respectively associated to sun and so2n
Lie algebras; similarly, there are three sporadic 6D (2, 0)
SCFTs that are associated to e6, e7, and e8, respectively. The
4D N ¼ 2 theories obtained from these 6D (2, 0) SCFTs
depend on this Lie algebra g together with the genus g of the
Riemann surface and the data describing the punctures Oi:

ðg; g; fOigÞ: ð3:1Þ

Generally speaking, 4D N ¼ 2 SCFTs may have an
alternate construction via a T2 compactification from
6D (1, 0) SCFTs, which carry half the amount of supersym-
metry than the 6D (2, 0) SCFTs. In this case, the properties of
the 4D SCFTs obtained from the compactification on T2

depends principally on the data of their 6D (1, 0) SCFT
origins.10 The world of 6D (1, 0) theories is far more
expansive than that of 6D (2, 0) theories, and it has a great
number of infinite series. To understand which 4D N ¼ 2
SCFTs can be obtained from 6D (1, 0) SCFTs, we first
explain the geometric construction of the 6D (1, 0) theories.
More precisely, we take the F-theory [22–24] perspective

and build a geometric construction for these 6D (1, 0)
theories. By utilizing a geometric-engineering point of view,
F-theory compactified on a noncompact elliptically fibered
Calabi–Yau threefold gives rise to a tensor branch descrip-
tion of a six-dimensional field theory with eight super-
charges. In particular, when the base of the Calabi–Yau
threefold is noncompact (and thus gravity is decoupled),

then the resulting theory can be a 6D (1, 0) superconformal
field theory.
The 6D (1, 0) SCFTs constructed from F-theory com-

pactifications are related via renormalization group flows
corresponding to complex structure deformations of the
noncompact Calabi-Yau threefolds. In this paper, we show
that these complex structure deformations are related to
similar deformations between the 4D N ¼ 2 SCFTs
obtained by a T2 compactification. These deformations
reproduce those associated to partial closure of the punc-
tures, which is visible from the class S construction of the
same 4D SCFTs.

A. Geometric configurations and 6D SCFTs

Each 6D (1, 0) SCFT is associated to a configuration of
compact rational curves Ci together with a choice of a
(possibly trivial) gauge algebra gi attached to each curve
[25,26]. The intersection matrix of the curves must be
negative-definite

Aij ¼ Ci · Cj ≺ 0: ð3:2Þ

This follows from the requirement that all curves can
simultaneously be shrunk to zero-volume, which is a
necessity for the existence of an interacting SCFT. Each
curve has a self-intersection number

Ci · Ci ¼ −ni; ð3:3Þ

where ni is strictly positive, and each curve Ci can only
intersect a different curve Cj≠i in at most one point. The
data of a 6D SCFT can then be represented by writing the ni
of each Ci such that they are adjacent if the two curves
intersect, and writing each associated gauge algebra above
each ni. As an example, we can consider three curves C1,
C2, and C3 with the intersection matrix

A ¼

0
B@

−1 1 0

1 −3 1

0 1 −1

1
CA; ð3:4Þ

and take the gauge algebras over each curve to be

g1 ¼ g3 ¼ ∅; g2 ¼ su3: ð3:5Þ

This SCFT can then be compactly written via the notation

1 3
su3

1; ð3:6Þ

where we have dropped trivial gauge algebras from the
notation. In addition to the negative-definiteness require-
ment, it is necessary that the singular fiber above the points
where any two distinct Ci intersect is minimal. The latter is
required for one to be at a generic point on the tensor

9There is no guarantee that one ends up with an interacting
SCFT after this process, however the cases that we consider do.
See [21] for more details.

10One may turn on certain kinds of 4DN ¼ 2 supersymmetry-
preserving Wilson lines along the T2 directions; however, these
are not considered in this paper.
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branch. We explain how to construct these curve configu-
rations which satisfy the negative-definiteness and mini-
mality conditions in Sec. III B.
One way to construct an F-theory realization of these six-

dimensional SCFTs is using configurations with intersect-
ing curves whose adjacency matrix is negative-definite so
that such configurations can be used to represent the base of
a minimal elliptic fibration. The beauty of this geometric
presentation of a SCFT is that many of the interesting
properties of a SCFT, such as the central charges and
anomaly polynomials, can be calculated directly in terms of
the geometric data.

B. How to build and decorate a base

Configurations of P1 s, together with the singular fibers
above them, that give rise to a 6D SCFT in the limit where

volðP1Þ → 0 ð3:7Þ

for all P1s are highly constrained. All such configurations
can be constructed out of “building blocks” that are
subjected to the necessary conditions for the resulting
theory to be superconformal.
We first form a putative curve configuration by gluing

non-Higgsable clusters to E-strings. The non-Higgsable
clusters are given as the following configurations of
curves [27]:

3
su3

; 4
so8

; 5
f4
; 6

e6
; 7

e7
; 8

e7
; ð12Þ

e8
; 2

su2

3
g2
; 2 2

su2

3
g2
; 2

su2

3
so7

2
su2

;

22� ��22; 22� ��22222; 222
2

22; 222
2

222; 222
2

2222; ð3:8Þ

These non-Higgsable clusters can be glued together by
E-strings in the following ways. Let IQ denote the rank Q
E-string, which is associated to the following curve
configuration:

122 � � � 22
zfflfflfflfflffl}|fflfflfflfflffl{Q−1

: ð3:9Þ

Gluing together non-Higgsable clusters with an E-string
leads to curve configurations of the form

� � � ngIQm
h � � � : ð3:10Þ

If non-Higgsable clusters are glued to both the left and the
right of an E-string, then it is a requirement that Q ≤ 2.
There are two choices for Q satisfying this requirement:
Q ¼ 1 or Q ¼ 2. If Q ¼ 1, then we must have

g ⊕ h ⊆ e8; ð3:11Þ

whereas if Q ¼ 2, then

g ⊆ e8; m ¼ 2; h ¼ su2: ð3:12Þ

We note that these two conditions also must be satisfied
(with g ¼ ∅) when the curves to the left of the E-string in
the Eq. (3.10) are absent. When the curves to the right of the
E-string in the Eq. (3.10) are absent, then gluings are of the
form

� � � ngIQ ð3:13Þ

and we are now allowed to (a priori) consider arbitrary
values ofQ, as long as g ⊆ e8 is satisfied. These gluings can
be repeated ad nauseam subject to the constraint that the
intersection matrix, Aij, between the compact curves be
negative-definite:

Aij ≺ 0: ð3:14Þ

In addition to specifying the curves (i.e. the tensor
multiplets) and the algebras (i.e. the vector multiplets),
one must also specify the number of hypermultiplets
transforming in each representation R of each gauge
algebra. Interestingly, it turns out that these are almost
uniquely fixed by the choice of n and g with rare
exceptions.11 The prescribed types of hypermultiplets
appearing on each curve are summarized in Table 3 of [28].
Once a curve configuration has been constructed by

gluing together the above building blocks, it may admit
further “tunings” that also lead to an interacting SCFT. A
tuning involves a procedure such as

� � �nh � � � → � � � ng � � � ð3:15Þ

for h ⊂ g. The value of n constrains what g are permitted,
and these tunings are subject to the e8 gluing conditions
described above. Furthermore, the constraints on the
numbers of hypermultiplets at each curve restricts which
pairs of gauge algebras can be on adjacent curves; two
adjacent curves with gauge algebras g and h on them
must have a single bifundamental (half-)hypermultiplet
between them.12 When tuning a configuration involving
a (−2)-curve which has no gauge algebra over and is not
part of an E-string, another condition must be satisfied: the
(−2) curve can only be connected to another (−2)-curve
with an su2 gauge algebra over it.13

11There is an example of su6 on a (−1)-curve where it is
not unique.

12In fact, the hypermultiplet charged under both gauge
algebras does not need to be in the fundamental representation
of each algebra, but can be in other representations prescribed by
the algebras and the self-intersections of the curves supporting
them.

13These conditions, and the overall construction of such
geometric data associated to 6D SCFTs, are reviewed in [28].
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C. Conformal matter and Higgs branch deformations

When constructing 6D SCFTs following the method
described in Sec. III B, it becomes apparent that the same
patterns of curves and algebras appear abundantly in the
geometric data. These are the configurations

1 3
su3

1; 1 2
su2

3
so7

2
su2

1; 1 2 2
su2

3
g2
15
f4
13
g2

2
su2

2 1: ð3:16Þ

In their own right, these configurations correspond to
nothing other than the minimal ðen; enÞ conformal matter
[4], which we denote as T en . These 6D (1, 0) SCFTs have
an en ⊕ en flavor symmetry which can be determined from
the configurations given in Eq. (3.16) following the logic
described in Sec. IV.
These theories can also be obtained from M-theory

perspective by considering the world volume theory on
an M5-brane probing C2=ΓADE. These are the theories of
interest in this paper, as it is known that T g compactified on
a T2 gives rise to the same 4D N ¼ 2 theory as the
6D (2, 0) theory of type g compactified on a sphere with
two full punctures and a simple puncture [6]. In this paper,
we compare Higgs branch deformations of T g to class S
theories.
It was observed in [5] that a particular class of Higgs

branch deformations of 6D conformal matter are specified
by a pair of nilpotent orbits YL and YR of g. Then, part of
the flavor symmetry group of the theory is given by the
commutant of the image of the nilpotent orbits in g.
Furthermore, two theories T gfYL; YRg and T gfỸL; YRg
are related by a Higgs branch deformation if they satisfy
YL > ỸL under the standard partial ordering of nilpotent
orbits. For long-enough quivers, the flows are in one-to-one
correspondence with the nilpotent hierarchy. However, in
the case of short quivers such as minimal conformal matter,
not all nilpotent orbits can be used, as the breaking patterns
on both sides of the quiver become correlated.
The Higgs branch renormalization group flows are

triggered by complex structure deformations of the singu-
larities of the associated noncompact elliptically fibered
Calabi-Yau threefold. These deformations are carried out
at the origin of the tensor branch, where all of the compact
curves have shrunk to zero-volume. An example of such a
complex structure deformation and its effect on the geo-
metric data at a generic point of the tensor branch is
represented in Fig. 3.
The complex structure deformations that we consider

have the following effects on the tensor branch. We can
think of a class of deformations as Higgsing a gauge
algebra over one of the compact curves, which changes the
tensor branch as

� � � ng � � � → � � � ng
0
� � � ; ð3:17Þ

TABLE IV. The punctures for the 6D (2, 0) theory of type e8
that can appear in a fixture together with a simple puncture. The
simple puncture is written in the final row.

Bala-Carter
label ðδnv; δnhÞ δd Flavor symmetry

0 (4840, 4960) 120 ðe8Þ60
A1 (4781, 4872) 119 ðe7Þ48
2A1 (4734, 4808) 118 ðso13Þ40
3A1 (4695, 4759) 117 ðf4Þ36 ⊕ ðsu2Þ31
A2 (4665, 4728) 117 ðe6Þ36
4A1 (4660, 4716) 116 ðusp8Þ31
A2 þ A1 (4630, 4682) 116 ðsu6Þ30
A2 þ 2A1 (4601, 4648) 115 ðso7Þ28 ⊕ ðsu2Þ144
A2 þ 3A1 (4574, 4617) 114 ðg2Þ48 ⊕ ðsu2Þ25
2A2 (4550, 4592) 114 ðg2Þ24 ⊕ ðg2Þ24
A3 (4514, 4560) 114 ðso11Þ28
2A2 þ A1 (4527, 4566) 113 ðg2Þ24 ⊕ ðsu2Þ62
A3 þ A1 (4487, 4525) 113 ðso7Þ24 ⊕ ðsu2Þ21
D4ða1Þ (4467, 4504) 113 ðso8Þ24
2A2 þ 2A1 (4504, 4540) 112 ðusp4Þ62
A3 þ 2A1 (4464, 4498) 112 ðusp4Þ21 ⊕ ðsu2Þ40
D4ða1Þ þ A1 (4444, 4476) 112 ðsu2Þ20 ⊕ ðsu2Þ20 ⊕ ðsu2Þ20
D4 (4236, 4272) 108 ðf4Þ24
A3 þ A2 (4425, 4456) 111 ðusp4Þ20 ⊕ u1

A4 (4330, 4360) 110 ðsu5Þ20
A3 þ A2 þ A1 (4406, 4435) 110 ðsu2Þ384 ⊕ ðsu2Þ19
D4ða1Þ þ A2 (4388, 4416) 110 ðsu3Þ96
A4 þ A1 (4311, 4337) 109 ðsu3Þ18 ⊕ u1

D4 þ A1 (4213, 4241) 107 ðusp6Þ19
D5ða1Þ (4195, 4220) 107 ðsu4Þ18
2A3 (4324, 4350) 108 ðusp4Þ31
A4 þ 2A1 (4294, 4318) 108 ðsu2Þ30 ⊕ u1

A4 þ A2 (4265, 4288) 107 ðsu2Þ16 ⊕ ðsu2Þ200
D5ða1Þ þ A1 (4178, 4200) 106 ðsu2Þ16 ⊕ ðsu2Þ112
A4 þ A2 þ A1 (4250, 4272) 106 ðsu2Þ200
D4 þ A2 (4163, 4184) 105 ðsu3Þ28
A5 (4127, 4149) 105 ðg2Þ16 ⊕ ðsu2Þ13
E6ða3Þ (4115, 4136) 105 ðg2Þ16
D5 (3884, 3904) 100 ðso7Þ16
A4 þ A3 (4184, 4204) 104 ðsu2Þ124
A5 þ A1 (4112, 4131) 104 ðsu2Þ38 ⊕ ðsu2Þ13
D5ða1Þ þ A2 (4136, 4155) 104 ðsu2Þ75
D6ða2Þ (4088, 4106) 104 ðsu2Þ13 ⊕ ðsu2Þ13
E6ða3Þ þ A1 (4100, 4118) 104 ðsu2Þ38
E7ða5Þ (4076, 4093) 104 ðsu2Þ13
E8ða7Þ (4064, 4080) 104 ∅
A6 (3905, 3920) 99 ðsu2Þ12 ⊕ ðsu2Þ60
D5 þ A1 (3869, 3885) 99 ðsu2Þ13 ⊕ ðsu2Þ24
D6ða1Þ (3857, 3872) 99 ðsu2Þ12 ⊕ ðsu2Þ12
E7ða4Þ (3846, 3860) 98 ðsu2Þ12
E6ða1Þ (3675, 3688) 95 ðsu3Þ12
E6 (3220, 3232) 84 ðg2Þ12
ðA1; E7Þ (5014, 5048) 122 ðe7Þ24
ðD4; F4Þ (5640, 5648) 136 ðf4Þ12
ðA2; E6Þ (5185, 5192) 125 ðe6Þ12
ð0; E7Þ (4955, 4960) 121 ðe7Þ12
E8ða1Þ (1079, 1080) 29 ∅
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where g0 ⊂ g. Another common way in which the ten-
sor branch can be modified by a complex structure
deformation is

� � � ng1mh � � � → � � � ðn − 1Þ
g0

ðm − 1Þ
h0

� � � ; ð3:18Þ

where g0 ⊆ g and h0 ⊆ h. We can consider a similar case
where the curve supporting h is noncompact. For such a
case, we simply observe the tensor branch modification to
be the following:

� � � ng1 → � � � ðn − 1Þ
g0

: ð3:19Þ

The final class of complex structure deformations that
we consider involves nucleating E-strings. In this case, we
have a rank Q E-string attached to a (−n)-curve, and there
exists a complex structure deformation partitioning it into
lower-rank E-strings. In the heterotic description, this type

of deformation corresponds to moving in different branches
of the instanton moduli space [5]. For example, we can
transform the rank Q E-string into two E-strings of ranks k
and Q − k:

n
g
12 � � � 2
zfflfflffl}|fflfflffl{Q

→ 2 � � � 21
zfflfflffl}|fflfflffl{k

n
g
12 � � � 2
zfflfflffl}|fflfflffl{Q−k

: ð3:20Þ

The number of possibilities is equal to the number of
partitions of Q.
The Higgs branch renormalization group flows of

6D (1, 0) SCFTs and their connection to the complex
structure deformations of the associated Calabi–Yau geom-
etry have been studied in [5,29–31]. For the nilpotent
Higgsings of minimal conformal matter T gfYL; YRg, the
geometric data of the tensor branches all have the form of
the modifications shown in the equations (3.17), (3.18),
(3.19), and (3.20) applied repeatedly to the configurations
for T g given in the Eq. (3.16).

FIG. 3. A depiction of the four steps describing the Higgs branch flow that moves between the two 6D SCFTs,

1 2
su2

3
so7

2
su2

1 → 1 2
su2

3
so7

1
su2

, where we have written the generic tensor branch configurations in (a) and (d) and the singular configuration
when all the compact curves are shrunk in (b) and (c). The black curves are compact and the blue curves are noncompact; the Lie algebra
denotes the type of singular fiber tuned over that curve, and the number beneath the compact curves is the self-intersection.

TWO 6D ORIGINS OF 4D SCFTs: CLASS S … PHYS. REV. D 106, 086003 (2022)

086003-9



IV. NON-ABELIAN FLAVOR SYMMETRIES
FOR 6D (1, 0) SCFTS

In this section, we focus on understanding when non-
Abelian flavor symmetries arise for 6D SCFTs and how to
determine them. There are two different origins of non-
Abelian flavor algebras14: either from any E-string building
blocks of the 6D SCFT or from the classical flavor
symmetry that rotates k (1, 0) hypermultiplets transforming
in a representation R of the gauge algebra.
While in this paper we shall only concern ourselves with

non-Abelian flavor symmetries, we note that continuous
Abelian flavor symmetries of 6D SCFTs have been explored
in [32,33]. Naively, there appears to be manyUð1Þ factors in
the flavor symmetry group. If we have k hypermultiplets
transforming in a complex representation of the symmetry
group, then the classical flavor symmetry rotating those
hypermultiplets isUðkÞ. However, as discussed in the above
references, theseUð1Þs are often broken, either entirely or to
a particular diagonal subgroup, by the presence of ABJ
anomalies. Due to the more subtle nature of such flavor
symmetries, we shall leave their discussion for future work.

A. The E-string origin of flavor symmetries

One of the geometric building blocks of 6D SCFTs is
the E-string, originally studied in [23,34–38]. The rank Q
E-string is associated to the compact curve configuration
given in Eq. (3.9):

122 � � � 22
zfflfflfflfflffl}|fflfflfflfflffl{Q−1

: ð4:1Þ
For all ranks, the E-string has an e8 flavor symmetry.
This arises from a noncompact curve which intersects the
(−1)-curve and has a II� singular fiber over it. When the
(−1)-curve is glued together with another compact curve,
this involves gauging a part of the e8 flavor symmetry.15 Let
us consider the following compact curve fragment:

� � � ng1mh � � � ; ð4:2Þ
where we allow the possibility for h to be trivial (in which
casem ¼ 2 is required), or indeed for the curves to the right
of the (−1)-curve to be absent entirely. One flavor node is
attached to the (−1)-curve for each simple non-Abelian
factor appearing in16

Commutantðρ; e8; g ⊕ hÞ; ð4:3Þ

where ρ is an embedding given by:

ρ∶ g ⊕ h → e8: ð4:4Þ

The relevant subalgebras of e8, and the Dynkin indices of
the embeddings for each irreducible component of the
subalgebras, required for the determination of the commu-
tants are given in Table V.17

For Q > 1, the E-string theory also has an su2 global
symmetry. This su2 can be thought of as a flavor node
which is attached to each of the (−2)-curves of the E-string,
with intersection number one. In addition to the option of
gluing compact curves to the (−1)-curve of the E-string,
one can glue onto one of the (−2)-curves; however, this is
highly constrained. Such a gluing requires that the E-string

TABLE V. The subalgebras of e8 relevant for determining the
non-Abelian global symmetries arising from E-string compo-
nents in the 6D SCFTs considered in this paper. The superscript
denotes the Dynkin index of the embedding.

Subalgebras of e8

su1
2 ⊕ e17

su1
3 ⊕ e16

su1
4 ⊕ so110

su1
5 ⊕ su1

5

su1
9

so17 ⊕ so19
so18 ⊕ so18
so116
g12 ⊕ f14
g12 ⊕ g12 ⊕ su8

2

g12 ⊕ su1
3 ⊕ su2

3

so17 ⊕ su1
3 ⊕ su2

2 ⊕ u1

so18 ⊕ su1
2 ⊕ su1

2 ⊕ su1
2 ⊕ su1

2

su1
3 ⊕ su1

3 ⊕ su1
3 ⊕ su1

3

so17 ⊕ su1
2 ⊕ su1

2 ⊕ usp14
su1

3 ⊕ su1
2 ⊕ su1

6

g12 ⊕ su1
2 ⊕ usp16

g12 ⊕ so17 ⊕ u1

so19 ⊕ su1
2 ⊕ su1

2 ⊕ su2
2

su1
3 ⊕ so19 ⊕ u1

su1
3 ⊕ so18 ⊕ u1

su1
3 ⊕ f14

su1
2 ⊕ f14 ⊕ su3

2

g12 ⊕ so19
g12 ⊕ so18

14Here, and throughout this section, we assume that we are
considering strict (1, 0) SCFTs. This removes the need to discuss
a third origin of flavor symmetries that only appears for the
geometric configurations associated to the 6D (2, 0) SCFTs.

15Note that a (−1)-curve can intersect at most two other
compact curves [25].

16In fact, we must also specify how the flavor node is attached.
In Sec. V B, we see that anomaly cancellation requires that the
number of intersections be equal to the Dynkin embedding index
of that subalgebra.

17The Dynkin indices have recently been explored and found
to be relevant in the context of F-theory in [39] where embed-
dings are considered for determining matter representations with
a perspective of Dynkin. We refer the reader there for the relevant
definitions.
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is of rank two, i.e.Q ¼ 2, and the curve to which it is glued
must support an su2 gauge algebra; this procedure func-
tions as a gauging of the su2 flavor. As such, this flavor
symmetry only persists to a symmetry of the full SCFT
when the (−2)-curves of the E-string are not connected to
any other compact curves.

B. The classical origin of flavor symmetries

For each curve decorated by a nonminimal gauge
algebra, an inspection of the geometry reveals the presence
of hypermultiplets transforming in various representations
R. To satisfy the gauge anomaly cancellation condition,
there must be a particular number, k, of full hypermultiplets
[25]. Then, there is a rotation of these k hypermultiplets
which gives rise to a classical flavor symmetry, whose
specific action depends on the nature of the representation:

f ¼

8>><
>>:

suk if R is complex;

so2k if R is quaternionic;

usp2k if R is real:

ð4:5Þ

We expect these classical flavor symmetries to be flavor
symmetries of the SCFT that exists at the origin of the tensor
branch, except in a few special cases where we have an su2

gauge algebra with fewer than eight fundamental hyper-
multiplets. For instance, in the case of an su2 gauge group on
top of a (−2)-curve, the cancellation of gauge anomalies
requires the presence of eight half-hypermultiplets. This
indicates that the hypermultiplets fall in the vector repre-
sentation of so8. However, in the geometric realization, the
fiber on top of the (−2)-curve has a singularity of type IVns

and therefore it is associated to a gauge algebrausp2 ≅ su2.
The type IVns fiber on the (−2)-curve meets an I�ss0 fiber
which is associated to the flavor algebra so7. The eight half-
hypermultiplets in the fundamental of su2 transform in the
spinor representation of the so7. This can also be understood
from a purely field theoretic perspective: there is an incon-
sistency with theories involving an su2 gauge algebra with
fundamental hypermultiplets transforming in the vector of an
so8 flavor algebra, whichmakes the flavor symmetry algebra
to be so7 instead [40]. A similar reasoning applied to
different numbers of half-hypermultiplets charged under
an su2 algebra leads to [25,40,41]:

1
2
-hypermultiplets 3 4 6 7 8

non-Abelian flavor f ∅ su2 su3 g2 so7

. In F-theory, these are modeled by noncompact elliptic
fibrations endowed with Lie algebras su2 ⊕ f. Some of
these models have been studied explicitly from geometric
perspective: su2 ⊕ su2 in [42], su2 ⊕ su3 in [43], su2 ⊕
g2 in [44], and so7 in [45].
Finally, there is the special case of a single hyper-

multiplet charged under the (2, 2) bifundamental repre-
sentation of an su2 ⊕ su2 algebra. As this representation is

real, there is an additional usp2 ≅ su2 flavor symmetry
rotating the hypermultiplet. If there are more than two su2

algebras linked together, only the diagonal subgroup
rotating the baryonic operators made out of the bifunda-
mental hypermultiplets survives [32,46]. Examples of
quivers exhibiting this special baryonic symmetry and
the associated trifundamental representations are pictured
in Fig. 4.
Before closing this section, we note that in [47,48] it was

argued that a few flavor algebras appear inconsistent with a
geometric construction via F-theory. An example is uspk
rotating the hypermultiplets in the fundamental represen-
tation of f4. It may therefore be expected that the apparent
flavor symmetry does not persist at the SCFT point.
However, as we see in the remainder of this work, some
of these apparently inconsistent realizations do appear in
4D SCFTs obtained by compactifying a 6D (1, 0) theory on
the torus, and their central charges match that of their class
S avatars. To emphasize this point, we shall now consider
an explicit example. The logic of this section dictates that
the 6D geometric configuration

1
f4
; ð4:6Þ

FIG. 4. Three examples of quivers involving baryonic su2

global symmetries. The circular nodes are the gauge nodes
associated to the compact curves, and the square nodes are the
flavor symmetries added following Sec. IV. The numbers in blue
below each gauge node are the self-intersection numbers of that
compact curve. The trivalent vertices indicate the presence of
matter in the trifundamental representation and the dashed lines
indicate matter transforming in the fundamental representation of
the gauge node and the adjoint representation of the flavor node.
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should have a usp8 flavor symmetry rotating the four
fundamental hypermultiplets of the f4 gauge algebra. From
the perspective of the elliptic fibration in [47] the singular
fiber associated to that flavor algebra is not apparent. This
is not surprising and is expected as f4 ⊕ usp8 is not a
subalgebra of e8 and hence the Katz–Vafa method of matter
representations from F-theory model does not apply
[39,49]. However, the 4D N ¼ 2 SCFT obtained from
the compactification of the 6D (2, 0) theory, which is also
obtained as the T2 compactification of the configuration in
Eq. (4.6) as can be seen in Table IX, does have a usp8
flavor symmetry. It therefore seems strained to argue that,
only in these few cases, the symmetry does not exist for the
6D SCFT, but that the exact same symmetry algebra
reemerges in the infrared of the flow to the 4D SCFT.
We are led to the conclusion that these flavor symmetry
algebras may be hidden in apparent F-theory constructions
and is yet to be resolved.

V. ANOMALY POLYNOMIALS
FOR 6D (1, 0) SCFTS

Theories of class S are obtained from a twisted com-
pactification of the 6D (2, 0) theories on a punctured
Riemann surface Cg;n. We wish to compare these 4D
N ¼ 2 theories with those obtained by compactifying
6D (1, 0) SCFTs on a torus. Our main tools for determining
whether two theories are the same are their 4D central
charges, namely a and c, and the central charges of the
non-Abelian flavor symmetries ki. From the 6D (1, 0)
SCFT origin, such central charges are determined from the
’t Hooft coefficients of the 6D anomaly polynomial I8.
In this section, we explain the procedure required to

determine the anomaly polynomial for a 6D (1, 0) SCFT
with the given geometric data. The anomaly polynomial I8
is an eight-form built out of the characteristic classes of the
algebras associated to the symmetries of the theory, such as
the Lorentz, R-, gauge, and flavor symmetries. We first take
the perspective of [50,51] and extend further to compute the
anomaly polynomial on the tensor branch. This anomaly
polynomial is unaltered in the SCFT limit where all curves
are shrunk to zero-volume. The anomaly polynomial can be
expressed as the following general form

I8 ¼
α

24
c2ðRÞ2 þ

β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
a

TrF2
a

�
κap1ðTÞ þ νac2ðRÞ þ

X
b

ρabTrF2
b

�

þ
X
a

μaTrF4
a; ð5:1Þ

where each summation over a or b runs over the sim-
ple non-Abelian flavor symmetries of the theory. The
anomaly polynomial in equation (5.1) has been worked
out from the geometric perspective of F-theory for a

variety of supergravity [42–45,52–62] and superconformal
[4,46,50,51,63–74] theories; we give a sample of the
literature here.
The anomaly polynomial has two contributions: the one-

loop contribution and the Green–Schwarz–West–Sagnotti
[75–77] contribution.18 The one-loop contribution is,
roughly speaking, the contribution from the free multiplets
that live at a generic point of the tensor branch. The Green-
Schwarz contribution, which was understood in the context
of F-theory in [78], arises from the tensionful string-like
degrees of freedom also living at a generic point of the
tensor branch. The strings, which arise as D3-branes
wrapping the curves of the geometric configuration,
become tensionless at the origin of the tensor branch,
reflecting the presence of an interacting SCFT [1]. We write
the anomaly polynomial as

I8 ¼ I1-loop8 þ IGS8 ; ð5:2Þ

and compute each term in turn.

A. One-loop contribution to the anomaly polynomial

The one-loop contribution is determined directly from
the geometric configuration at a generic point of the tensor
branch. To compute the one-loop term, we first need to
know the contributions to the anomaly polynomial of single
tensor multiplets, hypermultiplets, and vector multiplets,
which were first computed in [79]. They are given by:

Itensor8 ¼ 1

24
c2ðRÞ2 þ

1

48
c2ðRÞp1ðTÞ

þ 1

5760
ð23p1ðTÞ2 − 116p2ðTÞÞ; ð5:3Þ

Ivector8 ðg; FÞ ¼ −
1

24
ðTradjF4 þ 6c2ðRÞTradjF2

þ dimðgÞc2ðRÞ2Þ

−
1

48
p1ðTÞðTradjF2 þ dimðgÞc2ðRÞÞ

−
dimðgÞ
5760

ð7p1ðTÞ2 − 4p2ðTÞÞ; ð5:4Þ

Ihyper8 ðg;R; FÞ ¼ 1

24
TrRF4 þ 1

48
p1ðTÞTrRF2

þ dimðRÞ
5760

ð7p1ðTÞ2 − 4p2ðTÞÞ; ð5:5Þ

where g is a semisimple algebra, either gauge or flavor, R is
a representation of g, and F is the curvature associated to g.
Furthermore, the various traces are taken over the repre-
sentation written as a subscript. We convert all of the traces

18The latter is often referred to simply as the Green-Schwarz or
“GS” contribution.
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into the one-instanton-normalized traces, which we denote
as TrF2 and TrF4. This conversion is given in terms of
Casimir invariants of the Lie algebra:

TrRF2 ¼ ARTrF2;

TrRF4 ¼ BRTrF4 þ CRðTrF2Þ2: ð5:6Þ

The coefficients AR; BR; CR for the representations relevant
to F-theory constructions can be found in Appendix F of
[28].19 We commonly have hypermultiplets charged under
bifundamental representations, or more exotic birepresen-
tations, hence we note that if a hypermultiplet is charged
under the representation ðR1;R2Þ of two algebras g1 ⊕ g2,
the traces can be written in terms of the data of each factor:

TrðR1;R2ÞF
2 ¼ dimðR1ÞTrR2

F2 þ dimðR2ÞTrR1
F2;

TrðR1;R2ÞF
4 ¼ dimðR1ÞTrR2

F4 þ 6TrR1
F2TrR2

F2

þ dimðR2ÞTrR1
F4: ð5:7Þ

Beyond the standard multiplets, we also need to know
the contribution of rank Q E-string, as well as N ¼ ð2; 0Þ
tensor multiplets. For the E-string, the anomaly polynomial
is given by [72]:

IE-string8 ðQ;TrF2
e8 ;c2ðLÞÞ¼

Q3

6
ðc2ðLÞ−c2ðRÞÞ2

þQ2

8
ðc2ðLÞ−c2ðRÞÞIð4Þ

þQ

�
1

2
I2ð4Þ− Ið8Þ

�
− Ifree; ð5:8Þ

where

Ið4Þ ¼
1

2
ðTrF2

e8 þ p1ðTÞ − 2c2ðLÞ − 2c2ðRÞÞ; ð5:9Þ

Ið8Þ ¼
1

192
ð4p2ðTÞ− ð4c2ðLÞþp1ðTÞÞð4c2ðRÞþp1ðTÞÞÞ;

ð5:10Þ

Ifree ¼
1

24
c2ðLÞ2 þ

1

48
c2ðLÞp1ðTÞ þ

7

5760
p1ðTÞ2

−
1

1440
p2ðTÞ: ð5:11Þ

The trace TrF2
e8 is associated to the e8 flavor symmetry of

the E-string. For the rank one E-string the c2ðLÞ terms are
absent. For Q > 1 we have c2ðLÞ ¼ 1

4
TrF2

su2
, which

corresponds to the curvature of the su2 flavor. Finally,

the anomaly polynomial of an N ¼ ð2; 0Þ tensor multiplet
is [79]:

Ið2;0Þ8 ¼ 1

24
ðc2ðLÞ2 þ c2ðRÞ2Þ þ

1

48
ðc2ðLÞ þ c2ðRÞÞp1ðTÞ

þ 1

192
p1ðTÞ2 −

1

48
p2ðTÞ: ð5:12Þ

Now that we have the contributions Itensor8 , Ivector8 , Ihyper8 ,

IE-string8 , and Ið2;0Þ8 to hand we can describe the algorithm to
construct the one-loop anomaly contribution. We state the
algorithm as the following.
Algorithm 1. The one-loop anomaly polynomial is

determined from a geometric configuration of curves and
algebras via the following five steps.
(1) For each curve with an associated gauge algebra

include an Itensor8 .
(2) For each simple gauge algebra g include an

Ivector8 ðg; FgÞ where Fg is the curvature of g.
(3) For each hypermultiplet in a representation R of a

(possibly semisimple) Lie algebra h, where h may
contain both gauge and flavor factors, include an
Ihyper8 ðh;R; FhÞ. The curvature Fh of h is reducible if
h is not simple.

(4) For each rank Q E-string in the curve configuration
include an IE-string8 ðQÞ. Write h ¼ ⊕ihi, where hi
denotes the algebras on the compact and noncom-
pact curves intersecting the (−1)-curve of the
E-string. Then the embedding ρ∶h → e8 describes
how the e8 flavor symmetry of the E-string decom-
poses. For each irreducible component hi, we denote
the corresponding embedding part as ρi and the
Dynkin index of each factor as lρi . The curvature of
the e8 flavor symmetry decomposes via

TrF2
e8 →

X
i

lρiTrF
2
hi

ð5:13Þ

in IE-string8 ðQÞ. If a (−2)-curve of the E-string
intersects another curve, then we must have Q ¼
2 and the algebra on the neighboring curve must be
su2; in this case we must also replace c2ðLÞ in
IE-string8 ðQÞ with 1

4
TrF2

su2
, where Fsu2

is the curva-
ture of the neighboring su2.

(5) For each (−2)-curve with no associated algebra, that

is not part of an E-string, include an Ið2;0Þ8 . Replace

c2ðLÞ in Ið2;0Þ8 with 1
4
TrF2

su2
, where Fsu2

is the
curvature of the su2 algebra on the adjacent curve.

20

Summing each of these contributions across the entire
geometric configuration, we obtain the one-loop contribu-
tion to the anomaly polynomial Ione-loop8 .

19There are various conventions for the coefficients AR, BR,
and CR in the physics literature. In [28], they are denoted by hR,
xR, and yR respectively.

20As we are considering theories which have strict (1, 0)
supersymmetry, each such (−2)-curve has exactly one neighbor,
which has an su2 algebra over it.
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To highlight Algorithm 1, we give a simple but illus-
trative example with the following geometric configuration:

12 2
su2

3
g2
13
g2
: ð5:14Þ

We label the curvatures of the three gauge algebras,
left-to-right, as F1, F2, and F3, respectively. First, we

find the flavor symmetries associated to this curve con-
figuration as

(i) an e8 attached to the leftmost (−1)-curve.
(ii) an su2 attached to the rightmost (−1)-curve.
(iii) a usp2 attached to the rightmost (−3)-curve.

We denote the curvatures of these flavor algebras F4, F5,
and F6, respectively. Then the one-loop anomaly is
composed of their contributions as

Ione-loop8 ¼ 3Itensor8 þ Ivector8 ðsu2; F1Þ þ Ivector8 ðg2; F2Þ þ Ivector8 ðg2; F3Þ

þ 1

2
Ihyper8 ðsu2 ⊕ g2; ð2; 7Þ; F1 ⊕ F2Þ þ

1

2
Ihyper8 ðg2 ⊕ usp2; ð7; 2Þ; F3 ⊕ F6Þ

þ IE-string8

�
2;TrF2

e8 → TrF2
4; c2ðLÞ →

1

4
TrF2

1

�
þ IE-string8 ð1;TrF2

e8 → TrF2
2 þ TrF2

3 þ 8TrF2
5Þ: ð5:15Þ

The factor 8 in the final line of the Eq. (5.15) is given by the
Dynkin embedding index of the su2 flavor symmetry factor
inside e8, which is 8; this is listed in Table V where we
summarized all the subalgebras of e8 relevant for our
purposes with their Dynkin indices for each irreducible
component of the subalgebras. For the E-string contribu-
tions, we use the notation IE-string8 ðQ; � � �Þ as in equa-
tion (5.8), where we have written explicitly the
replacements for the e8 and su2 curvatures as described
in step 4 of Algorithm 1.
The one-loop anomaly generally contains pure gauge

anomalies, as well as mixed-gauge-flavor, mixed-gauge-
gravity, and mixed-gauge-R-symmetry anomalies. These
are canceled by the Green-Schwarz contribution to the
anomaly polynomial.

B. Green-Schwarz anomaly contribution

A prescription to find the Green-Schwarz contribution to
the anomaly polynomial IGS8 directly from the generalized
quiver and its intersection data was given in [51]. The GS
contribution is determined at a nongeneric point of the
tensor branch where all of the curves in the curve
configuration associated to E-strings are shrunk.
Shrinking one of the E-strings is equivalent to recur-

sively shrinking the corresponding (−1)-curve that does not
have an associated gauge algebra, which requires a blow-
down operation modifying the intersection matrix. Let Ãij

be the intersection matrix obtained at the nongeneric point
of the tensor branch after shrinking all E-strings and Aij be
the intersection matrix at a generic point.
At this nongeneric point of the tensor branch, the Green-

Schwarz anomaly contribution is given by [50,51]

IGS8 ¼ −
1

2
ÃijIiIj; ð5:16Þ

where the four-form Ii takes the following form

Ii ¼ 1

4
ð−ÃijTrF2

j − BiaTrF2
a − ð2þ ÃiiÞp1ðTÞÞ

þ yic2ðRÞ; ð5:17Þ

with i, j running over compact curves, Ãij ¼ ðÃ−1Þij is the
inverse of the associated adjacency matrix, and the index a
runs over the simple non-Abelian flavor algebras of the
theory. The coefficient yi is h∨gi at a generic point of the
tensor branch and its modification must be tracked when
shrinking the E-strings. The coefficients of all but the TrF2

a
term are determined from the tensor branch configuration
in [51], where they found Bia for the considered examples
to be either zero or one.
For more generic cases, we find that anomaly cancella-

tion for the mixed-gauge-flavor anomaly, which is required
for a consistent 6D SCFT [80], enforces that we take

Bia ¼
�
4ηARi

ARa
if fa is classical flavor;

lρa if fa is E-string flavor;
ð5:18Þ

when we have a compact curve labeled by i that intersects a
flavor curve labeled by a, where η is given by

η ¼
� 1

2
for a half-hypermultiplet;

1 else:
ð5:19Þ

If the flavor algebra fa arises from an E-string (see
Sec. IVA for its detail), then it is associated to an
embedding ρa∶fa → e8 and with the Dynkin index of this
embedding lρa . When the flavor symmetry originates from
a noncompact curve Σa, we recover the expected result that
Bia is the intersection number between the compact and
noncompact curves.
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C. A single tensor theory with flavor

To illustrate the cancellation of mixed-gauge-flavor
anomalies using the prescription given in the Eq. (5.18),
we determine the anomaly polynomials for all 6D SCFTs
with a single tensor associated to a (−n)-curve and arbitrary
gauge group:

n
g
: ð5:20Þ

For simplicity, we consider cases where there is only one
type of hypermultiplet representation, and thus only a
single flavor algebra f.21 In view of the matter content,
this adds only a single (possibly half-)hypermultiplet in the
ðRg;Rf Þ representation to the rest of the spectrum, which
are the tensor multiplet and the vector multiplet trans-
forming in the adjoint representation of g. The gauge
anomaly cancellation condition fixes the number of hyper-
multiplets, and the flavor symmetry is the classical sym-
metry rotating those hypermultiplets, as described in
Sec. IV B. Thus the flavor symmetry is fixed by the values
of n and g. The multiplicity η of the hypermultiplet depends
on whether the representation ðRg;Rf Þ is quaternionic:

η ¼
� 1

2
if ðRg;Rf Þ is quaternionic;

1 otherwise:
ð5:21Þ

The one-loop contribution to the anomaly polynomial
can be straightforwardly worked out from the algorithm
given in Sec. VA. It is simply

Ione-loop8 ¼ Itensor8 þ Ivector8 ðg; FgÞ
þ ηIhyper8 ðg ⊕ f; ðRg;Rf Þ; Fg ⊕ FfÞ: ð5:22Þ

The Green-Schwarz term is defined by Eq. (5.16) and in
this case it is

IGS8 ¼ 1

2n
ðI1Þ2;

I1¼ 1

4
ðb1TrF2

gþb2TrF2
f þb3p1ðTÞÞþb4c2ðRÞ: ð5:23Þ

In this expression we have left the coefficients appearing
in I1 arbitrary. We show that cancellation of all gauge and
mixed-gauge anomalies requires that the coefficients must
be as described in Sec. V B.
Combining the one-loop and GS contributions one finds

that the resulting anomaly polynomial contains the terms

I8 ⊃
1

48
ðηARg

dRf
− h∨G þ 3b1b316nÞp1ðTÞTrF2

g

þ 1

4

�
b1b4
n

− h∨G
�
c2ðRÞTrF2

g

þ 1

24

�
3b21
4n

þ ηdRg
CRg

− Cadjg

�
ðTrF2

gÞ2

þ 1

24
ðηdRf

BRg
− BadjgÞTrF4

g

þ 1

4

�
b1b2
4n

þ ηARg
ARf

�
TrF2

gTrF2
f : ð5:24Þ

To cancel all of the (mixed-)gauge anomalies we must have

b1 ¼ n; b2 ¼ −4ηARg
ARf

;

b3 ¼ −
1

3
ðηARg

dRf
− h∨GÞ; b4 ¼ h∨G: ð5:25Þ

As we can see the coefficient of the TrF2
f term, b2, is as

stated in Eq. (5.18). The types of representations and the
number of hypermultiplets transforming therein are highly
prescribed by the choice of g and n. In Table VI, we
document the coefficients appearing in the Green-Schwarz
term for 6D SCFTs of this form (i.e. a single tensor with an
associated gauge algebra and matter all transforming under
one flavor algebra), and we can see that in each case the
Eq. (5.18) is verified.

VI. 4D N = 2 CENTRAL CHARGES
FROM 6D (1, 0) ANOMALIES

Compactifications of 6D (1, 0) SCFTs on T2 in such a
way that one obtains a 4D N ¼ 2 SCFT have been much
studied in recent years, in particular in [6,40,46,71,81–91].
To understand the nature of the resulting 4DN ¼ 2 SCFTs

TABLE VI. Green-Schwarz coefficients for SCFTs with one
tensor multiplet and only one flavor algebra. The flavor algebra is
determined by the values of n and g. We have not written the
configurations where the flavor algebra rotating the hypermul-
tiplets is Abelian.

n g f Rep ðb1; b2; b3; b4Þ
1 su2 so20 1

2
ð2; 20Þ ð1;−1;−1; 2Þ

2 su2 so7 1
2
ð2; 8Þ ð2;−1; 0; 2Þ

1, 2 su3 su18−6n ð3; 18 − 6nÞ ðn;−1; n − 2; 3Þ
2 suk≥4 su2k ðk; 2kÞ ð2;−1; 0; kÞ
1 usp2k so4kþ16

1
2
ð2k;4kþ16Þ ð1;−1;−1; kþ 1Þ

3 so7 usp4 1
2
ð8; 4Þ ð3;−1; 1; 5Þ

4 sok≥9 usp2k−16 1
2
ðk; 2k − 8Þ ð4;−1;−2; k − 2Þ

1, 2, 3 g2 usp20−6n 1
2
ð7;20−6nÞ ðn;−1; n − 2; 4Þ

1, 2, 3, 4 f4 usp10−2n 1
2
ð26;10−2nÞ ðn;−3; n − 2; 9Þ

1, 2, 3, 4 e6 su6−n ð27; 6 − nÞ ðn;−6; n − 2; 12Þ
1, 2, 3, 4, 5 e7 so8−n 1

2
ð56; 8 − nÞ ðn;−12;n−2;18Þ

21It is a straightforward generalization to include other matter
representations and/or other flavor symmetry algebras.
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it is necessary to utilize different techniques depending on
the particular compactification and on the particular class of
(1, 0) SCFTs considered. In this paper, we study examples
of a particularly amenable class known as the very
Higgsable 6D SCFTs.
A 6D SCFT is called very Higgsable if there exist Higgs

branch RG flows that break the theory down to a collection
of free hypermultiplets [6]. All very Higgsable theories
have a trivial endpoint configuration, meaning that if one
takes the geometric data at a generic point of the tensor
branch and repeatedly blow-down the (−1)-curves then one
is left with no compact curves. The 6D (1, 0) theories
considered in this paper, T gfY1; Y2g, are obtained from
Higgs branch flows of minimal conformal matter. It is
easily checked from the tensor branch configurations in
Eq. (3.16) that the theories T g are very Higgsable, and thus
the theories T gfY1; Y2g are also very Higgsable.
If a 6D SCFT is very Higgsable, then one can use similar

arguments to those that appear in [92] to determine the central
charges and flavor central charges of the 4DSCFT that arises
from the T2 compactification. We write the relevant terms of
the anomaly polynomial of the 6D SCFT as

I8 ¼
β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
i

κip1ðTÞTrF2
i þ � � � ; ð6:1Þ

where the sum runs over the simple non-Abelian flavor
algebras of the SCFT, and the ellipses contain terms unrelated

to (mixed-)gravitational anomalies. The central charges of
the 4D SCFT are then given by [6]:

ða; cÞ ¼
�
γ −

1

2
β −

3

4
δ;
8

3
γ −

1

2
β −

1

3
δ

�
: ð6:2Þ

These can be converted to the effective numbers of vector
multiplets and hypermultiplets via

ðnv; nhÞ ¼ ð4ð2a − cÞ;−4ð4a − 5cÞÞ

¼
�
−2β −

2

3
ð4γ þ 7δÞ;−2β þ 16

3
ð4γ þ 16δÞ

�
:

ð6:3Þ

Similarly, the central charge of the flavor symmetry algebra is

ki ¼ 192κi: ð6:4Þ

In this way, the central charges of the 4DN ¼ 2 theories
T gfY1; Y2ghT2i can be determined directly from the
anomaly polynomials of the 6D (1, 0) theories T gfY1; Y2g.

VII. MATCHING 4D SCFTS FROM DIFFERENT
6D ORIGINS

We have introduced all the necessary tools to verify the
following relationship for the 4D N ¼ 2 theories with two
different 6D origins, where the top line is from 6D (2, 0)
SCFTs and the bottom line is from 6D (1, 0) SCFTs:

SghC0;3ifY1; Y2; Ysimpleg →
Partial closure of punctures

SghC0;3ifỸ1; Y2; Ysimpleg
jj jj

T gfY1; Y2g →
Higgs flow=RG flow

T gfỸ1; Y2g
: ð7:1Þ

Here, the equals signs denote the equality of 4D theories
after compactifying the 6D (1, 0) SCFTs on the bottom row
on a torus. We reviewed in Sec. II how to obtain the central
charges, flavor symmetries, and other physical data of the
4DN ¼ 2 SCFTs obtained by compactifying the 6D (2, 0)
theory of type g on a punctured Riemann surface. These
provide the data necessary for the top line in Eq. (7.1). In
contrast, we get the constructions of 6D (1, 0) SCFTs from
F-theory and further compactify on a torus to yield the
4D N ¼ 2 theories, corresponding to the bottom line of
equation (7.1). We summarized such construction of 6D
(1, 0) SCFTs from F-theory and how to determine their
flavor symmetries and anomaly polynomials in Secs. III,
IV, and V. We explained how to determine the central
charges, flavor symmetries, and other physical data of the
4DN ¼ 2 SCFTs obtained by compactifying the 6D (1, 0)
theories on a torus in Sec. VI.

Utilizing all of these data and methodology, in this
section, we compare the 4D N ¼ 2 theories obtained from
the 6D (2, 0) constructions and those from the 6D (1, 0)
constructions when g is an exceptional Lie algebra. It was
proposed that the minimal ðg; gÞ conformal matter com-
pactified on a T2 gives rise to the same 4DN ¼ 2 SCFT as
the 6D (2, 0) SCFTof type g compactified on a sphere with
two full punctures and one simple puncture [6]. This was
extended to rank N ðg; gÞ conformal matter compactified
on T2 being equivalent to the 6D (2, 0) SCFT of type g
compactified on a sphere with two full and N simple
punctures [83]. In this section, we show that this identi-
fication extends to all nilpotent Higgs branch deformations
of minimal ðg; gÞ conformal matter and all partial closures
of the full punctures of the fixture, as presented in Eq. (7.1).
We first discuss the verification of Eq. (7.1) for the case

of g ¼ e6. Let us start from the 6D (1, 0) origin with ðe6; e6Þ
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conformal matter. As explained in Sec. III, the associated
noncompact elliptically fibered Calabi-Yau geometry can
be written as

1 3
su3

1; ð7:2Þ

and this theory has a flavor symmetry e6 ⊕ e6. We can give
a nilpotent vacuum expectation value to break one of the e6
flavor symmetries:

e6 → su6: ð7:3Þ

This particular nilpotent orbit is associated to the Bala-
Carter label A1. After doing such a complex structure
deformation the geometric data at a generic point of the
tensor branch is

1 2
su3

: ð7:4Þ

This configuration has two further possible deformations.
One of them corresponds to giving a nilpotent vacuum
expectation value in the same orbit A1 to the other e6 factor.
This would naively lead to an su6 ⊕ su6 flavor symmetry,
but this is not the case. The configuration at a generic point
of the tensor branch after this deformation is

1
su3

; ð7:5Þ
and this shows apparently that the flavor symmetry
enhances to an su12 instead. It is important to note that,
when the flavor symmetry is enhanced beyond the naive
flavor symmetry associated to each nilpotent orbit, one can
read the enhanced flavor symmetry directly off from the
geometric configuration, as demonstrated in this simple
case. The cancellation of anomalies requires than an su3

algebra over a (−1)-curve has twelve fundamental hyper-
multiplets, and thus there is an su12 flavor symmetry
rotating those hypermultiplets, as described in Sec. IV.
The other deformation leads to the tensor branch

configuration

FIG. 5. Here we depict the Hasse diagram for both the
6D (1, 0) theories T e6fY1; Y2g and the 4D N ¼ 2 theories
Se6hC0;3ifY1; Y2; Ysimpleg. In each box we write the geometric
configuration for T e6fY1; Y2g and ½Y1; Y2�A, where Y1, Y2 are
the Bala-Carter labels for the nilpotent orbits and A ¼
IðnteractingÞ;MðixedÞ indicates whether the class S fixture
Se6hC0;3ifY1; Y2; Ysimpleg contains a free sector. A sequence of
arrows relates boxes associated to ½Y1; Y2� and ½Ỹ1; Y2� if Y1 > Ỹ1

in the partial ordering of nilpotent orbits. The central charges and
flavor symmetries of the 4D N ¼ 2 theories shown here appear
in Table VII.

TABLE VII. This table demonstrates the relationship between
the 4DN ¼ 2SCFTsobtained asT2 compactifications of nilpotent
Higgsings of minimal ðe6; e6Þ conformal matter T e6fY1; Y2ghT2i
and the class S theories Se6hC0;3ifY1; Y2; Ysimpleg. In the fixture
column, we write the Bala–Carter labels for the nilpotent orbits
Y1 and Y2. The subscript is M if the 4D N ¼ 2 theory
Se6hC0;3ifY1; Y2; Ysimpleg has both an interacting sector and addi-
tional free hypermultiplets; the subscript I means that there are
no free hypermultiplets. In the central charge column, we list the
central charges as obtained from the T2 compactification of the
6D (1, 0) SCFT via the Eq. (6.3), and equally those obtained from
the class S construction using the Eq. (2.3), after subtracting the
contributions from any free hypermultiplets. The flavor symmetry
and flavor central charge, denoted as the subscript, are determined
from the 6D (1, 0) SCFT perspective following Sec. IV and the
Eq. (6.4). They are equally determined from the classS perspective
via the computation of the τ2 term of the Hall-Littlewood index,
which was performed in [15].

dimðCÞ Fixture 6D SCFT ðnv; nhÞ
Flavor

symmetry

5 ½0; 0�I 1 3
su3

1
(89, 168) ðe6Þ24 ⊕ ðe6Þ24

4 ½0; A1�I 1 2
su3 (66, 134) ðe6Þ24⊕ðsu6Þ18

3
½0; 2A1�I 1 2

su2 (49, 112) ðe7Þ24⊕ðso7Þ16
½A1; A1�I 1

su3 (43, 100) ðsu12Þ18

2

½0; 3A1�I 1 2 (34, 93) ðe8Þ24⊕ðsu2Þ13
½A1; 2A1�M 1

su2 (26, 72) ðso20Þ16
½0; A2�I 1 ⊔ 1 (22, 80) ðe8Þ12 ⊕ ðe8Þ12

1 ½0; A2 þ A1�M
1 (11, 40) ðe8Þ12½A1; 3A1�M

½2A2;ð0;ðF4Þ12Þ�I
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TABLE VIII. In this table, we show the relationship between the 4D N ¼ 2 SCFTs obtained as T2 compactifications of nilpotent
Higgsing of minimal ðe7; e7Þ conformal matter, T e7fY1; Y2ghT2i, and the class S theories Se7hC0;3ifY1; Y2; Ysimpleg. The information
contained in each column is as described in the caption of Table VII. From the class S perspective the determination of the flavor
symmetry requires knowledge of the Hall-Littlewood index, which was determined for e7 fixtures in [16].

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

10 ½0; 0�I 1 2
su2

3
so7

2
su2

1
(250, 384) ðe7Þ36 ⊕ ðe7Þ36

9 ½0; A1�I 1 2
su2

3
so7

1
su2 (215, 332) ðe7Þ36 ⊕ ðso12Þ28

8 ½0; 2A1�I 1 2
su2

3
so7

1
(188, 296) ðe7Þ36 ⊕ ðso9Þ24 ⊕ ðsu2Þ20

½A1; A1�I 1
su2

3
so7

1
su2 (180, 280) ðso12Þ28 ⊕ ðso12Þ28

7 ½0; 3A00
1�I 1 2

su2

3
g2
1

(169, 276) ðe7Þ36 ⊕ ðf4Þ24
½A1; 2A1�I 1

su2

3
so7

1
(153, 244) ðso12Þ28 ⊕ ðso9Þ24 ⊕ ðsu2Þ20

½0; 3A0
1�I 1 2

su2

2
so7 (165, 267) ðe7Þ36 ⊕ ðusp6Þ20 ⊕ ðsu2Þ19

½0; A2�I 1 2
su2

2
su4 (147, 248) ðe7Þ36 ⊕ ðsu6Þ20

6 ½0; 4A1�I 1 2
su2

2
g2 (146, 245) ðe7Þ36 ⊕ ðusp6Þ19

½0; A2 þ A1�I 1 2
su2

2
su3 (128, 224) ðe7Þ36 ⊕ ðsu4Þ18

½A1; 3A00
1�I 1

su2

3
g2
1

(134, 224) ðf4Þ24 ⊕ ðso13Þ28
½2A1; 2A1�I 1 3

so7
1

(126, 208) ðso9Þ24 ⊕ ðso9Þ24 ⊕ ðusp2Þ20
½A1; 3A0

1�I 1
su2

2
so7 (130, 215) ðso12Þ28 ⊕ ðusp6Þ20 ⊕ ðsu2Þ19

½A1; A2�I 1
su2

2
su4 (112, 196) ðso12Þ28 ⊕ ðsu6Þ20

5 ½0; A2 þ 2A1�I 1 2
su2

2
su2 (111, 204) ðe7Þ36 ⊕ ðsu2Þ28 ⊕ ðsu2Þ16 ⊕ ðsu2Þ84

½2A1; 3A00
1 �M 1 3

g2
1

(107, 187) ðf4Þ24 ⊕ ðf4Þ24 ⊕ ðsu2Þ19
½A1; 4A1�I 1

su2

2
g2 (111, 193) ðso13Þ28 ⊕ ðusp6Þ19

½A1; A2 þ A1�I 1
su2

2
su3 (93, 172) ðso14Þ28 ⊕ ðsu4Þ18

½2A1; 3A0
1�I 1 2

so7 (103, 179) ðso9Þ24 ⊕ ðusp8Þ20 ⊕ ðsu2Þ19
½2A1; A2�I 1 2

su4 (85, 160) ðso10Þ24 ⊕ ðsu8Þ20
4 ½0; A2 þ 3A1�I 1 2

su2

2
(96, 188) ðe7Þ36 ⊕ ðg2Þ28

½0; 2A2�I 1 2 2
su2 (84, 176) ðe8Þ36 ⊕ ðg2Þ16

½2A1; 4A1�M 1 2
g2 (84, 156) ðf4Þ24 ⊕ ðusp8Þ19

½3A0
1; 3A

00
1 �M

½2A1; A2 þ A1�M 1 2
su3 (66, 134) ðe6Þ24 ⊕ ðsu6Þ18

½3A00
1; A2�M

½A1; A2 þ 2A1�I 1
su2

2
su2 (76, 152) ðso16Þ28 ⊕ ðsu2Þ16 ⊕ ðsu2Þ56

½3A0
1; 3A

0
1�I 1

so7 (80, 150) ðusp12Þ20 ⊕ ðusp2Þ19
½3A0

1; A2�M 1
su4 (62, 130) ðsu12Þ20 ⊕ ðsu2Þ18

½0; A3�I 1 2
su2 ⊔ 1

(60, 152) ðe8Þ12 ⊕ ðe7Þ24 ⊕ ðso7Þ16
3 ½0; 2A2 þ A1�I 1 2 2 (69, 158) ðe8Þ36 ⊕ ðsu2Þ38

½0; ðA3 þ A1Þ0�I 1 2 ⊔ 1 (45, 133) ðe8Þ12 ⊕ ðe8Þ24 ⊕ ðsu2Þ13
½A1; A2 þ 3A1�I 1

su2

2
(61, 136) ðso19Þ28

(Table continued)
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TABLE VIII. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½0; ðA3 þ A1Þ00�M 1 2
su2 (49, 112) ðe7Þ24 ⊕ ðso7Þ16

½A1; 2A2�M
½2A1; A2 þ 2A1�M

½3A0
1; 4A1�M 1

g2 (61, 125) ðusp14Þ19
½3A0

1; A2 þ A1�M 1
su3 (43, 100) ðsu12Þ18

½A2; 4A1�M
½0; D4ða1Þ�I 1 ⊔ 1 ⊔ 1 (33, 120) ðe8Þ12 ⊕ ðe8Þ12 ⊕ ðe8Þ12

2 ½0; A3 þ 2A1�M 1 2 (34, 93) ðe8Þ24 ⊕ ðsu2Þ13
½A1; 2A2 þ A1�M
½2A1; A2 þ 3A1�M
½3A0

1; A2 þ 2A1�M 1
su2 (26, 72) ðso20Þ16

½0; D4ða1Þ þ A1�M 1 ⊔ 1 (22, 80) ðe8Þ12 ⊕ ðe8Þ12
1 ½0; A3 þ A2�M 1 (11, 40) ðe8Þ12

½3A0
1; A2 þ 3A1�M
½A4; ð0; E6Þ�I

½A00
5 ; ð3A00

1 ; F4Þ�I

FIG. 6. The Hasse diagram for both the 6D (1, 0) theories T e7fY1; Y2g and the 4D N ¼ 2 theories Se7hC0;3ifY1; Y2; Ysimpleg. The
notation is the same as described in Fig. 5. The physical properties of the 4D N ¼ 2 SCFTs are collected in Table VIII.
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TABLE IX. In this table, we show the relationship between the 4D N ¼ 2 SCFTs obtained as T2 compactifications of nilpotent
Higgsings of minimal ðe8; e8Þ conformal matter, T e8fY1; Y2ghT2i, and the class S theories Se8hC0;3ifY1; Y2; Ysimpleg. The information
contained in each column is as described in the caption of Table VII. From the class S perspective the determination of the flavor
symmetry requires knowledge of the Hall-Littlewood index, which was determined for e8 fixtures in [17].

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

21 ½0; 0�I
1 2 2

su2

3
g2
1 5
f4
1 3
g2

2
su2

2 1
(831, 1080) ðe8Þ60 ⊕ ðe8Þ60

20 ½0; A1�I
1 2 2

su2

3
g2
1 5
f4
1 3
g2

2
su2

1
(772, 992) ðe8Þ60 ⊕ ðe7Þ48

19 ½0; 2A1�I
1 2 2

su2

3
g2
1 5
f4
1 3
g2

1
su2 (725, 928) ðe8Þ60 ⊕ ðso13Þ40

½A1; A1�I
1 2
su2

3
g2
1 5
f4
1 3
g2

2
su2

1
(713, 904) ðe7Þ48 ⊕ ðe7Þ48

18 ½0; 3A1�I
1 2 2

su2

3
g2
1 5
f4
1 3
g2
1

(686, 879) ðe8Þ60 ⊕ ðf4Þ36 ⊕ ðsu2Þ31
½0; A2�I

1 2 2
su2

3
g2
1 5
f4
1 3
su3

1
(656, 848) ðe8Þ60 ⊕ ðe6Þ36

½A1; 2A1�I
1 2
su2

3
g2
1 5
f4
1 3
g2

1
su2 (666, 840) ðe7Þ48 ⊕ ðso13Þ40

17 ½0; 4A1�I
1 2 2

su2

3
g2
1 5
f4
1 2
g2 (651, 836) ðe8Þ60 ⊕ ðusp8Þ31

½0; A2 þ A1�I
1 2 2

su2

3
g2
1 5
f4
1 2
su3 (621, 802) ðe8Þ60 ⊕ ðsu6Þ30

½A1; 3A1�I
1 2
su2

3
g2
1 5
f4
1 3
g2
1

(627, 791) ðe7Þ48 ⊕ ðf4Þ36 ⊕ ðsu2Þ31
½A1; A2�I

1 2
su2

3
g2
1 5
f4
1 3
su3

1
(597, 760) ðe7Þ48 ⊕ ðe6Þ36

½2A1; 2A1�I
1
su2

3
g2
1 5
f4
1 3
g2

1
su2 (619, 776) ðso13Þ40 ⊕ ðso13Þ40

16 ½0; A2 þ 2A1�I
1 2 2

su2

3
g2
1 5
f4
1 2
su2 (592, 768) ðe8Þ60 ⊕ ðso7Þ28 ⊕ ðsu2Þ144

½A1; 4A1�I
1 2
su2

3
g2
1 5
f4
1 2
g2 (592, 748) ðe7Þ48 ⊕ ðusp8Þ31

½A1; A2 þ A1�I
1 2
su2

3
g2
1 5
f4
1 2
su3 (562, 714) ðe7Þ48 ⊕ ðsu6Þ30

½2A1; 3A1�I
1
su2

3
g2
1 5
f4
1 3
g2
1

(580, 727) ðf4Þ36 ⊕ ðso13Þ40 ⊕ ðsu2Þ31
½2A1; A2�I

1
su2

3
g2
1 5
f4
1 3
su3

1
(550, 696) ðe6Þ36 ⊕ ðso13Þ40

15 ½0; A2 þ 3A1�I
1 2 2

su2

3
g2
1 5
f4
1 2

(565, 737) ðe8Þ60 ⊕ ðg2Þ48 ⊕ ðsu2Þ25
½0; 2A2�I

1 2 2
su2

3
g2
1 5

f4

1
1

(541, 712) ðe8Þ60 ⊕ ðg2Þ24 ⊕ ðg2Þ24

½0; A3�I 1 2 2
su2

3
g2
1 4
so9

1
su2 (505, 680) ðe8Þ60 ⊕ ðso11Þ28

½A1; A2 þ 2A1�I
1 2
su2

3
g2
1 5
f4
1 2
su2 (533, 680) ðe7Þ48 ⊕ ðso7Þ28 ⊕ ðsu2Þ144

½2A1; 4A1�I
1
su2

3
g2
1 5
f4
1 2
g2 (545, 684) ðso13Þ40 ⊕ ðusp8Þ31

½2A1; A2 þ A1�I
1
su2

3
g2
1 5
f4
1 2
su3 (515, 650) ðso13Þ40 ⊕ ðsu6Þ30

½3A1; 3A1�I
1 3
g2
1 5
f4
1 3
g2
1

(541, 678) ðf4Þ⊕2
36 ⊕ ðsu2Þ⊕2

31

½3A1; A2�I
1 3
g2
1 5
f4
1 3
su3

1
(511, 647) ðf4Þ36 ⊕ ðe6Þ36 ⊕ ðsu2Þ31

½A2; A2�I
1 3
su3

1 5
f4
1 3
su3

1
(481, 616) ðe6Þ36 ⊕ ðe6Þ36

14 ½0; 2A2 þ A1�I
1 2 2

su2

3
g2
1 4
f4
1

(518, 686) ðe8Þ60 ⊕ ðg2Þ24 ⊕ ðsu2Þ62
½0; A3 þ A1�I 1 2 2

su2

3
g2
1 4
so9

1
(478, 645) ðe8Þ60 ⊕ ðso7Þ24 ⊕ ðsu2Þ21

½0; D4ða1Þ�I 1 2 2
su2

3
g2
1 4
so8

1
(458, 624) ðe8Þ60 ⊕ ðso8Þ24

½A1; A2 þ 3A1�I
1 2
su2

3
g2
1 5
f4
1 2

(506, 649) ðe7Þ48 ⊕ ðg2Þ48 ⊕ ðsu2Þ25

(Table continued)
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TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½A1; 2A2�I
1 2
su2

3
g2
1 5

1

f4
1

(482, 624) ðe7Þ48 ⊕ ðg2Þ24 ⊕ ðg2Þ24

½3A1; 4A1�I
1 3
g2
1 5
f4
1 2
g2 (506, 635) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðusp8Þ31

½A2; 4A1�I
1 3
su3

1 5
f4
1 2
g2 (476, 604) ðe6Þ36 ⊕ ðusp8Þ31

½2A1; A2 þ 2A1�I
1
su2

3
g2
1 5
f4
1 2
su2 (486, 616) ðsu2Þ144 ⊕ ðso13Þ40 ⊕ ðso7Þ28

½3A1; A2 þ A1�I
1 3
g2
1 5
f4
1 2
su3 (476, 601) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðsu6Þ30

½A2; A2 þ A1�I
1 3
su3

1 5
f4
1 2
su3 (446, 570) ðe6Þ36 ⊕ ðsu6Þ30

½A1; A3�I 1 2
su2

3
g2
1 4
so9

1
su2 (446, 592) ðe7Þ48 ⊕ ðso11Þ28

13 ½0; 2A2 þ 2A1�I
1 2 2

su2

3
g2
1 3
f4 (495, 660) ðe8Þ60 ⊕ ðusp4Þ62

½0; A3 þ 2A1�I 1 2 2
su2

3
g2
1 3
so9 (455, 618) ðe8Þ60 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½0; D4ða1Þ þ A1�I 1 2 2
su2

3
g2
1 3
so8 (435, 596) ðe8Þ60 ⊕ ðsu2Þ⊕3

20

½2A1; A2 þ 3A1�I
1
su2

3
g2
1 5
f4
1 2

(459, 585) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðso13Þ40
½3A1; A2 þ 2A1�I

1 3
g2
1 5
f4
1 2
su2 (447, 567) ðf4Þ36 ⊕ ðsu2Þ144 ⊕ ðsu2Þ31 ⊕ ðso7Þ28

½A2; A2 þ 2A1�I
1 3
su3

1 5
f4
1 2
su2 (417, 536) ðe6Þ36 ⊕ ðsu2Þ144 ⊕ ðso7Þ28

½2A1; 2A2�I
1
su2

3
g2
1 5

1

f4
1

(435, 560) ðg2Þ24 ⊕ ðg2Þ24 ⊕ ðso13Þ40

½4A1; 4A1�I
2
g2
1 5
f4
1 2
g2 (471, 592) ðusp8Þ31 ⊕ ðusp8Þ31

½4A1; A2 þ A1�I
2
g2
1 5
f4
1 2
su3 (441, 558) ðusp8Þ31 ⊕ ðsu6Þ30

½A2 þ A1; A2 þ A1�I
2
su3

1 5
f4
1 2
su3 (411, 524) ðsu6Þ30 ⊕ ðsu6Þ30

½A1; 2A2 þ A1�I
1 2
su2

3
g2
1 4
f4
1

(459, 598) ðe7Þ48 ⊕ ðg2Þ24 ⊕ ðsu2Þ62
½A1; A3 þ A1�I 1 2

su2

3
g2
1 4
so9

1
(419, 557) ðe7Þ48 ⊕ ðso7Þ24 ⊕ ðsu2Þ21

½A1; D4ða1Þ�I 1 2
su2

3
g2
1 4
so8

1
(399, 536) ðe7Þ48 ⊕ ðso8Þ24

½2A1; A3�I 1
su2

3
g2
1 4
so9

1
su2 (399, 528) ðso13Þ40 ⊕ ðso11Þ28

12 ½0; A3 þ A2�I 1 2 2
su2

3
g2
1 3
so7 (416, 576) ðe8Þ60 ⊕ ðusp4Þ20

½A1; 2A2 þ 2A1�I
1 2
su2

3
g2
1 3
f4 (436, 572) ðe7Þ48 ⊕ ðusp4Þ62

½A1; A3 þ 2A1�I 1 2
su2

3
g2
1 3
so9 (396, 530) ðe7Þ48 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½A1; D4ða1Þ þ A1�I 1 2
su2

3
g2
1 3
so8 (376, 508) ðe7Þ48 ⊕ ðsu2Þ⊕3

20

½3A1; A2 þ 3A1�I
1 3
g2
1 5
f4
1 2

(420, 536) ðf4Þ36 ⊕ ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðsu2Þ31
½A2; A2 þ 3A1�I

1 3
su3

1 5
f4
1 2

(390, 505) ðe6Þ36 ⊕ ðg2Þ48 ⊕ ðsu2Þ25
½A2 þ A1; A2 þ 2A1�I

2
su3

1 5
f4
1 2
su2 (382, 490) ðsu2Þ144 ⊕ ðsu6Þ30 ⊕ ðso7Þ28

½4A1; A2 þ 2A1�I
2
g2
1 5
f4
1 2
su2 (412, 524) ðsu2Þ144 ⊕ ðusp8Þ31 ⊕ ðso7Þ28

½3A1; 2A2�I
1 3
g2
1 5

1

f4
1

(396, 511) ðf4Þ36 ⊕ ðg2Þ⊕2
24 ⊕ ðsu2Þ31

½A2; 2A2�I
1 3
su3

1 5
1

f4
1

(366, 480) ðe6Þ36 ⊕ ðg2Þ24 ⊕ ðg2Þ24

½2A1; 2A2 þ A1�I
1
su2

3
g2
1 4
f4
1

(412, 534) ðg2Þ24 ⊕ ðso13Þ40 ⊕ ðsu2Þ62

(Table continued)
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TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½2A1; A3 þ A1�I 1
su2

3
g2
1 4
so9

1
(372, 493) ðso7Þ24 ⊕ ðso13Þ40 ⊕ ðsu2Þ21

½2A1; D4ða1Þ�I 1
su2

3
g2
1 4
so8

1
(352, 472) ðso8Þ24 ⊕ ðso13Þ40

½3A1; A3�I 1 3
g2
1 4
so9

1
su2 (360, 479) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðso11Þ28

½A2; A3�I 1 3
su3

1 4
so9

1
su2 (330, 448) ðe6Þ36 ⊕ ðso11Þ28

11 ½0; A3 þ A2 þ A1�I 1 2 2
su2

3
g2
1 3
g2 (397, 555) ðe8Þ60 ⊕ ðsu2Þ384 ⊕ ðsu2Þ19

½0; D4ða1Þ þ A2�I 1 2 2
su2

3
g2
1 3
su3 (379, 536) ðe8Þ60 ⊕ ðsu3Þ96

½A1; A3 þ A2�I 1 2
su2

3
g2
1 3
so7 (357, 488) ðe7Þ48 ⊕ ðusp4Þ20

½2A1; 2A2 þ 2A1�I
1
su2

3
g2
1 3
f4 (389, 508) ðso13Þ40 ⊕ ðusp4Þ62

½2A1; A3 þ 2A1�I 1
su2

3
g2
1 3
so9 (349, 466) ðso13Þ40 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½2A1; D4ða1Þ þ A1�I 1
su2

3
g2
1 3
so8 (329, 444) ðso13Þ40 ⊕ ðsu2Þ⊕3

20

½0; A4�I 1 2 2
su2

2
su3

2
su4 (321, 480) ðe8Þ60 ⊕ ðsu5Þ20

½4A1; A2 þ 3A1�I
2
g2
1 5
f4
1 2

(385, 493) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðusp8Þ31
½A2 þ A1; A2 þ 3A1�I

2
su3

1 5
f4
1 2

(355, 459) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðsu6Þ30
½A2 þ 2A1; A2 þ 2A1�I

2
su2

1 5
f4
1 2
su2 (353, 456) ðsu2Þ⊕2

144 ⊕ ðso7Þ⊕2
28

½4A1; 2A2�I
2
g2
1 5

1

f4
1

(361, 468) ðg2Þ24 ⊕ ðg2Þ24 ⊕ ðusp8Þ31

½A2 þ A1; 2A2�I
2
su3

1 5
1

f4
1

(331, 434) ðg2Þ24 ⊕ ðg2Þ24 ⊕ ðsu6Þ30

½4A1; A3�I 2
g2
1 4
so9

1
su2 (325, 436) ðusp8Þ31 ⊕ ðso11Þ28

½A2 þ A1; A3�I 2
su3

1 4
so9

1
su2 (295, 402) ðsu6Þ30 ⊕ ðso11Þ28

½3A1; 2A2 þ A1�I
1 3
g2
1 4
f4
1

(373, 485) ðf4Þ36 ⊕ ðg2Þ24 ⊕ ðsu2Þ31 ⊕ ðsu2Þ62
½3A1; A3 þ A1�I 1 3

g2
1 4
so9

1
(333, 444) ðf4Þ36 ⊕ ðso7Þ24 ⊕ ðsu2Þ31 ⊕ ðsu2Þ21

½3A1; D4ða1Þ�I 1 3
g2
1 4
so8

1
(313, 423) ðf4Þ36 ⊕ ðso8Þ24 ⊕ ðsu2Þ31

½A2; 2A2 þ A1�I
1 3
su3

1 4
f4
1

(343, 454) ðe6Þ36 ⊕ ðg2Þ24 ⊕ ðsu2Þ62
½A2; A3 þ A1�I 1 3

su3

1 4
so9

1
(303, 413) ðe6Þ36 ⊕ ðso7Þ24 ⊕ ðsu2Þ21

½A2; D4ða1Þ�I 1 3
su3

1 4
so8

1
(283, 392) ðe6Þ36 ⊕ ðso8Þ24

10 ½A1; A3 þ A2 þ A1�I 1 2
su2

3
g2
1 3
g2 (338, 467) ðe7Þ48 ⊕ ðsu2Þ384 ⊕ ðsu2Þ19

½A1; D4ða1Þ þ A2�I 1 2
su2

3
g2
1 3
su3 (320, 448) ðe7Þ48 ⊕ ðsu3Þ96

½3A1; 2A2 þ 2A1�I
1 3
g2
1 3
f4 (350, 459) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðusp4Þ62

½3A1; A3 þ 2A1�I 1 3
g2
1 3
so9 (310, 417) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½3A1; D4ða1Þ þ A1�I 1 3
g2
1 3
so8 (290, 395) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðsu2Þ⊕3

20

½A2; 2A2 þ 2A1�I
1 3
su3

1 3
f4 (320, 428) ðe6Þ36 ⊕ ðusp4Þ62

½A2; A3 þ 2A1�I 1 3
su3

1 3
so9 (280, 386) ðe6Þ36 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½A2; D4ða1Þ þ A1�I 1 3
su3

1 3
so8 (260, 364) ðe6Þ36 ⊕ ðsu2Þ⊕3

20

½2A1; A3 þ A2�I 1
su2

3
g2
1 3
so7 (310, 424) ðso13Þ40 ⊕ ðusp4Þ20
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TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½0; A4 þ A1�I 1 2 2
su2

2
su3

2
su3 (302, 457) ðe8Þ60 ⊕ ðsu3Þ18

½A1; A4�I 1 2
su2

2
su3

2
su4 (262, 392) ðe7Þ48 ⊕ ðso2Þ40 ⊕ ðsu5Þ20

½A2 þ 2A1; A2 þ 3A1�I
2
su2

1 5
f4
1 2

(326, 425) ðsu2Þ144 ⊕ ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðso7Þ28
½A2 þ 2A1; 2A2�I

2
su2

1 5
f4

1
1

(302, 400) ðsu2Þ144 ⊕ ðg2Þ24 ⊕ ðg2Þ24 ⊕ ðso7Þ28

½4A1; 2A2 þ A1�I
2
g2
1 4
f4
1

(338, 442) ðg2Þ24 ⊕ ðusp8Þ31 ⊕ ðsu2Þ62
½4A1; A3 þ A1�I 2

g2
1 4
so9

1
(298, 401) ðso7Þ24 ⊕ ðusp8Þ31 ⊕ ðsu2Þ21

½4A1; D4ða1Þ�I 2
g2
1 4
so8

1
(278, 380) ðso8Þ24 ⊕ ðusp8Þ31

½A2 þ 2A1; A3�I 2
su2

1 4
so9

1
su2 (266, 368) ðsu2Þ48 ⊕ ðsu2Þ96 ⊕ ðso7Þ28 ⊕ ðso11Þ28

½A2 þ A1; 2A2 þ A1�I
2
su3

1 4
f4
1

(308, 408) ðg2Þ24 ⊕ ðsu6Þ30 ⊕ ðsu2Þ62
½A2 þ A1; A3 þ A1�I 2

su3

1 4
so9

1
(268, 367) ðso7Þ24 ⊕ ðsu6Þ30 ⊕ ðsu2Þ21

½A2 þ A1; D4ða1Þ�I 2
su3

1 4
so8

1
(248, 346) ðso8Þ24 ⊕ ðsu6Þ30

9 ½A2 þ 3A1; A2 þ 3A1�I
2 1 5

f4
1 2

(299, 394) ðg2Þ⊕2
48 ⊕ ðsu2Þ⊕2

25

½0; D4�I 1 2 2
su2

3
g2
1 ⊔ 1

(227, 392) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðf4Þ24
½0; 2A3�I 1 2 2

su2

2
g2

2
su2 (315, 470) ðe8Þ60 ⊕ ðusp4Þ31

½0; A4 þ 2A1�I 1 2 2
su2

2
su3

2
su2 (285, 438) ðe8Þ60 ⊕ ðsu2Þ30

½A1; A4 þ A1�I 1 2
su2

2
su3

2
su3 (243, 369) ðe7Þ48 ⊕ ðsu3Þ18

½2A1; A3 þ A2 þ A1�I 1
su2

3
g2
1 3
g2 (291, 403) ðsu2Þ384 ⊕ ðso13Þ40 ⊕ ðsu2Þ19

½2A1; D4ða1Þ þ A2�I 1
su2

3
g2
1 3
su3 (273, 384) ðsu3Þ96 ⊕ ðso13Þ40

½3A1; A3 þ A2�I 1 3
g2
1 3
so7 (271, 375) ðf4Þ36 ⊕ ðsu2Þ31 ⊕ ðusp4Þ20

½A2; A3 þ A2�I 1 3
su3

1 3
so7 (241, 344) ðe6Þ36 ⊕ ðsu2Þ96 ⊕ ðusp4Þ20

½A2 þ 3A1; 2A2�I
2 1 5

1

f4
1

(275, 369) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðg2Þ24 ⊕ ðg2Þ24

½A2 þ 2A1; 2A2 þ A1�I
2
su2

1 4
f4
1

(279, 374) ðsu2Þ144 ⊕ ðg2Þ24 ⊕ ðso7Þ28 ⊕ ðsu2Þ62
½A2 þ 2A1; A3 þ A1�I 2

su2

1 4
so9

1
(239, 333) ðsu2Þ48 ⊕ ðsu2Þ96 ⊕ ðso7Þ24 ⊕ ðso7Þ28 ⊕ ðsu2Þ21

½A2 þ 2A1; D4ða1Þ�I 2
su2

1 4
so8

1
(219, 312) ðsu2Þ⊕3

48 ⊕ ðso8Þ24 ⊕ ðso7Þ28
½A2 þ 3A1; A3�I 2 1 4

so9
1
su2 (239, 337) ðso7Þ48 ⊕ ðsu2Þ25 ⊕ ðso11Þ28

½4A1; 2A2 þ 2A1�I
2
g2
1 3
f4 (315, 416) ðusp8Þ31 ⊕ ðusp4Þ62

½4A1; A3 þ 2A1�I 2
g2
1 3
so9 (275, 374) ðusp8Þ31 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½4A1; D4ða1Þ þ A1�I 2
g2
1 3
so8 (255, 352) ðusp8Þ31 ⊕ ðsu2Þ⊕3

20

½A2 þ A1; 2A2 þ 2A1�I
2
su3

1 3
f4 (285, 382) ðsu6Þ30 ⊕ ðusp4Þ62

½A2 þ A1; A3 þ 2A1�I 2
su3

1 3
so9 (245, 340) ðsu6Þ30 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½A2 þ A1; D4ða1Þ þ A1�I 2
su3

1 3
so8 (225, 318) ðsu6Þ30 ⊕ ðsu2Þ⊕3

20

½2A1; A4�I 1
su2

2
su3

2
su4 (215, 328) ðso14Þ40 ⊕ ðsu5Þ20

½2A2; 2A2�I
5
1 1

1 f4 1 (251, 344) ðg2Þ⊕4
24

½2A2; A3�I 1 4
1

so9
1
su2 (215, 312) ðso7Þ24 ⊕ ðso7Þ24 ⊕ ðso11Þ28
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TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

8 ½0; A4 þ A2�I 1 2 2
su2

2
su2

2
su2 (256, 408) ðe8Þ60 ⊕ ðsu2Þ16 ⊕ ðsu2Þ200

½0; D4 þ A1�I 1 2 2
su2

2
g2 ⊔ 1

(204, 361) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðusp6Þ19
½0; D5ða1Þ�I 1 2 2

su2

2
su3 ⊔ 1

(186, 340) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðsu4Þ18
½A1; 2A3�I 1 2

su2

2
g2

2
su2 (256, 382) ðe7Þ48 ⊕ ðusp4Þ31

½A1; A4 þ 2A1�I 1 2
su2

2
su3

2
su2 (226, 350) ðe7Þ48 ⊕ ðsu2Þ30

½3A1; A3 þ A2 þ A1�I 1 3
g2
1 3
g2 (252, 354) ðf4Þ36 ⊕ ðsu2Þ384 ⊕ ðsu2Þ31 ⊕ ðsu2Þ19

½3A1; D4ða1Þ þ A2�I 1 3
g2
1 3
su3 (234, 335) ðf4Þ36 ⊕ ðsu3Þ96 ⊕ ðsu2Þ31

½A2; A3 þ A2 þ A1�I 1 3
su3

1 3
g2 (222, 323) ðe6Þ36 ⊕ ðsu3Þ96 ⊕ ðsu2Þ19

½A2; D4ða1Þ þ A2�I 1 3
su3

1 3
su3 (204, 304) ðe6Þ36 ⊕ ðsu3Þ48 ⊕ ðsu3Þ48

½A2 þ 3A1; 2A2 þ A1�I
2 1 4

f4
1

(252, 343) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðg2Þ24 ⊕ ðsu2Þ62
½A2 þ 3A1; A3 þ A1�I 2 1 4

so9
1

(212, 302) ðso7Þ48 ⊕ ðsu2Þ25 ⊕ ðso7Þ24 ⊕ ðsu2Þ21
½A2 þ 3A1; D4ða1Þ�I 2 1 4

so8
1

(192, 281) ðso8Þ48 ⊕ ðsu2Þ25 ⊕ ðso8Þ24
½A2 þ 2A1; 2A2 þ 2A1�I

2
su2

1 3
f4 (256, 348) ðsu2Þ144 ⊕ ðso7Þ28 ⊕ ðusp4Þ62

½A2 þ 2A1; A3 þ 2A1�I 2
su2

1 3
so9 (216, 306) ðsu2Þ48 ⊕ ðsu2Þ96 ⊕ ðso7Þ28 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40

½A2 þ 2A1; D4ða1Þ þ A1�I 2
su2

1 3
so8 (196, 284) ðsu2Þ⊕3

48 ⊕ ðso7Þ28 ⊕ ðsu2Þ⊕3
20

½4A1; A3 þ A2�I 2
g2
1 3
so7 (236, 332) ðusp8Þ31 ⊕ ðusp4Þ20

½A2 þ A1; A3 þ A2�I 2
su3

1 3
so7 (206, 298) ðsu2Þ96 ⊕ ðsu6Þ30 ⊕ ðusp4Þ20

½2A1; A4 þ A1�I 1
su2

2
su3

2
su3 (196, 305) ðso14Þ40 ⊕ ðsu3Þ18

½3A1; A4�I 1 2
su3

2
su4 (176, 278) ðe6Þ36 ⊕ ðsu2Þ30 ⊕ ðsu5Þ20

½A3; 2A2 þ A1�M 1
su2

3
so9

1
(192, 285) ðso7Þ24 ⊕ ðso11Þ28 ⊕ ðsu2Þ21 ⊕ ðsu2Þ40

½2A2; 2A2 þ A1�I
1 4

1

f4
1

(228, 318) ðg2Þ⊕3
24 ⊕ ðsu2Þ62

½2A2; A3 þ A1�I 1 4
1

so9
1

(188, 277) ðso7Þ⊕3
24 ⊕ ðsu2Þ21

½2A2; D4ða1Þ�I 1 4
1

so8
1

(168, 256) ðso8Þ⊕3
24

7 ½0; A4 þ A2 þ A1�I 1 2 2
su2

2
su2

2
(241, 392) ðe8Þ60 ⊕ ðsu2Þ200

½A1; A4 þ A2�I 1 2
su2

2
su2

2
su2 (197, 320) ðe7Þ48 ⊕ ðsu2Þ16 ⊕ ðsu2Þ160 ⊕ ðsu2Þ40

½0; D5ða1Þ þ A1�I 1 2 2
su2

2
su2 ⊔ 1

(169, 320) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðsu2Þ16 ⊕ ðsu2Þ112
½2A1; 2A3�I 1

su2

2
g2

2
su2 (209, 318) ðso13Þ40 ⊕ ðusp4Þ31

½2A1; A4 þ 2A1�I 1
su2

2
su3

2
su2 (179, 286) ðso14Þ40 ⊕ ðsu2Þ30

½3A1; A4 þ A1�M 1 2
su3

2
su3 (157, 255) ðe6Þ36 ⊕ ðsu3Þ30 ⊕ ðsu3Þ18

½A2 þ 3A1; 2A2 þ 2A1�I
2 1 3

f4 (229, 317) ðg2Þ48 ⊕ ðsu2Þ25 ⊕ ðusp4Þ62
½A2 þ 3A1; A3 þ 2A1�I 2 1 3

so9 (189, 275) ðso7Þ48 ⊕ ðsu2Þ25 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40
½A2 þ 3A1; D4ða1Þ þ A1�I 2 1 3

so8 (169, 253) ðso8Þ48 ⊕ ðsu2Þ25 ⊕ ðsu2Þ⊕3
20

½4A1; A3 þ A2 þ A1�I 2
g2
1 3
g2 (217, 311) ðsu2Þ384 ⊕ ðusp8Þ31 ⊕ ðsu2Þ19
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TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½4A1; D4ða1Þ þ A2�I 2
g2
1 3
su3 (199, 292) ðsu3Þ96 ⊕ ðusp8Þ31

½A2 þ A1; A3 þ A2 þ A1�I 2
su3

1 3
g2 (187, 277) ðsu3Þ96 ⊕ ðsu6Þ30 ⊕ ðsu2Þ19

½A2 þ A1; D4ða1Þ þ A2�I 2
su3

1 3
su3 (169, 258) ðsu3Þ48 ⊕ ðsu3Þ48 ⊕ ðsu6Þ30

½A2 þ 2A1; A3 þ A2�I 2
su2

1 3
so7 (177, 264) ðsu2Þ48 ⊕ ðusp4Þ48 ⊕ ðso7Þ28 ⊕ ðusp4Þ20

½2A2; 2A2 þ 2A1�I
1 3
f4
1

(205, 292) ðg2Þ24 ⊕ ðg2Þ24 ⊕ ðusp4Þ62
½2A2 þ A1; 2A2 þ A1�I

½2A2; A3 þ 2A1�I 1 3
so9

1
(165, 250) ðso7Þ⊕2

24 ⊕ ðusp4Þ21 ⊕ ðsu2Þ40½2A2 þ A1; A3 þ A1�M
½2A2; D4ða1Þ þ A1�I 1 3

so8
1

(145, 228) ðso8Þ⊕2
24 ⊕ ðsu2Þ⊕3

20½2A2 þ A1; D4ða1Þ�M
½A3; 2A2 þ 2A1�M 1

su2

2
so9 (169, 258) ðso11Þ28 ⊕ ðusp4Þ21 ⊕ ðusp4Þ40

½4A1; A4�M 1
su3

2
su4 (141, 232) ðsu8Þ30 ⊕ ðsu5Þ20

6 ½A1; A4 þ A2 þ A1�I 1 2
su2

2
su2

2
(182, 304) ðe7Þ48 ⊕ ðsu2Þ40 ⊕ ðsu2Þ160

½3A1; 2A3�M 1 2
g2

2
su2 (170, 269) ðf4Þ36 ⊕ ðusp6Þ31

½3A1; A4 þ 2A1�M 1 2
su3

2
su2 (140, 236) ðe6Þ36 ⊕ ðsu4Þ30

½A2; 2A3�M
½2A1; A4 þ A2�I 1

su2

2
su2

2
su2 (150, 256) ðso16Þ40 ⊕ ðsu2Þ16 ⊕ ðsu2Þ120

½A2 þ 2A1; D4ða1Þ þ A2�I 2
su2

1 3
su3 (140, 224) ðsu6Þ48 ⊕ ðso7Þ28

½A2 þ 3A1; A3 þ A2�I 2 1 3
so7 (150, 233) ðso9Þ48 ⊕ ðsu2Þ25 ⊕ ðusp4Þ20

½A2 þ 2A1; A3 þ A2 þ A1�I 2
su2

1 3
g2 (158, 243) ðusp6Þ48 ⊕ ðso7Þ28 ⊕ ðsu2Þ19

½2A2; A3 þ A2�I 1 3
so7

1
(126, 208) ðso9Þ24 ⊕ ðso9Þ24 ⊕ ðusp4Þ20

½2A2 þ A1; 2A2 þ 2A1�I
1 2
f4 (182, 266) ðg2Þ24 ⊕ ðusp6Þ62

½A3 þ A1; 2A2 þ 2A1�M 1 2
so9 (142, 223) ðso7Þ24 ⊕ ðusp6Þ21 ⊕ ðusp4Þ40

½2A2 þ A1; A3 þ 2A1�M
½D4ða1Þ; 2A2 þ 2A1�M 1 2

so8 (122, 200) ðso8Þ24 ⊕ ðusp4Þ⊕3
20½2A2 þ A1; D4ða1Þ þ A1�M

½4A1; A4 þ A1�M 1
su3

2
su3 (122, 209) ðsu9Þ30 ⊕ ðsu3Þ18

½0; D4 þ A2�I 1 2 2
su2

2 ⊔ 1
(154, 304) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðsu3Þ28

½0; A5�I 1 2 2
su2 ⊔ 1 2

(118, 269) ðe8Þ24 ⊕ ðsu2Þ13 ⊕ ðe8Þ36 ⊕ ðg2Þ16
½0; E6ða3Þ�I 1 2 2

su2 ⊔ 1 ⊔ 1
(106, 256) ðe8Þ12 ⊕ ðe8Þ12 ⊕ ðe8Þ36 ⊕ ðg2Þ16

5 ½0; A4 þ A3�I 1 2 2 2 2 (175, 324) ðe8Þ60 ⊕ ðsu2Þ124
½0; D5ða1Þ þ A2�I 1 2 2 2 ⊔ 1 (127, 275) ðe8Þ12 ⊕ ðe8Þ48 ⊕ ðsu2Þ75

½2A1; A4 þ A2 þ A1�I 1
su2

2
su2

2
(135, 240) ðso16Þ40 ⊕ ðsu2Þ120

½3A1; A4 þ A2�M 1 2
su2

2
su2 (111, 204) ðe7Þ36 ⊕ ðsu2Þ28 ⊕ ðsu2Þ16 ⊕ ðsu2Þ84

½A2 þ 3A1; A3 þ A2 þ A1�I 2 1 3
g2 (131, 212) ðf4Þ48 ⊕ ðsu2Þ25 ⊕ ðsu2Þ19

½A2 þ 3A1; D4ða1Þ þ A2�I 2 1 3
su3 (113, 193) ðe6Þ48 ⊕ ðsu2Þ25

½4A1; 2A3�M 1
g2

2
su2 (135, 226) ðusp12Þ31

½4A1; A4 þ 2A1�M 1
su3

2
su2 (105, 190) ðsu10Þ30

½A2 þ A1; 2A3�I
½2A2; A3 þ A2 þ A1�I 1 3

g2
1

(107, 187) ðf4Þ24 ⊕ ðf4Þ24 ⊕ ðsu2Þ19
(Table continued)
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1 2
su2

; ð7:6Þ

where the su6 broke further down. The flavor symmetry
for this theory is then e7 ⊕ so7. Again, we see that the
enhancement and recombination of the flavor symmetry is
manifest in the configuration. Continuing this process, it is
easy to find all possible deformations of the ðe6; e6Þ
conformal matter, and they are summarized in the Hasse
diagram depicted in Fig. 5.
We can obtain 4DN ¼ 2 SCFTs by compactifying these

6D (1, 0) theories on a torus. It is straightforward to
compute their central charges using the Eq. (6.3), as well as
their flavor symmetries which can be readily obtained from
the geometric data. This information for the case of the
ðe6; e6Þ conformal matter is gathered in Table VII.

We now turn to the 6D (2, 0) origin when g ¼ e6. The 4D
N ¼ 2 theories

Se6hC0;3ifY1; Y2; Ysimpleg; ð7:7Þ

are specified by a pair of e6 nilpotent orbits, ½Y1; Y2�. These
pairs can be arranged into a Hasse diagram under the partial
ordering of nilpotent orbits, where we identify pairs that
lead to the same interacting 4D SCFT, and this is also
displayed in Fig. 5.
The 6D (2, 0) SCFT when compactified on a three-

punctured sphere may give rise to a 4D SCFT that is a
product of an interacting SCFT and a collection of free
hypermultiplets. The number of free hypermultiplets can
be determined by computing the OðτÞ term of the Hall-
Littlewood index, and thus it is straightforward to subtract

TABLE IX. (Continued)

dimðCÞ Fixture 6D SCFT ðnv; nhÞ Flavor symmetry

½2A2; D4ða1Þ þ A2�I 1 3
su3

1
(89, 168) ðe6Þ24 ⊕ ðe6Þ24

½2A2 þ A1; A3 þ A2�M 1 2
so7 (103, 179) ðso9Þ24 ⊕ ðsu2Þ19 ⊕ ðusp8Þ20

½2A2 þ 2A1; 2A2 þ 2A1�I
1
f4 (159, 240) ðusp8Þ62

½2A2 þ 2A1; A3 þ 2A1�M 1
so9 (119, 196) ðusp8Þ21 ⊕ ðusp6Þ40

½2A2 þ 2A1; D4ða1Þ þ A1�M 1
so8 (99, 172) ðusp6Þ⊕3

20

½0; A5 þ A1�I 1 2 2 ⊔ 1 2 (103, 251) ðe8Þ36 ⊕ ðsu2Þ38 ⊕ ðe8Þ24 ⊕ ðsu2Þ13
½0; E6ða3Þ þ A1�I 1 2 2 ⊔ 1 ⊔ 1 (91, 238) ðe8Þ36 ⊕ ðsu2Þ38 ⊕ ðe8Þ⊕2

12

½0; D6ða2Þ�I 1 2 ⊔ 1 2 ⊔ 1 (79, 226) ðe8Þ12 ⊕ ðe8Þ⊕2
24 ⊕ ðsu2Þ⊕2

13

½0; E7ða5Þ�I 1 2 ⊔ 1 ⊔ 1 ⊔ 1 (67, 213) ðe8Þ⊕3
12 ⊕ ðe8Þ24 ⊕ ðsu2Þ13

½0; E8ða7Þ�I 1 ⊔ 1 ⊔ 1 ⊔ 1 ⊔ 1 (55, 200) ðe8Þ⊕5
12

4 ½A1; A4 þ A3�I 1 2 2 2 (116, 235) ðe8Þ48 ⊕ ðsu2Þ75
½3A1; A4 þ A2 þ A1�M 1 2

su2

2
(96, 188) ðe7Þ36 ⊕ ðg2Þ28

½4A1; A4 þ A2�M ½A2 þ 2A1; 2A3�M 1
su2

2
su2 (76, 152) ðso16Þ28 ⊕ ðsu2Þ16 ⊕ ðsu2Þ56

½2A2 þ A1; A3 þ A2 þ A1�M 1 2
g2 (84, 156) ðf4Þ24 ⊕ ðusp8Þ19

½2A2 þ A1; D4ða1Þ þ A2�M 1 2
su3 (66, 134) ðe6Þ24 ⊕ ðsu6Þ18

½2A2 þ 2A1; A3 þ A2�M 1
so7 (80, 150) ðusp4Þ19 ⊕ ðusp12Þ20

3 ½A1; A4 þ A3�I 1 2 2 (69, 158) ðe8Þ36 ⊕ ðsu2Þ38
½4A1; A4 þ A2 þ A1�M 1

su2

2
(61, 136) ðso19Þ28

½A2 þ 3A1; 2A3�M ½D5; ðA1; E7Þ�I 1 2
su2 (49, 112) ðe7Þ24 ⊕ ðso7Þ16

½2A2 þ 2A1; A3 þ A2 þ A1�M 1
g2 (61, 125) ðusp14Þ19

½2A2 þ 2A1; D4ða1Þ þ A2�M 1
su3 (43, 100) ðsu12Þ18

2 ½D5 þ A1; ðA1; E7Þ�I 1 2 (34, 93) ðe8Þ24 ⊕ ðsu2Þ13
½D6ða1Þ; ðA1; E7Þ; E8ða1Þ�I 1 ⊔ 1 (22, 80) ðe8Þ12 ⊕ ðe8Þ12

1 ½E6; ðD4; F4Þ�I 1 (11, 40) ðe8Þ12
½E6ða1Þ; ðA2; E6Þ�I
½A6; ð0; E7Þ; �I

½E7ða4Þ; ðA1; E7Þ�M
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those and obtain the central charges for the interacting
sectors utilizing Eq. (2.3). These central charges, which
are the same as the central charges of the theories
T e6fY1; Y2ghT2i, are collated in Table VII.
The determination of the flavor symmetries and the

flavor central charges requires additional care, as the C0;3
in the 6D (2, 0) origin only makes manifest the flavor
symmetries associated to the individual punctures. To
determine the full flavor symmetry one must compute
the coefficient of the τ2 term in the Hall–Littlewood index,
which is given in terms of characters of the representations
of the manifest flavor algebras, and then recombine those
into the summands of a branching rule for the adjoint
representation of some larger algebra f. This is then the
superconformal flavor symmetry. The flavor symmetry
enhancements were worked out for all e6 fixtures with
untwisted punctures in [15]. These non-Abelian flavor
symmetries, which are identical to the flavor symmetries
manifest in the theories T e6fY1; Y2ghT2i are listed in the
final column of Table VII.
Similar correspondences can be established mutatis

mutandis when g ¼ e7 and g ¼ e8. In those cases, we
again observe that the constructions T gfY1; Y2ghT2i and
SghC0;3ifY1; Y2; Ysimpleg yield the same set of 4D N ¼ 2

SCFTs. The number of consistent fixtures is much larger in
these cases and the Hasse diagrams representing the flows

are consequently more involved. However, the procedures
to find the central charges and flavor symmetries from both
the 6D (1, 0) and 6D (2, 0) points of view are algorithmic.
Verification of the Eq. (1.2) for g ¼ e7 is given in Table VIII
and the Hasse diagram in Fig. 6; for g ¼ e8 the results
appear in Table IX and Figs. 7 and 8.

VIII. DISCUSSION

We have now established the correspondence

SghC0;3ifY1; Y2; Ysimpleg ¼ T gfY1; Y2ghT2i ð8:1Þ

between two different 6D constructions for 4D N ¼ 2
SCFTs. The left-hand side is the class S construction that
describes 4D N ¼ 2 SCFTs obtained via 6D (2, 0) SCFTs
compactified on a punctured Riemann surface. The right
hand side is the construction of 4D N ¼ 2 SCFTs from a
6D (1, 0) SCFT compactified on a T2. What we have shown
is that these two constructions from two different 6D
origins give rise to identical 4D theories.
Based on this result, we demonstrate how such a

plurality of origins has immediate practical applications,
such as determining whether the 4D SCFT has a product
structure or a flavor symmetry enhancement. Such proper-
ties can be hidden in the 6D (2, 0) construction but are
manifest from the 6D (1, 0) point of view. Furthermore,

FIG. 7. The Hasse diagram for both the 6D (1, 0) theories T e8fY1; Y2g and the 4D N ¼ 2 theories Se8hC0;3ifY1; Y2; Ysimpleg. The
notation is the same as described in Fig. 5. The physical properties of the 4D N ¼ 2 SCFTs are collected in Table IX. This figure is
continued in Fig. 8.
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knowing that two different 6D SCFTs can yield the same
4D theory after compactification leads to an interesting web
of AGT-esque correspondences which we highlight here.
We want to make a remark that our approach in this

paper is based on field-theoretic principles, and we expect
that this correspondence uplifts to a relationship between
compactification spaces in string theory. We discuss how
the correspondence is related to mirror symmetry between
Calabi–Yau threefolds. In each case, the correspondence
sheds some light on diverse aspects of 4D N ¼ 2 SCFTs
and therefore opens interesting directions for future work.

A. Enhanced flavor symmetry

From the perspective of the 6D (1, 0) SCFT origin, the
non-Abelian part of the superconformal flavor symmetry is
manifest: it is the flavor symmetry of the 6D SCFT. On the
other hand, from the class S point-of-view one observes
only the manifest flavor group as in Eq. (2.4), and the full
superconformal flavor symmetry is obtained by calculating
the first terms of the Hall–Littlewood index. We emphasize
that this often subtle computation of the Hall–Littlewood
index is rendered unnecessary by the existence of the
6D (1, 0) origin.
From the 6D (2, 0) perspective, when the flavor

symmetry is enhanced, the total flavor central charge is
determined in terms of the central charges of the manifest
flavor symmetries and the index of the embedding [93].

There are cases where computing the flavor central charge
requires additional care. For example, if the manifest flavor
symmetry is ðu1Þk0 and enhances into an ðsu2Þk, then the
lack of knowledge about k0 prevents us from determining k.
This can sometimes be circumvented by utilizing S-duality,
which was done in [15–17] for the e6, e7, and e8 fixtures;
however, such a technique does not work in all cases.
In contrast, using the relationship to T2 compactifica-

tions of 6D (1, 0) SCFTs explored in this paper, where the
flavor central charge is manifest, we were able to determine
the previously unknown flavor central charges for various
fixtures. These flavor charges are gathered in Table X.

B. Product theories in class S

When considering a fixture of class S,

SghC0;3ifY1; Y2; Y3g; ð8:2Þ

it is an ongoing problem to determine whether the inter-
acting part of the 4D N ¼ 2 SCFT is an irreducible SCFT,
or if it is a product of several SCFTs. A careful manipu-
lation of the superconformal indices may be used in some
cases to extract the number of stress-tensor multiplets in the
fixture, which determines whether the theory is a product
or not [94]. An alternative and computationally tractable
criterion for the identification of product SCFTs is

FIG. 8. The second half of Fig. 7. The final row of Fig. 7 is repeated here for clarity.
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presented based on unitarity bounds and applied to the
fixtures of the e7 theory in [95].
Once again, the correspondence we established in this

paper reveals a particularly illuminating perspective: by
utilizing its 6D (1, 0) origin, it offers a straightforward
principle to determine whether the class S theory is a
product or not. If the parent 6D (1, 0) theory is a product of
multiple disconnected SCFTs, then the 4D N ¼ 2 SCFT
obtained after T2 compactification is also a product SCFT.
We verify that each product theory appearing in [94,95] for
the e6 and e7 fixtures arises from a T2 compactification of a
6D (1, 0) SCFT that is a product. For e8 fixtures involving a
simple puncture, we find fourteen product SCFTs; it would
be interesting to check the product structure directly from
the class S perspective.
Intriguingly, product 6D (1, 0) SCFTs always arise

through E-string nucleation, as described in Sec. III C.
Due to this feature, when a 6D (1, 0) SCFT compactified on
a T2 gives rise to a product 4D N ¼ 2 SCFTs, then all but
one of the factors in the product are copies of Minahan-
Nemeschansky theories.

C. Connections to the AGT correspondence

Theories of class S are central to the AGT correspon-
dence [96], which describes a deep relationship between
4D N ¼ 2 theories and 2D topological theories.22 The
AGT correspondence arises from constructing both the 4D
N ¼ 2 theories and 2D topological theories via compacti-
fying 6D (2, 0) SCFTs. To be specific, let us consider the
partition function of the 6D (2, 0) SCFT of type g on a
product manifold

Zð2;0Þ
g ðM4 × Cg;nÞ; ð8:3Þ

where M4 is an arbitrary four-manifold and Cg;n is a
punctured Riemann surface. With appropriate topological
twists, the partition function does not depend on the volume

ofM4 or Cg;n, and we can thus consider evaluating Z
ð2;0Þ
g in

two different perspectives.
We can first consider compactifying the 6D (2, 0) theory

on Cg;n to obtain a 4D N ¼ 2 SCFT, and then find the
partition function of the associated 4D theory on M4. This
is a theory of class S with the partition function:

Zð2;0Þ
g hCg;niðM4Þ: ð8:4Þ

Conversely, we can instead consider compactifying the
6D (2, 0) theory on a four-manifold M4 to obtain an
effective 2D theory and then evaluate its partition function
on Cg;n:

Zð2;0Þ
g hM4iðCg;nÞ: ð8:5Þ

An example of such a 2D theory is the Toda CFTassociated
to the algebra gwhenM4 ¼ S4. Since the partition function
does not depend on the volumes ofM4 and Cg;n, we are led
to the equality

Zð2;0Þ
g hCg;niðM4Þ ¼ Zð2;0Þ

g hM4iðCg;nÞ: ð8:6Þ

In an analogous vein, we can generalize the above
argument and consider the partition functions of the 6D
(1, 0) theories T gfY1; Y2g on a product manifold

Zð1;0Þ
T gfY1;Y2gðM4 × T2Þ; ð8:7Þ

suitably twisted to be independent of the volumes of the
torus and the four-manifold M4. Following the argument
above, we can again construct two theories from compac-
tifications of the 6D (1, 0) theory on either manifold: a 4D
N ¼ 2 SCFT or a 2D theory. At the level of the partition
functions, we have

Zð1;0Þ
T gfY1;Y2ghT2iðM4Þ ¼ Zð1;0Þ

T gfY1;Y2ghM4iðT2Þ: ð8:8Þ

In this paper, we showed a set of 4D N ¼ 2 SCFTs that
can be obtained from both (1, 0) and (2, 0) origins in 6D;
thus, the partition functions can be computed from both
perspectives as in Eqs. (8.4) and (8.8). Putting these
together, we obtain equalities between the four quantities:

Zð2;0Þ
g hM4iðCg;nÞ¼Zð2;0Þ

g hCg;niðM4Þ¼Zð1;0Þ
T gfY1;Y2ghT2iðM4Þ

¼Zð1;0Þ
T gfY1;Y2ghM4iðT2Þ: ð8:9Þ

TABLE X. Predicted value of the enhanced flavor central
charge for a set of class S theories of type e8, which were
previously determined only up to a free parameter in [17]. The
6D (1, 0) perspective makes the flavor central charge k manifest
in terms of a ’t Hooft anomaly coefficient associated to the 6D
flavor symmetry.

Fixture k

½A2 þ 2A1; A3; E8ða1Þ� 48
½A2; A3 þ A2; E8ða1Þ� 96
½A2; D4ða1Þ þ A2; E8ða1Þ� 48
½0; D4 þ A1; E8ða1Þ� 48
½A2 þ A1; A3 þ A2; E8ða1Þ� 96
½A3; 2A2 þ A1; E8ða1Þ� 21
½A2 þ A1; D4ða1Þ þ A2; E8ða1Þ� 48
½A3; 2A2 þ 2A1; E8ða1Þ� 21
½A1; A4 þ A2; E8ða1Þ� 40
½0; D5ða1Þ þ A1; E8ða1Þ� 48
½A1; A4 þ A2 þ A1; E8ða1Þ� 40
½D4ða1Þ; 2A2 þ 2A1; E8ða1Þ� k1 ¼ k2 ¼ 20
½0; D4 þ A2; E8ða1Þ� 12

22For a recent review of the AGT correspondence, see [97].
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The rightmost partition function is that of the particular 2D
theory, obtained from T gfY1; Y2g compactified on M4,
evaluated on T2. These 2D theories are not known in
general, but there are some known examples of 6D (1, 0)
theories compactified on four-manifolds [63]. It would be
valuable to understand how the Eq. (8.9) can be utilized to
learn more about various theories appearing therein and
beyond.

D. Mirror symmetry and a geometric dictionary

From the 6D (1, 0) perspective, each 6D SCFT is
engineered from a noncompact elliptically fibered Calabi-
Yau manifold Y3. When the resulting SCFT is further
compactified on a T2, one can utilize the duality between
F-theory and type IIA, via M-theory, to obtain type IIA on
Y3. Using mirror symmetry, we can translate this into type
IIB on Ŷ3, the mirror manifold to Y3. Starting from the
singular geometry associated to minimal ðg; gÞ conformal
matter, the Riemann surface and the puncture data appearing
in the 6D (2, 0) description can be read off from the mirror
manifold [83]. In this way, a geometric dictionary can be
constructed where the features coming from the 6D (1, 0)
origin are encoded inY3 and those associated to the 6D (2, 0)
origin are obtained from the mirror Ŷ3.
To illustrate how someof the classS features are contained

in the mirror of the 6D (1, 0) geometry, we consider the 4D
N ¼ 2 theory obtained as T e6fYfull; YfullghT2i and equiv-
alently as Se6hC0;3ifYfull; Yfull; Ysimpleg. The tensor branch
geometry ofminimal ðe6; e6Þ conformalmatter is captured by
the configuration

1 3
su3

1: ð8:10Þ

The geometry associated to the SCFT at the origin of the
tensor branch is obtained by shrinking the curves to zero
volume. In this case, this singular geometry can be described
as an orbifold

ðT2 × C2Þ=Γ; ð8:11Þ

where the quotients Γ ⊂ Uð1Þ × SUð2Þ ⊂ SUð3Þ are
Abelian and their elements can be expressed as eigenvalues
of a 3 × 3 matrix. For the singular geometry associated to
minimal ðe6; e6Þ conformal matter, Γ is generated by the
two elements ða; a−1; 1Þ and ð1; b; b−1Þ where a and b are
primitive roots of unity satisfying a3 ¼ b3 ¼ 1.
The mirror manifold was determined directly from the

orbifold action in [83], and can be expressed as a Landau–
Ginzburg model where the superpotential (after some
tuning) can be written as

W ¼ x31 þ x22ðx3 þ y1 þ y2Þ þ ðx3 þ y1 þ y2Þ2x3: ð8:12Þ

By going into the appropriate patch, x3 ¼ 1, one obtains a
local threefold described by

f ¼ x31 þ x22ρþ ρ2 ¼ 0; ð8:13Þ

where

ρ ¼ 1þ y1 þ y2: ð8:14Þ

Recalling that the yi are coordinates on P1, the hypersur-
face ρ ¼ 0 describes a sphere with three punctures, at
y1 ¼ 0, y1 ¼ −1, and y1 ¼ ∞. One can explore the
geometry around the puncture y1 ¼ 0 by deforming and
making appropriate coordinate changes to rewrite the
Eq. (8.13) as

f ¼ w̃2 þ x̃31 þ x̃22ρþ ρ2 þ
�
m1

y21
þm0

1

y1

�
x̃1x̃22

þ
�
m2

y51
þm0

2

y41

�
x̃1x̃2 þ

�
m3

y61
þ u1

y51
þm0

3

y41

�
x̃22

þ
�
m4

y81
þ u2

y71
þm0

4

y41

�
x̃1 þ

�
m5

y91
þ u3

y81
þm0

5

y71

�
x̃2

þ
�
m6

y121
þ u4
y111

þm0
6

y91

�
¼ 0: ð8:15Þ

The subleading pole in each term captures the contribution
to the Coulomb branch from the puncture at y1 ¼ 0, and we
can directly observe that this pole structure is (1, 4, 5, 7, 8,
11). This is identical to the pole structure associated to a
full e6 puncture in [15]. Since the puncture at y1 ¼ −1 is
equivalent to the puncture at y2 ¼ 0, the pole structure at
y1 ¼ 0 and y2 ¼ 0 are identical by symmetry. A similar
analysis around y1 ¼ ∞ reveals a pole structure (1, 1, 2, 2,
2, 3), which is identical to the pole structure of the simple
puncture. Then, we see directly from the mirror geometry
a sphere with two full punctures and a simple puncture.
We are thus observing the data of the 6D (2, 0) origin,
the punctured Riemann surface, directly from the mirror
geometry of the elliptically fibered Calabi-Yau manifold
associated to the 6D (1, 0) origin.
It would be interesting to extend this approach to

construct the mirror manifolds to the geometries describing
the 6D (1, 0) theories T gfY1; Y2g that were explored in this
paper and to observe the puncture data for the 6D (2, 0)
description explicitly. This would provide the string-
theoretic underpinning for the plurality of 6D origins [as
in Eq. (1.2)] established in this paper.
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