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Light-front gauge is the most popular one to work with fundamental interactions, due to its characteristic
maximum kinematical Poincare operators that it allows. However, it is also known to be one of the trickiest
gauges one can work with for gauge theories, due to its singular nature. So, in terms of perturbative
calculations in the light-front, there are only a few published and tabulated results for the pertinent
Feynman integrals, mostly involving massless integrals. And the majority of the results given are only for
the divergent parts of them and the complete closed form (or with the finite parts) of these are not known. In
this paper, we use the technique of negative dimensional integration for the simplest of the one-loop
massive integrals as a working bench for massive Feynman integrals in the light front and show that novel
results for the finite parts not known before are obtained.
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I. INTRODUCTION

Our present understanding of elementary particles and
their interactions is based on the principles built from
quantum field theory. More specifically, gauge fields within
the field theoretical construct in which gauge fields are a
class of quantum fields where there exists a group of
transformations of the field variables under which the basic
physical properties remain unchanged, e.g., invariance of
action leading to field equations remaining the same. Those
field variable transformations are called gauge transforma-
tions and the principle of gauge invariance is foundational to
our current understanding of particles and their interactions.
A related but very often misunderstood concept is the
question of gauge independent quantities. This has to do
with the fact that relevant physical quantities of interest in
any phenomenon must be gauge independent, i.e., whatever
the gauge choice we make use of, the resulting measurable
quantity must be independent of the choice made. In other
words, calculations of physical quantities performed in any
gauge must give the same result.
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Gauge invariance entails the necessity of gauge fixing
procedures, allowing several different types of gauge
choices to do the fixing. Among many, the physical
light-cone gauge is the one that is defined through an
external, constant, lightlike four-vector n#, n> = 0, but it is
now well understood that this single vector is not sufficient
to span the whole four-dimensional space-time [1]. In other
words, it means that the gauge freedom is not totally
removed. Residual gauge freedom remains to be removed
by the introduction of the dual four-vector n*#, n*2 = 0.
This can done by hand using the ad hoc Mandelstam-
Leibbrandt (ML) prescription [2,3] in the calculations,
whereas in the negative dimensional integration method
(NDIM) [4] approach we use here, this is done naturally as a
consequence of the general structure of the light-cone
integral, defined over four-dimensional Minkowski space-
time. The use of ML prescription can be seen in a variety of
light cone papers published in the literature, attesting that it
suits and works for handling perturbative Feynman integral
calculations [5]. Pertinent integrals in the light cone are
evaluated and their pole parts are even tabulated in various
places, but conspicuously, they are limited to massless
integrals and only very few massive ones [6,7].

The negative-dimensional integration approach does not
require the use of any prescriptions [8] and provides
physically acceptable results, i.e., causality preserving ones.
The calculation we will present here is the very first test for
massive light cone integrals at the one-loop order without
invoking the ML prescription. The NDIM technique dem-
onstrates that integration over components and partial
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fractioning tricks can be completely avoided, as well as
parametric integrals. The important point to note is that the
dual lightlike four-vector n* is necessary in order to span the
whole four-dimensional space, when defining the gauge
proper. In the course of calculations, integrals are dimen-
sionally regularized into a D-dimensional space-time. Now
we apply such technique to the simplest massive one-loop
integral. The reason for this is twofold: first, the massless
one-loop tadpole type integral in the light cone is known to
be relevant for the perturbative calculations [9], contrary to
what we have in the covariant case, where integrals of this
type can be consistently set to zero. Also, the result for the
tadpole integral in the light cone we know in literature is
restricted to the divergent part only; it is not calculated
explicitly, with its finite parts. In other words, only the pole
structure of it is known, showing that it does not contain any
pathological features. Second, because in the NDIM
approach we use, a whole class of integrals is calculated
simultaneously, the integral (7) being just a particular case
of ours, and the results show a set of equivalent results at the
same time, the other result in the set not known previously.

The study of relativistic dynamics was pioneered by
Dirac [10], who considered three possibilities for such a
description, among which the front form is a well-defined
alternative for describing relativistic fields, characterized
by the time evolution along the plane x* = 0. The variables
xt = (x° +x%)/v2 and x~ = (x* — x*)/+/2 are tradition-
ally understood as the light-front “time” and longitudinal
space variables, respectively; the transverse components
remaining as in the wusual Minkowski space-time,
xt = (x,y) = (x!, x?). Their conjugate momenta are also
similarly defined as k* = (k°+&3) /2, k== (k* = &%)/ V2,
and k* = (k',k?), being understood as the longitudinal
momentum, light-front “energy” and transverse momen-
tum, respectively.

For a massive particle, the on-shell condition k> = m
leads to

2

2 2
k= M (1)
2k*

The dispersion relation in Eq. (1) is quite remarkable for
the following reasons: (1) Even though it is a relativistic
energy-momentum relation, it is a linear relation, contrary
to the usual quadratic one. (2) The dependence of the light-
front “energy” k= with respect to the transverse momentum
k- is just like the nonrelativistic relation. (3) There is a sign
correlation between the longitudinal momentum k™ and the
energy k—; for kT positive (negative), k= is also positive
(negative). (4) The dependence of the energy k= on the
momentum components k and k" is multiplicative and
large energy can result from large k* and/or small k*. All
of these simple observations have dramatic consequences
into the relativistic physical aspects of particle dynamics.

Our notation and conventions for light-front coordinates
are as follows:

Vel Il e
and therefore
G-l Al e

We have therefore the Minkowski space-time metric
g = (+,—,1,2) given by

0 1 0 O
1 0 0 O

gv = 00 —1 0 = 9w (4)
00 0 -1

This means that the covariant and contravariant indices
of a given vector are related by

Then, the scalar product of any two vectors becomes

a,bt =a,b* +a_b-+a, - b,
—a bt +ath —al b, (6)

where we use the convenient shorthand a, = (a;, a,)
and at = (—a!, —a?).
Using these conventions, our light cone defining external

vector n, = (1,0,0, 1)/\@ is now written as n, =
(ny,n_,ny,ny) = (1,0,0,0) while n* = (n*,n",n',n*) =
(0,1,0,0).

Since the defining lightlike external vector is arbitrary,
we may equally choose the corresponding dual vector

n,, = (ng. ny,ns,n3) = (1,0,0, —1)/v/2, or equivalently,
n;, = (n%,nt, ni,ny) =(0,1,0,0). In such a choice of

vectors, we have n2 = n*2 =0 and n-n* = 1.

II. MASSIVE ONE-LOOP LIGHT CONE FEYNMAN
INTEGRAL

Let us consider the simplest basic one-loop light cone
integral with massive propagator, in a generic D-dimen-
sional space-time [omitting the usual (27)P factor in the
denominator of the integrand for convenience]:

dPk

Tp(p.m?) = / (k= p)?—m?+ielk-n’
B dPk

a / (k= p)* = m? + ie]k*

(7)
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Strictly ~ speaking, we should have written
Tp(p.m?, n,n*), however, considering that p* can be
expressed as p* = (p*,p',p*,p7) = (p-n,p', p* p-n*),
we drop the explicit dependence on n and n*. The
divergent part of (7) has been known for a long time
and can be seen, for example, in the Appendices of
Bassetto’s and Leibbrandt’s books [6,7], with the use of
ML prescription, it reads

an

T (pm) Id1v+F

:2p Idiv—i—F, using p-n* = p-~
and n-n*=1. (8)
In the above equation, F' is the finite part, for which no
specific value is given, and /g;, is the divergent part of the

following integral, which is dependent on the dimension-
ality D of the space-time:

1., = divergent part of / Pk
oI (@ ie)l(k=p)* +iel
B %, Euclidean space. ©)
5 ”l’) 72 Minkowski space.

Note that in (8) we have the emergence of the dual vector
n* in the result. It can be seen that as D — 4 this term /I;,
clearly diverges.

We are going to evaluate an integral which is more
general than (7), where the denominator factors are raised
to generic powers, using the technique of negative dimen-
sional integration, without the need of any prescription to
handle the (k-n)~ = (k™)™ pole, j C N.

A. The NDIM technique in Euclidean space

For the purposes of applying the NDIM technique, we
first introduce the general structure of the light cone integral
to be evaluated, namely,

dPk (k- n*)!
T ,2,-,-,1_/ )
PP b3 = | = = el (k)
(10)

Then, our original massive light cone integral (7) is a
particular case of our general structure integral
T (p,m?,i,j,1) for the specific values of exponents
(i,j,1) = (1,1,0).

To implement the NDIM technique for the sought
integral, let us introduce the generating functional
Gaussian integral that is pertinent to our calculation:

GD(p’ m2) = /dee_“[(k‘P)z—mz]—ﬂk-n—yk-n*’ (11)

— pa(m’=p?) / dDke—a(k2—2k-p+§k-n+£k~n*). (12)

Completing the square in the argument of the exponen-
tial in the integrand, we can evaluate it, resulting in

ﬂ.D/Z
_ am*—Bp-n—yp-n’ +—lnn
T 2 (13)

Gp(p, mz)

Next, we are going to expand the exponential function in
the result above in power series to get

xD/2 Z (_1)h+caa—d—D/2ﬂh+d},c+d
a,b,c,d=0
2\a . b L ak\C )

) (P (pomt) eyt
al b! c! 244!

Gp(p. m2) =

On the other hand, expanding in power series the original
Gaussian integral (11), we have

GD (P, m2) _ / dDke—a[(k—p)z—mz]—ﬂk'n—yk%*’

. iyt CBY i
= Z (_1)+"Hw/de[(k—P)z—mz]
i.J1=0 e
x (k- n)/(k-n*),
. i1 @B
= Z( 1) T Iom (i J. 1), (15)
i J1=0

where we have introduced the negative dimensional inte-
gral definition

—m?)i(k-n)l (k- n*).
(16)

omalioJ.1) = / PK{(k - p)?

The upper index “s” labels the kind of function depend-
ence that the NDIM solutlon allows. Comparing (16) with
(10) we observe that the general structure light cone
integral in (10) is reproduced by (16) when i — —i,
Jj — —Jj, 1 — 1. This means that we need to make an analytic

S . o . NAC, L
continuation for the pertinent indices (i, j)—(—i,—j) to
allow for negative values of exponents i and j, while /
remains unchanged in (16). After this analytic continuation
process, we then have the final result for the integral in
(10) as

Th(p.m?,i,j.0)

ZINDIM i,j.1). (17)

Next, we see that both (14) and (15) are expressed in
terms of series expansion in a, f#, and y. For these two series
to be equal requires that term by term they must be equal.
Howeyver, in the former we have four summation indices
and in the latter only three summation indices. Identity
between the two equations (14) and (15) requires that
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i=a—-d—-DJ/2,
j=b+d.
[=c+d. (18)

We want to solve the set (a,b,c,d) in terms of the
(i, j,1) set. Since there is one summation index more than
the number of equalities, we can only solve the system of
three equations with four unknowns in terms of one of the
|

2\ i+D/2
1]s=z .y - m
IS (i j.1) = (—n)D/szz!<—7> (p-n) '

and

2]s=z . i . .
IRbiis ju 1) = (=m) PRI (=m2) 22 (p - )i (p - ")

i+D/2+d)\(j—d)(I-d)!

= d
(20)
where the variable z is given by the following mass-

momentum ratio:

m?n - n* m?

S 2ptpT

z (21)

2p-np-n*

Solutions in » and c¢ indices lead, respectively, to the
following resolutions for the system:

It (. 1)

=<—nY”%UuK—nﬂnyDu<_’“”*

J *\1[
2pw0(p")
1 h

—j+1+b)(j— b)'b'

X

§; (i+j+D/2=b)(= (22)

and
4|s=w
II[\I%)IM (i.j.1)

::(—EVNanum—nﬂ)HI+Dﬂ(p-n)i<—

n-n*\!
2p-n
1 we

XZ; Gri+D/2=)N(—l+o)(—c) el

C

(23)

0 1 z
azz+]+D/2 a)l(i+1+D/2—a)l(—i—D/2+a)'al’

(p-n)/(p-n*)

unknowns. Because in this case we have four unknowns,
there are four possible resolutions for the system. These
will be expressed in terms of a single sum whose index is
one of the unknowns. Also, these resolutions will define
the category of functional dependence “s” to which a given
resolution will lead into. So let us detail this procedure in
the following.

Solutions in a and d indices lead, respectively, to the
following resolutions for the system:

a

(19)

where the variable w is given by the following mass-
momentum ratio:

1 2p-np-n* 2p
—_ = == . 24
z m*n - n* m? (24)

w

We now use the Euler’s gamma function representation
for the factorials and introduce the Pochhammer’s symbol
notation:

it=_T(1+1), (25)

(26)

where in the last line we have defined the Pochhammer’s
symbol notation for the ratio of gamma functions:

I(x+y)
= 27
(=), == (27)
Within the summation sign, we will encounter

Pochhammer’s symbol with negative values for the sum-
mation index, so we need to rewrite them using the well-
known analytic continuation property from negative to
positive values. For example,

2\ i+D/2

[l]s=z ppf_™M

I l _

NDIM(lJ )=(-x) < Z) 1+0)

iepp (It 1) ipp(I+Dipn =

(=D (=D
=y, e,
Then, our resolutions can be written as
Xi —i—j-D/2),(-i—=1-D/2),z" (29)

(1-i—D/2), al’
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0 N [ d
RS .1 =) R ) Y R (30)

The single left over sums are the well-known hypergeometric functions of one variable, so we have

m2\ i+D/2 V()
I (i 1) = (=m)P/2 (—_> i (p-n) (P )

z —2i-p2(L+ Divpp(I+Divpp
x ,F\(=i—j=D/2,—i—1-D/2;1—i-D/2|z), (31)
i ivj+1) =(=m)P2(=m2) P2 (p - n)/ (p - ') e X o Fy (o=l 1+ i 4 D/2]2). (32)
(1+i)p

The final step is to analytic continue the coefficient Pochhammer’s symbols allowing for negative values of i and j, using
(28) so that the solution for the integral in the z parameter is

ZIT\IDZIQC (i.j.0),
= nD/Z(—m2)1+D/2(p n)(p-n){F\(-i—j-D/2,—i—1-D/2;1—i—D/2|z)
+ Fa(—j, =14+ i+ D/2|z)}, (33)

in which we have introduced the following definitions:

T(i + D/2)[ (=i — j— D/2)T(1 + 1)
T(—)T(—))C(1 +i+1+D/2)

Fi(|2) = x (=z)7 P12, F\(=i— j—D/2,-i—1-D/2;1—i—D/2|z), (34)

_T(-i-D/2)

oy 2Pkl D/2) (35)

Similarly, we obtain for the other set of resolutions,

w AC
ZI;\IDIM i,j. 1),

= ﬂD/Z(—m VP2 (pn)(p-n*){Fs(=j,—i—j—DJ2;1 =+ I|w)
+ Fu(=l,—i—1=D/2;1+ j—Ilw)}, (36)

with

_I(=i—j-D/2)I(1+1)
T T(=)r(1—j+1)

(=w)™Fi(=j.—i=j=D/2:1 = j+lw). (37)

T(—i—1—D/2)T(—j+ )

Pl M =TT )

(W)™, F (=1,—=i=1=D/2;1+ j—Ilw). (38)

So far then, we have two possible sets as candidates to be solutions for our integral (10) using the NDIM technique,
one with momentum configuration z and the other one, w. However, in the second set of solutions, (36), the two Gauss
hypergeometric functions in (37) and (38) are not linearly independent of each other, since the third parameter, 1 — j + [
(or equivalently, 1 4 j — [), is an integer number for j, [ integers [11]. This linear dependency can be lifted by using the
following Gauss’s hypergeometric function relation [11]
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I'(c)l'(b—a
,Fi(a,b;clx) = M(—xr“zﬂ(a, a+1—cia+1-blx"
['(c)l'(a—b) b
—x)2F (b,b+1—c;b+1—alx!
+F(a)l"(c—b<x) 2 1<’ + b+ alx )
(39)
Using (39) in the hypergeometric function of (37) we get
Fi(=j,—i—j—=D/2;1 —j+Ilw) z%(—w)f Fi(-j.-L;1+i+D/2|z)
241 J> J 5 J (—l —D/Z)_, 241 ] 5 ’
b ATt oo o o), (40)

where ,F(a.fy|z) =,F|(—-i—j—D/2,—i—1—D/2;
1 —i—D/2|z) in the last term in (40). Substituting (40)
in the first term of (36), we obtain exactly (33). This means
that the second term appearing in (36), proportional to
Fu(=l,—i—=1—=D/2;1+ j—I|lw) is superfluous, since, as
mentioned before, does not constitute a linearly independent
solution in relation to F3(—j,—i —j—D/2;1 — j+ I|lw).

We may ask whether the second term (38) in (36) can be
considered the solution in the variable w while the first term
(37) there be considered superfluous. The answer is yes,
indeed, since as we mentioned before, the two terms in (36)
are not linearly independent from each other. We can show
that using the same identity (39) in the hypergeometric
function (38) leads exactly to the same solution in the variable
z given in (33), although the algebra of Pochhammer’s
symbols in this case becomes more involved in proving this.

Therefore, with the NDIM technique applied for the
massive Feynman integral (10) with general powers for the
propagators, we have two possible, distinct, sets of sol-
utions for our integral (10), namely,

Tp(2)
=C(p.m*){F(=i—j-D/2,-i=1-D/2;1-i—-D/2|z)

+Fy(—j,—-l;14+i+D/2|z)}, (41)
and

Tp(w) = Clp.m*{F3(=j.—i—j—D/2:1 = j+I|w).
(42)

where we have defined C(p,m?)= zP/>(—m?)'+P/?
x(p-n)/(p-n*)!. These two sets of answers were not
known previously in such a closed form. In the Appendices,
we present a detailed calculation showing that for the
special case of these results with particular values of the
exponents, namely, i = j = —1 and [ = 0. In this particular
case, Eq. (10) becomes just the integral in (7), and we show
its concordance with result (8).

(i+D/2),y

B. The NDIM technique with tensorial structure in
Euclidean space

Next, let us consider the simplest basic one-loop light
cone integral with massive propagator and with tensorial
structure in the numerator, in a generic D-dimensional
space-time [omitting the usual (27)P factor in the denom-
inator of the integrand for convenience]:

, B dP ek
Tp(p.m*) = / [(k—p)?—m?>+ielk-n’
dP kk+
- [ @

As before, we introduce the general structure (for
convenience we introduce a factor of 2 in both numerator
2k - n* and denominator 2k - n)

dP kk+ (2k - n*)!
(k= p)? —m? +ie]' (2k-n)/’
(44)

T(po i ju1) = /

with its corresponding generating functional Gaussian
integral

GIZ) (p’ m2) _ / dekye—a[(k—p)z—mz]—ZﬁkAn—Zykn* . (45)

The above can be rewritten using the identity

i i erlk-p’ (46)

Kt 2ak-p =
¢ 2a0p,

yielding
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%, 2y
K*=2k-p+ZLk-n+Lk-n > .

Gh(p.m?) = e®m*=r) / dek”e_a(

—al =2k p+Zrn+2kn*
:ea(m2—p2)<1 0 )/dee (k 2%k-p+Lhen+2k ) (47)

2a0p,

Performing the Gaussian momentum integration, we get

1 p 4 2
" 2y _ D)2 _ _ ~2ppn-2ypn*+Lt
Gh(p.m*) = ="/ {aD P PR n* " M}em Ppnrpnign, (48)

Applying the partial differential operator on the result and expanding the exponential function in series, we get

1 4 Y > o (m®)*(2p-n)b 2p-n*)¢ (2n - n*)d
H 2y — D/2) _—_ pu _ _ * _1\b+c a—d gb+d,,c+d
Gh(p.m*)=nx {aDp” aD“nﬂ aD“nM} Xab;=o( 1)bteqadpbrdy pr x a o .

(49)

Different from the previous example of the scalar tadpole integral, now we have a splitting into three relevant terms,

Gh(p,m*) = 2" {p*Gp(p) = n*Gp(n) = n*Gp(n*)}, (50)
with
. _1\b+eqa—d-D/2gb+d c+d( ) 2p-n)” (2p-n*) (2n-n*)? 51
=2 p e e (51)
ahed—0 al ! c! !
i 1)b+eqa—d-D/2= 1ﬂb+d+1yc+d( ) (2p-n)® (2p - n*)* (2”'”*)‘1’ (52)
aled—o al b! c! d!
i b+¢ d—d-D/2- | gh-tdycrdi] (mZ)a (2p- ”)b (2p-n*)° (2”'”*)01. (53)
o al bl c! d!

The original Gaussian integral (45) on the other hand has the following series expansion

Gp(p.m*) = l]io — 1) Ol"i; /dek/‘[(k—p)2 — m?](2k - n)/ (2k - n*)L. (54)
Defining
Rom(i.J:) = [ a0k p)? =} 2k n k). (59)
we have, equating the series,
IIIiIDIM(ivjv l) = ”D/z{p”INDIM<p) - ””INDIM(”) - n*ﬂINDIM(n*>}» (56)

where

m?) (2p -n)® (2p - n*)¢ (2n - n*)¢
al b ! d

i—j=l71; ! ¢ a—d— c
Inpu(p) = (=1)7 /i1 1! Z (=1)Pteqemd=PRphtdyctd i ( (57)

085007-7



ALFREDO TAKASHI SUZUKI and TIMOTHY SUZUKI

PHYS. REV. D 106, 085007 (2022)

INDIM (n) — (_1)—1'—,;'—1”]-!“ Z//(_l)h+cau—d—D/2—lﬂh+d+1yc+d X

INDIM(n*) :(_1)—1'—/'—11-!]'”! ZW(_1)b+caa—d—D/2—lﬂb+dyc+d+l x

with 3, 37, and 3" indicating constrained sum indices
as follows:

Z’ ZN ZW
i=a—-d-D/2 i=a-d-D/2-1 i=a-d-D/2-1
j=b+d j=b+d+1 j=b+d
l=c+d l=c+d l=c+d+1

As before, since we have more indices in the set
{a, b, c,d} than in the set {7, j, [}, it follows that one index
in the former set remains free, which leaves a summation
over the values of that index. So, we have for each of the
integrals {Ixpnvi(P), Inoiv(72), Inpv (77) } @ set of solutions
pertaining to four summations left, namely, >, > ., >,
and ) ;. Each of these should be analytically continued to
positive dimension and then we analyze the solutions.

First, for the Ixpnv(p) we have, after being analytically
continued to positive dimensions,

I'5(p)
= C(p),Fi(=i—j—DJ2,—i—1-D/2;1—i—D/2|2).
(60)

I5(p) = C(p)yFi(=j.—i—j—=D/2;1— j+Ilw), (61)

I5(p) = C(p),F (=1, =i —=1=D/2; 1+ j—llw), (62)
I4(p) = C4p),Fy(=j,~l: 1 + i+ D/2|z), (63)

with coefficient factors found in Table L.

Again, solutions (61) and (62) are not linearly indepen-
dent since the third parameter of the hypergeometric
function 1 — j + [ (or, alternatively, 1 + j — /) is an integer
number for integers j and /.

Analogous analysis can be done here as has been done
for the scalar tadpole results and we arrive at the following
result:

(m?)¢(2p-n)° (2p-n*)¢ (2n-n*)?
al b c! d

(58)

(m*)* (2p -n)* (2p - n*)° (20 n*)?
al b c! -

(59)

In(p.2)
= C(p),Fi(=i—j—D/2,=i—1—-D/2;1-i-D/2|z)

+CU(p),F\(=j.=l; 14+ i+ D/2|z), (64)
and
Ip(p.w)=C(p),F1(=j.~i=j=D/21=j+Ilw). (65)

Next, we do similar analysis for the Iypp(72) and obtain

I'(n) =C%n),Fi(-i—j—D/2,—i—1-D/2—1;

—i—D/2|z), (66)

Iy (n)=C(n),F\(=j+1,-i=j=D/2;2= j+I|w). (67)

1% (n) = C(n),Fy (—l i = 1= D/2 = 1;j — I|w),  (68)
If(n) = C(n),Fy(=j+ 1.=1:2+ i+ D/2[z).  (69)

with the coefficient factors found in Table II.
These lead to

I (n,z)
=C%n),F\(=i—j—D/2,-i—1-D/2—1;—i—D/2|7)
+ C¥(n),Fi(—=j+ 1.2+ i+ D/2|z), (70)

and

Ih(n,w) =Cl(n),Fi(—j+1,—i—j—D/2;2 = j+I|w).
(71)

From the analysis of Ixpp(n*), we get

14 (n*) = C(n*),F (=i—j—D/2—1,—i—1—D/2;
—i=D/2|2), (72)

TABLE 1. The four coefficients in the solutions for the 7}, (p).
CO(p) = (2p - n) PR (2p )L 2 P/ L D =D )
CH(p) = (=m?) P2 (2p ) F (2 - ) LD
(3 2\i+l+D/2 Vil _7yy . gyl D(=i=l=D/2)T(=j+1)
Ce(p) = (=m0 2/2(2p - )l (<2n ) RS
Ci(p) = (=m?)"*PR(2p - n)/(2p - ') Mg
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TABLE II. The four coefficients in the solutions for the I} (n).

ci(n) = (2p - )z+j+D/2(2p . n*)i+1+D/2+1(2n . ”*)_i_D/z_lF(i?(D-/g;r(l—),r)(r_(izlji_+szz§<zl)H)
€ () = (=m?)/HPI2(2p e (2 ! HERE R

Ce(n) = (—=m2)HH+P2+1(2p . p)i==1(=2n - n )lr< i- 119(/2) 1()r]() j+I+1)

Cd(n) = (=m?)i*P/2+1(2p . n)i-1(2p - n*)lw

TABLE III.  The four coefficients in the solutions for the I7(n*).

Con*) = —(2p - n)HHPI2H (2 - g*)iHEDI2 (2 g )=i=D)2- 1r(z+€(/_2_4)}1()r(_>—ri(—lj+—izi/lz+—l)1}g)(1+/)
C”(n*) _ _( m )z+j+D/2+1(2p -n )—1+1—1(2n ‘n )] (=i 1_“(—%(2—1‘15)“[)

C(n*) = —(—m? )z+l+D/2(2p ) (=2 - pr) F(—i—l—g/_Zizl;E:;}l(—l;)F(1+l>

Cln') = (=m?)' PP @p ) (2p - ) HEER R I

I3 (n") = € (n"),Fy (=jomi—j = D2 Limj 1lw), (73)  Ip(n) = CHn*),F\ (—jo =L + L2+ i+ D/2)2).  (75)

WIE 5N e _ o oy with the coefficient factors found in Table III
Ihe(n*)=C(n*),F(=l4+1,—i—1-D/2;2+ j—1|w), (74) These resalt in
|

I}(n*,z) = C*(n*),F\(=i— j—D/2—1,—i—1—D/2;—i — D/2|z) + C¥(n*),F\(—j, =l + 1,2 + i + D/2|z), (76)
and
I3(n*,w) = CP(n*),Fy(=j, =i = j=D/2 = I;=j + l|w). (77)
Finally, collecting all the relevant results, we can write the results for the tensor structure integral (44):
Ty = 2P {pIp(p.2) = n*Ip(n.z) = nIp(n*.2)}, (78)

= P2 prT (p.w) = n# Iy (n,w) — n* I (n*, w)}. (79)

The first solution, (78), in the above contains six hypergeometric functions in the variable z = 2’1’7’.2:['7'.’;*. It reads

Th(z) = 2P p{C(p)yFi(=i = j = D/2,~i =1~ D/2;1 =i = D/2|z) + C*(p),F\(=j,~I;1 + i+ D/2|2)}
— 2PP2pr{C(n),F (=i— j—D/2,—i—=1—D/2 = 1;—i = D/2|z) + C¥(n),F\(=j + 1,-;2 + i + D/2|z)}
— 7PPPp{C(n* ), Fi(=i—j—=D/2 = 1,—i—1=D/2;—i — D/2|z) + C4(n*),F1(—j, =l + 152 +i+ D/2|z)}.

(80)
|
The second solution, (79), contains only three hyper- The coefficient factors C(@4-%) are tabulated in Tables I-III
geometric functions in the inverse momentum configura- and the two sets of solutions (80) and (81) are completely
tion variable w = z~! and reads: equivalent whose explicit expressions were unknown before.
Tp(w) =2’ {p*CP(p),F1(=j.~i=j = D/2:1 = j +I|w) IIl. CONCLUSIONS
—n*Cl(n),Fi(=j+1,—i—j—D/2;2— j+1lw) We have then shown that using the NDIM technique, it

—nHC (n*)yFy(=j —i— j—D/2 = 1;—j + [|w)}. was possible to evaluate the massive integral (7) and also
2l ' the integral with a tensorial structure (43) without any
(81) prescription to treat the light cone pole (k-n)~/ and the
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resolution of the integral was carried out by solving sets of
systems of linear equations. Moreover, the solutions we get
are more general, with generic exponents for denominators
and are complete, in the sense that we have two equivalent
sets of solutions, each one given in terms of a particular
mass-momentum configuration parameter, either z or w.
These results are all novel results, since up to now, only the
divergent part of the integral was widely known and used in
the pertinent available literature.

|

APPENDIX A: SCALAR CASE

In these appendices, we give a detailed computation of
the divergent and finite parts of the results we have obtained
for the special case of exponents i = j = —1 and [ = 0.
Then integral (10) is given either by Egs. (41) or (42). For
the first, with momentum variable z, it reads

T/ _ly_l,O;Z :”D/Z _m2 D/2-1
ol )= a2t L

+T(1 = D/2),F(1,0; D/2|z)}.

#{(_Z)l—u/z I'(D/2-1)[(2-D/2)

r(D/2) X 2F1(2=D/2.1- D[22 - D/2[z)

(A1)

Since the Gauss hypergeometric functions are such that they have the following properties applicable to our case

above [11]

Fila.pralz) = (1-2)7,

2Fi(a, 05y

it gives us

Th(=1,-1,0;z) = zP/2

(A2)

z) =1, (A3)

(p-n)

L)D/Z—l {(—Z)I_D/z 'D/2-1)r2-D/2) (1-2)P2~1 4 T(1 — D/Z)}. (A4)

r'(D/2)

Using the gamma function identity relation xI'(x) = I'(1 4 x) [11] we may rewrite (A4) as

Th(-1,-1,0;z) = n*¢
D( ) (pn)

e () T

where in the above we have also used D = 4 — 2¢, to work
out the limit € — 0.
Let us write it as

m2

Th(-1,-1,0;z) = —nﬂzﬂ(e), (A06)
where, with z7! =w = %,
Q(e) = lim (1 = ) (mPw — zm?)¢ — (—am?)~<}
e=0 (1 - 6) ’
~ lim(e) (= — eA(w) + O()}. (A7)
with
Aw)=w—wln(=zm?) + (1 —=w)In(1 —w). (A8)

(=m?)'~ {F(l —e)l(e)
r2-e)

(p-n) (1-¢

(=) (1 = 2)1¢ + T(e - 1>}

Then,
d’k 1

T’D(‘l"l"’“):/[<k—p>2—m2] (k-n)’
_ (219 : ”*>”2{é + F(p.m?) + O(e)}.

n-n*

(A9)

Therefore, we have exactly the same divergent piece
14, as that calculated with ML prescription and the finite
piece is

P
F(p,m?*) =1—y —1In(—zm? _mnen
(pom?) = 1=y =In (mam?) 4555
2p - -n* 2p - -nt
X(l_%)n(l_w)_
mn-n m-n-n

(A10)
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Finally, let us check the other solution, Eq. (42), in the
same limit.

(_m2>D/2—1

(p-n)
x {=T'(2=D/2)w,F(1,2=D/2:2|w)}.
(Al1)

T’D(—l,—l,O;w):ﬂD/2

Introducing as before, D = 4 — 2¢, we rewrite it as

2\ 1—€
Tl (=1, —1,0:w) = 2 ")

(p-n)

{-wI'(e),F(1,€;2

w)}.
(A12)
We need to work out the expansion for the hyper-

geometric function ,F(1,¢;2|w) for € — 0. To do this,
first we use the identity [11]

JFi(apiylw) = AyF (o, psa+ f—y + 1|1 —w)
+B,Fi(y —ay—fiy—a—p+ 1|1 —w),
(A13)
with
_TWry—a-p)
A=t -ar ) (A14)
BE(I _ W)y—a—/j F(y)F(a +ﬂ - 7) (AIS)

C(a)T(p)

Then, working out the expansion for the hypergeometric
function ,F (1, €;2|w), we get

I'(l—e
Fi(Lezhw) =0

[(2-e)

+(1=—w)l=*

LFi(Leell—w)

I'(e—1)
I'(e)

LF1(1.2—€2—¢€1—w).

(A16)

Since ,F;(a,b;b|l —w)=w* and I'(e)=(e—1)'(e—1),
we get

(1-w)

JFi(1,€;2lw) = l—l-e{l—l- 1n(1—w)}—|—(9(€2),
(A17)

and we arrive again at

rpict-to) = ()2 {Ls rpt) + 010 .
(A18)

in complete agreement with the previous result.

APPENDIX B: VECTOR CASE

For this case, since the expression for the z solution is
lengthier to deal with, we work out in detail only the shorter
w solution, Eq. (81):

Th(w) = 7P/ {p T (p),F1(=j,—i— j—=D/2;1 = j+I|w)
—n'CP(n),Fy(=j+1,=i— j=D/2;2 = j+I|w)
—nCP (n*),F (=j.=i = j=D/2 = Li=j + [|w)}.

(B1)

For the special case i = j = —1 and / = 0, we have

Tlh(w) = 22 {pACH(p] = 1, ~150),F, (1,2 = D/2;2}w)
—n*CP(n| - 1,-1;0),F,(2,2 — D/2;3|w)
—n*#CP(n*| = 1,-1;0),F (1,1 = D/2; 1|w)},

(B2)
with
CH(pl=1,-1,0) =L w2y (2 -D)2),
Ch(n|-1,-1;0) —%(—m2)D/2_2F(2—D/2),
Cb(n*—1,—1;0):2:1_2”*(—m2)0/2_21"(1—D/2). (B3)

Introducing D = 4 — 2¢ as before, we have

ThH(w) = 2={p"C(p| = 1.=1:0),F; (1. €:2
—n*CP(n| = 1,-1;0),F (2, 3|w)
—n*CP(n*| = 1,-1;0),F(1,e — 1;1|w)}, (B4)

w)

)2
C’(n|-1,-1;0) :551‘"3)2(_,,12)_4( ),
C’(n*|-1,-1;0) = an.zn* (-m2)=T'(e - 1) (BS)
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Our result can be expressed as P(e) = (—am?*)=T'(€),F (1, €;2|w),
N(e) = (—zm?®)~T(e),F (2. & 3|w),
_ T(e)
* n*)2 N*(e) = (—zm?)~¢ Fi(l,e—1;1|w). B7
T = {2t 21 (€ = () . ®)

m The first hypergeometric function has already been worked
—n# - N*(G)}, (B6)  out in the limit ¢ — 0 in (A17)and the third one is a power
' series , F'; (1,€ — 1; 1{w) = (1 — w)'~¢. We need to work out

the second hypergeometric function in the desired limit.
We do it in a similar way as we have done before, using

with the identity (A13)
2I'(1 —€ 2l(e—1
2F1(2,€;3|w)—ﬁzFl(Z,e;dl—w)—}—(l—w)l_‘%zﬂ(lﬁ—eﬂ—dl—w),
aA(1-€) 2
=——W l—w)l—— F(1,3-€2—¢|l —w). B8

In the above expression, we employ the identity for the hypergeometric function [11] ,Fi(a,b;c|z) =
—2)7 ", F{(c — a,c — b;c|z) that yields a terminating series at the second term as
1 ca=b, b hat yield inating seri h d

I (1L3—62—€ll —w) =w2,F (1 —e,—1;2 — €[]l —w)

:%{1_8:3(1_‘@}. (B9)

w

Plugging this result into (B8) we get, after doing expansions in power series in e,

SF1(2,63lw) =1+ e{% + % —In(1-w) + %ln(l -w) + (9(62)}. (B10)
Thus, finally,
73500~ | e
where the finite part is given by
Fr(w) = z*p+ Z Z: {1 —y—In(—zm?) + @m(l - w)}
- 7r2n"z(évn'.ir:;);2 {% -7+ % —In(—zm?) + a ;Vzwz) In(1 - w)}
- ﬂzn*ﬂ{” (n”i *')’;* - 2n"fzn*}{1 — 7 —In(=zm?) — In(1 — w)}. (B12)

The divergent pole part of the vector integral agrees with the result in [7].
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