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We present a new type of counterexample to the Nelson-Seiberg theorem. It is a generic R-symmetric
Wess-Zumino model with nine chiral superfields, including one field of R-charge 2 and no R-charge 0 field.
As in previous counterexamples, the model gives a set of degenerate supersymmetric vacua with a nonzero
expectation value for a pair of oppositely R-charged fields. However, one of these fields appears
quadratically in the superpotential, and many other fields with nonzero R charges gain nonzero expectation
values at the vacuum, and so this model escapes the sufficient condition for counterexamples established in
previous literature. Thus there are still open problems in the relation of R symmetries to supersymmetry
breaking in generic models.
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I. INTRODUCTION

The Nelson-Seiberg theorem relates R symmetries to
superymmetry (SUSY) breaking in generic N ¼ 1 Wess-
Zumino models. The original result [1] states that the
presence of an R symmetry is a necessary condition, and a
broken R symmetry is a sufficient condition, for SUSY
breaking at the stable vacuum of a generic model. A
refinement of this result [2,3] relates the existence of a
SUSY vacuum to the numbers of fields with certain R
charges in a model with a polynomial superpotential.
However, exceptions [4] to both of these results have been
found, in which a model with generic coefficients breaks
the R symmetry at the SUSY vacuum. The source of these
exceptions has been identified [5] as pairs of fields with
opposite R charges obtaining vacuum expectation values
(VEVs). Features of these exceptions can be summarized
into a sufficient condition [6]. To summarize, a sufficient
condition for the existence of a SUSY vacuum in a generic
R-symmetric Wess-Zumino model is that the number of
R-charge 2 fields is less than or equal to the sum of the
number of R-charge 0 fields and the number of independent
products of oppositely R-charged fields, which appear only
linearly in cubic terms of a renormalizable superpotential.
In this note, we demonstrate that this sufficient condition

is not also necessary by constructing a generic R-symmetric

superpotential that does not satisfy the above condition.
The model nonetheless possesses a set of SUSY vacua
where many fields with nonzero R charges gain nonzero
VEVs. Therefore, this model is a counterexample to the
Nelson-Seiberg theorem and escapes the sufficient con-
dition established in previous literature.
The rest of this paper is arranged as follows. Section II

reviews the sufficient condition for SUSY vacua in
R-symmetric Wess-Zumino models, which covers all
previous counterexamples. Section III presents the new
counterexample and its vacuum structure, showing that
it is a counterexample escaping the previous sufficient
condition. Section IV discusses properties of the SUSY
vacuum and implications of the result.

II. THE SUFFICIENT CONDITION
FOR SUSY VACUA

Here, we briefly summarize the results of [2,6]; for
details, we refer readers to those papers.
Under a continuousUð1ÞR symmetry, where theR charge

for Grassmann numbers θα is set to 1, the superpotential
WðϕiÞ, built from scalar fields ϕi or their corresponding
chiral superfields, must have R-charge 2 to make the SUSY
actionR invariant. Thus onlyR-charge 2 fieldsmay appear as
linear terms in the superpotential. Following the convention
of [6], we call such fields Xi. The terms linear in Xi, which
may appear in a renormalizable superpotential, are

WX ¼ aiXi þ bijXiYj þ cijkXiYjYk þ dðrÞijkXiPðrÞjQð−rÞk;

ð1Þ

whereai,bij, cijk, anddðrÞijk are coefficients,Yj areR-charge
0 fields, and the fields PðrÞi and Qð−rÞi have opposite
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R-charges �r so that their product is R neutral. In addition,
the assumption is made that the P and Q fields appear only
linearly in cubic terms. Thus, in addition toWX, other terms
that may appear in a renormalizable superpotential are

WA ¼ ξijkXiXjAk
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

rk¼−2

þ ρijkXiAjAk
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

rjþrk¼0

þ σðrÞijkPðrÞiAjAk
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

rjþrk¼2−r

þ τðrÞijkQð−rÞiAjAk
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

rjþrk¼2þr

þ ðμij þ νijkYkÞAiAj
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

riþrj¼2

þ λijkAiAjAk
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

riþrjþrk¼2

; ð2Þ

where ξijk, ρijk, σðrÞijk, τðrÞijk, μij, νijk, and λijk are coef-
ficients, and Ai are fields that have R charges not equal to
2 or 0 and cannot be identified as P or Q fields. The full
superpotential

W ¼ WX þWA ð3Þ

contains all possible R-charge 2 terms built from all fields in
our classification according to their R charges.
When seeking SUSY vacua, that is, solutions to the

F-term equations,

∂iW ¼ ∂W
∂ϕi

¼ 0; ð4Þ

one can satisfy all the F-term equations coming from
derivatives with respect to Y, P, Q, and A fields, by
assuming that only Y, P, and Q fields obtain nonzero
VEVs. The number of F-term equations coming from
derivatives with respect to X fields is equal to NX, the
number of X fields, while the number of independent
variables in these equations is equal to the sum of NY , the
number of Y fields, and NPQ, the number of independent
P-Q pair products, which can be expressed as

NPQ ¼
X

r

ðNPðrÞ þ NQð−rÞ − 1Þ; ð5Þ

where NPðrÞ and NQð−rÞ are the numbers of P and Q fields
with R-charges�r, and the sum is taken only over values of
r for which NPðrÞ and NQð−rÞ are nonzero. These equations
are always solvable [7] for generic superpotential coeffi-
cients if the number of equations is less than or equal to the
number of variables, and so a sufficient condition for the
existence of SUSY vacua is

NX ≤ NY þ NPQ: ð6Þ

This condition includes the case NX ≤ NY , under which the
revised Nelson-Seiberg theorem predicts the existence of
SUSY vacua [8], and the case NY < NX ≤ NY þ NPQ,

which is satisfied by all previous counterexample models
[4–6]. In the latter case, the facts NX > NY and that P and
Q fields get nonzero VEVs for generic superpotential
coefficients indicate that models in this case are counter-
examples to both the original Nelson-Seiberg theorem [1]
and its revison [2].
In the following section, we shall demonstrate a counter-

example that does not satisfy the sufficient condition (6).
The model gives a set of SUSY vacua where many fields
other than Y, P, and Q fields get VEVs. The existence of
such a new counterexample means that the sufficient
condition presented here is not also a necessary condition
for SUSY vacua in R-symmetric Wess-Zumino models.

III. THE NEW COUNTEREXAMPLE

Consider a Wess-Zumino model with nine fields: X, B,
C, Ξ1, Ξ2, Ξ3, A1, A2, and A3. The superpotential is given as

W ¼ Xðaþ bBCÞ þ Ξ1ðα1A1 þ β1B2Þ þ Ξ2ðα2A2 þ β2A2
3Þ

þ Ξ3ðα3Bþ β3A2
2 þ γ3A1CÞ þ γ1Ξ2

1A3; ð7Þ
where a, b, αi, βi, γi are coefficients. This superpotential
possesses a Uð1Þ R symmetry, under which the fields have
the R-charge assignment:

frX; rB; rC; rΞ1
; rΞ2

; rΞ3
; rA1

; rA2
; rA3

g

¼
�

2;
8

15
;−

8

15
;
14

15
;
26

15
;
22

15
;
16

15
;
4

15
;
2

15

�

: ð8Þ

This assignment is unique, or equivalently [9], there is no
other continuous symmetry of the model. The superpoten-
tial above contains all renormalizable terms permitted by
this R symmetry, so it is the form of a generic super-
potential given the fields and their R charges.
For generic values of the coefficients, we have a set of

SUSY vacua at

X ¼ Ξ1 ¼ Ξ2 ¼ Ξ3 ¼ 0; BC¼ −a
b

; A1 ¼
−β1
α1

B2;

A2 ¼
�

−
�

α3
β3

þ γ3
aβ1
bα1β3

�

B

�1
2

;

A3 ¼
�

−
α22
β22

�

α3
β3

þ γ3
aβ1
bα1β3

�

B

�1
4

; ð9Þ

with a one complex dimensional degeneracy parametrized
by the nonzero VEV of B. Like any SUSY vacuum in
generic R-symmetric models, the vacua have the property
that the superpotential vanishes term by term [10] and
satisfies the bound found in [11]. The R symmetry is
spontaneously broken everywhere on the degeneracy by all
the nonzero VEVs of B, C, and Ai. Thus, this model is a
counterexample to the Nelson-Seiberg theorem. The model
has NX ¼ 1, NY ¼ 0. Although B and C have opposite R
charges, they cannot be identified as P andQ fields because
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B appears quadratically in β1Ξ1B2 and in the quadratic term
α3Ξ3B. Therefore, we have NPQ ¼ 0, and the model
escapes the previous sufficient condition (6).
We may see the full vacuum structure of the model from

the scalar potential

V ¼ ð∂iWÞ�∂iW; ð10Þ
where a minimal Kähler potential is assumed. Like any
R-symmetric polynomial superpotential that does not con-
tain at least one field of charge 2 and at least one field of
charge 0, the scalar potential has a stationary point at the
origin of field space.1 In this case, this point is a saddle.
Numerical searches also indicate that there are several
metastable local minima with jVj > 0, thus SUSY breaking.
Finally, we note that other than ∂XW, which is

uncharged, all the F-terms ∂iW have a positive R charge.
This means that [12–15] under a complexified R symmetry,

ϕ → e−Rϕtϕ; t ∈ R; ð11Þ
all the non-X F-terms will tend to zero as t → þ∞. We thus
might have a runaway direction as C → ∞; B → 0.
However, as the complexified R symmetry also takes all
other fields to zero in this limit, this coincides with the
large-Q limit of the SUSY solution we found above.

IV. DISCUSSIONS

As we have shown, the model presented in this work has
a field count satisfying NX > NY þ NPQ, which is outside

of the previous classes of both the R-symmetric SUSY
vacua [8] and the R-symmetry breaking SUSY vacua
covered by the sufficient condition [6]. That the SUSY
vacua are R-symmetry breaking also indicates that the
model is a counterexample to the original Nelson-Seiberg
theorem. The existence of such a new counterexample
suggests that there are still some unexplored corners in the
classification of R-symmetric Wess-Zumino models.
Just like any SUSY vacuum in R-symmetric models, the

SUSY vacua in the new counterexample giveW ¼ 0 at the
SUSY vacuum [10,11,16], and the supergravity version of
the model also gives SUSY vacua with zero vacuum
energy. One may hope use the supergravity model as a
low energy effective description for flux compactification
of type IIB string theory [17–20], and such string con-
structions of W ¼ 0 SUSY vacua [21–27] serve as the first
step toward vacua with small superpotentials [28].
However, the R-symmetry breaking feature of the vacua
means that some complex structure moduli obtain nonzero
VEVs, which send the Calabi-Yau manifold away from the
R-symmetric point in its moduli space. It is then unnatural
to turn on only R-symmetric fluxes and obtain an
R-symmetric effective superpotential from the start.
Thus, similarly to previous counterexample models, the
new counterexample here does not contribute to the string
landscape of W ¼ 0 SUSY vacua if we only consider
R-symmetric SUSY vacua [23] or string vacua with
enhanced symmetries [21,22]. It is still an open question
whether these counterexamples could be low energy
effective models for other string constructions.
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