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In a recent paper, Raju showed that the essential features of the monogamy paradox for old flat space
black holes could be modeled using a setup in empty anti–de Sitter, leading to a violation in the monogamy
of entanglement there. A physically interesting question is whether such a violation in the monogamy of
entanglement can be posed in empty flat space. The answer is not immediately clear since flat space gravity
has an entirely different vacuum and infrared structure than the gapped and unique AdS vacuum, which was
exploited in Raju’s toy model. We answer this question in the affirmative, with an explicit construction. We
formulate the paradox in terms of monogamy of Clauser-Horne-Shimony-Holt correlations, which we use
to quantify the monogamy of entanglement. Extending Raju’s analysis to empty flat space, within effective
field theory, we show that the entanglement of approximately local bulk modes just outside a light cone
with modes just inside the light cone as well as with modes situated far away at the past of future null
infinity ðIþ

− Þ gives rise to an O(1) violation in the monogamy of entanglement. This cannot be resolved by
small corrections of O(

ffiffiffiffiffiffiffi
GN

p
). The issues arising from the above-mentioned vacuum and infrared features

unique to flat spacetime are dealt with by introducing a physically motivated boundary projector onto states
below a given infrared cutoff, which allows us to construct suitable operators at ðIþ

− Þ that give rise to the
violation. We argue that the resolution of the paradox is that our spatially separated observables probe the
same underlying degrees of freedom, i.e., such observables act on a nonfactorized Hilbert space arising
from the Gauss constraint, thereby circumventing the conflict with monogamy of entanglement.

DOI: 10.1103/PhysRevD.106.086002

I. INTRODUCTION

Black hole information paradoxes constitute an interre-
lated web of puzzles that arise due to the existence of the
event horizon. These paradoxes have traditionally served as
lamp posts regarding our understanding of various quantum
aspects of gravity. Our work is concerned with an important
corner of these puzzles: the monogamy paradox in flat
space. Originally proposed in [1], the paradox was exten-
sively discussed in [2–27]. In particular, Raju [5] showed
that the essential features of the monogamy paradox for old
flat space black holes could be modeled using a setup in
empty AdS, leading to a violation in the monogamy of
entanglement there. The salient point of this setup was that
it did not require the existence of a horizon, in contrast
to the previous discussions of the paradox. A physically

interesting question is whether a violation in the mono-
gamy of entanglement can be described within empty flat
space, which resembles our observable universe to a good
approximation. Our present work deals with addressing this
question.

A. The paradox

We will briefly discuss the paradox below. Consider an
old evaporating black hole in flat space at time t, such
that t > tPage [28]. The outgoing near-horizon Hawking
modes are strongly entangled with the near-horizon interior
modes. For the final state to contain all information about
the initial state, the near-horizon outgoing modes must also
be entangled with Hawking modes that came out of the
black hole at early times. However, this situation points to a
violation of the monogamy of entanglement, which is an
unavoidable consequence of quantum mechanics. This
paradox is also closely related to the cloning paradox,
which states that within effective field theory, a nice slice
can capture both a diary thrown into a black hole and a
reconstructed copy of the diary from the outgoing Hawking
radiation, thereby violating the no-cloning theorem. The
physical picture portrayed by both these paradoxes is
that the interior should contain a copy of the exterior to
resolve contradictions with basic assumptions of quantum
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mechanics (more precisely, with quantum information
theorems). This picture is reflected within the important
idea of black hole complementarity as explored in [30–34].
A key idea here is that the monogamy paradox for flat

space black holes depends only on the entanglement of
near-horizon exterior modes with near-horizon interior
modes and also with modes far outside the horizon (e.g.,
at past of the future null infinity, i.e., Iþ

− ). Consider the
simple situation of a radially outgoing light cone at r ¼ r0
in an empty flat space. A monogamy-type paradox arises
here also if we study the entanglement of the modes
smeared just inside the light cone (region A) with modes
smeared just outside the light cone (region B) and with
another spacelike separated region (region C) (See Fig. 1).

B. The toy model in flat space

Wewill extend the construction of [5] which investigated
the monogamy paradox in asymptotically AdS using
Bell inequalities to asymptotically flat spacetime to under-
stand the case of old flat space black holes. As done there,
we will formulate the paradox using Clauser-Horne-
Shimony-Holt (CHSH) inequalities [35], a convenient
restatement of Bell inequalities [36]. This formalism
allows us to make quantitative statements regarding the
monogamy of entanglement [37,38], in particular, it allows
us to rephrase statements about the monogamy of entan-
glement in terms of statements regarding the monogamy of
CHSH correlations.
An essential ingredient that facilitates calculations in

this setup compared to the original paradox is that the
Hamiltonian of gravity is a boundary term [39], and thus
can be used to construct a projector that projects onto the
degenerate subspace of vacua labeled by supertranslations.

1. Important features unique to our toy model
in flat space

The vacuum and low energy structure of the Fock space
of canonical gravity in flat space is completely different
from the same in AdS, due to the presence of super-
translations and the absence of a mass gap. In particular,
AdS has a unique vacuum, while the flat space vaccua span
a degenerate subspace, and should be specified by their
value in the supertranslation sector as well. We build upon
previous works [40–44] which have clarified the vacuum
structure of flat space, and our definition of relevant
operators and their subsequent representation in terms of
the Fock space rests on the same. Here, supertranslations
are not crucial to setting up the monogamy paradox in flat
space but necessarily complicate the rather straightforward
analysis in AdS since they introduce an additional vacuum
structure.
Note that in the treatment for the AdS case in [5], there

exists a natural cutoff scale set by the cosmological con-
stant. However the issue for flat space gravity in d ¼ 4 is
more complicated, and one needs to specify an infrared

cutoff in order to properly define the theory. Therefore in
our work, we have introduced a new physically motivated
projector Pδ, which projects onto energy scales below an
infrared cutoff denoted by δ, and utilize the same to
construct relevant operators which demonstrate the viola-
tion in monogamy of entanglement in our toy model.
Physically this means that in practice, we do not work with
operators that project onto the vacuum exactly but project
onto states with very low energies below an IR cutoff, say
E < δ. This also generalizes the more abstract projector
onto the vacua introduced in the context of AdS [34] and in
flat space [44], and their subsequent role in how informa-
tion is stored at the boundary [45].
While we can setup the monogamy paradox in flat space

using the abstract projector introduced in [44] (as we
demonstrate), the main thrust of our work is to utilize
our physically motivated projector Pδ and use it to set up
the monogamy paradox. In our work, given the infrared
issues, we firstly demonstrate how operators Ci living
in Region C in Fig. 1 which have almost the exact
correlation with operators Ai in A as operators Bi defined
over B have with operators Ai up to Oð ffiffiffiffiffiffiffi

GN
p Þ. Afterwards

we then construct them using our physically motivated
projector Pδ. This requires certain conditions on the
smearing functions of relevant observables as we will
qualitatively as well as rigorously explain in detail in
our work.
Since these operators in C are constructed such that the

AC system has almost identical CHSH correlators as the
AB system and consequently the same entanglement, we
have a quantum information-theoretic contradiction.

FIG. 1. Here the red line U ¼ 0 denotes a radially outgoing
light shell. Regions A, B, and C are marked in blue. We will study
the entanglement of modes smeared over region A with modes
smeared over B and C and arrive at a paradox.
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2. Other details about our toy model

Given that we define our operators Ai, Bi, and Ci
supported in regions A, B, and C respectively, the reader
may ask what we mean by operator insertions in a theory of
gravity. As opposed to local quantum field theory, there
exists no definition of local gauge-invariant operators in a
theory of quantum gravity. However, we will work with
approximately local operators in our case, which involves
taking an operator and smearing it over a small spatial
interval. One way of thinking about such approximately
local operators is to regard them as gauge fixing (i.e., up to
small diffeomorphisms) in the bulk. We will not work with
explicitly diffeomorphism invariant operators constructed
using gravitational dressing, like ones formed by attaching
geodesics from the boundary. This is because the paradox
necessarily requires us to look at local bulk observables and
such constructions are by definition nonlocal.
We note that the violation in the monogamy is O(1),

and cannot be removed by including minor corrections
of Oð ffiffiffiffiffiffiffi

GN
p Þ, which are essential to the resolution of

Hawking’s original paradox and the bags of gold paradox
[46–53]. As we discuss below, this is an important
observation that strongly hints toward a resolution of the
paradox via complementarity, i.e., the interior degrees of
freedom are complicated polynomials of the exterior
degrees of freedom. The commutators are of O(1) because
in principle, we are acting upon the same degrees of
freedom in the interior and the exterior, and complicated
enough exterior operators can probe the information con-
tained in the interior. The resolution is not surprising given
that in a theory of gravity, the Hilbert space does not
factorize upon spatially partitioning a given manifold. This
simple fact follows from the Gauss constraint of gravity. An
implicit ingredient that goes into our local quantum field
theoretic construction is that the system partitioned into
regions A, B, and C has factorized Hilbert spaces. However,
the monogamy statement here is not violated since upon
turning on gravity, the Hilbert space does not factorize, and
consequently, the interior and exterior degrees of freedom
are not independent degrees of freedom. This is the primary
origin of the O(1) violation, which also demonstrates why
local quantum field theory is not a good framework to deal
with questions regarding quantum information and entan-
glement in gravity.

C. Outline of our work

In Sec. II we review the construction of CHSH operators
within quantummechanics. We generalize this construction
in Sec. III and calculate the CHSH correlation between
regions A and B within a local quantum field theoretic
framework for asymptotically flat space.
We now list the main nontrivial constructions and results

of our work. In Sec. IV we outline the construction of the
operators Ci living on region C, which mimic the action of
operators Bi on the global vacuum and write their CHSH

correlation with Ai’s. We then use the CHSH correlations
between AC and AB to set up the paradox in monogamy.
In Sec. IV D we argue the resolution of the monogamy
paradox in detail. In Sec. V we summarize our work and
discuss related perspectives. In Appendix F, we give a
Fourier analytic proof for the existence of near boundary
modes Ci subject to the constraints in our construction.

II. CHSH INEQUALITIES IN QUANTUM
MECHANICS

This section reviews the CHSH inequality for quantum
mechanical systems and uses them to provide a factual
statement about the monogamy of entanglement.

A. CHSH operator and monogamy of entanglement

Consider a tripartite system composed of independent
subsystems A, B, and C. We label operators belonging to
the algebra of A as Ai and so on for the other subsystems.
Let us look at two pairs of operators Ai and Bi where i ∈
ð1; 2Þ which satisfy the commutation relations ½Ai; Bj� ¼ 0.
These operators are constructed such that their eigenvalues
lie in the interval ½−1; 1�, or in other words kAk; kBk ≤ 1.
The CHSH operator is given by

CAB ¼ A1B1 þ A1B2 þ A2B1 − A2B2: ð1Þ

Classically, the maximum value of the CHSH operator is
given by 2, which is the case when A1 and A2 are
independent while B1 ¼ B2 or B1 ¼ −B2. However, this
bound no longer holds in quantum mechanics if we
evaluate the expectation value of the CHSH operator over
a general state jψi.
In order to estimate the quantum bound on the

CHSH operator, let us square the same, which gives us
C2
AB ¼ 4 − ½A1; A2�½B1; B2�. Since the norm of the commu-

tator is given by j½A1; A2�j ≤ 2, we arrive at jhCABij ≤ 2
ffiffiffi
2

p
.

Now if we consider the square of the expectation value
of the CHSH operators defined over AB and AC, then
the statement of the monogamy of entanglement is as
follows [37]:

hCABi2 þ hCACi2 ≤ 8: ð2Þ

The above relation statement quantifies the maximum
entanglement which subsystem AC can possess provided
there is a given entanglement among the subsystem AB.
An interesting conclusion which follows is that there
cannot be a scenario where the correlations between AB
and AC both possess a nonclassical description, i.e., both
hCABi; hCACi > 2. Another outcome is that if the system
AB is maximally entangled, i.e., hCABi ¼ 2

ffiffiffi
2

p
, then AB

cannot be entangled. Thus we have a precise statement
regarding the violation of monogamy of entanglement,
which violates the inequality given in (2).
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B. Baby example: Bell operators using
simple harmonic oscillators

Consider a pair of commuting simple harmonic oscil-
lators living in separate regions A and B. We denote
their corresponding annihilation operators as αs, and their
respective vacua as j0is, where s ¼ A=B. We want to
evaluate the expectation value of the CHSH operator on the
thermofield double state where x2 < 1,

jTFDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
exα

†
Aα

†
B j0iAj0iB: ð3Þ

The above state reduces to the standard thermofield double
case if we set x2 ¼ e−β. Denoting projectors onto the sth
vacuum as Ps, we now choose Bell operators as follows:

A operators∶

A1 ¼ PA − α†APAαA

A2 ¼ α†APA þ PAαA

B operators∶

B1 ¼
1ffiffiffi
2

p ðPB − α†BPBαB þ α†BPB þ PBαBÞ

B2 ¼
1ffiffiffi
2

p ðPB − α†BPBαB − α†BPB − PBαBÞ. ð4Þ

These operators are inspired by the Bell operators for spin-1
2

systems, and might look confusing at first glance. However,
expanding the operators in the number basis gives us a
much simpler looking form for the same.

Aoperators∶

A1¼ j0iAh0jA−j1iAh1jA
A2¼ j0iAh1jAþj1iAh0jA

Boperators∶

B1¼
1ffiffiffi
2

p ðj0iBh0jB−j1iBh1jBþj0iBh1jBþj1iBh0jBÞ

B2¼
1ffiffiffi
2

p ðj0iBh0jB−j1iBh1jB−j0iBh1jB−j1iBh0jBÞ.

ð5Þ

These are precisely the operators used in the spin-1
2

problem, with j0i=j1i denoting the two states and the
operators resembling combinations of Pauli matrices. We
now evaluate the expectation value of the CHSH operator
on the thermofield double state, which gives us

hCABi ¼
ffiffiffi
2

p
ð1þ xÞ3ð1 − xÞ: ð6Þ

This takes a maximum value at x ¼ 1
2
with the maximum

value being hCABi ¼ 27
ffiffi
2

p
16

≈ 2.39 > 2. Therefore using the

above construction we see that the thermofield double state
is entangled for x ¼ 1

2
, though not maximally entangled.

III. CHSH INEQUALITIES IN LOCAL
QUANTUM FIELD THEORY

In this section, we will extend the above construction of
the CHSH correlator for simple harmonic oscillators to
analogously construct the CHSH correlator in a local
quantum field theory [5,54–56]. We will then utilize this
formalism to calculate hCABi for smeared modes within a
small interval on either side of an outgoing light cone in an
empty flat space. This section is computationally intensive,
and readers not interested in details of the computation
can skip directly to Sec. III D, where we summarize the
contents of this section.

A. Basic conventions and choice of operators

We define Hermitian operators ðXs;ΠsÞ on the spatially
compact regions A and B, such that they satisfy canonical
commutation relations. Consequently we can also define
annihilation operators given by αs ¼ 1ffiffi

2
p ðXs þ iΠsÞ. These

operators obey the simple harmonic commutation relations

½αs; α†s0 � ¼ δss0 : ð7Þ

In addition to these modes, there also exist global modes for
flat spacetime. These global modes in flat space obey the
canonical commutators

½aωl; a†ω0l0 � ¼ δl;l0δðω − ω0Þ: ð8Þ

The global modes are related to αs by Bogoliubov
coefficients

αs ¼
X
l

Z
dωðhsðω; lÞaω;l þ g�sðω; lÞa†ω;lÞ; ð9Þ

where the functions hsðω; lÞ and g�sðω; lÞ are related by

X
l

Z
dω½hsðω; lÞh�s0 ðω; lÞ − g�sðω; lÞgs0 ðω; lÞ� ¼ δs;s0 :

ð10Þ

We rewrite (10) in the following fashion for convenience

hs:h�s0 − g�s :gs0 ¼ δs;s0 ; ð11Þ

where we have defined hs:h�s0 ¼
P

l

R
dωhsðω; lÞh�s0 ðω; lÞ.

Let us now consider the scenario where the CHSH
correlators are evaluated on the global vacuum state, while
the CHSH operators are following combinations of αs=α

†
s ,

which are precisely the same operators in (4).
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A operators∶

A1 ¼ PA − α†APAαA

A2 ¼ α†APA þ PAαA

B operators∶

B1 ¼
1ffiffiffi
2

p ðPB − α†BPBαB þ α†BPB þ PBαBÞ

B2 ¼
1ffiffiffi
2

p ðPB − α†BPBαB − α†BPB − PBαBÞ. ð12Þ

Wewill proceed using general αs in Sec. III B. Our physical
case of interest is described in Sec. III C, where we will take
αs to be Rindler annihilation modes. Consequently, we
have an analogous interpretation of the global state as the
thermofield double state as defined in (3).

B. Vacuum projector and the most general
two-point correlator

In order to define Bell operators as given in (12), we need
to construct projectors onto the ground states of each
oscillator, which are given by

Ps ¼ −
1

π2

Z
∞

−∞
dt1

Z
∞

−∞
dt2

Z
2π

0

dθs

×

�
e−ðt21þt2

2
ÞþκðθsÞðt1Xs−t2ΠsÞ

eiθs − 1 − ϵ

�
; ð13Þ

where κðθÞ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
i tan θ

p
and ϵ is a small positive constant.

The detailed construction of this projector is given in
Appendix A.
We can conveniently extract the CHSH correlator from

the expression for the most general two-point correlator.
Using the definition of the projector in (13), the most
general two-point function is given by:

Q½fvi; ζig� ¼
1

π4

Z
d2 ⃗td2y⃗

Z
2π

0

dθAdθB

×
e−ð⃗t2þy⃗2Þ

ðeiθA − 1 − ϵÞðeiθB − 1 − ϵÞ
× hev2α†BeκðθBÞðy1XB−y2ΠBÞ

× eζ2αBev1α
†
AeκðθAÞðt1XA−t2ΠAÞeζ1αAi; ð14Þ

where ⃗t ¼ ðt1; t2Þ. Let us define ỹi ¼ κðθBÞyi and t̃i ¼
κðθAÞti so as to write the expectation value in the above
integral as

hGi≡ hev2α†Beðỹ1XB−ỹ2ΠBÞeζ2αBev1α
†
Aeðt̃1XA−t̃2ΠAÞeζ1αAi. ð15Þ

The above two-point correlator and its derivatives at vi ¼ 0,
ζi ¼ 0 can be used to obtain the correlators of all relevant
CHSH operators as defined in (12). As a demonstration, the

derivatives of Q½fvi; ζig� can be easily used to generate
correlators of the following form:

∂
m2
v2 ∂

m1
v1 ∂

n2
ζ2
∂
n1
ζ1
Q½fvi; ζig�jvi¼ζi¼0

¼ hα†m2

B PBα
n2
B α†m1

A PAα
n1
A i: ð16Þ

We will write the expression for hGi in terms of the global
modes. This is performed by expressing αs in terms of
global modes using (10). This computation requires
repeated application of the BCH lemma while working
in a coherent state basis. The detailed calculation is given in
Appendix C, and we state the final result here.

hGi ¼ exp

�
1

8

X4
p;q¼1

ðfp:f�q þ f�p:fqÞmpmq −
R
2

�

þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ. ð17Þ

Here we have added corrections of Oð ffiffiffiffiffiffiffi
GN

p Þ to include the
effects of interactions in an interacting theory of the scalar
field coupled to gravity, since the interacting vacuum is
different from the global vacuum up to Oð ffiffiffiffiffiffiffi

GN
p Þ. Defining

ζ�i ¼ ðζi�viÞffiffi
2

p , the expression for R is given by

R ¼ ðm1ζ
þ
1 þ im2ζ

−
1 þm3ζ

þ
2 þ im4ζ

−
2 Þ − v1ζ1 − v2ζ2;

ð18Þ

where the quantities fi, mi are defined as:

f1 ¼ ðhA þ gAÞ; f2 ¼ −iðhA − gAÞ; ð19aÞ

f3 ¼ ðhB þ gBÞ; f4 ¼ −iðhB − gBÞ ð19bÞ

m1 ¼ ðt̃1 þ ζþ1 Þ; m2 ¼ ð−t̃2 þ iζ−1 Þ; ð19cÞ

m3 ¼ ðỹ1 þ ζþ2 Þ; m4 ¼ ð−ỹ2 þ iζ−2 Þ. ð19dÞ

We can use (17) to obtain an expression for Q½fvi; ζig� in
(14), since the integrals over ⃗t and h⃗ are Gaussian. The θ
integration involves a trivial calculation of the residue in the
complex plane. We will not write the expression for general
hs and gs but will calculate the same for the Rindler to
Minkowski Bogoliubov coefficients in the following
subsection.

C. CHSH correlation between regions
A and B in field theory

Note that our specific case of interest involves smearing
operators on bounded regions A and B close to the light
cone (See Fig. 1). Our smearing choice is such that the
operators αs denote the Rindler oscillators, and hs, gs
denote the corresponding Rindler toMinkowski Bogoliubov
coefficients. While we express the CHSH operators in terms
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of Rindler operators as given in (12), we take the expectation
value in the CHSH correlator over the global vacuum, which
is a thermofield double state in terms of the Rindler
oscillators.

1. Massless modes in flat space

Consider a massless scalar coupled to gravity in d
dimensional Minkowski space. The modes of the massless
scalar end up at future null infinity, a fact that will be
important in our posing of the monogamy paradox. The
equation for the scalar field is given by:

∂

∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂Φ
∂xν

�
¼ 0: ð20Þ

We solve the above equation in global spherical coordinates
(valid for d ≥ 3):

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
d−2; ð21Þ

where Ωd−2 denotes the angles of the d − 2 dimensional
sphere. The equation of motion can be solved by putting
in the ansatz Φðr; t;ΩÞ ¼ TðtÞχðrÞYlðΩÞ, where YlðΩÞ
denotes spherical harmonics of a d − 2 dimensional sphere.
Here χðrÞ satisfies:

d2χðrÞ
dr2

þ d − 2

r
dχðrÞ
dr

þ
�
ω2 −

lðlþ ðd − 3ÞÞ
r2

�
χðrÞ ¼ 0;

ð22Þ

where ω is the frequency given by:

d2TðtÞ
dt2

¼ −ω2TðtÞ: ð23Þ

The solution for χðrÞ is given by:

χðrÞ ¼ C1

r
d−3
2

JmðrωÞ þ
C2

r
d−3
2

YmðrωÞ; ð24Þ

where J and Y denote the standard Bessel functions and
m ¼ lþ d−3

2
. We discard the Y term since it blows up at the

origin. Thus the complete solution is given by:

Φðr; t;ΩÞ ¼ K
X
l

Z
dωaω;l

JmðrωÞ
r
d−3
2

e−iωtYlðΩÞ þ H:c.

ð25Þ

Here K is a normalization constant used to impose the
normalization of the canonical commutator ½aω;l; a†ω0;l0 � ¼
δðω − ω0Þδl;l0 . Computing the momenta from the action of
the massless scalar and using the equal time canonical
commutation relation:

½Φðr; t;ΩÞ;Πðr0; t;Ω0Þ� ¼ iδðr − r0ÞδðΩ1 −Ω2Þ; ð26Þ

we obtainK ¼ 1ffiffi
2

p . Therefore the scalar field is expressed as

Φðr; t;ΩÞ ¼ 1ffiffiffi
2

p
X
l

Z
dωaω;l

JmðrωÞ
r
d−3
2

e−iωtYlðΩÞ þ H:c:

ð27Þ

Note that in the preceding discussion we have suppressed
the extra indices of the spherical harmonics. As an example,
we can explicitly write them for d ¼ 4, which gives us

Φðr; t; θ;ϕÞ ¼ 1ffiffiffi
2

p
X
l;m̄

Z
dωaω;l

Jlþ1
2
ðrωÞ
r
1
2

e−iωtYm̄
l ðθ;ϕÞ

þ H:c:; ð28Þ

where we have used Ym̄
l to denote the standard spherical

harmonics to avoid confusion with m from (25).

2. Smeared operators on A and B

We now outline our construction of approximately local
operators by smearing the scalar field over the bounded
interval in such a way that the Rindler modes are extracted
out. To perform this, we introduce a tuning function such
that it is supported only on the small bounded regions and
smoothly dies off. Recall that the regions A and B are
situated just inside and outside an outgoing light cone at r0
respectively. Thus we define the smeared operators on the
regions A and B by

αA ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ωr

ðd−2Þ
2

A

�
U
U0

�
iω0

T ðUÞ

×ΦðtAðUÞ; rAðUÞ;ΩÞ

αB ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ωr

ðd−2Þ
2

B

�
U
U0

�
−iω0

T ðUÞ

×ΦðtBðUÞ; rBðUÞ;ΩÞ

α†A ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ωr

ðd−2Þ
2

A

�
U
U0

�
−iω0

T �ðUÞ

×ΦðtAðUÞ; rAðUÞ;ΩÞ

α†B ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ωr

ðd−2Þ
2

B

�
U
U0

�
iω0

T �ðUÞ

×ΦðtBðUÞ; rBðUÞ;ΩÞ: ð29Þ

Here rs and ts, s ¼ A, B denote the global spherical
coordinates on the regions A and B, as given in (21).
The smearing function oscillates increasingly as tend to go
near U ¼ 0, and thus even a small interval near U ¼ 0 is
useful to extract out the Rindler modes. Consequently U is
integrated from Ul to Uh such that the tuning function
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T ðUÞ vanishes smoothly as it approaches Ul and Uh.
We work in the limit U0 → 0, such that

log
Ul

U0

→ −∞ and log
Uh

U0

→ ∞: ð30Þ

Note that in our convention, we have included the sphere
metric determinant

ffiffiffi
γ

p
inside the angular integral in (29),

such that

VΩ ¼
Z

dd−2Ω≡ 2π
d−1
2

Γðd−1
2
Þ :

We assume that the errors due to these length scales are of
OðϵÞ such that OðϵÞ ≫ Oð ffiffiffiffiffiffiffi

GN
p Þ. In order to impose that

the regions A and B remain causally disconnected, we
assume the following conditions:

tAðUÞ ¼ U
2
− v0 rAðUÞ ¼ r0 − v0 −

U
2

tBðUÞ ¼ −
U
2
þ v0 rBðUÞ ¼ r0 þ v0 þ

U
2
. ð31Þ

We also impose the following conditions on the tuning
function, so that it is sharply centered about a particular
frequency ω0

T ðUÞ
�
U
U0

�
iω0 ¼

Z
T̃ ðνÞ

�
U
U0

�
iν
dν;

Z
dν
ν
jT̃ ðνÞj2 ¼ 1

π
:

ð32Þ

using which we can recover the standard expressions for
the commutator of the above defined modes ½αs; α†s0 � ¼ δss0
(See Appendix B for the detailed calculation). Another
relation which will be useful in the computation of hCABi is

lim
ν→0

T̃ ðνÞ
ν

¼ 0. ð33Þ

3. Bogoliubov coefficients for Rindler modes

In order to calculate hCABi, we first need to determine the
Bogoliubov coefficients so as to calculate the most general
two-point correlator, whose simplification has been derived
in (17). Since we have smeared the field over the entire
sphere in (29) on either side of the light cone at r ¼ r0,
therefore we only need to look at the l ¼ 0 mode. This is
because the modes l ≠ 0 vanish due to the angular integral.
The radial part of the l ¼ 0 mode takes a very simple form
in d-dimensions:

χðrÞ ∼
Jd−3

2
ðωrÞ
r
d−3
2

. ð34Þ

We also note that since we have smeared our operators
on very small spatial regions A and B, the smearing
functions remain almost constant over the region.
However using (33) our tuning function vanishes for small
frequencies. Consequently the Bogoliubov coefficients in
(9) have support only for large frequencies ω, which we
denote by ω > ω0, where ω0 is a large enough frequency
above which the Bogoliubov coefficients are nonzero. In
the large frequency limit, the above radial function sim-
plifies to

χðrÞ ∼
ffiffiffiffiffiffi
2

πω

r
1

r
d−2
2

cos

�
ωr −

ðd − 2Þπ
4

�
. ð35Þ

Using the large frequency limit, we evaluate the
Bogoliubov coefficients. We refer to Appendix D 1 for
the detailed calculation, and state the main result here.

hAðω; 0Þ ¼
e−iξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνeπν=2ðωU0Þ−iνΓðiνÞT̃ ðνÞ;

g�Aðω; 0Þ ¼
eiξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνe−πν=2ðωU0Þ−iνΓðiνÞT̃ ðνÞ;

hBðω; 0Þ ¼
e−iξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνeπν=2ðωU0ÞiνΓð−iνÞT̃ �ðνÞ;

g�Bðω; 0Þ ¼
eiξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνe−πν=2ðωU0ÞiνΓð−iνÞT̃ �ðνÞ: ð36Þ

4. hCABi > 2 for entangled Rindler modes
in flat space

We will now use the Bogoliubov coefficients given in
(36) to evaluate hCABi, using (17). In order to do this, we
need to calculate the 4 × 4 matrix fp · f�q þ f�p · fq. The
detailed calculation of this matrix is given in Appendix D 2,
and we state the final result.

fp · f�q þ fq · f�p

¼ 2

1 − x2

0
BBB@

1þ x2 0 2x 0

0 1þ x2 0 −2x
2x 0 1þ x2 0

0 −2x 0 1þ x2

1
CCCA: ð37Þ

Note that the matrix in (37) turns out to be the same as
obtained for the Rindler-to-global AdS case in [5].
Although solutions to the massless scalar field in AdS
and flat space are quite different, it is not surprising that the
matrix turns out to be the same. This is because the near-
horizon local Rindler modes possess universal features as
explained in [45].
We now substitute (37) in (17) to derive the expression

for hGi. In order to do so, we perform the Gaussian integrals
over ⃗t and h⃗ and evaluate the θ integral by calculating the
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residue about the pole. Using the expression for hGi, we
derive the result for hCABi, which is again given by

hCABi ¼
ffiffiffi
2

p
ð1þ xÞ3ð1 − xÞ: ð38Þ

The reader might ask why our expression for the CHSH
operator’s expectation value in QFT is precisely the same as
the expression we had derived for the quantum mechanical
case. This is simply because our chosen operators and
states were essentially the same in both cases. Again the
expectation value is maximized at x ¼ 1

2
, where hCABi takes

the value

hCABi ¼
27

ffiffiffi
2

p

16
þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ þ OðϵÞ. ð39Þ

Here we have included corrections since the interacting
vacuum of the scalar-gravity theory is different from the
free field vacuum using Oð ffiffiffiffiffiffiffi

GN
p Þ. As defined before, we

denote small errors in length scales by OðϵÞ.

D. Summary of this section

The main goal of this section was to show that within a
local quantum field theoretic framework, using a careful
choice of operators, we can violate the classical bound. To
do this, we first developed the formalism for looking at
CHSH correlators in terms of the most general two-point
correlator acting on the global vacuum. The key here is to
write down the CHSH correlator in terms of Bogoliubov
coefficients between the spatially compact regions’ modes
and the global modes. We then wrote down creation and
annihilation operators by smearing the massless scalar field
with Rindler smearing functions on small bounded regions
A and B situated just inside and outside an outgoing light
cone at r0 and calculated the corresponding Bogoliubov
coefficients between these operators and the global
Minkowski operators. We used these Bogoliubov coeffi-
cients to obtain hCABi, where we take the expectation value
over the global Minkowski vacuum, which looks like a
thermofield double in terms of the Rindler oscillators. In
particular, our construction of operators in the local QFT
is the same as done for the quantum mechanical case
described earlier in Sec. II. Consequently the CHSH
correlator is given by (38), whose maximum value is
hCABi ≈ 2.39, which violates the classical bound.

IV. THE MONOGAMY PARADOX IN FLAT SPACE

We will now outline the paradox in the monogamy of
entanglement. Previously in (39) we have derived that up to
small corrections, we can obtain hCABi ¼ 2.39 > 2, which
indicates nonclassicality. We will now consider another
region C situated far away from our system AB at Iþ

− , and
consider operators Ci supported on the same (See Fig. 1).
Applying (2) to a local QFT, we have the following

upper bound on the CHSH correlators between systems
AB and AC

hCABi2 þ hCACi2 ≤ 8: ð40Þ

In this section, we will show that using the Reeh-Schlieder
theorem and the fact that in a theory of gravity, the
Hamiltonian is a boundary term [39], we can create
operators Ci such that their action on the vacuum is the
same as the action of operators Bi. Consequently, the
expectation in (40) based on local quantum field theory is
violated up to an O(1) extent.
Unless indicated otherwise, from here on, we will restrict

ourselves to describing the effects of gravity in four
dimensions. Firstly we describe the Hilbert space of the
theory and construct operators relevant to our calculation.
Then we calculate the hCACi correlator and pose the
paradox. We will further discuss conditions on the vacuum
structure under which we can similarly pose the paradox in
general dimensions. Toward the end of this section, we
discuss the resolution of the paradox.

A. Gravity in asymptotically flat spacetime

In this subsection, we will describe the Hilbert space of
the four-dimensional flat space theory and construct a
boundary projector onto low energy states. This projector
will be essential to construct bounded operators Ci within a
small region at the past of future null infinity (Iþ

− ). Readers
familiar with the details of this section can directly proceed
onto Sec. IV B.

1. The Hilbert space

A good coordinate system which encapsulates the
asymptotic large-r structure near the future null infinity
is the retarded Bondi coordinates [57].

ds2 ¼ −du2 − 2dudrþ r2γABdΩAdΩB þ rCABdΩAdΩB

þ 2mB

r
du2 þ γDADDCABdudΩB þ… ð41Þ

There is an infinite-dimensional symmetry group in the
asymptotic region consistent with the leading falloff given
above [57–62]. These symmetries are called supertransla-
tions which are generated by the following charges:

Qlm ¼ 1

4πGN

Z ffiffiffi
γ

p
d2ΩmBðu ¼ −∞;ΩÞYl;mðΩÞ. ð42Þ

The Bondi news is given by the u-derivative of the shear,
NAB ¼ ∂uCAB. This tensor has a zero mode, which is used
to split the supertranslation charges into two parts, a soft
part and a hard part. Technically it is the soft part that leads
to the asymptotic symmetries, while the hard part contains
stress-energy contributions.
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We will briefly talk about the Fock space of this
asymptotic theory [40–42] which is elaborated in more
detail in [43,44]. Since the news tensor contains a zero
mode, the vacuum must be specified not only by the
annihilation of the positive frequency modes of the news
tensor and the scalar field but should also be labeled by the
eigenvalue under the supertranslation sector

Qlmj0; fsgi ¼ sl;mj0; fsgi. ð43Þ

Here 0 denotes that the positive frequency modes of the
field, i.e., the hard part of the supertranslation charges
annihilate the vacuum. By smearing over the energies using
suitable tuning functions [63], where the smearing scale
can be taken to be arbitrarily small, the inner product
between two states is given by

hfnωg; fsgjfn0ωg; fs0gi ¼
Y
l;m

δfnωg;fn0ωgδðsl;m − s0l;mÞ: ð44Þ

where the Dirac delta function goes over the space of all l,
m. Consequently, we can build up the Hilbert space by
acting with the massless scalar and the news field on the top
of each vacuum labeled by j0; fsgi. Thus the Hilbert space
is fragmented into different sectors, with an element from
one sector orthogonal to another from a different sector.
Thus Hilbert space of canonical gravity is given by

H ¼ ⨁
fsg

Hfsg. ð45Þ

We will pause here to clarify some important aspects while
working with the Fock space as described in (43), (44), and
(45). Physically in order to compute meaningful quantities,
we write the state of our scalar field as follows:

jfnωg;Si≡
Z �Y

l;m

dsl;m

�
SðfsgÞjfnωg; fsgi; ð46Þ

where we have smeared the supertranslation of the vacuum,
with the peak of the smearing function SðfsgÞ centered
about a particular sl;m to ensure normalizability of states.
The smearing function SðfsgÞ is chosen such that our states
have unit norm. Therefore using (46) and (44), the inner
product between smeared states is given by

hfnωg;Sjfn0ωg;S0i ¼ δS;S0δfnωg;fn0ωg: ð47Þ

We note a critical assumption in our discussion: we have
ignored UV corrections, e.g., stringy effects, and assumed
that the low energy effective physics correctly describes the
low energy structure of quantum gravity. This assumption
seems quite reasonable since gravity is an excellent
effective field theory up to the Planck scale. In our work,
we pose the paradox within a low energy framework where

we perform only tree-level calculations, and hence we are
not bothered by any possible modification to the Hilbert
space introduced by a UV completion of gravity such as
string theory.
Finally, we also note that our construction manifestly

ensures that our Fock space is separable. This statement can
also be motivated using constructive QFT [64–67].

2. Boundary projector

Wewill now use the gravity Hamiltonian to write down a
projector in asymptotically flat spacetime [44]. We first
write the Bondi mass, which is the integration of the Bondi
mass aspect over the sphere at infinity.

MðuÞ ¼
Z

d2Ω
ffiffiffi
γ

p
mBðu;ΩÞ. ð48Þ

Note that the Bondi mass at u → −∞ is the m ¼ 0, l ¼ 0
component of supertranslation charges Qlm. The Bondi
mass reduces to the canonical ADM Hamiltonian in the
limit u → −∞ [39,68,69]:

lim
u→−∞

MðuÞ
4πGN

¼ H: ð49Þ

The ADM Hamiltonian can be expressed in terms of the
boundary metric, which is given by

H ¼ lim
u→−∞

MðuÞ
4πGN

¼ lim
r→∞

1

4πGN

Z
d2Ω

ffiffiffi
γ

p ðrh00ðr;ΩÞÞ:

ð50Þ
Using this boundary Hamiltonian, we can write down a
projector residing at Iþ

− . The projector onto the subspace of
vacuum states labeled by supertranslations is constructed
by taking the following limit [34,44]:

P0 ¼ lim
a→∞

exp ð−aHÞ: ð51Þ

where the subscript 0 in the projector denotes that we are
projecting onto the degenerate subspace of zero energy
states spanned by supertranslations. We can express this
projector as an operator on the Fock space as follows [70]

P0 ¼
Z �Y

l;m

dsl;m

�
j0; fsgih0; fsgj þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ: ð52Þ

However, in practice, the projector written in (51) is defined
only in an abstract sense. A more physically motivated
projector in flat space should project only up to energies
below an IR scale δ, such that OðδÞ ≫ OðGNÞ. We should
be able to set the IR cutoff δ arbitrarily small, i.e., it should
not appear in answers to a well-defined physical problem.
The expression for the projector onto low energy states in
the Fock space is given by
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Pδ ¼ Θðδ −HÞ: ð53Þ

Since our projector is a function of the Hamiltonian, it is
given by a boundary term as well. The representation of
this operator over states labeled by the energy and super-
translations is given by

Pδ ¼
Z �Y

l;m

dsl;m

�X
i

Θðδ − EiÞjEi; fsgihEi; fsgj

þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ; ð54Þ

where for notational convenience we have relabeled the
states as jEi; fsgi. However it should be kept in mind that
states satisfy the inner product in (47). In particular states
with different energy distributions but with same total
energy should be thought of as labeled by different values
of the index i.

B. CHSH correlation between regions A and C

We note that our calculation of hCABi in the absence
of gravity remains unmodified when we turn on gravity
(up to O(

ffiffiffiffiffiffiffi
GN

p
)) since we have simply fixed sl;m in (46).

Physically, our operator insertions within CAB are hard, and
such operator insertions do not change the soft quantum
numbers. As a result, the calculation ofCAB goes through in
gravity.
Now we can construct a spacelike nice slice containing

the regions A, B, and C. On this slice, using the Reeh-
Schlieder theorem [71,72] we can construct local operators
Qi living on the region C which replicate the action of hard
operators living on region B, such that

Qij0; fsgi ¼ Bij0; fsgi þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ ð55Þ

where as usual we have added contributions due to the
interacting vacuum. Apart from the theorem guaranteeing
their existence, in d-dimensions the operators Qi can be
explicitly constructed as follows.
Consider region C denoted by the Rindler wedge

covered by the chart z ¼ Z þ ζ cosh τ, t ¼ ζ sinh τ, in
the domain 0 < ζ < ∞, −∞ < τ < ∞ so as to have
z > Z þ jtj. To make this wedge spacelike separated from
the region AB we keep Z ≫ r0. The metric is

ds2 ¼ −ζ2dτ2 þ dζ2 þ
Xd−2
i¼1

dx2i : ð56Þ

We take a separable solution of the form Φðτ; ζ;xÞ ¼
e−iðωτ−k·xÞχðζÞ in order to solve□Φ ¼ 0. The ζ-equation is
given by

ζ2
d2χ
dζ2

þ ζ
dχ
dζ

þ ðω2 − k2ζ2Þχ ¼ 0; ð57Þ

where k≡ jkj. Imposing boundedness of the solution in the
limit ζ → ∞ at fixed τ and x, the field can be expressed as

Φðτ; ζ;xÞ ¼
Z
ω>0

dωdk

ð2πÞd−12

ffiffiffiffi
2

ω

r
bω;ke−iðωτ−k·xÞ

KiωðkζÞ
jΓðiωÞj

þ H:c: ð58Þ

where KiωðkζÞ is the modified Bessel function of the
second kind. The ω dependent factors inside the
integral ensure the canonical commutation relations [73]:
½bω;k; b†ω0;k0 � ¼ δðω − ω0Þδðk − k0Þ and ½bω;k;bω0;k0 �¼0 [6].
On the complement of this Rindler wedge we can again

write down Rindler-like coordinates, where in addition to
the crossed over modes b and b†, there also exist a set
of modes with support on z < Z at t ¼ 0 denoted by b̃ and
b̃†. Since these tilde operators are spacelike to Rindler
wedge operators, they commute. Thus within the comple-
ment of the Rindler wedge, where the coordinates are
t ¼ −ζ sinh τ; z ¼ Z − ζ cosh τ, the field operator can be
written as

Φðτ; ζ;xÞ ¼
Z
ω>0

dωdk

ð2πÞd−12

ffiffiffiffi
2

ω

r
b̃ω;keiðωτ−k·xÞ

KiωðkζÞ
jΓðiωÞj þH:c:;

ð59Þ

This is precisely how the smeared operators Ai and Bi in the
previous section can be constructed from wedge operators
and its complement. From the Bisognano-Wichmann con-
struction [72], the complement operators are related to the
wedge operators as:

b̃ω;lj0; fsgi ¼ e−πωb†ω;lj0; fsgi;
b̃†ω;lj0; fsgi ¼ eπωbω;lj0; fsgi ð60Þ

where j0; fsgi denotes the global vacuum. Thus we
systematically obtain (55). Using this construction, the
action of the complement operators Bi on the vacuum can
be written in terms of the action of the wedge operators Qi
on the vacuum.
The operators Qi constructed above are in general

unbounded, whereas in order to calculate CHSH correla-
tions we require bounded operators. We will now construct
operators Ci such that they satisfy

kCik ¼ hB2
i i þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ

hAjCii ¼ hAjBii þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ ð61Þ

first using the projector P0 onto the flat vacua subspace.
We will then use the physical projector Pδ, and show that
there exist our required operators Ci, and construct them
explicitly.
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1. Construction of Ci using P0

In this part, we outline the construction of operators Ci
using the exact projector onto the vacuum. For notational
simplicity, we will suppress factors of Oð ffiffiffiffiffiffiffi

GN
p Þ within this

subsection, and will reinstate the same in Sec. IV C.
In order to construct bounded operators fromQi, we take

combinations of products of Qi with the projector P0.
Consequently we recover the action of Bi on the vacuum,
and therefore the resulting operator can be bounded. We
define the operators Ci by the following expression

Ci ≡ hB2
i iðQiP0 þ P0Q

†
i − hBiiP0Þ − hBiiQiP0Q

†
i

hB2
i i − hBii2

; ð62Þ

where the cumulants are defined with respect to the
smeared state j0;Si. The operators constructed in (62)
might appear out of the blue, however they are systemati-
cally constructed by considering the subspace spanned by
fj0; fsgi; Bij0; fsgig. For notational convenience, we also
define

jBi; fsgi≡ Bij0; fsgi and βi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2

i i − hBii2
q

:

Then the construction of Ci is as follows. We start with a
candidate Ci with linear combination of all possible outer
products which do not involve cross terms from different
superselection sectors, i.e.:

fj0; fsgih0; fsgj; j0; fsgihBi; fsgj; jBi; fsgih0; fsgj;
& jBi; fsgihBi; fsgjg ð63Þ

multiplied by undetermined coefficients. These coefficients
can be systematically determined such that they satisfy the
bounds in (61), which gives us (62). To demonstrate this,
we rewrite the expression for Ci in (62) as a linearized sum
of outer products with determined coefficients

Ci ¼
Z �Y

l;m

dsl;m

� hB2
i i

β2i
jBi; fsgih0; fsgj

×

�
1 −

Z �Y
l;m

ds0l;m

� jBi; fs0gihBi; fs0gj
hB2

i i
�

þ
Z �Y

l;m

dsl;m

� hB2
i i

β2i
j0; fsgihBi; fsgj

×

�
1 −

Z �Y
l;m

ds0l;m

�
j0; fs0gih0; fs0gj

�
: ð64Þ

The proof of boundedness of Ci as defined in (62) and
hAjCii ¼ hAjBii þ Oð ffiffiffiffiffiffiffi

GN
p Þ is given in Appendix E.

2. Construction of Ci using Pδ

We will now proceed with the construction of Ci using
the more physical projector Pδ. Motivated by (62), we can
write a similar expression for Ci, which is valid up to an
OðϵÞ correction.

Ci ≡ hB2
i iðQiPδ þ PδQ

†
i − hBiiPδÞ − hBiiQiPδQ

†
i

hB2
i i − hBii2

: ð65Þ

To see why operators in (65) are valid operators up to OðϵÞ,
we first decompose the projector Pδ as

Pδ ¼ P0 þ δP: ð66Þ

The claim holds provided the contribution to Ci arises
solely due to P0, with δP not contributing to Ci. By acting
operators Ci on the vacuum j0;Si, we can ensure that the
chief contribution to Ci comes from P0 by demanding

jh0;SjQijEj;Sij ∼ OðϵÞ& jh0;SjAiQkjEj;Sij ∼ OðϵÞ:
ð67Þ

where the net energy Ej of the state satisfies 0 < Ej < δ.
This renders δP0s contribution within Ci very small, and
consequently the Ci’s defined in (65) satisfy the constraints
in (61). Note that these extra contributions arise due to the
last term in (65).
Note here that OðϵÞ denotes minor errors introduced due

to smearing scales, i.e., the operator smearing and the
wedge smearing scales. We group all such scales as OðϵÞ
since relatively these errors are of the same magnitude, in
contrast to much more minor errors of Oð ffiffiffiffiffiffiffi

GN
p Þ.

Under what condition can we ensure (67)? To begin,
consider a single-particle state jjΩi ¼ a†Ej

j0;Si, such that
Ej < δ. To ensure (67), we first evaluate the expression
Q1jjΩi.

Q1jjΩi ¼ ½Q1; a
†
Ej
�j0;Si þ a†Ej

Q1j0;Si ð68Þ

We will now argue that both the terms in (68) can be set
small enough, thereby satisfying the conditions in (67). To
see why the first term is small, let us discuss the energy
scales in the problem. Apart from the Planck scale, there are
two other energy scales in the problem: the energy ω0 as
defined in Sec. III C 3 (below which the Bogoliubov
coefficients were close to zero); and δ, which denotes
the IR cutoff. Now recall that B1 is given by

B1 ¼
1ffiffiffi
2

p ðPB − α†BPBαB þ α†BPB þ PBαBÞ; ð69Þ

where PB denotes the projector onto the B-vacuum, i.e.,
PB ¼ j0Bih0Bj, and where we have suppressed the super-
translation labels for convenience. Note that the modes αB

MONOGAMY PARADOX IN EMPTY FLAT SPACE PHYS. REV. D 106, 086002 (2022)

086002-11



in (69) are related to the global modes as given in (9), and
consequently the vacuum j0Bi is related to the global
vacuum j0i as follows:

j0Bi ¼ exp
�X

jk

1

2
a†jCjka

†
k

�
j0i; ð70Þ

where Cjk is the matrix outlined in the footnote [74]. Thus
the operators Bi can be expressed in terms of the global
modes as outlined above. Note that the global operators a†i
can be constructed only if we have access to the entire
spacelike slice Σ, i.e.:

a†k ¼
Z
Σ
ϕðxÞeþikx dd−1x

ð2πÞd−1 ð71Þ

and consequently Bi can only be written down provided we
have access to the whole entire spacelike slice. However,
since we have access only to the wedge and not the entire
slice, an exact wedge reconstruction of the operator Bi is
impossible. In particular, any attempt to reconstruct a†k will
also necessarily include other creation and annihilation
operators.Z
Σ0
ϕðxÞfkðxÞ

dd−1x
ð2πÞd−1 ¼ a†k þ

X
j

cjaj þ
X
j≠k

dja
†
j ; ð72Þ

where Σ0 ∈ Σ denotes the spacelike part of the wedge and
where fkðxÞ is a smearing function with support on Σ0. In
spite of this obstruction, the Reeh Schlieder theorem, and in
particular our wedge reconstruction analysis in Sec. IV B
gives us (55), i.e.:

Q1j0; fsgi ¼ B1j0; fsgi

The critical point here is that there exist smearing functions
fkðxÞ, with support on the wedge, which convolves with
field operator ϕðxÞ using which we can construct such an
operator Q1 from the wedge. Then the practical way to
construct Q1 is as follows: we attempt to closely simulate
Bi by wedge reconstructing the global creation and anni-
hilation operators as in (72). We perform this attempt by
choosing wedge smearing functions appropriately and
substituting the closely simulated operators in (69) [which
is essentially an infinite string of creation and annihilation
operators from (9) and (70)]. Consequently, we have a vast
choice in choosing the smearing functions since each
global operator insertion in (70) can be simulated using
a reconstructed wedge operator. This method gives us the
action of B1 on the vacuum using Q1. As a result, Q1 has
additional terms than B1 since we cannot precisely recon-
struct the operator B1.
Upon normally ordering, Q1 takes the following form:

Q1 ¼ B1 þ
X
j

p1jða†kÞ þ
X
j

q1jðakÞ; ð73Þ

where q1j contains at least one annihilation operator, while
p1j contains the remaining terms with zero or more creation
oscillators (Note that the operator j0ih0j inside (69) cancels
the remaining terms). In order to demand (55), the complex
coefficients multiplying operator distributions inside p1j in
(73) are conveniently adjusted using smearing functions
such that the following inner product is ensured:

h0;SjQ†
1Q1j0;Si ≈ h0;SjB†

1B1j0;Si: ð74Þ

Now using (9), (69), and (70), we will argue that the wedge
reconstructed operators Q1 in (73) satisfy (55) along with
ensuring the first term in (68) is small enough, provided that
Bi and the smearing functions fkðxÞ satisfy the following
conditions:
(1) B1 has a small overlap with a†Ej

. In other words, the
modes constituting B1 are sufficiently high energy
modes which are constructed such that ω0 ≫ δ. This
ensures that

½B1; a
†
Ej
� ∼ OðϵÞ: ð75Þ

Here OðϵÞ denotes the order of overlap between the
high energy and the low energy modes due to
smearing scales. A physically intuitive way to under-
stand why we require ω0 ≫ δ in flat space is to view
the projection onto states below δ as noise in our
description over the ground state subspace. Naturally,
we do not want operator insertions inside the corre-
lators characterized by frequencies within the noisy
regime, renderingmeasurements meaningless. There-
fore the noise δ needs to be set sufficiently low enough
for the construction to work [75].
We also note that if ω0 < δ, the first term in (75)

cannot be OðϵÞ, but constitutes an O(1) contribution.
(2) This leaves us with the third term (note that the

second term commutes with a†El
, and also has a very

small magnitude) i.e., an infinite number of annihi-
lator strings q1j. These can provide a large contri-
bution to the commutator in (68). To circumvent this,
we require that our smearing functions is chosen
such that the following contribution is ensured:

X
j

½q1jðakÞ; a†El
� ∼ OðϵÞ: ð76Þ

In particular, the constraint in (76) implies that the
third term of the operator Q1 given in (73) has a
minimal contribution from annihilators below δ, and
hence a slight overlap.

Thus using the conditions (74), (75), and (76) onQ1, we can
ensure that the modes constituting Q1 are engineered such
that the following commutator in (68) is ensured:

½Q1; a
†
Ej
� ∼ OðϵÞ: ð77Þ
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A more rigorous approach to showing the existence of a
suitable boundary observable can be found in Appendix F.
Let us now look at the second term in (68). This renders

h0;Sja†Ej
Q1j0;Si ¼ 0, thereby satisfying the first condition

in (67). Regarding the other condition in (67), using (68),
the second term gives us h0;SjAia

†
Ej
Q1j0;Si. Now con-

sider the commutator

Aia
†
Ej

¼ ½Ai; a
†
Ej
� þ a†Ej

Ai: ð78Þ

Since Ai is again an operator with energy much higher than
δ, the first term in (78) is OðϵÞ, and the second term is zero,
i.e., h0;Sja†Ej

AiB1j0;Si ¼ 0. We can repeat the analysis for

multiparticle states as well as straightforwardly generalize
the result from B1 to Bi. We obtain similar conclusions for
multiparticle states, with products of creation operators
replacing the single creation operator in the analog of (68)
and (78). Given the above discussed smearing conditions,
operators in (65) represent valid operators Ci satisfying
constraints in (61), with errors from smearing again giving
rise to an OðϵÞ correction.

3. Existence of Ci using Pδ and the boundary algebra

In this subsection, we argue that we can always construct
Ci using Pδ and other elements of the boundary algebra
which satisfy constraints in (61). This differs from our
analysis in Sec. IV B 2 since our expressions for Ci
satisfying (61) are exact here, without any factors of OðϵÞ.
In general, to exactly construct Ci satisfying the con-

straints (61), we require other boundary operators along
with the projector Pδ. We define

jB⊥
i ; fsgi≡ ð1 − PδÞ

N i
jBi; fsgi;

where N i is a normalization constant. As an example, we
can read off N i ¼ βi from (64), when we work with the
exact vacuum projector P0. On the lines of the construction
of Ci using P0, we write a candidate Ci, which is a sum of
all possible outer products multiplied by undetermined
coefficients

Ci ¼
Z �Y

l;m

dsl;m

�X
Ej;Ek

Θðδ − EjÞΘðδ − EkÞ

× xij;kjEj; fsgihEk; fsgj

þ
Z �Y

l;m

dsl;m

�X
Ej

Θðδ − EjÞ

× ðyijjB⊥
i ; fsgihEj; fsgj þ H:c:Þ

þ
Z �Y

l;m

dsl;m

�
zijB⊥

i ; fsgihB⊥
i ; fsgj: ð79Þ

Note that here the elements jEj; fsgihEk; fsgj belong to the
boundary algebra as argued in [44]. We will systematically
fix some of the coefficients in (79) as follows, where
we will suppress corrections of Oð ffiffiffiffiffiffiffi

GN
p Þ for presentation.

The Hermiticity of Ci implies xij;k ¼ ðxik;jÞ� and zi ∈ R.
Imposing Cij0; fsgi ¼ Bij0; fsgi, we fix the coefficients

xim;0 ¼
Z �Y

l;m

dsl;m

�
hEm; fsgjBi; fsgi; yi0 ¼ N i:

ð80Þ

which ensures hAjCii ¼ hAjBii. Given that we still have
undetermined coefficients inCi, we can always choose them
in such away that the absolute value of the largest eigenvalue
is given by

ffiffiffiffiffiffiffiffiffi
hB2

i i
p

, thereby giving us kCik ¼ hB2
i i.

As an example, we will demonstrate this for the case
of the exact projector P0. Here we have N i ¼ βi.
Consequently we obtain

kCik ¼ 1

2
ðhBii þ zi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2i þ ðhBii − ziÞ2

q
Þ:

Now requiring that the bound is satisfied, i.e., kCik2 ¼ hB2
i i

gives us zi ¼ −hBii, which again leads to the seemingly
serendipitously constructed Ci in (62).

C. The paradox and generalization
to higher dimensions

In Sec. IV B, using the wedge reconstruction, the
boundary algebra, and the fact that the Hamiltonian in
gravity is a boundary term, we have constructed operators
living in the exterior region C which essentially replicate
the action of operators Bi on the vacuum state, in three
different fashions. Subsequently, we arrive at the following
conclusion:

hCACi ¼ hCABi þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ: ð81Þ

Consequently at x ¼ 1
2
, the correlator hCACi takes a

maximum value hCACi ¼ 27
ffiffi
2

p
16

þ Oð ffiffiffiffiffiffiffi
GN

p Þ þ OðϵÞ.
After getting all our ingredients in place we will now

pose the paradox in monogamy of entanglement. For the
maximum violation at x ¼ 1

2
, we obtain

hCABi2 þ hCACi2 ¼ 11.4þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ þ OðϵÞ > 8: ð82Þ

Equation (82) contradicts the upper bound in (40) and gives
rise to the paradox in monogamy. As mentioned earlier, this
is an O(1) violation. The violation does not have a leading
dependence on the IR cutoff δ, an expected feature of a
well-defined physical observable.
An immediate generalization of the paradox in four

dimensions is extending the same to general dimensions.
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In d ≠ 4, the low energy vacuum structure of gravity is not
concretely established (See [76–82] for recent discussions
on the subject). Provided that the vacuum structure of
gravity in higher dimensions has a similar form, i.e., there is
a unique vacuum or degenerate vacua labeled by super-
translations, we can pose the paradox in precisely the same
fashion we have done presently. Regarding additional
symmetries, we can again treat them in a fashion similar
to our treatment of supertranslations.
We will point out why analogs of supertranslations in

general dimensions are not in conflict with our calculation.
The calculation of hCABi does not require us to go to the
asymptotics since the operator insertions are deep inside
the bulk, and hence our operator insertions do not change
the supertranslation of the state on which they act. More
precisely, these operator insertions are hard. The case of
hCACi is a bit more subtle since it involves the construction
of operators Qi and the projector Pδ both of which have
support near Iþ

−. However, from (55), the action of Qi on
the supertranslation fixed vacuum is precisely the action of
the hard operators Bi on the vacuum. In addition, the
projector Pδ as defined in (54) is diagonal in super-
translation labeled vacua. Consequently, the insertion of
the operator Ci within the vacuum to vacuum correlators
does not introduce any new complications because of our
construction and the very nature of the vacuum structure.

D. Resolution of the paradox

In our calculation, we have explicitly pointed out small
corrections of Oð ffiffiffiffiffiffiffi

GN
p Þ [See (82)]. Hence the paradox

cannot be resolved by introducing small corrections, as is
the case for Hawking’s original paradox and the bags
of gold paradox [46–50,52,53]. Here the O(1) violation
indicates the existence of a severe flaw in our basic
assumption, i.e., we have assumed that in the presence
of gravity, our system admits a description in terms of a
local quantum field theory. Building upon this assumption,
we have factorized our Hilbert space into three different
parts into three spatially disconnected and separated
regions A, B, and C.
However, it is a well-known fact that in gravity, the

Hilbert space cannot be factorized due to the Gauss
constraint. Consequently, our factorization into a tripartite
system each described by a local QFT is incorrect, which
resolves the paradox posed above. With gravity turned on,
degrees of freedom in the region B are secretly the same as
degrees of freedom in the region C. Therefore it is incorrect
to describe operators probing the underlying degrees of
freedom using local quantum field theory, and we explicitly
see an O(1) violation if we assume a local quantum field
theory setup in our case of empty flat space.
In a certain sense, we can observe this nonfactorization

of Hilbert space of the effective field theory based on
spatial partitioning at the level of commutators itself [83].
Note that since our operator insertions Ai=Bi introduce

energy into the bulk, the commutator ½H;Bi� ≠ 0. Since Ci
is a function of boundary projectors, in general the
commutator ½Cj; Bi� ≠ 0. Following the Gauss constraint,
this is a complementary objection to why we should not
expect factorization based on spatial partitioning within a
theory of gravity, even though effective field theory
reasoning naively indicates otherwise.
Since our calculation is performed in a general fashion,

we can equivalently interchange the operators A and B
describing the interior and the exterior respectively in (82)
to set up an information-theoretic inequality again. The
resolution for this situation is precisely what black hole
complementarity states, i.e., the interior operators are
complicated polynomials of the exterior operators. In
principle, our setup provides an explicit demonstration
of the complementarity principle in flat space. Our boun-
dary projector is a vital ingredient in this construction,
allowing us to write down operators far away from the light
cone that can probe the interior of the light cone.

V. SUMMARY AND DISCUSSION

We summarize the work, discuss some issues, and write
future directions here. First, we introduced a formalism for
treating Bell inequalities in a local QFT in flat space. We
utilized the fact that monogamy of Bell correlations is a
concrete measure for monogamy of entanglement and
consequently used our formalism to compute Bell corre-
lation between regions A and B. Then bounded operatorsCi
were constructed in a spacelike separated region C close to
the boundary using the Reeh Schlieder theorem and the
boundary projector, which replicate the operators Bi’s
action on the vacuum. Using this, a concrete paradox
was posed in the monogamy of entanglement between the
regions A, B and C. We argued that the resolution to the
paradox is as follows: in a theory of gravity, one cannot
factorize the Hilbert space into subspaces describing
spatially separated regions, which is necessary to set up
a paradox in the monogamy of entanglement.
As we discussed, in canonical gravity, the Hamiltonian is

a boundary term that plays a crucial role in constructing
bounded operators in the region C that replicate operators
Bi. The fact that the Hamiltonian is a boundary term is an
essential feature of gravity, which strongly hints at nonlocal
aspects inbuilt within theories of gravity [84]. Note that this
feature is unique to gravity and is not true of other theories,
say theories with Gauss constraints. Case in point, operator
insertions with zero charge in gauge theories do not affect
the field strength residing on the Gaussian surface. In
gravity, an operator insertion necessarily changes the stress-
energy tensor, and consequently, one cannot introduce
invisible operator insertions [85].
We now discuss the relation of our model to the

monogamy paradox for old black holes in flat space.
Since nonlocal effects of gravity play a primary role in
our problem, it is only natural to assume that such effects
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play a similar role in the black hole problem [86]. The
operators Ci in our problem are in a spirit similar to
complicated operators situated far away from a black hole
used to extract information from Hawking radiation.
Our construction also emphasizes the usage of CHSH
correlations in studying the monogamy of entanglement
paradox, primarily how CHSH correlations can be used to
quantify entanglement. The study of these correlators is
necessary since standard measures of entanglement like
von Neumann entropy are not well defined in gravity.
Note that the monogamy paradox is conventionally

posed within the context of old black holes. However,
our discussion only relies upon the entanglement of modes
across the horizon and the boundary. Consequently we do
not require an old black hole to pose the paradox, which is
reflected in the fact that the validity of operatorsCi does not
involve any particular timescale. In line with the principle
of holography of information [29,44,45], this is because the
information about the nonboundary regions is always
contained within Iþ

− .
The issue with writing down a similar construction for

evaporating black holes is that we require a projector onto
the space of black hole microstates, which we presently do
not understand how to construct. Consequently, it is not
easy to write bounded operators in a region far away from
the black hole, which can be used to write down CHSH
correlations. However, there is no problem with calculating
CAB correlator between modes just inside and outside the
horizon. Formulating the paradox in our toy model’s
fashion also shows that we do not need any modified
structure in the black hole interior, as is the case with
firewall and fuzzball constructions. Instead, such a paradox
in monogamy is a natural consequence of wrongly treating
gravity as a local quantum field theory.
Before we conclude, we list out some related open

questions. In our case, we need to go very close to future
null infinity to construct a projector onto our ground state. In
line with our holographic intuition that gravity knows about
quantum information inside a given region, is it possible to
construct a similarly approximate projector onto the vacuum
at a finite radius? Finding such a projector will be pretty
valuable not only as an independent problem for our flat
space toy model but also to pose a similar resolution of the
monogamy paradox for dS black holes. Besides, such a
projector will be pretty valuable for understanding aspects of
the principle of holography of information for compact
spacetimes, where naively a projector will project onto all
physical states in theHilbert space since there is noboundary,
and consequently, we need a projector at a finite radius.
Another problem is towrite down the projector onto the space
of all black holemicrostates in flat space andAdS,whichwill
allow us to write down a more accurate toy model. A distant
direction is to understand the asymptotic vacuum structure in
general dimensions, which will be helpful to pose the toy
model concretely in such dimensions. We envisage our

present work as a starting point to address some of these
issues in the near future.
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APPENDIX A: PROJECTORS ONTO SMEARED
MODES’ VACUA

In this section we shall verify the expression for projector
onto vacuum (13). We first take a variable transformation,
z ¼ t1 þ it2 and z� ¼ t1 − it2. With αs ¼ 1ffiffi

2
p ðXs þ iΠsÞ

and using Baker-Campbell-Hausdorff lemma, we can write
the projector as,

Ps ¼ −
1

π2

Z
d2z

Z
2π

0

dθs
e−zz̄ð1−i tan θsÞ

eiθs − 1 − ϵ
e−βðθsÞz̄α

†
s e−βðθsÞzαs

where βðθÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i tan θ

p
. Let us calculate hisjPsjjsi, where

jisi; jjsi are number states corresponding to oscillator
labeled by s. We get,

hisje−βðθÞz̄α†s e−βðθÞzαs jjsi

¼
X∞
m¼0

X∞
n¼0

ð−βðθsÞÞmþn z̄
m

m!

zn

n!
hisjα†ms αns jjsi. ðA1Þ

This is only nonzero if nþ is ¼ mþ js. If we also perform
the z; z̄ integral with z ¼ reiϕ and z̄ ¼ re−iϕ, that further
constrains us with a δis;js factor. Hence,

hisjPsjjsi ¼ −
1

π

Z
2π

0

dθs
X∞
n¼0

ð2i tanθsÞn
ð1− i tanθsÞnþ1ðeiθs − 1− ϵÞ

×

�
δis;js
n!

hisjα†ms αns jjsi
�
m¼n

. ðA2Þ

The term inside third braces is,

δis;js
1

n!
hisjα†ns αns jjsi ¼

�
δis;js

is!
n!ðn−isÞ! for n ≤ is;

0 for n > is:
ðA3Þ

Summing over n and further changing variable ω ¼ eiθs ,
we have a contour integral
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hisjPsjjsi ¼ −
δis;js
2πi

I
jωj¼1

dω
ω2is−1ðω2 þ 1Þ
ðω − 1 − ϵÞ : ðA4Þ

With ϵ > 0 as shown in 2 the contour evaluates to

hisjPsjjsi ¼ δis;jsδis;0 ðA5Þ

Hence,

Ps ¼ −
1

π2

Z
dt1dt2

Z
2π

0

dθs
1

eiθs − 1 − ϵ

× e−ðt21þt2
2
Þ−κðθsÞðt1Xs−t2ΠsÞ ¼ j0sih0sj ðA6Þ

APPENDIX B: EXPLICIT COMMUTATOR
OF SMEARED RINDLER MODES

Consider the commutator of the modes on region A first.
The modes are given by:

αA ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ω

× r
ðd−2Þ
2

A

�
U
U0

�
iω0

T ðUÞϕðtAðUÞ; rAðUÞ;ΩÞ;

α†A ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ω

× r
ðd−2Þ
2

A

�
U
U0

�
−iω0

T �ðUÞϕðtAðUÞ; rAðUÞ;ΩÞ. ðB1Þ

We integrate α†A by parts, and the only part of α†A that
contributes to the commutator ½αA; α†A� is

1ffiffiffiffiffiffiffi
VΩ

p
Z

dd−2Ω
Z

dUr
ðd−2Þ
2

A ∂UϕðU;−2v0;ΩÞ

×
Z

dν
iν

T̃ �ðνÞ
�
U
U0

�
−iν

: ðB2Þ

Note that here we have used T ðUÞðUU0
Þiω0 ¼ R

dνT̃ ðνÞðUU0
Þiν

to perform the following replacement

Z
U

0

dU0

U0 T ðU0Þ
�
U0

U0

�
iω0 ¼

Z
dν
iν

T̃ ðνÞ
�
U
U0

�
iν
: ðB3Þ

In terms of the light cone coordinates, the annihilation
operator is given by

αA ¼ 1ffiffiffiffiffiffiffi
VΩ

p
Z

dU
U

Z
dd−2Ωr

ðd−2Þ
2

A ϕðU;−2v0;ΩÞ

×
Z

dνT̃ ðνÞ
�
U
U0

�
iν
: ðB4Þ

Using the null surface canonical commutation [88] relation

½ϕðU1; V;Ω1Þ; ∂UϕðU2; V;Ω2Þ� ¼
iδðU1 −U2ÞδðΩ1;Ω2Þ

2rd−21

ðB5Þ
we get

½αA; α†A� ¼
1

2

Z
dΩ
VΩ

Z
dν1dν2
ν2

T̃ ðν1ÞT̃ �ðν2Þ

×
Z

dU
U

�
U
U0

�
iðν1−ν2Þ

¼ 1

2

Z
dΩ
VΩ

Z
dν1dν2
ν2

T̃ ðν1ÞT̃ �ðν2Þ2πδðν1 − ν2Þ

¼ 1; ðB6Þ

where we have used the normalization
R

dν
ν jT̃ ðνÞj2 ¼ 1

π.

APPENDIX C: COMPUTATION OF hGi
We will discretize the frequency space with a Δ gap for

ease of calculation. Toward the end of this appendix, we
will go back to the continuous limit by taking Δ → 0.
Performing the discretization, the global mode commuta-
tion relation (8) becomes

½an;l; a†n0;l0 � ¼
δn;n0δl;l0

Δ
; ðC1Þ

where we have labeled the frequency ω with integer n.
The global mode decomposition (9) now looks like
αs ¼ Δ

P
n;l hsðn; lÞan;l þ g�sðn; lÞa†n;l. Using the BCH

lemma, we can decompose the B piece in hGi in terms
of creation and annihilation operators as

FIG. 2. Contour used in the smeared vacuum projector calcu-
lation. There exist two poles at 0 and 1þ ϵ, among which only
the former contributes to the unit circle contour integral.
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ev2α
†
Beðỹ1XB−ỹ2ΠBÞeζ2αB ¼ eðv2þ

ðỹ1−iỹ2Þffiffi
2

p Þα†Bþðζ2þðỹ1þiỹ2Þffiffi
2

p ÞαB

× e−
1
2
ðv2ðỹ1þiỹ2Þffiffi

2
p þζ2

ðỹ1−iỹ2Þffiffi
2

p þv2ζ2Þ: ðC2Þ

Similarly decomposing the A piece and then writing both in
terms of global modes, we get

hGi ¼ heΔ
P

n;l
ðuBðn;lÞþuAðn;lÞÞan;lþðu0Bðn;lÞþu0Aðn;lÞÞa†n;li

e
1
2
ðv2ðỹ1þiỹ2Þffiffi

2
p þζ2

ðỹ1−iỹ2Þffiffi
2

p þv2ζ2Þe
1
2
ðv1ðt̃1þit̃2Þffiffi

2
p þζ1

ðt̃1−it̃2Þffiffi
2

p þv1ζ1Þ
; ðC3Þ

where

uAðn; lÞ

¼
�
v1 þ

ðt̃1 − it̃2Þffiffiffi
2

p
�
gAðn; lÞ þ

�
ζ1 þ

ðt̃1 þ it̃2Þffiffiffi
2

p
�
hAðn; lÞ;

u0Aðn; lÞ

¼
�
v1 þ

ðt̃1 − it̃2Þffiffiffi
2

p
�
h�Aðn; lÞ þ

�
ζ1 þ

ðt̃1 þ it̃2Þffiffiffi
2

p
�
g�Aðn; lÞ;

uBðn; lÞ

¼
�
v2 þ

ðỹ1 − iỹ2Þffiffiffi
2

p
�
gBðn; lÞ þ

�
ζ2 þ

ðỹ1 þ iỹ2Þffiffiffi
2

p
�
hBðn; lÞ;

u0Bðn; lÞ

¼
�
v2 þ

ðỹ1 − iỹ2Þffiffiffi
2

p
�
h�Bðn; lÞ þ

�
ζ2 þ

ðỹ1 þ iỹ2Þffiffiffi
2

p
�
g�Bðn; lÞ:

ðC4Þ
Next we use a simple result involving coherent states of
harmonic oscillators to simplify our expressions further.
Consider a system of oscillators with ground states j0ii,
where (i ¼ 1; 2;…;∞), with commutation relations
½α̂i; α̂†j � ¼ δij. Define the combined ground state of the
system as j0i≡⊗

i
j0ii. This setup is intended to mimic the

global modes an;l, as in our theory the global vacuum is
indeed the tensor product of all the different global mode
vacua. A coherent state in the jth oscillator is given by

jzji≡ ezjα̂
†
j j0ji, and the inner product between two such

states is hzjjz0ji ¼ ez
�
j z

0
j [89]. Then we have

h0je
P

i
z�i α̂iþz0iα̂

†
i j0i ¼ e−

1
2

P
i
z�i z

0
ih0je

P
i
z�i α̂ie

P
j
z0jα̂

†
j j0i

¼ e−
1
2

P
i
z�i z

0
i

Y
ij

h0ijez�i α̂i ez
0
jα̂

†
j j0ji

¼ e−
1
2

P
i
z�i z

0
i

Y
j

hzjjz0ji

¼ e
1
2

P
i
z�i z

0
i : ðC5Þ

To make use of this in simplifying (C3), we identify
ffiffiffiffi
Δ

p
an;l

with α̂j. This gives us terms like
P

nΔuAðn; lÞu0Bðn; lÞ
on top of the exponential. Taking the limit Δ → 0, the

sum
P

j goes to an integral and the whole expression
simplifies to

hGi ¼ expð1
2
ðuB þ uAÞ · ðu0B þ u0AÞÞ

e
1
2
ðv2ðỹ1þiỹ2Þffiffi

2
p þζ2

ðỹ1−iỹ2Þffiffi
2

p þv2ζ2Þ
1

e
1
2
ðv1ðt̃1þit̃2Þffiffi

2
p þζ1

ðt̃1−it̃2Þffiffi
2

p þv1ζ1Þ
;

ðC6Þ
where uA · uB ≡P

l

R
dωuAðω; lÞuBðω; lÞ. Using the fp

defined in (19), we obtain

uA þ uB ¼ 1ffiffiffi
2

p ½f1ðt̃1 þ ζþ1 Þ þ f2ð−t̃2 þ iζ−1 Þ

þ f3ðỹ1 þ ζþ2 Þ þ f4ð−ỹ2 þ iζ−2 Þ�

u0A þ u0B ¼ 1ffiffiffi
2

p ½f�1ðt̃1 þ ζþ1 Þ þ f�2ð−t̃2 þ iζ−1 Þ

þ f�3ðỹ1 þ ζþ2 Þ þ f�4ð−ỹ2 þ iζ−2 Þ�: ðC7Þ
Re-arranging the terms to gather the fp’s together and
using the mq defined in (19), we finally obtain

hGi ¼ exp

�
1

8

X4
p;q¼1

ðfp · f�q þ fq · f�pÞmpmq −
R
2

�
: ðC8Þ

APPENDIX D: BOGOLIUBOV COEFFICIENTS
AND hCABi ≥ 2

In this appendix, we demonstrate the calculation of the
Bogoliubov coefficients and show that hCABi ≥ 2.

1. Bogoliubov coefficients of local
Rindler-to-global modes

From (35) we can read off the Bogoliubov coefficients
using the large frequency limit, which are given by

hAðω; 0Þ ¼
1ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
iω0

× T ðUÞe−iωtA cos
�
ωrA −

ðd − 2Þπ
4

�
;

g�Aðω; 0Þ ¼
1ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
iω0

× T ðUÞeiωtA cos
�
ωrA −

ðd − 2Þπ
4

�
;

hBðω; 0Þ ¼
1ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
−iω0

× T ðUÞe−iωtB cos
�
ωrB −

ðd − 2Þπ
4

�
;

g�Bðω; 0Þ ¼
1ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
−iω0

× T ðUÞeiωtB cos
�
ωrB −

ðd − 2Þπ
4

�
: ðD1Þ
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The above Bogoliubov coefficients are written in terms of
integrals over U. We can perform these integrals using our
conditions on the tuning function in (32) and (33). Since the
form of the integrals is similar, we will demonstrate this by
evaluating the hAðω; 0Þ integral:

hAðω; 0Þ ¼
1ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
iω0

T ðUÞe−iωtA

× cos

�
ωrA −

ðd − 2Þπ
4

�

¼ 1

2
ffiffiffiffiffiffi
πω

p
Z

dU
U

�
U
U0

�
iω0

T ðUÞ½e−iξ1e−iωU þ eiξ2 �

¼ 1

2
ffiffiffiffiffiffi
πω

p
Z

dν
T̃ ðνÞ
ðU0Þiν

�
e−iξ1

Z
dUUiν−1e−iωU

þ eiξ2
Z

dU
U

Uiν

�

¼ e−iξ1

2
ffiffiffiffiffiffi
πω

p
Z

dν
T̃ ðνÞ

ðωU0Þiν
Z

dxxiν−1e−ix þ 0;

where ξ1 ¼ ðd−2Þπ
4

− ωr0, ξ2 ¼ ðd−2Þπ
4

− ωðr0 − 2v0Þ. The
second term in the third line vanishes because

R
dU
U ðUU0

Þiν ¼
2πδðνÞ, and using (33) T̃ ðνÞ vanishes at ν ¼ 0. The x
integral can be evaluated by choosing a contour shown in 3.

We encounter such x integrals in the expressions for the
other Bogoliubov coefficients as well, where we similarly
choose appropriate contours and obtain the following
values for the integrals

Z
∞

0

dxxiν−1e�ix ¼ e∓πν=2ΓðiνÞ: ðD2Þ

Thus the Bogoliubov coefficients can be conveniently
summarized as

hAðω;0Þ ¼
e−iξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνeπν=2ðωU0Þ−iνΓðiνÞT̃ ðνÞ;

g�Aðω;0Þ ¼
eiξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνe−πν=2ðωU0Þ−iνΓðiνÞT̃ ðνÞ;

hBðω;0Þ ¼
e−iξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνeπν=2ðωU0ÞiνΓð−iνÞT̃ �ðνÞ;

g�Bðω;0Þ ¼
eiξ1

2
ffiffiffiffiffiffi
πω

p
Z

dνe−πν=2ðωU0ÞiνΓð−iνÞT̃ �ðνÞ: ðD3Þ

2. Calculation of hCABi ≥ 2 for entangled
Rindler modes

Here we will demonstrate the calculation of the element
f1 · f�1 ¼ h�A · hA þ g�A · gA þ h�A · gA þ g�A · hA. The typical
integral encountered here is of the form

hA · h�A ¼
Z

dω
4πω

Z
dν1dν2eπðν1þν2Þ=2ðωU0Þiðν2−ν1Þ

× Γðiν1ÞΓ�ðiν2ÞT̃ ðν1ÞT̃ �ðν2Þ

¼ 1

2

Z
dν1dν2eπðν1þν2Þ=2Γðiν1ÞΓ�ðiν2Þ

× T̃ ðν1ÞT̃ �ðν2Þ
Z

dω
2πω

ðωU0Þiðν2−ν1Þ

¼ 1

2

Z
dν1dν2eπðν1þν2Þ=2Γðiν1ÞΓ�ðiν2Þ

× T̃ ðν1ÞT̃ �ðν2Þδðν1 − ν2Þ

¼ 1

2

Z
dνeπνjΓðiνÞj2jT̃ ðνÞj2

¼ π

2

Z
dν

eπν

ν sinhðπνÞ jT̃ ðνÞj2

¼ eπω0

2 sinhðπω0Þ
≡ 1

1 − x2
;

where x≡ e−πω0 . Here in the fifth step, we have used the
identity jΓðiνÞj2 ¼ π

ν sinhðπνÞ and used the fact that jT̃ ðνÞj2=ν
is sharply peaked around ω0 to go the sixth step. We will
now show that hA · g�A is zero.

FIG. 3. The red and the blue contours are respectively used for
the integrals I� ¼ R

dxe�ixxiν−1. Both the curved contours C�
give 0 in the limit R → ∞. Since there are no poles inside either
contour (they are slightly separated from the real axis), the total
contours also give 0. This lets us equate the integrals over the real
and the imaginary axes for both the eix and e−ix cases. We keep
the branch cut (occurring due to xiν) on the negative real axis so it
does not interfere with the calculation.
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hA · g�A ¼
Z

dω
4πω

Z
dν1dν2eπðν1−ν2Þ=2ðωU0Þ−iðν2þν1Þ

× Γðiν1ÞΓ�ðiν2ÞT̃ ðν1ÞT̃ �ðν2Þ

¼ 1

2

Z
dν1dν2eπðν1−ν2Þ=2Γðiν1ÞΓ�ðiν2Þ

× T̃ ðν1ÞT̃ �ðν2Þδðν1 þ ν2Þ

¼ 1

2

Z
dνeπνΓðiνÞΓ�ð−iνÞT̃ ðνÞT̃ �ð−νÞ

¼ 0:

The final step follows due to the fact that within the integralR
dνT̃ ðνÞT̃ �ð−νÞ, when T̃ ðνÞ peaks at ν ¼ ω0, the other

term goes to zero, i.e., T̃ �ð−νÞ ¼ T̃ �ð−ω0Þ ≈ 0. The rest of
the terms are evaluated by straightforward replication of the
above logic. We similarly evaluate the following expres-
sions in order to completely determine the ff matrix.

hA · h�A ¼ hB · h�B ¼ 1

1 − x2
;

gA · g�A ¼ gB · g�B ¼ x2

1 − x2
;

hA · g�B ¼ gA · h�B ¼ x
1 − x2

;

hA · g�A ¼ hA · h�B ¼ gA · g�B ¼ hB · g�B ¼ 0: ðD4Þ

Substituting the expressions in (D4) in fp · f�q þ f�p · fq,
we obtain

fp · f�q þ fq · f�p

¼ 2

1 − x2

0
BBB@

1þ x2 0 2x 0

0 1þ x2 0 −2x
2x 0 1þ x2 0

0 −2x 0 1þ x2

1
CCCA: ðD5Þ

APPENDIX E: PROOF OF hAjCii= hAjBii+Oð ffiffiffiffiffiffiffi
GN

p Þ
AND BOUNDEDNESS OF Ci OF SEC. IV B 1

In this appendix, we will show that the operators Ci
constructed as

Ci ≡ hB2
i iðQiP0 þP0Q

†
i − hBiiP0Þ− hBiiQiP0Q

†
i

hB2
i i− hBii2

: ðE1Þ

do indeed mimic the contribution of operators Bi in the
two-point correlators and are bounded.

1. Proof of hAjCii= hAjBii
First we note that by construction we have Qij0; fsgi ¼

Bij0; fsgi for all sectors fsg, which guarantees P0Q
†
i ¼

P0B
†
i ¼ P0Bi. Further, the fact that Bi is block diagonal in

and independent of supertranslation sectors, allows us to
write h0; fsgjBij0; fs0gi ¼ Kδðfsg − fs0gÞ. Taking the
expectation value with respect to the smeared vacuum
j0;Si gives us K ¼ h0;SjBij0;Si. Thus we have

h0; fs0gjBij0; fsgi ¼ h0;SjBij0;Siδðfs0g − fsgÞ: ðE2Þ

So, we have

P0Q
†
i j0;Si ¼ P0Bij0;Si

¼
Z �Y

l;m

dsl;m

�Z �Y
l;m

ds0l;m

�
j0; fs0gi

× h0; fs0gjBij0; fsgiSðfsgÞ þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ

¼
Z �Y

l;m

dsl;m

�Z �Y
l;m

ds0l;m

�
j0; fs0gi

× hBiiδðfsg − fs0gÞSðfsgÞ þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ

¼ hBii
Z �Y

l;m

dsl;m

�
SðfsgÞj0; fs0gi

þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ

¼ hBiij0;Si þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ: ðE3Þ

Now

Cij0;Si ¼
hB2

i iðQij0;Si þ P0Q
†
i j0;Si − hBiij0;SiÞ

hB2
i i − hBii2

−
hBiiQiP0Q

†
i j0;Si

hB2
i i − hBii2

þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ

¼ hB2
i iðQij0;Si þ hBiij0;Si − hBiij0;SiÞ

hB2
i i − hBii2

−
hBiihBiiQij0;Si
hB2

i i − hBii2
þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ

¼ ðhB2
i i − hBii2ÞQij0;Si
hB2

i i − hBii2
þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ

¼ Bij0;Si þ Oð
ffiffiffiffiffiffiffi
GN

p
Þ: ðE4Þ

Thus we can clearly see that hAjCii ¼ hAjBii þ Oð ffiffiffiffiffiffiffi
GN

p Þ
from here.

2. Boundedness of Ci

Let us define the orthonormal states jB⊥
i ; fsgi≡

1
βi
ð1 − P0ÞBij0; fsgi, where βi ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2

i i − hBii2
p

. Then
Ci can we written as
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Ci ¼
Z �Y

l;m

dsl;m

�
ðj0; fsgih0; fsgj þ βij0; fsgihB⊥

i ; fsgj

þ βijB⊥
i ; fsgih0; fsgj − hBiijB⊥

i ; fsgihB⊥
i ; fsgjÞ:

ðE5Þ

In terms of the orthonormal basis fj0; fsg; jB⊥
i ifsgig, it

takes the form

Ci ¼
� hBii βi

βi −hBii

�
⊗ 1þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ; ðE6Þ

where the ⊗ 1 stands for Ci’s identity action on super-
translation sectors. The eigenvalues of Ci are �

ffiffiffiffiffiffiffiffiffi
hB2

i i
p

þ
Oð ffiffiffiffiffiffiffi

GN
p Þ and hence the norm is

kCik2 ¼ hB2
i i þ Oð

ffiffiffiffiffiffiffi
GN

p
Þ < 1: ðE7Þ

APPENDIX F: PROOF OF EXISTENCE
OF Ci OF SEC. IV B 2

Let us split the boundary observable as C ¼ Cð0Þ þ CðδÞ

where Cð0Þ contains P0 and CðδÞ contains δP (CHSH
label is suppressed). We know that the Cð0Þ part gives the
desired correlators and is bounded in a desired way by
constructing a boundary Qi such that Qij0;Si ¼ Bij0;Si,
which Reeh-Schlieder guarantees can always be done. We

need to show that hAjC
ðδÞ
i i can be made arbitrarily small.

We have

β2i hAjC
ðδÞ
i i ¼ hB2

i ihΩjAjδP|fflfflfflfflffl{zfflfflfflfflffl}
energy<δ

Q†
i j0;Si

− hBiihΩjAjQiδP|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
energy<δ

Q†
i j0;Si: ðF1Þ

Both of these terms can be interpreted as the inner product
of Q†

i j0;Si and a bra which contains excitations on hΩj
with energy less than δ. The latter is a linear combination of
bras of the kind hΩjaω1

aω2
…aωn

such that
P

j ωj < δ. Here
we have suppressed the l label of the global annihilators
because they do not contribute to energy. Each of these
terms is

hΩjaω1
aω2

…aωn
Q†

i jΩi
¼ hΩjaω1

…aωj−1
aωjþ1

…aωn
½aωj

; Q†
i �jΩi; ðF2Þ

where ωj is any of the n different energies. So these terms
can be made arbitrarily small individually if we can
guarantee

½Qi; a
†
ω� ≈ 0 ∀ 0 < ω < δ: ðF3Þ

where ≈ has been used to mean “arbitrarily close to.” This
condition requires that Qi in addition to satisfying

Qij0;Si ≈ Bij0;Si; ðF4Þ

needs to be constructed in a way such that it contains
(arbitrarily) small contribution from aω;l for ω < δ. To
make this condition more precise we inspect how smearing
of the field operator translates into smearing of creation and
annihilation operators in energy domain. Consider a smear-
ing of the kind ϕf ¼

R
dtfðtÞϕðtÞ. We have suppressed the

position argument of both the field ϕ and the smearing
function f for simplicity. This decomposes as,

ϕf ¼
Z

dtfðtÞϕðtÞ

¼
Z

dtfðtÞ
Z

∞

0

dωðe−iωtaω þ eiωta†ωÞ

¼
Z

∞

0

dωðf̂ðωÞa†ω þ f̂ð−ωÞaωÞ

¼ a†
f̂þ

þ af̂− ; ðF5Þ

where the hats represent time domain Fourier transforms,
the subscripts on mode operators denote the frequency
space smearing: a†

f̂�
≡R

∞
0 dωf̂�ðωÞa†ω and f̂�ðωÞ¼ f̂ð�ωÞ.

Again, we have suppressed the sum over spherical mode
information l for the creation and annihilation operators for
brevity. Evidently, creation and annihilation operators are
weighted by the positive and negative Fourier modes of fðtÞ
respectively.
Now we make the condition set on Qi more precise. Let

A be the algebra generated by all ϕ smearings in region C.
Also, letAδ;θ be the subset ofA containing operators of the
kind ϕf1 þ ϕf2ϕf3 þ… such that

P
i

R
δ
0 dωjf̂−i ðωÞj2 < θ.

In simple terms, Aδ;θ is a subset of A in which all elements
obey (F3) up to precision θ (this may not be the maximal
subset with this property). We shall argue for the existence
of a Qi obeying both (F3) and (F4) by showing that
Aδ;θj0;Si is dense in the entire Hilbert space H which is
generated by field operations on j0;Si for any θ > 0
however small. Notice that the denseness of Aj0;Si in
H is just the statement of the Reeh-Schlieder theorem and
hence the denseness ofAδ;θj0;Si inH is not too surprising.
To simplify things a little, we take A to be the algebra

of all operator smearings with support in some time
band ½0; ϵ� (as a simplified model of region C). We also
simplify the definition of Aδ;θ accordingly. Now, let us
split the full Hilbert space into particle number sectors as
H ¼ ⨁∞

n¼0Hn, where the n-particle sector Hn contains
states like a†

f̂1
…a†

f̂n
j0;Si. We shall show that Aδ;θj0;Si is

dense in both even and odd particle sectors by induction.
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Even sector:Consider the hypothesis:Aδ;θ is dense inHn.
By axiom, the global identity operator I exists inAδ;θ (A is a
vonNeumann algebra), and henceAδ;θj0;Si contains j0;Si.
Therefore Aδ;θj0;Si is dense in H0, i.e., the hypothesis is
true for n ¼ 0. Consider a general (2nþ 2) particle term
a†
f̂1…

a†
f̂2nþ2

j0;Si. Because we have all the f̂iðωÞ at our

disposal, by the corollary stated and proved in F 1, we can
construct a giðtÞ with support in ½0; ϵ� such that ĝþi ðωÞ ≈
f̂iðωÞ and ĝ−i ðωÞ ≈ 0 for 0 < ω < δ. This gives

ϕg1ϕg2…ϕg2nþ2
j0;Si ≈ a†

f̂1
a†
f̂2
…a†

f̂2nþ2

j0;Si
þ ðH2ntermÞ þ � � � þ ðH2 termÞ þ ðH0 termÞ: ðF6Þ

The first term on the right-hand side is the one we need to
approximate, but other lower particle number terms show up
due to the noncommutativity of creation and annihilation
operators. If the hypothesis is true for n ¼ 2; 4;…; 2n, then
these residual terms are also limit points ofAδ;θj0;Si and can
be canceled off to any precision by summoning a state from
Aδ;θj0;Si. But this means the (2nþ 2) particle term is also a
limit point ofAδ;θj0;Si. Hence the hypothesis is true for all
even n (including 0) and we have proved by strong induction
that Aδ;θj0;Si is dense in all even number particle sectors.
Odd sector: Consider a state a†

f̂
j0;Si ∈ H1. Just like in

the even case, f̂1ðωÞ lets us construct g1ðtÞ with support in
½0; ϵ� such that ĝþ1 ðωÞ ≈ f̂1ðωÞ and ĝ−1 ðωÞ ≈ 0 for
0 < ω < δ. Then we have

ϕgj0;Si ≈ a†
f̂1
j0;Si: ðF7Þ

Since f̂1ðωÞ was a general smearing function, we know
Aδ;θj0;Si is dense in H1 and the hypothesis is true for
n ¼ 1. Tracing the exact same inductive steps as the above
case, we obtain that Aδ;θj0;Si is dense for all odd n.
This concludes the proof for denseness of Aδ;θj0;Si in

H, and hence also the proof for the existence of a Qi
localized in region C and satisfying both (F3) and (F4).

1. Positive Fourier mode reconstruction

Lemma: Given δ, ϵ > 0, the space of L2R functions
with support in ½0; ϵ� is dense in L2R under the
norm defined by kfk2δ ¼

R∞
−δ dωjf̂ðωÞj2, where f̂ðωÞ ¼R

R
dt
2π fðtÞeiωt. More explicitly, given a function f ∈ L2R,

and δ, ϵ, w > 0, there exists a function g ∈ L2½0; ϵ� such that

r≡
Z

∞

−δ
dωjf̂ðωÞ − ĝðωÞj2 < w: ðF8Þ

Proof: Let Pϵ be the projector onto the space of
all functions supported in ½0; ϵ�, and P−δ be the projector

onto the space of all functions which contain no Fourier
modes in the range ð−∞;−δÞ. The quantity in question,
r¼ R

∞
−δdωjf̂ðωÞ− ĝðωÞj2 is manifestly equal to 1

2πkP−δf−
P−δgk2, where kk is the standard L2 norm. Since, we need
to show the existence of a g ∈ PϵL2R such that r can be
made arbitrarily small, it is enough to show that the
subspace P−δPϵL2R is dense in P−δL2R. Let C∞

C ðRÞ be
the subspace of all smooth functions with compact support
in L2R. This subspace happens to be dense in L2R. Let us
first show the denseness of P−δPϵL2R in the subspace
P−δC∞

C ðRÞ. We shall show this by contradiction.
Let P−δPϵL2R not be dense in P−δC∞

C ðRÞ. Then there
exists a nonzero function χ ∈ P−δC∞

C ðRÞ such that
ðϕ; χÞ ¼ R

R dtϕ�ðtÞχðtÞ ¼ 0 for all ϕ ∈ P−δPϵL2R. So,

ðP−δPϵψ ; χÞ ¼ 0 ∀ ψ ∈ L2R

⇒ ðψ ; PϵP−δχÞ ¼ 0 ∵ both projectors are Hermitian

⇒ ðψ ; PϵχÞ ¼ 0 ∵ P−δχ ¼ χ

⇒ Pϵχ ¼ 0 ∵ ψ is arbitrary

⇒ χðtÞ ¼ 0 ∀ t ∈ ½0; ϵ�: ðF9Þ

Now, since χðtÞ is a smooth function on R, identically
vanishing over the interval ½0; ϵ� means while we Taylor
expand it around some point in this interval, say 0, all the
Taylor coefficients turn out to be 0. χðtÞ therefore vanishes
identically all throughout the real line. This is in contra-
diction to the hypothesis that χðtÞ is nonzero. Hence we
have shown that P−δPϵL2R is dense in P−δC∞

C ðRÞ. On the
other hand, P−δC∞

C ðRÞ is dense in P−δL2R because C∞
C ðRÞ

is dense in L2R. Hence, by transitivity of denseness of
topological spaces, we have shown P−δPϵL2R is dense
in P−δL2R.
Corollary: Given a function f ∈ L2R, and δ, ϵ, w > 0,

there exists a function g ∈ L2½0; ϵ� such that

Z
0

−δ
dωjĝðωÞj2 þ

Z
∞

0

dωjf̂ðωÞ − ĝðωÞj2 < w: ðF10Þ

In other words, for any function fðtÞ, there exists a gðtÞ
supported in ½0; ϵ� such that it approximates fðtÞ in the
positive Fourier modes with its modes in the ½−δ; 0Þ range
suppressed to arbitrary precision.
Proof: Given f ∈ L2R, construct f1 ∈ L2R by deleting

its Fourier modes in the ½−δ; 0Þ range. That is

f̂1ðωÞ ¼
�
0 if ω ∈ ½−δ; 0Þ
f̂ðωÞ if ω ∉ ½−δ; 0Þ : ðF11Þ

Now applying the above lemma to f1ðtÞ instead of fðtÞ
proves the existence of the desired gðtÞ.
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