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A maximally symmetric nonlinear extension of Maxwell’s theory in four dimensions called ModMax
has been recently introduced in the literature. This theory preserves both electromagnetic duality and
conformal invariance of the linear theory. In this short paper, we introduce a Galilean cousin of the
ModMax theory, written in a covariant formalism, that is explicitly shown to be invariant under Galilean
conformal symmetries. We discuss the construction of such a theory involving Galilean electromagnetic
invariants and show how the classical structure of the theory is invariant under the action of Galilean
conformal algebra.
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I. INTRODUCTION

Maxwell’s electrodynamics in 4d is special, in the sense
it has two very important symmetries, namely, the four-
dimensional conformal symmetry and electric-magnetic
duality. Maxwell theory is certainly the most successful
and well-known gauge theory of Uð1Þ fields since its
introduction one and half centuries ago. Most notably,
Maxwell’s equations derived from this theory are linear in
the field strength Fμν. It has been widely accepted that a
generic quantum theory of electrodynamics should have
higher-order corrections to the linear terms in Fμν in the
Lagrangian, arising from loop contributions [1], which
reduces to the pure Maxwell term in the low-energy limit.
This gave rise to the question of whether there exists other
classical Lagrangians for Uð1Þ gauge fields which are
already nonlinear in the field strength and gives rise to
Maxwell theory in an effective description. These theories
may capture new physics at different energy scales where
the full nonlinear theory has to be taken care of, leading to
corrections to known results. Thus materialized the studies
of nonlinear electrodynamics (NLED), which has been
going strong for more than a century already.

Notable examples of NLEDs include the famous Born-
Infeld theory [2], a crucial component of string theory in
the study of D-branes [3], that makes sure to keep self-
energy of point particles finite. Other well-studied exam-
ples include actions involving various functionals of the
field tensor, and a nice review for these constructions can be
found in Ref. [4] and references therein. But the main
caveat lies in the problem that a generic NLED in 4d is not
conformally invariant; neither is it invariant under Hodge
duality rotations. So the question people have been asking
for decades, reads: is it possible to write down a Lorentz
invariant nonlinear theory of electrodynamics that pre-
serves the symmetries of Maxwell Lagrangian? As far as
conformal invariance is concerned, it has been shown that
as long as the Lagrangian is a homogeneous function of
degree one of Maxwell Lorentz invariants, the theory
remains invariant. However, the requirement of electro-
magnetic duality invariance takes a more involved form, as
shown first by Bialynicki-Birula [5]. Reconciling the two
conditions seemed to be an involved problem for decades;
for example, Born-Infeld theory gives rise to manifestly
duality invariant equations, but it is not conformal invariant.
Only recently, the question we posed has been com-

pletely answered by Bandos, Lechner, Sorokin, and
Townsend [6] (see also [7]), who proposed a simultane-
ously duality-invariant and conformal theory of Uð1Þ
fields, that reduces to Maxwell theory in a zero coupling
limit. This theory has been generically called modified
Maxwell theory or by the nickname “ModMax.” This has
generated considerable interest in the past couple years and
has been shown to have many interesting properties as seen
in the classical solutions [8], Hamiltonian formulation
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[9,10], coupling to charged particles [11], supersymmetric
and other generalizations [12–15], and connection to black
hole solutions [16–19]. It has also been shown that
ModMax theories can be generated by a TT̄-like (orffiffiffiffiffiffiffi
TT̄

p
-like) deformation of Maxwell theories [20–23],

and a string theory context for ModMax has been intro-
duced in Ref. [24]. This list, of course, does not do justice
to the literature, and readers are directed to references and
citations of these papers. Certainly, the general symmetry
structure of ModMax is intriguing on its own and will be
part of various studies in the near future.
Our goal in this note, however, is to meander from the

well-traversed paths and try something very new. Wewould
like to focus on the conformal nature of the ModMax
theory and would like to see what happens when one looks
at these symmetries going away from the relativistic
situation. Specifically, we set out trying to write an analog
Galilean covariant nonlinear Lagrangian which is invariant
under the 4d Galilean conformal algebra (GCA). These
symmetries arise when the we take a nonrelativistic (speed
of light going to infinity) limit on the d-dimensional
conformal algebra. At each and every dimension, this limit
results in an infinite-dimensional Galilean conformal alge-
bra [25], in contrast to their relativistic cousins which are
only infinite dimensional in 2d [26]. Galilean electrody-
namics has been studied for a long time, starting as early as
with Le Ballac and Levy-Leblond [27]. In recent years,
theories of Galilean electrodynamics have generated new-
found interest due to the larger and rich symmetry
structures associated to it, and in Ref. [28] a reformulation
of Galilean conformal electrodynamics in various dimen-
sions was introduced via taking nonrelativistic (NR) limits
on the equations of motion of the Maxwell theory and has
subsequently been developed in a bunch of works [29–35].
A caveat for taking such a limit is loss of manifest electric-
magnetic duality, as the physics splits in two subsectors,
where either the electric or the magnetic components of the
gauge field Aμ dominate. The other problem is that the
procedure of taking NR limits does not work accurately on
the action formalism, and, hence, a proper covariant
Galilean electrodynamic action is hard to write down.
The search for a covariant Galilean electrodynamics

theory needs to be addressed by putting the gauge fields
explicitly on a non-Lorentzian manifold, in this case a
Newton-Cartan manifold. Newton-Cartan structures arise
when we take the speed of light to infinity and the usual
Riemannian notion of a manifold degenerates, paving the
way for Galilean relativity [29,36,37]. These manifolds, in
general, have a fiber bundle structure that keeps temporal
and spatial diffeomorphisms separate from each other. An
attempt to write down a Galilean covariant electrodynamics
Lagrangian was recently made in Ref. [38], one which
simultaneously describes electric- and magnetic-dominated
realms of the theory. This Galilean Maxwell Lagrangian
will be the building block of our current work, and, since

that Lagrangian is manifestly invariant under the 4d GCA,
we will try to introduce an explicit nonlinear covariant
Lagrangian with a ModMax-like form, consequently show-
ing the GCA invariance for the same as well. This will be
the first instance of a nonlinear covariant Galilean con-
formal electrodynamics Lagrangian in the literature, to the
best of our knowledge.
The rest of this short paper is organized in the following

way: In Sec. II, we will briefly review the structure of
ModMax electrodynamics. In Sec. III, we will revisit
Newton-Cartan structures and construction of a gauge field
Lagrangian on such a structure. Here, we will slightly differ
from the approach of Ref. [38] and, instead, focus on the
transformation of components of gauge fields underGalilean
conformal symmetries. We will also discuss in detail the
structure of Galilean invariant field bilinear that will be
important to our construction. Then, in Sec. IV, we will go
ahead and present our Galilean ModMax-like Lagrangian
and show its explicit invariance under GCA symmetries,
giving the generic form of ModMax Lagrangians (with
square roots) an aura of universality when it comes to
conformal invariance both in and beyond Lorentzian cases.
In Sec. V, we will have further discussions and talk about
probable future extensions.

II. MODMAX AS CONFORMAL NONLINEAR
ELECTRODYNAMICS

As mentioned earlier, source-free ModMax theory in 4d
Minkowski spacetime is both conformally invariant and E-
M duality invariant. In this section we will briefly revisit
some aspects of the ModMax Lagrangian, which will be
later crucial for the discussion of the analogous Galilean
theory.

A. Lagrangian and symmetries
of the relativistic ModMax

In 4d, generic electrodynamics Lagrangians can only be
functions of the field strength tensor and do not include the
derivatives of those. For 4d Maxwell electrodynamics,
there are just two Lorentz invariant quantities, i.e.,

S¼−
1

4
FμνFμν¼

1

2
ðE2−B2Þ; P¼−

1

4
FμνF̃μν¼E ·B:

ð1Þ

Here, the first one is a Lorentz scalar and the second one is
pseudoscalar, where the field strength and the Hodge dual
field strength are defined as, respectively,

Fμν ¼ ∂μAν − ∂νAμ; F̃μν ¼
1

2
ϵμνρσFρσ; ð2Þ

where Aμ is an Uð1Þ gauge field. A generic theory of
electrodynamics in this dimension will be an analytic
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function of these Lorentz invariants and will reduce to the
pure Maxwell term in some (often weak field) limit.
As shown in Ref. [6], the unique one-parameter

deformed family of Lorentz invariant modifications of
the Maxwell Lagrangian which stays conformal invariant
and produces E-M duality invariant equations of motion is
the ModMax theory. The Lagrangian density for this theory
can be written down as

LMM ¼ coshγSþ sinhγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þP2

p
¼−

coshγ
4

½FμνFμν�þ
sinhγ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνFμνÞ2þðF̃μνFμνÞ2

q
:

ð3Þ

Here, γ is the dimensionless parameter that controls the
deformation, and at γ ¼ 0 the theory reduces down to pure
Maxwell, with γ > 0 having a well-defined solution space.
The conditions posed by causality and unitarity demand the
coupling constant to be non-negative γ ≥ 0 [6]. The square
root term can be thought of as a deformation to the Maxwell
theory. The term under square root can also be rewritten as
F μνF̄ μν, where F μν ¼ Fμν þ iF̃μν and the bar denotes
complex conjugation. This structure of the deformation
turns out to be crucial to show invariance of the equations
of motion under conventional electromagnetic duality
as well.
The unique nature of the ModMax Lagrangian makes

sure of conformal invariance, as it is a homogeneous
function of degree one under scale transformations [10].
One can see this symmetry via explicitly computing the
stress-energy tensors of this theory, which turn out to be
traceless and explicitly proportional to their Maxwell
cousins.

B. Equations of motion

The equation of motion of the Lagrangian (3) is given by

∂μ

"
ðcosh γÞFμν − sinh γ

×

 
ðFαβFαβÞFμν þ ðF̃αβFαβÞF̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFαβFαβÞ2 þ ðF̃αβFαβÞ2
q

!#
¼ 0; ð4Þ

which again boils down to the standard equation dF ¼ 0
when we put γ ¼ 0. One can note that these equations of
motion for generic γ are ill defined for solutions having null
electromagnetic fields, i.e., FF ¼ FF̃ ¼ 0, like in the case
of electromagnetic waves. It has been shown that these
pathologies can be cured if one instead works in the
Hamiltonian formalism [6].
The duality invariance associated to these equations,

although not so important for our discussion here, is given

by the so-called Galliard-Zumino duality conditions [39]
for nonlinear electrodynamics:

F̃μνFμν ¼ ẼμνEμν; ð5Þ
which replaces the usual rotations of field strengths well
known for the source-free Maxwell equations. Here, the
excitation field strength is given by Eμν ¼ ∂LMM

∂Fμν , and the
Hodge dual of that is defined in the usual way. Notice that
Eμν turns out to be just Fμν for a pure Maxwell theory. So it
is clear that equations of motion deduced from general
nonlinear theories would demand a symmetry under Uð1Þ
rotations of Eμν and F̃μν.1 One can notice that our equation
of motion (4) can be rewritten using the tensor Eμν in
Eq. (5) as

∂μEμν ¼ 0; ð6Þ

which makes sure this and the usual Bianchi identity
dF̃ ¼ 0 are a set of duality invariant nonlinear equations
of motion for the ModMax theory.

III. COVARIANT GALILEAN CONFORMAL
ELECTRODYNAMICS

In this section, we will discuss the formalism associated
to a covariant formulation of Galilean electrodynamics. As
we have introduced before, it is essential to start with a
geometric formulation of tensors on a Newton-Cartan
manifold and put gauge fields explicitly on it to understand
the true nature of Galilean conformal symmetries.

A. Galilean geometry

In Galilean sense, the usual Riemannian metrics are of no
use, since they are degenerate and cannot be used to raise or
lower indices on objects. At the limit of c → ∞ the
Poincaré group is replaced by the Galilei group, and the
kinematical structure of the group allows one to define a
manifold, called the Newton-Cartan manifold. The main
ingredients of an intrinsically Galilean (or Newton-Cartan)
manifold is the degenerate spatial metric hμν and a choice of
null time direction τμ that gives rise to another two-index
object τμν ¼ −τμτν [32,40–42]. In 4d, the simplest choices
to represent these tensors are

hμν ¼
�
0 0

0 13×3

�
; τμν ¼

�−1 0

0 03×3

�
: ð7Þ

These two noninvertible Galilean tensors are used to
define contravariant and covariant Galilean vectors, and
the nowhere vanishing timelike vector field τμ is given by

1One can, however, write down an action principle for generic
nonlinear electrodynamics that also manifestly shows electro-
magnetic duality symmetry beyond the equations of motion. See
Ref. [15] for such a democratic formulation.

MAXIMALLY SYMMETRIC NONLINEAR EXTENSION OF … PHYS. REV. D 106, 085005 (2022)

085005-3



τμ ¼ ½ 1 0 0 0 �; τμτ
μ ¼ 1: ð8Þ

These two geometric ingredients are orthogonal in the
sense hμντν ¼ 0. Both these objects remain invariant under
Galilean boosts and rotation. We can remind the reader that
time is absolute in Galilean relativity, which is inherent in
these invariant structures. For the ðh; τÞ duo, which defines
a gauge choice [i.e., the form of the tensors in Eq. (7)] for a
Newton-Cartan spacetime, the respective covariant and
contravariant objects are given by projective inverses of
ðhμν; τνÞ and are given by

hμν ¼
�
a bi
bi 13×3

�
; τμν ¼ τμτν;

where τμ ¼ ð1; c1; c2; c3Þ: ð9Þ

These expressions follow from the definition of the
Galilean tensors using projective inverse definitions given
by τμτμ ¼ 1 and by hμαhαβhβν ¼ hμν. One should note that
these projective inverses are not generally Galilean invar-
iants for all choices of the constants ða; bi; ciÞ.
These tensors are crucial in defining Galilean objects in

the theory; i.e., a covariant vector K̃μ will be defined from
the knowledge of a contravariant vector Kμ via the
operation K̃μ ¼ τμνKν, and an opposite operation ðKμ →
K̃μÞ will be done via hμν. Contrary to relativistic tensors,
these operations are not invertible, since temporal and
spatial components are split from each other due to the
structure of ðhμν; τνÞ. Similarly, covariant derivatives are
defined as ∂μ ¼ ð∂t; ∂x; ∂y; ∂zÞ, while the associated contra-
variant object reads ∂μ ¼ hμν∂ν ¼ ð0; ∂x; ∂y; ∂zÞ. We will be
using these Galilean derivatives throughout the rest of this
work, and they are not to be confused with usual derivatives
used in Sec. II, for example.

B. Galilean isometries

As mentioned in the introduction, GCA is a Galilean or
nonrelativistic contraction of the relativistic conformal
algebra. Equivalently to the intrinsic description in the last
section, Galilean conformal objects can be realized by
taking the following contraction of coordinates on asso-
ciated conformal theories [25]:

xi → ϵxi; t → t; ϵ → 0: ð10Þ

The above turns out to be equivalent to taking a c → ∞
scaling. Remember that in 4d the conformal algebra is a
finite dimensional algebra, and, hence, to start with we get
the finite part of the GCA only when the above mentioned
contraction is acted upon. This finite algebra is generated
by rotations (Jij), spacetime translations (H and Pi), boosts
(Bi), scaling (D), and special conformal transformations (K
and Ki). The vector fields associated to these generators are
given by

Jij¼−ðxi∂j−xj∂iÞ; Pi¼ ∂i; H¼−∂t; Bi ¼ t∂i;

ð11Þ

D¼ −ðt∂t þ xi∂iÞ; K ¼ −ð2txi∂i þ t2∂tÞ; Ki ¼ t2∂i:

ð12Þ

The i, j indices all correspond to purely spatial components
in the above. Consider an extension of the generators in an
n-dependent form:

LðnÞ ¼ −ðnþ 1Þtnxi∂i − tnþ1
∂t; MðnÞ

i ¼ tnþ1
∂i; ð13Þ

where, for n ¼ 0;�1, the generators LðnÞ and MðnÞ
i denote

the set of finite GCA generators

Lð−1;0;1Þ ¼ fH;D;Kg; Mð−1;0;1Þ
i ¼ fPi; Bi; Kig; ð14Þ

but, in principle, any value of n is admissible, hence giving
rise to generators spanning an infinite-dimensional vector
space. The rotation generators could also be given an
infinite-dimensional lift as follows:

JðnÞij ¼ −tnðxi∂j − xj∂iÞ: ð15Þ

Armed with these new generators, the full infinite-
dimensional extended GCA can be written in the following
form:

½LðnÞ; LðmÞ� ¼ ðn −mÞLðnþmÞ; ½LðnÞ;MðmÞ
i � ¼ ðn −mÞMðnþmÞ

i ; ½MðnÞ
i ;MðmÞ

j � ¼ 0;

½LðnÞ; JðmÞ
ij � ¼ −mJðnþmÞ

ij ; ½JðnÞij ;MðmÞ
r � ¼ −ðMðnþmÞ

i δjr −MðnþmÞ
j δirÞ;

½JðnÞij ; JðmÞ
rs � ¼ δisJ

ðnþmÞ
rj þ δjrJ

ðnþmÞ
si þ δirJ

ðnþmÞ
js þ δjsJ

ðnþmÞ
ir : ð16Þ
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In the rest of the paper, we will be talking about theories
which are manifestly invariant under transformations
induced by this algebra.

C. Covariant Lagrangian and transformation laws

Conventionally, Galilean electrodynamics, and more
specifically the conformal cousin of it, has been studied
in the literature from an equation of motion point of view
[27,28]. This hinges on the fact that there can be two
distinct limits of relativistic electrodynamics, known as the
electric and magnetic ones, that may correspond to a theory
of Galilean electrodynamics. In the electric limit, the
timelike components of the gauge field Aμ dominate
(i.e., Ei ≫ Bi), while in the magnetic case the spacelike
components of the same dominate (i.e., Bi ≫ Ei). For a
theory with sources, one could take the same limits on the
currents to write electric and magnetic equations of motion.
To this effect, in Ref. [38] a composite albeit covariant
Lagrangian was introduced, which consistently reproduces
both electric and magnetic equations of motion.
The source-free action for the Galilean covariant

Lagrangian can be written as

Sðaμ; aμ; ∂μaν; ∂μaνÞ ¼
Z

d3xdt

�
−
1

4
fμνfμν

�
; ð17Þ

where the contravariant and covariant field strengths are
given in terms of Galilean gauge fields aμ and aμ. These
fields here are distinct objects due to the structure of
Galilean tensors, and the respective field strengths read

fμν ¼ ð∂μaν − ∂
νaμÞ; fμν ¼ ð∂μaν − ∂νaμÞ: ð18Þ

So there are two distinct equations of motion, obtained by
varying the above action with respect to one of the two
kinds of gauge fields, which do not depend on each other.
One can see while variation with respect to aμ gives rise to

∂νfμν ¼ 0; ð19Þ

which are the equations of motion in the electric limit; on
the other hand, variation with respect to aμ leads one to

∂
νfμν ¼ 0; ð20Þ

generating the magnetic equations of motion2 (see [28] for
details). So, evidently, the contravariant gauge fields are
responsible for the electric limit of the theory, while

covariant ones are responsible for the magnetic limit of
the theory.3

Wewill now write down the transformation of both kinds
of the gauge fields under GCA,4 which will be important in
the two separate limits. The covariant formalism used here
ensures that the theory is invariant under Galilean boosts,
rotations, and translations. For gauge fields in the magnetic
limit, the transformation laws for the covariant fields under
rotations, Galilean boost, scale transformations, and the
special conformal transformations (SCT) take the follow-
ing form:
Rotations.—

δJa0 ¼ ðxi∂j − xj∂iÞa0;
δJak ¼ ðxi∂j − xj∂iÞak þ ðδikaj − δjkaiÞ: ð22Þ

Galilean boosts.—

δBm
a0 ¼ −t∂ma0 − am; δBm

ai ¼ −t∂mai: ð23Þ

Scale transformations.—

δDða0; aiÞ ¼ ðt∂t þ xl∂l þ 1Þða0; aiÞ: ð24Þ

SCT.—

δKa0 ¼ ðt2∂t þ 2txl∂l þ 2tÞa0 þ 2xlal;

δKai ¼ ðt2∂t þ 2txl∂l þ 2tÞai; ð25aÞ

δKm
a0 ¼ −t2∂ma0 − 2tam; δKm

ai ¼ −t2∂mai: ð25bÞ

Finally, we will write the variation of gauge fields in the
magnetic limit under infinite-dimensional GCA generators

ðLðnÞ;MðnÞ
m Þ. They are given by

δLðnÞa0 ¼ ðtnþ1
∂t þ ðnþ 1Þtnxl∂l þ ðnþ 1ÞtnÞa0

þ nðnþ 1Þtn−1xlal; ð26aÞ

δLðnÞai ¼ ðtnþ1
∂t þ ðnþ 1Þtnxl∂l þ ðnþ 1ÞtnÞai; ð26bÞ

δ
MðnÞ

m
a0 ¼ −tnþ1

∂ma0 − ðnþ 1Þtnam; ð26cÞ

δ
MðnÞ

m
ai ¼ −tnþ1

∂mai: ð26dÞ

Similarly, in the electric limit, we have transformation laws
for contravariant gauge fields.

2In component form, the electric and magnetic equations can
be written as

∂i∂
ia0 ¼ 0; ∂

jð∂ta0 þ ∂iaiÞ ¼ ð∂i∂iÞaj ðelectricÞ
∂t∂iai ¼ ∂i∂

ia0; ∂
j
∂iai ¼ ∂i∂

iaj ðmagneticÞ: ð21Þ

3Covariant gauge fields are defined by aμτμ ¼ 0 and contra-
variant ones are defined by aμhμν ¼ 0; these belong to invariant
vector spaces under the action of the Galilean group.

4To get a better understanding of the representation theory, we
urge the reader to look at Refs. [28,38].
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Rotations.—

δJa0 ¼ ðxi∂j − xj∂iÞa0;
δJak ¼ ðxi∂j − xj∂iÞak þ ðδkiaj − δkjaiÞ: ð27Þ

Galilean boosts.—

δBm
a0 ¼ −t∂ma0; δBm

ai ¼ −t∂mai þ δima0: ð28Þ

Scale transformations.—

δDða0; aiÞ ¼ ðt∂t þ xl∂l þ 1Þða0; aiÞ: ð29Þ

SCT.—

δKa0 ¼ ðt2∂t þ 2txl∂l þ 2tÞa0;
δKai ¼ ðt2∂t þ 2txl∂l þ 2tÞai − 2xia0; ð30aÞ

δKm
a0 ¼ −t2∂ma0; δKm

ai ¼ −t2∂mai þ 2tδima0:

ð30bÞ

Under ðLðnÞ;MðnÞ
m Þ, the transformation laws are given by

δLðnÞa0 ¼ ðtnþ1
∂t þ ðnþ 1Þtnxl∂l þ ðnþ 1ÞtnÞa0; ð31aÞ

δLðnÞai ¼ ðtnþ1
∂t þ ðnþ 1Þtnxl∂l þ ðnþ 1ÞtnÞai

− nðnþ 1Þtn−1xia0; ð31bÞ

δ
MðnÞ

m
a0 ¼ −tnþ1

∂ma0; ð31cÞ

δ
MðnÞ

m
ai ¼ −tnþ1

∂mai þ ðnþ 1Þtnδima0: ð31dÞ

One can easily see the sheer asymmetry between the
transformations of covariant and contravariant objects in
this case, and, of course, the same shows up between
temporal and spatial components. Using these above trans-
formations, one could deduce the relevant transformation
laws for the electric and magnetic field strengths as well
and explicitly check the invariance of Eq. (17) under
the same.

D. Electric and magnetic invariants

We have seen earlier that a relativistic ModMax
Lagrangian depends on both Lorentz invariants in electro-
dynamics. Hence, for the purpose of this work, defining
electromagnetic invariants under Galilean transformations
is very important. Now, for example, fμν is clearly an
electric object, since the gauge fields are contravariant here;
similarly, fμν is a magnetic object for similar reasons. To

mark their properties, we call them fμνðEÞ and f
ðMÞ
μν from now

and hereon.

The obvious invariant quantity is the covariant
Lagrangian for Galilean Maxwell theory, which is a
composite of electric and magnetic objects:

L ¼ −
1

4
fμνðEÞf

ðMÞ
μν ; ð32Þ

i.e., a “true” Lagrangian is one composed of both electric
and magnetic tensors with contracted indices and gives the
right electric or magnetic equation of motion when varied
with respect to one or the other gauge fields. But this is not
the Lagrangian when one takes the relativistic Lagrangian
and performs an electric or a magnetic limit. In that case,
both field strength components of the Lagrangian change;
i.e., we get either of

LðEÞ ¼ −
1

4
fμνðEÞf

ðEÞ
μν ; LðMÞ ¼ −

1

4
fμνðMÞf

ðMÞ
μν ; ð33Þ

which are useful in only one or the other limit. Here, the
inverse field strengths fðEÞμν and fμνðMÞ are not electric or
magnetic objects, respectively, not at least by contra- or
covariance of the associated gauge field. But they are electric
inverse of the electric field strength and magnetic inverse of
the magnetic field strength, in the same vein as defining the
projective inverses for our Galilean tensors. To connect to the
notation of Ref. [38], these are actually defined by the tilde
conjugation, which acts via a Galilean contraction of gauge
fields. For example, in the electric case,

fðEÞμν ¼ f̃μν ¼−fαβTμαβν¼ð∂μãν−∂νãμÞ; ãμ ¼ aντμν;

ð34Þ

where the tensor T is defined as a combination of τ and h to
achieve this:

Tαβμν ≔ 4τ½αhβ�½μτν�

¼ ðταhβμτν − τβhαμτν − ταhβντμ þ τβhαντμÞ: ð35Þ

It is easy to see that Tαβμν is symmetric under exchange of α
and ν and of β and μ, i.e., Tαβμν ¼ Tνμβα. Notice that Tαβμν is
antisymmetric if we exchange α with β or μ with ν:

Tαβμν ¼ −Tβαμν ¼ −Tαβνμ ¼ Tβανμ: ð36Þ

From these, it also follows that Tαβμν − Tαμβν ¼ Tανμβ.
Similarly, the magnetic inverse is given by contraction with
only h’s:

fμνðMÞ ¼ f̃μν¼ hαμfαβhβν¼ð∂μãν−∂
νãμÞ; ãμ ¼ hμνaν:

ð37Þ

Note that one of these field strengths is dualized by τμν and
the other by hμν, thereby giving them the notion of an electric
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(temporal) or a magnetic (spatial) contraction. Hence, the
Lagrangians (33)LðE=MÞ are not “true”Lagrangians but limits
of relativistic Lagrangians in the respective regimes where
only notions of electric terms or magnetic terms survive. By
definition, LðE=MÞ both are Galilean invariants as one can
explicitly show, and we will go ahead to define an additional
GCA invariant other than that of L in Eq. (32):

M ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðEÞ2 þ LðMÞ2

p
: ð38Þ

This particular quantitywill be crucial in our later discussions.
Although we have defined a notion of “dual” field

strengths for Galilean theories using the tilde conjugation,
a real Hodge dual in this case is ill defined as the associated
metric degenerates. Evidently, the notion of EM duality is
lost, as the two regimes are not simply connected in a
Galilean theory. To the best of our knowledge, the notion of
Hodge duals on a Newton-Cartan manifold is not discussed
in the literature as well. However, we can always go ahead
and define the Hodge-dual-like field strength tensor for the
Galilean case in accordance with its relativistic counterpart:
⋆fμν ¼ 1

2
ϵμνρσfρσ , assuming the definition of Levi-Civita

will not change under NR limits. In this sense, it relates true
electric and magnetic representations on either side of the
equality

⋆fðMÞ
μν ¼ 1

2
ϵμνρσf

ρσ
ðEÞ and ⋆fμνðEÞ ¼

1

2
ϵμνρσfðMÞ

ρσ : ð39Þ

As we discussed before, a true contracted Galilean object
will be a combination of purely electric and magnetic

tensors. And based on the definitions we provided earlier,
we can show that

L�ðEÞ ¼ −
1

4
fμνðEÞ⋆fðEÞμν or L�ðMÞ ¼ −

1

4
fðMÞ
μν ⋆fμνðMÞ ð40Þ

are both invariant under the GCA transformations as well.
Here, we have gone further to define the electric and
magnetic inverses of the Hodge dual tensor:

⋆fðEÞμν ¼ 1

2
ϵμνρσf

ρσ
ðMÞ ¼

1

2
ϵμνρσf̃

ρσ;

⋆fμνðMÞ ¼
1

2
ϵμνρσfðEÞρσ ¼ 1

2
ϵμνρσ f̃ρσ: ð41Þ

We should again remind the reader that the objects defined
under this star conjugation are not real Galilean objects and
are defined only in an ad hoc basis. We will comment on
these invariants later in the paper.

IV. GALILEAN CONFORMAL MODMAX-LIKE
LAGRANGIAN

A. Symmetries of the Lagrangian

Let us now come to the crux of this paper, that is to
construct a nonlinear ModMax-like, albeit GCA invariant,
Galilean electrodynamics theory. As in the case of the
relativistic ModMax theory, we can define a Lagrangian in
terms of the two GCA invariants L andM we described in
the last section [see (32) and (38)], with the same general
distinctive structure:

LGMM ¼ −
cosh γ
4

Lþ sinh γ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p

¼ −
cosh γ
4

½fμνfμν� þ
sinh γ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfμνfμνÞ2 þ

1

2
ðf̃μνfμνÞ2 þ

1

2
ðf̃μνfμνÞ2

r
: ð42Þ

This simply becomes Eq. (17) when we choose γ ¼ 0. In
component form, the Lagrangian can be written down as

LGMM ¼ −
cosh γ
4

Eþ sinh γ
4

ffiffiffiffi
C

p
; ð43Þ

where, written in component form, the quantities read C ¼
½E2 þ 1

2
ðf̃ijfijÞ2 þ 1

2
ð2f̃i0ð∂ia0ÞÞ2� and E ¼ ½2fi0ð∂ia0Þþ

fijfij�. Let us now move on to the invariance of this
Lagrangian (43) under GCA. The Lagrangian is trivially
invariant under translations and rotations. We will show
only the invariance under the boost, scale transformations,

and SCT. The change of the Lagrangian under action of the
Boost generator is given by

δBLGMM ¼ cosh γ
4

∂m½tð2fi0ð∂ia0Þ þ fijfijÞ�

−
sinh γ
4

1

2
ffiffiffiffi
C

p ∂mðtCÞ ¼ ∂mð−tLGMMÞ: ð44Þ

We will next check the variation under scale transforma-
tion. It is given by
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δDLGMM ¼ cosh γ
4

½ðt∂t þ xm∂m þ 4ÞE� þ sinh γ
4

½ðt∂t þ xm∂m þ 4Þ
ffiffiffiffi
C

p
�

¼ ðt∂t þ xm∂m þ 4ÞLGMM ¼ ∂tðtLGMMÞ þ ∂mðxmLGMMÞ: ð45Þ

Finally, looking at the change of (43) under special conformal transformations K, we get

δKLGMM ¼ ðt2∂t þ 2txm∂m þ 8tÞ
�
−
cosh γ
4

Eþ sinh γ
4

ffiffiffiffi
C

p �
¼ ∂tðt2LGMMÞ þ ∂mð2txmLGMMÞ: ð46Þ

We have looked at the invariance of (43) under the finite part of GCA. The next step will be to move on to the infinite

extension of GCA. Under the generators MðnÞ
m , we get the variation

δMLGMM ¼ cosh γ
4

∂mðtnþ1EÞ − sinh γ
4

ðtnþ1
∂m

ffiffiffiffi
C

p
Þ ¼ ∂mð−tnþ1LGMMÞ: ð47Þ

Similarly, under LðnÞ, we have

δLLGMM ¼ ðtnþ1
∂t þ ðnþ 1Þtnxm∂m þ 4ðnþ 1ÞtnÞ

�
−
cosh γ
4

Eþ sinh γ
4

ffiffiffiffi
C

p �
¼ ∂tðtnþ1LGMMÞ þ ðnþ 1Þ∂mðtnxmLGMMÞ: ð48Þ

In all of these cases, the transformations change the Lagrangian via a total derivative term, and, hence, we see that the theory
is fully invariant under the extended part of GCA.
Now a few comments are in order at this point. Clearly, the structure of Eq. (42), like the relativistic counterpart, depends

on the use of electromagnetic invariants, which occur directly in the Lagrangian. In the relativistic case, choices of these
invariants are straightforward; however, it is evidently not so simple in the Galilean counterpart, as we have discussed
before. It actually turns out that instead of M one could choose some other Galilean invariant as mentioned in Eq. (53).
Consequently, one may go ahead and write down a test Lagrangian of the form:

L̄GMM ¼ −
cosh γ
4

½fμνðEÞfðMÞ
μν � þ sinh γ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfμνðEÞfðMÞ

μν Þ2 þ ðfμνðEÞ⋆fðEÞμν Þ2
q

ð49Þ

or an equivalent one with the f⋆f term replaced by the magnetic version. It can be explicitly shown using methods we
discussed in this section that the above Lagrangian is invariant under GCA symmetries as well. However as we mentioned
earlier, these f⋆f terms in the Galilean case are defined in an ad hoc way; hence, we do not delve into detailed discussions
on them. For us, Eq. (42) will be the master Lagrangian to follow through.

B. Equations of motion and gauge invariance

The equation of motion from Eq. (42) comes out to be twofold, as in the case of its Maxwellian cousin. Varying the action
with respect to the contravariant fields aμ, we get the electric-like equation of motion:

∂μ

2
64ðcosh γÞfμν − sinh γ

0
B@ ðfαβfαβÞfμν þ ðf̃αβfαβÞf̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfαβfαβÞ2 þ 1
2
ðf̃αβfαβÞ2 þ 1

2
ðf̃αβfαβÞ2

q
1
CA
3
75 ¼ 0; ð50Þ

while varying with respect to covariant gauge fields aμ gives us the magnetic-like equation of motion

∂
μ

2
64ðcosh γÞfμν − sinh γ

0
B@ ðfαβfαβÞfμν þ ðf̃αβfαβÞf̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfαβfαβÞ2 þ 1
2
ðf̃αβfαβÞ2 þ 1

2
ðf̃αβfαβÞ2

q
1
CA
3
75 ¼ 0: ð51Þ
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Observe that both equations reduce down to the Galilean
Maxwell electric and magnetic equations of motion when
we put in γ ¼ 0. Also, these are in the same footing as the
equations of motion from the relativistic version of the
ModMax theory. One can look at these equations and note
that the electric and the magnetic sectors are interchanged
via the exchange of field tensors fμν ↔ fμν (which is
equivalent to doing Ei → Bi and Bi → −Ei in the relativ-
istic case). One can think of this as a Galilean remnant of
the original electromagnetic duality.
We will now look at the gauge transformations (GT) for

this theory. The gauge transformations for aμ and aμ, that
keep the structure of Lagrangian unchanged, are given by

aμ → aμ þ ∂
μΛ1 ⇒ fμν → fμν; ð52aÞ

aμ → aμ þ ∂μΛ2 ⇒ fμν → fμν; ð52bÞ

whereas ðΛ1;2Þ are two different gauge potentials corre-
sponding to symmetries in either limit.5 Similarly, the
transformation of the conjugate field strengths f̃μν and
f̃μν under Eqs. (52) are given by

δGTf̃
αβ ¼ hμαðδGTfμνÞhνβ ¼ 0;

δGTf̃αβ ¼ −ðδGTfμνÞTαμνβ ¼ 0: ð53Þ

We thus conclude that the Lagrangian and equations of
motion are invariant under gauge transformations (52).

C. Energy-momentum tensors

Let us now write down the energy-momentum (EM)
tensors in the electric and magnetic limit of Galilean
ModMax theory (42). We will use the Noether charge
methodology followed in Ref. [38] to deduce purely
electric or magnetic stress tensors in either of those limits.
In the electric limit, it is given by

TE
μ
ν ¼

�
fμαf̃αν þ

1

4
δμνfαβf̃αβ

�

×

�
cosh γ − sinh γ

LðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p
�
; ð54Þ

whereas in the magnetic limit the stress tensor reads

TM
μ
ν ¼

�
f̃μαfαν þ

1

4
δμν f̃αβfαβ

�

×

�
cosh γ − sinh γ

LðMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p
�
: ð55Þ

This is again reminiscent of the relativistic ModMax case,
as our stress tensors in either limit are explicitly propor-
tional to the Galilean Maxwell ones of Ref. [38], with a
multiplied contracted term. As we know for generic
Galilean conformal theories, the stress tensor needs to be
traceless, i.e., Tμ

μ ¼ 0, and the condition on the component
T0
i ¼ 0 has to be satisfied, since there is no momentum flux

in nonrelativistic theories [43]. In case of the electric limit,
it is easy to check these conditions:

TE
μ
μ ¼ ð−fαμf̃αμ þ fαβf̃αβÞ

×

�
cosh γ − sinh γ

LðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p
�

¼ 0; ð56Þ

TE
0
i ¼ ðf0αf̃αiÞ

�
cosh γ − sinh γ

LðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p
�

¼ 0: ð57Þ

Similarly, in the magnetic limit, the stress tensor satisfies

TM
μ
μ ¼ 0; TM

0
i ¼ 0: ð58Þ

This shows both electric and magnetic sectors of our
nonlinear theory are explicitly Galilean invariant as well.

V. DISCUSSIONS AND CONCLUSIONS

In this short paper, we described a nonlinear Galilean
covariant Lagrangian that is invariant under Galilean con-
formal symmetries by construction. Interestingly, the
Lagrangian was written in the same vein of the ModMax
Lagrangian and, hence, reaffirms the conformal nature of the
ModMax construction beyond the relativistic case. We
focused on the invariants of the Galilean Maxwell theory
and used them as building blocks to build our Lagrangian,
with an explicit proof of invariance under GCA transforma-
tions. We also discussed the Galilean equations of motion
and stress tensors, in both the electric and magnetic limits of
the theory. The nonlinear equations in all of the cases reduce
to the known Galilean equations in the γ ¼ 0 limit.
As we mentioned earlier, our calculation here introduces

the first example of a nonlinear Galilean covariant electro-
dynamics theory. It remains to explore whether the usual
NLED physics, like classical solutions, carry forward to
these sort of Galilean theories as well. As we mentioned
earlier, it is useful to go into the Hamiltonian formalism for
the relativisticModMax theory in order tomake sense of null
electromagnetic fields. It would be interesting to explore the
canonical structure of the Galilean theory as well along this
route, starting from Eq. (17) and proceeding to find the same
for the total GalileanModMax theory. Another very straight-
forward extension would be to discuss Galilean supercon-
formal extension of this theory in the vein of Ref. [13].
Super-GCA algebras have already been described well in the
literature [44–46], and one would hope to find a nonlinear

5One would use an analog of the Lorenz gauge in either limit,
i.e., ∂μaμ ¼ 0 or ∂μaμ ¼ 0, and this would imply that the gauge
potentials satisfy a Laplace equation ∇2Λ1;2 ¼ 0.
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realization of that as well in the super-ModMax-like theory.
We hope to come back to these issues in future work.
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