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To assist the matching of lattice field theory results to the high energy continuum limit we evaluate the
Green’s function where the tensor quark bilinear operator is inserted at zero momentum in a quark 2-point
function for an arbitrary covariant gauge. This is carried out in both the MS and RI’ schemes to four loops.
The tensor current anomalous dimension is also calculated to four loops in both schemes for an arbitrary

color group.
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I. INTRODUCTION

The Standard Model (SM) is generally accepted to be
the core theory that describes particle dynamics operating
at the current energy scales of the Large Hadron Collider
(LHC). However, as data gathering increases over the next
few years it is expected that discrepancies between exper-
imental results and SM predictions will emerge. This is on
top of the known difficulty in reconciling small neutrino
mass observations with the present neutrino content of
the SM. Another aspect of the Standard Model that is the
subject of intense study centers on determining the precise
numerical elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix which governs quark mixing and underlies
CP violation. Ensuring that the independent parameters are
calculated accurately theoretically based on the Standard
Model is an important foundation to finding a discrepancy
with experimental measurements. Equally if differences
are discovered one question that arises is what extension to
the SM will explain the new observations. In this respect
one major activity centers on constructing effective field
theories that use the present SM particle content to build
dimension five and six operators. These operators can have
CP violating or other properties, for instance. One subset of
such effective theories is to incorporate extra interactions
with Lorentz structures different from those already in the
Standard Model. For example, the SM has vector-axial
vector interactions. However at an early stage of the SM
development an alternative structure was considered that
involved a tensor current. This was eventually excluded by
experiment. In seeking to explore beyond the SM at current
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LHC energies, however, tensor couplings have become an
area of interest again. For example tensor couplings have
been used to examine f decay of the nucleon in addition to
beyond the SM CP violation searches. Its effect is manifest
in the neutron electric dipole moment. Similar tensor
couplings are also of interest in rare B decays as well as
being included in SM effective theories in order to provide
the freedom to cover the parameter search space as widely
as possible ahead of more precise experimental data.
Further background to theoretical aspects of these issues
can be found, for example, in [1-3]. Indeed the use of
tensor couplings in effective field theory extensions of the
SM have been discussed recently in [4].

One of the main theoretical tools used to determine
precise values of the various matrix elements that are
central to these SM studies is lattice gauge theory where
the related Green’s functions are calculated numerically to
very high accuracy. However, as the underlying field theory
of the strong sector, quantum chromodynamics (QCD), is
regularized by discretizing continuous spacetime lattice
results have to be extrapolated to the continuum limit by
reducing the lattice spacing. Taking such a limit is not
straightforward but to assist with error analyses any
numerical evaluation of a Green’s function has to be
consistent with its known high energy behavior. In other
words lattice results have to match onto the same Green’s
function but computed by contrast directly in the con-
tinuum perturbative theory. The latter can be deduced using
standard methods to evaluate Feynman integrals but to
ensure precision matching and error analysis, having the
matrix elements to as high a loop order as possible is
important. There has been a large industry producing such
perturbative calculations over the last few decades particu-
larly in the case of operator insertions in 2-point functions.
For instance, see [5—11] for the early developments. In
essence there are two classes of such Green’s functions. One
is where an operator is inserted at zero momentum [5-7].
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The other configuration is where the insertion is at nonzero
momentum and additionally the momenta of the other
external fields are nonzero [8-11]. While the latter class
corresponds to a nonexceptional momentum configuration
it is technically more difficult to compute high loop order
corrections in this instance. By contrast Green’s functions
with operators at zero momentum insertion in a 2-point
function effectively equate to a 2-point rather than a 3-point
calculation and, moreover, can be determined to much
higher orders perturbatively.

This is the main aim of this article where given the
importance of the tensor current in QCD for exploring
beyond the Standard Model we will compute the Green’s
function with that operator inserted at zero momentum
at four loops. This will extend the equivalent three loop
exercise of 20 years ago [7], which has been used in various
lattice analyses that are focused on understanding the
various SM extensions mentioned earlier such as B meson
decays, f decay of nucleons, electric dipole moments of
nucleons and the J/y decay constant. See, for example,
[12—18] for several instances including the recent results
of [19,20]. Equally there are also applications of the tensor
current to effective field theory formulations of the SM
[21]. In particular we will compute the matrix element in
the modified minimal subtraction (MS) scheme which is
the standard reference scheme for comparing to experi-
ment. However, as lattice measurements are carried out in
a lattice motivated renormalization scheme known as the
modified regularization invariant (RT') scheme [5,6], we
will also produce the Green’s function in that scheme.
Equally we will determine the anomalous dimension of the
tensor operator to four loops in both schemes. We qualify
this by noting that the MS four loop tensor anomalous
dimension is already available but only for the SU(3) color
group, [22]. We will provide the full four loop MS result
for an arbitrary color group. Although lattice computations
of operator Green’s functions are invariably performed
in the Landau gauge we will take a more general point of
view and carry out our calculations in an arbitrary linear
covariant gauge.

The paper is organized as follows. We recall the basic field
theory formalism that allows us to compute the Green’s
function of interest with the tensor operator insertion in
Sec. II. This includes the renormalization aspects and the
definition of the RI' scheme. The focus of Sec. IT is to record
explicit four loop expressions and in particular the value of
the Green’s function as well as the MS operator anomalous
dimension in both schemes. Concluding remarks are pro-
vided in Sec. IV while an appendix records expressions for
an arbitrary linear covariant gauge and color group.

II. BACKGROUND

To begin with we define the Green’s function that will be
our focus which is

G (p) = (w(p)lwe™w](0)p(-p)) (2.1)
where the tensor operator
O = oy (2.2)

is inserted at zero momentum and the antisymmetric tensor
o' is defined by

1
o =7 23)
meaning that G’gr( p) is also antisymmetric. The first stage
of determining the corrections to the Green’s function is to

decompose it into its Lorentz components which are
formally defined by

v 1
Gl (p) =2 )™ + 25 (P) (P = prp) 5 (24)
where Zg)r(p) are scalar functions. These are isolated

formally by a projection method [7]. Contracting the
Green’s function with two independent tensors produces
a set of linear equations that can be inverted to deduce that

1 1 [ uw
ZE?;(P) =T Hd-1(d-2) _tr<UWGOr(P))
1 v
=+ ?tr<(ﬂy/4pu - ﬂnp,,)G/é)r(P))} ’
1 [ v
282(17) =T Hd-1(d-2) _tr(%yG’ér(P))

+ %tr((w,,py — Propu)Glor (P))} (2.5)

where the trace tr is over the spinor indices. This is carried
out in d dimensions since we will be regularizing dimen-
sionally in d =4 — 2¢ dimensions. At the outset we note
that this is the same setup that was utilized in [7]. We have
retained the same approach to allow those interested in
extending their lattice matching analyses to readily adapt
their programs to include the new perturbative corrections.

We now summarize the technical aspects of evaluating
(2.1). The main reason for writing the amplitudes as linear
combinations of two projections is to evaluate them by
automatic Feynman graph integration packages. In [7] the
three loop computations were carried out with the MINCER
package that was originally devised and implemented in
SCHOONSCHIP in [23] but recoded, [24], in the symbolic
manipulation language FOrRM in [25,26]. The MINCER
algorithm evaluates massless 2-point Feynman integrals
in d = 4 — 2¢ dimensions to three loops. Therefore as the
operator O is inserted at zero momentum then the package
could be used to determine Gy (p) to three loops.
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To extend the results of [7] to the next order we follow the
same approach but use the more recent FORCER package,
[27,28]. This is the successor to MINCER in that it equally
determines the e expansion of 2-point massless Feynman
integrals in d dimensions but at four loops. In order to effect
the evaluation of (2.1) the first stage is to generate the
Feynman graphs which is achieved by using the QGRAF
package [29]. In addition to the 1, 13 and 244 graphs at
respectively one, two and three loops, there are 5728 to
determine at four loops. Once the graphs are generated the
Lorentz and color indices are appended to the fields and the
QCD Feynman rules implemented. To handle the group
theory we used the color.h FOrRM module, based on the
article [30], as it is designed to account for any new higher
rank color Casimirs that will arise. This routine is applied
to each graph in the automatic evaluation prior to applying
the FORCER component as it can be the case that for certain
graphs the group factor turns out to be zero. After the
group factor is determined and the ¢ expansion found the
expressions for each graph are added. To ensure that a finite
value (2.1) is returned we carry out an automatic renorm-
alization using the method of [31]. The key point is that
the value of each graph is written as a function of the bare
parameters. These are the gauge coupling constant g and
the covariant gauge parameter @ where the Landau gauge
corresponds to a value of zero. We have chosen to include o
since the operator anomalous dimension is independent of
the parameter in the MS scheme, [32,33], and this property
can be exploited for checking purposes. However this
property does not persist in other schemes such as RI'.
To introduce counterterms to render (2.1) finite the
bare parameters are replaced by their renormalized part-
ners. As the coupling and gauge parameter first occur in
the one loop graph their renormalization constants are

|

a2

3

SU(3)

7RI'(a,0) = —[4N; - 67]

+ [416N]20 + 1728(3N; — 17888N ; — 32778(5 + 156963]

only required at three loops. The overall divergence that
remains in the Green’s function after completing this
process is then absorbed by the operator renormalization
constant at four loops in whichever renormalization scheme
is required.

There is one caveat to this in that the four loop quark
wave function renormalization constant has to be included
due to the external legs of (2.1). This and the other field
wave function renormalization constants are now available
to five loops in the MS scheme. For the extension of the
three loop RI' tensor operator anomalous dimension we
also need the quark wave function renormalization in that
scheme but now at four loops. Therefore we have separately
renormalized the quark 2-point function at four loops using
FORCER which involved the evaluation of 1422 graphs at
that order. We obtained the same four loop MS expression
for the quark anomalous dimension y,,(a,a) as [34-36]
where a = ¢?/(167°). However it is a straightforward
exercise to determine the anomalous dimension in the
RI’ scheme which is defined by the criterion given in [5,6]
which is

, L= (2.6)
pi=n

lim [z‘“’z ( p)}

=0l ¥ TV

at the subtraction point where X, (p) is the quark 2-point
function and p is a mass scale necessary in the regulari-
zation to ensure the coupling constant remains dimension-
less in d dimensions. In other words at the subtraction point
there are no O(a) corrections to X, (p). With this definition
we verified the three loop RI' expression of [7,37] for
7y (a,a) and deduced

a3

108

- [16000N]3( + 1036802:3N} - 1205680N§» — 5834784{3N ¢ + 1075680 5N ¢

4

+ 24606080N ; + 62524516¢; — 158467155 — 143460448)] 1;96

+ 0(a®) (2.7)

at four loops for SU(3) or
R (@, 0)[* = —[1.333333N, — 22.333333]?

+ [3.851852N2 — 146.396719N; + 1088.536841]a’
— [12.345679N3 — 834.144090N? + 14434.984616N ; — 65381.420167]a*
+ 0(a%) (2.8)

numerically.
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III. TENSOR CURRENT RESULTS

Having described the computational technicalities we now record the results relating to (2.1). First we recall the result
of [22] for the renormalization of the tensor current in the MS scheme for SU(3) is

TS 4
yl}/IS(a) sU@®) _ §a _|_ [543 26Nf]
3

+[52555 — 36N2 — 144083 — 5240N ; — 2784¢5) g—l

+ [1152¢3N3 + 168N7 + 66240(3NF — 259208 ,NF + 39844N7

— 182198483N ; + 377568¢,N ; + 993600(sN ; — 3074758N

a

— 7423685 + 826848¢, — 4018560C 5 + 19876653 Ts.g +0(ad). (3.1)

We have verified this as a corollary of the expression for an arbitrary color group which is

e 257 26 19
yl}/ls(a) = CFCI + |: 18 CFCA 9 CFTFNf —C2:|

1004

13639 4
+ |:|:W—402:3i| CF §CFT%N? [7"' 16CS:| CFCATFNf

98 6823 365
+ b + 164“3] CiTeNy + {1 1285 — Y] CiCy + {T - 644“3] c}} a’®

208 32 640 dadedade dabcddabcd
— - s + 128 = 3203 ———
[ { 3 G 3 Cs] N, + &) -4 N,
194
81

73409 400, 980
— %5 —€3:|CFC TpNy

—56 128
+ é’g] CyT3N -l- {

736
st =32+ 56 }CFCAT%Ni

162 + 3
(710581 1600 12598

643 _TCS +22004 — —-— 53:|CF

4544 736
+ | 32 - 453} C3LT3N?

+ 884 —

(523 80 24
+ S + ?cjs + 136, + TQ} CiCsTpN;

_2320 9800 733979
-~ 1 -
+ _ {5 —616{, + 9 {3 304

] ac

'2900 8
+ |5 — 16025 — 1288, ~ 5 gg,} CiTuN,

(179363 4880 1012
+ W_TZ:S + 352¢4 +T§3] C%CA

. [3200 ¢, 2000, 10489
|3 > 3 24

]C‘}p} a* + 0(a%) (3.2)

where {,, is the Riemann zeta function and Cr, C4 and T are the standard color factors. At four loops the rank 4 color
Casimirs d¢ arise with the tensor being defined by

1
dghed = 6Tr(TaTU’TCTd)) (3.3)
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for the representation R where the trace Tr is over the color indices of the matrices representing the group generators 7.
En route we have verified the earlier respective two and three loop terms derived in [38,39]. The three loop term had
previously been confirmed in [40]. For practical purposes we recall the numerical value is [22]

= |SU@)
7y (a)

= 1.333333a + [40.222222 — 1.925926Nf]a2

+[607.512019 — 86.061258N ; — 0.444444N7]a*
+ [1.065000N3 + 62.698512N7 — 2624.104532N ; 4 10776.573952]a*
+0(a®) (3.4)

for SU(3).
While the SU(3) value of y}'(a) was already available [22], what is one of the main results here is the extension of

(1)

o7 (p) to four loops. In particular we have

1693 124

76
:1 J— —_ _N 2
+[9€3 54 sl f]a

22952, 277 o, 205, 1977125
243 71087 81 7 2916

63764 80 776 376 32
[0 Ty [T 2]

SU(3)

1HMS
Zor(P)|

(@]

+

729 "9 27 2187 81

(42157925 629370181 476917595 2784917789

3004 %6338 T 15552 1T 46656
g

1202905 . 538028059 _ 48310147
T 502 4T om0 T issm2
(124447867 2989 _ 12400 . 5255677 . 283045
* T T ST Ty ST g

17496 2

1452433 1880 _,
o ST "JN-’”

N 3320: _@C _25484 13603319
27 23 27 7% 81 73 52488
[4610 8 32

ﬁ—ﬁQ#—EQ]Nﬂa“—I—O(aS) (35)

2
f

in the Landau gauge at the subtraction point and

5 SU(3)

EMS(p)

=0 (3.6)

a=0

for SU(3) with

1)MS SU(3)
=0 (p)

o =1+ [1.530864N ; — 0.277778a* — 2.424683a — 21.201149]a>

a=0
+ [62.540409N ; — 1.046804a° — 17.386077a* — 5.043485aN ;
— 10.680631a — 0.302962N7 — 570.657293]a’
+ [11.9280690”N ; — 9.031353a* — 118.197512a° — 527.61784 10
— 3.840997aN7 + 155.224548aN ; — 1864.356282a + 0.540244N3
— 180.703312N7 + 4513.065131N ; — 18365.189753]a*

+ 0(d%) (3.7)
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numerically for the nonzero amplitude. We note as was
observed before [7,22], the value of the channel 2 ampli-
tude is zero at four loops not only for SU(3) but also for a
general color group. This may in fact be true to all orders
as a consequence of some symmetry restriction. We have
recorded the full four loop expression for ZSQMS( p) in the
Appendix and provided its electronic representation in the
associated data file together with other results relating to
the tensor operator. To gauge the effect of the new
correction when N = 3 we have

(])M_S( ) SU(3)N_f:3

Zor = 1-16.608556a> — 385.762720a>

a=0

—6437.737582a* + O(a®)  (3.8)
and with a; = 0.12 its two, three and four loop values are
0.998486, 0.998150 and 0.998096 respectively using naive
substitution. Viewed this way one would imagine that
the imperceptible difference between the three and four
loop results could lead to a minor refinement of the error
on the lattice extrapolation to the high energy expression.
This observation is one of the main consequences of our
next order study. At this point we note that we found a
discrepancy in the N ; independent part of the three loop term
|

(1)MS
of 207'

effect in the O(a?) coefficient. For example evaluating the
corresponding O(a*) coefficient of (3.8) in [7] at Ny = 3 in
the Landau gauge would have given —399.155300. With
this value then at three loops (3.8) evaluates to 0.998084 at
a, = 0.12 so that there is no large discrepancy.

The focus so far has been on the MS scheme but in [7]
the operator was also renormalized in the RI' scheme. For
completeness we also extend the three loop results for that
scheme here. First we recall the definition of the operator
renormalization constant of [7], that has parallels with the
quark wave function renormalization definition of (2.6),
which is

(p) given in [7]. In particular it has only a minor

=1.
2 2

lim [zgl’zgy’z(“ ( p)} )
=u

e—=0 or

(3.9)

In other words the channel 1 amplitude is used since the
divergences that lead to the MS scheme renormalization are
located there irrespective of the fact that Zgﬁ (p) vanishes.
With (3.9) the anomalous dimension RI' scheme anoma-

. . ! .
lous dimension y%l,,(a, a) is

CAa2

yRI(a,0) = Cpa+ Cp[257C, = 171Cp — 52N ;T ——

18

+[53387C% — 2311245C% + 4190443 C4 Cf — 5T186C,Cr + 3456(3CAN T
— 24884C, N, Ty — 10368{5C% + 9855C3 — 60483 CpN (T

CFCl3
162
+[97637317C3CoNy + 519696085C3 CpNy — 5796279085 CLCpN 5

+ 10326787283C2C2N - + 13219200 5C2 C2N - — 135883278C2 C2N -

+ 2657383283 C3CpN N Ty — 1088640¢sC3CrN N Ty

— 72145932C3 CpNpN Ty — 207852483 C4 C3N

— 172627205 C4 C3N - + 43519680C, CLN  — 42000768¢3C4 C2N N, T
+ 3110400 sCACEN N Ty + 57759192C4CAN N, T

— 269568083C4CpNN3T + 15287808C, CN pN3T% — TT7600085CEN ¢
+ 1244160085 C4N - — 5097654CEN - + 615859283CLN N Ty

— 248832005 CEN N (T — SA48384CEN o N (T + 35251200385 CEN pN2 T
— 5053824C3N e N3T3 — 872192C,N N 3T} + 8087043 dgPe s

— 24883200 sdbeddabed — 1244164904 debed — 3732485 dbeddbedN

+ 11394CpN Ty + 2288N3T%]

614

1492992abedgabedy | =
* Fdi N 11664N 1

+ 0(a®)
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in the Landau gauge. Although the tensor operator is gauge
invariant its anomalous dimension will be dependent on the
gauge parameter in general. It is only in the MS scheme that
the anomalous dimension of a gauge invariant operator is
|

independent of the gauge parameter, [32,33]. Indeed that
was a check on the emergence of an « independent MS
expression at four loops for a general color group. For
comparison we note

YR (a.0) V) = 1.333333a + [40.222222 — 1.925926N ] a>
+ [4.707819N3 — 233.294078N ; + 1634.149833]a>
+ [88297.353564 — 18912.306371N ;s + 1001.765247N?

— 12.462734N3]a* + O(a)

numerically. We do not need to record the RI' expression

for =) (p) as wivially it will be unity by construction.

One check on our four loop RI’ tensor operator anoma-
lous dimension is to exploit a useful property of the
renormalization group formalism. If an anomalous dimen-
sion is known at L loops in one renormalization scheme
and has been renormalized to (L — 1) loops in another
scheme one can deduce the L loop anomalous dimension in
the latter scheme by using a conversion function. This is
defined as the ratio of the renormalization constants in the
respective schemes at (L — 1) loops. In our particular case
the conversion function Cpr(a, @) is defined by

(3.12)

where the variables of the argument are in the MS scheme.
We note this since Z%IT/ is a function of a®' and a®' which
would suggest that Cyr (a, @) is not dependent on e but also

has poles in the regularization. This is not the case since

! U . . .
a®l and R are functions of a™S and o™ with the relation

between the two sets being established to three loops in [7].
Strictly only the relation of the gauge parameters is needed
to this order since the coupling constants are the same in
both schemes. In [7] the three loop terms of the gauge
parameter map were actually superfluous for the three
loop check analogous to the one we will repeat here but
|

(3.11)

|
are needed at four loops. Once Cyr(a,a) is available the
anomalous dimensions between the two schemes are
connected by

Yglr/ (agrr, ogrr)

_ 9
= 1o (ans) = Blangs) 5 —In Cor (ayss. ayss)
MS

— 0
— g (a5 Og) - In Cor (ags. o5s)

MS MS—RI'

(3.13)

We have labeled the variables in the two different schemes
explicitly for clarity. As the right hand side of (3.13)
involves variables in the MS scheme these have to be
mapped to their RT" counterparts which is the meaning of
the restriction on the right square bracket. It is a simple
exercise to infer oagg(ary.agy) from the three loop
expression of agy (ayg. oyg) given in [7] to facilitate this.
We have recorded the four loop Landau gauge expression
for Cor(a,a) for a general color group in the Appendix
with the full arbitrary gauge expression given in the
attached data file. While the four loop term is not needed
to carry out the check of (3.10) given (3.2) it will in fact
be useful once the five loop MS expression for (3.2) is
available. As a point of reference we note

Cor(a,0)[SV6) =1 + [46.665355 — 3.864197N ;|a?
+ [6.763867N% — 308.983059N ; + 2060.637793]a’
+[97451.822851 — 23266.484197N ; 4 1309.625138N?%

—15.567877N3]a* + O(a)

(3.14)

numerically. Finally we record that using (3.13) we reproduced (3.10) precisely for an arbitrary color group and gauge

parameter.
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IV. DISCUSSION

We have evaluated the Green’s function with the quark
bilinear tensor operator inserted in a quark 2-point function
to four loops in QCD for both the MS and the lattice
motivated RI' renormalization schemes. As a corollary we
have deduced the tensor operator anomalous dimension in
the MS scheme for an arbitrary color group. To gain an
insight into the effect of the new loop order we have shown
that for SU(3) and three quark flavors the four loop
correction of the Green’s function in the Landau gauge
represents a insignificantly small difference to the three
loop value at the same benchmark point in the MS scheme.
While this is not unrelated to the fact that the one loop
correction for this Green’s function is zero in the Landau
gauge it perhaps indicates that any error on the lattice
extrapolation to the high energy continuum value could
be very well under control for this particular operator.
One obvious test of this would be for a reexamination of
|

previous lattice extrapolations to the high energy limit but
using the new four loop perturbative results rather than the
previous three loop ones.

The data representing the main results here are accessible
from [41].
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APPENDIX: RESULTS FOR GENERAL
COLOR GROUP

As the four loop expressions for an arbitrary color group
are large we record them here for completeness. First, the
MS nonzero amplitude is

S 3773 3 65
s (p) =1+ Hn@ ~ i t3a- 3C3a—|—8a2] CrCy+ [3— 2025 —aﬂ c2
62
+ﬁNfTFCFi|a2
N @(: _4180535_1;:55 +6742C +12817a+3—5§a+§ga
16 >4 11664 12 °° " 27 P77 576 6> "8t
253 197 , 5, , 3, 15, 29 . 1 ,
B {z3a+ o4 a +4Csa +16C4a 1 {za +48(1 35:30‘ CrCy
62018 1862 . 1 79
+ —+40§5—50C4——C3——a+20aé'5——C3a—6a2—|—2é’3a2
81 3 6 3
3 5246 40 . 1550 2
—§a3+é’3a3} CiC, + {32@—7—?5# 5 Cg+a+2¢’3a—2a2+2é3a2—§4’3a3 Ci
(79544 1732 . 673
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The conversion function for the tensor operator from the MS scheme to the RI' one in the Landau gauge is

Cor(a,0) = 1 4 [5987C, — 3024¢5C,y + 432043 Cr — 4815Cy: — 1252N T ] —A—

CACl2

216
+ [66096085C2 — 2332808, C3 — 44380985C3 + T047161C3 + 775267273C,Cr

+ 653184£,C4 Crr — 699840¢5C, Cpr — 9415134C, Cr + 950400¢3C4N T
— 933128,C4N, Ty — 2984432C,N Ty — 200880083 C3 — 373248{,C2
+ 1555205 C% 4 2195316C% — 1119744L5CpN  Typ + 933124,CpN, T

C[:a3

272 272
+ 1562256CEN;Tr + 1382403N 5T + 220064NfTF] 11664

+ [85924802C3 C — 5427947484£,C5 Cr — 97962048L,C3 C-

+307910160¢5C3 C — 62208000¢C3 C - + 226816443¢,C3Cr

+ 7769141516C3 Cr + 773276544¢%C4 C% + 9867578112¢,C% C%

+ 228614400¢,C3 C% + 907933536(5C3 C3 + 270604800 C3 C%
—2066061816¢,C;C%. — 12614153610C3 C% + 17915904053C3 CpN (T
+ 221767372843, C3CrN ;T — 685843200 4C3CrN T
+271216512¢5C5CpN ;T + 466560004 6C3 CpN (T
—20575296¢7C3CpN T — 5293901856C% CpN ;T — 1517626368(3C, C3
—2501316288¢5C4C3 + 23607936£,C4C3 — 2880479232¢5C,C3
—569203200¢4C, C3 + 3784548096¢,C4C3 + 5214521988C,C5-

— 575548416¢2C4CEN ;T — 2772776448L3C4CEN Tr
+56360448,,CoCEN T — 535735296 5C,CEN ;T

+ 93312008 4C4CN (T + 4472230512C,C3N T

— 160496640¢3C, CpNTF + 17169408, CoCp N3 T

— 103845888 5C4,CpN7TF + 1012343136C,CpN7 T

+ 5792808963 C3 — 90556185643 C4 — 139968000¢ 4 C

+ 2238243840¢5C + 3732480004 C+ — 812464182C%
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+ 443418624L3C3N T + 5837184003CN ;T — 186624, CN (T
—97293312¢5CaN ;T — 5598720086 CaN T — 339420240C3N ;T

+ 13461811283CENGT — 17169408(,CENFTE + 140341248 sCEN 7T
— 282227232C3N;TF — 1437696(3Cp N3 T} + 995328L,Cp N3 T}

abed jabed abcddahcd
— 51645184Cp N3 TS — 71038425643 FTA + 485696736(5 FTA
abcd jabed abcddabcd ubcddabcd
+ 14556672, —F—A— — 2831980320¢ s 24— — 74649600, ———4—
Np Np Np
abed jabed abcd jabed uhcddabcd
+ 296912952087 —F——A— — 21523968 —F——A— + 4658135043N , ——F—
NF NF oo NF

abced jJabed abcddabcd
— 291879936¢3N.fFN—F — 6718464¢,N FNiF
F F

abcd jabed dabcddabcd
+ 38071296085 N FNiF — 9876142087 N —-——F
F

abcddancd a4

+338535936N, ~F— 50575 + 0(@) (A2)
F

where N is the dimension of the fundamental representation. Finally the tensor operator anomalous dimension in the RI'
scheme is

/ C 2
yRY(a,a) = Cra + [962Cy +27aCy + 257C, = 171Cy — 52N, T f—§

+ [16204C2 + 121503 C2 + 32403 C,Cr- + 57156*C2 + 9726 C,C -
— 144002 C4N T + 16902aC% — 6264aC4N T — 924485 C2
+213548C2 + 167616{3C,Cr — 228T44C,C + 13824L,C4N T
— 99536C,N T — 41472L5C2 + 39420C% — 24192L5CN, T

CFa3

+4SST6CEN (Tp + 9152NGTH -

+ |36450°C3C + 408240 C Cr- + 8748a° C5 C}. + 2724030 C3 Cr

+ 49572a* C5,C}. — 38880a* C3CpN T + 11664a*C, Cy + 2478630 C3Cre
+ 11041920 C3, C + 23328830° C3 C% + 21092403 C4 C%

— 30909603 C%CpN ;T — 46656430° C4C3 + 81648023 C,Ch.

— 777600’ CoCoN ;T — 319788¢302C5 Cr — 38880502 C5 Cr

+ 420319802 C3 Cr + 29937630 CAC3 + 365472a*C3C3

— 104976¢30>CACrN ;T — 20338560> C5CpN ;T — 334368(30>C4Cx.

+ 31687202 C4 Cy. + 311040830° C4CEN (T — 6454080*C4,CEN T

+ 1728000? Cy CpN7TF + 62208,30° CEN T — 622080 CyN (T
—2959578¢3aC Cr — 686880¢5aC5 Cr + 13835772aC3Cr

+ 2541456 3aC3 C% — 1253556aC% C% 4+ 990144¢3aC5CpN T
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+20736085aCCpN T r — 9117360aC CpN T — 41212803aC4 C3

4 103032aC, C3. — 19699283aC 4 CiN (T — 977184aC,CEN T

— 24883203aC, CpN3TS + 1347840aC, CpN3TT, + 12441643aCN ;T

— 31104aCN ;T + 165888L3aCEN3 T — 41472aC N3 T

— 115925580¢5C3 Cr + 10393920¢5C3 C + 195274634C3Cy

+ 2065357443 C3 C% + 2643840(5C3 C% — 271766556C% C%
+53147664(3C5CpN Ty — 21772808 5sC3CpN ;T — 144291864C3 CpN T
— 41570496¢5C4C3 — 34525440¢5C 4 C3 + 87039360C,C3.

— 8400153683C4CEN (T + 622080085CoC3N T + 115518384C,CEN Ty
—5391360£3C4 CpN7T + 30575616C, CpN7TE — 1555200083 C:

+ 24883200(5C — 10195308C} + 12317184(3CLN Ty

— 49766405 CEN ;T — 10896768CEN ;T + 705024083 CEN 3T

dabcddabcd

— 10107648CEN3 TS — 1744384CpN T + 1617408¢5 %

dabcddabcd dabcddabcd dabcddabcd
— 497664005 ——A— — 248832 L A4 — 746496{3N L
NF NF F
dabcddabcd a4
2985984N L —F 0(d’ A3
+ TN, |38 T O@) (A3)

for an arbitrary linear covariant gauge. The one loop term is clearly scheme independent.
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