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The (2þ 1)-dimensional generalized massless Thirring model with four-component Fermi fields is
investigated by the Hartree-Fock method. The Lagrangian of this model is constructed from two different
four-fermion structures. One of them takes into account the vector × vector channel of fermion interaction
with coupling constant Gv, the other, the scalar × scalar channel with coupling Gs. At some relation
between bare couplings Gs and Gv, the Hartree-Fock equation for self-energy of fermions can be
renormalized, and dynamical generation of the Dirac and Haldane fermion masses is possible. As a result, a
phase portrait of the model consists of two nontrivial phases. In the first one the chiral symmetry is
spontaneously broken due to dynamical appearance of the Dirac mass term, while in the second phase a
spontaneous breaking of the spatial parity P is induced by a Haldane mass term. It is shown that in the
particular case of a pure Thirring model, i.e., at Gs ¼ 0, the ground state of the system is indeed a mixture
of these phases. Moreover, it was found that dynamical generation of fermion masses is possible for any
finite number of Fermi fields.
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I. INTRODUCTION

Over the past few decades, in quantum field theory, much
attention has been paid to the study of various models in
(2þ 1)-dimensional spacetime. This is due to the fact that in
condensedmatter physics there exist quite a few phenomena
(quantum Hall effect, high-temperature superconductivity,
physical processes in graphene, etc.) having a planar nature,
and for their effective description it is convenient to use
relativistic (2þ 1)-dimensional (D) models with four-fer-
mion interaction. Among them is the Gross-Neveu model
[1–7], Thirring model [8–21] etc. Note that both models are
renormalizable, at least in the framework of the large-N
technique [22–24] (N is the number of fermion fields).At the
same time, various nonperturbative approaches (such as
1=N expansion method, Gaussian effective potential, opti-
mized expansion techniques [22,25,26], etc.) to the study of
the massless (2þ 1)-D Gross-Neveu model predict its
qualitatively identical properties (dynamic generation of
fermion masses, spontaneous chiral symmetry breaking,

etc.). However, using different methods for studying the
massless (2þ 1)-D Thirring model built on the basis of a
four-component reducible spinor representation for fermion
fields leads to conflicting results. Indeed, in a number of
papers (see, for example, [9,10]), this model was inves-
tigated by the 1=N expansion method, where it was shown
that only theDirac fermionmass that breaks chiral symmetry
can be generated (in this case, the spatial parity P remains
unbroken). In contrast, an application of other research
methods [12,13] to the same Thirring model gives the
opposite result, because in these papers, the possibility of
dynamical generation of a P-odd (but chirally invariant)
Haldane fermion mass was established. In addition, in the
literature there is also a discrepancy in the predictions of the
number of fermion fields N, with which dynamic mass
generation is possible. Thus, for example, in the first of
papers [9,10] this effect is predicted for any finite value ofN,
and in the second one only for N < Nc ¼ 128=3π2, and so
on. [More details about the inconsistency of the results of the
study of the (2þ 1)-D Thirring model by various non-
perturbative methods can be found, for example, in
Refs. [17–20].]
The discrepancy in the results points to the need for

further and more thorough study of the (2þ 1)-dimensional
Thirring model both within the framework of well-known
methods, as well as by attracting new approaches.
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To this end, in the present paper we use the so-called
Hartree-Fock (HF) approach to investigate the possibility of
dynamical fermion mass generation in the (generalized)
(2þ 1)-dimensional Thirring model with four-component
spinors. Earlier in Refs. [27,28] it was used to study the
(2þ 1)-D Gross-Neveu model. Wherein it turned out that
in the region of large N the HF method predicts the same
properties as the nonperturbative 1=N-expansion method
widely used to study this model. In the region of small N,
where the 1=N-expansion method is not applicable, the HF
approach predicts the existence of other nontrivial phases
of the three-dimensional Gross-Neveu model, including
the spontaneously non-Hermitian phase of the model [28].
The essence of the HF method consists, firstly, in using the
Cornwall-Jackiw-Tomboulis (CJT) effective action for
composite operators ΓðSÞ [29] in field theory models with
four-fermion interaction (here S denotes the full fermion
propagator satisfying the stationarity equation δΓ=δS ¼ 0),
and, secondly, that ΓðSÞ is considered in the first order in
the coupling constants. The resulting stationary equation
takes the form of the well-known Hartree–Fock equation
for a fermion self-energy operator [30,31]. (This is the
reason why we call this approach the HF method.) It should
be especially noted that when studying the Thirring model
by the HF method, auxiliary vector fields are not used at all,
as it is usually practiced in most of the earlier approaches to
the model, and due to which the mechanism of fermion
mass generation in this model is more similar to the one
found in (2þ 1)-D quantum electrodynamics (see, e.g., in
Refs. [8,10]).
In our work, based on the HF approach, we explore the

properties of not only the pure massless (2þ 1)-D
Thirring model (with single vector × vector coupling
Gv) composed of N reducible four-component spinors,
but also a more general model, invariant under the same
continuous symmetry group, in which the Lagrangian
contains an additional scalar × scalar fermion interaction
term with coupling constant Gs. We show that, depending
on the relationship between Gv and Gs, the ground state of
the generalized massless (2þ 1)-D Thirring model corre-
sponds to either a chirally broken phase or phase in which
fermions have a parity P violating mass. In contrast, at
Gs ¼ 0 in the ground state of the pure (2þ 1)-dimensional
massless Thirring model these phases can coexist.
Moreover, it is clear from our HF consideration that
dynamical generation of fermion mass is allowed to occur
at any finite value of N.
The paper is organized as follows. In Sec. II Awe present

the N-flavor massless (2þ 1)-D generalized Thirring
model symmetric under discrete chiral and spatial P
reflections. Here it is also shown that model is invariant
under continuous Uð2NÞ group, and two different fermion
mass terms, Dirac and Haldane, are defined. In Sec. II B the

CJT effective action ΓðSÞ of the composite bilocal and
bifermion operator ψ̄ðxÞψðyÞ is constructed, which is
actually the functional of the full fermion propagator
Sðx; yÞ. Then, the unrenormalized expression for ΓðSÞ is
obtained up to a first order in the bare coupling constants
Gs;v (it is the so-called Hartree-Fock approximation). Based
on this expression, we show in Sec. III that for some
well-defined behavior of the bare coupling constants
Gs;vðΛÞ vs cutoff parameter Λ, there exist two different
renormalized, i.e., without ultraviolet divergences, solu-
tions of the stationary Hartree-Fock equation for the
propagator. One of them corresponds to a phase in which
the Haldane fermion mass term arises dynamically, and
parity P is spontaneously broken down. Another solution
of the HF equation corresponds to a chiral symmetry
breaking phase with dynamically emerging Dirac mass
term. Finally, in Sec. IV we use the renormalization group
formalism and show that in the plane of dimensionless
coupling constants there is at least one ultraviolet-stable
fixed point of the model. Appendix A contains some
information about two- and four-dimensional spinor rep-
resentations of the SOð2; 1Þ group, whereas Appendix B
gives all details of calculating the effective action ΓðSÞ in
the HF approximation.

II. (2 + 1)-DIMENSIONAL GENERALIZED
THIRRING MODEL AND HARTREE-FOCK

APPROACH

A. The model, its symmetries, and so on

The Lagrangian of the generalized massless and
N-flavored (2þ 1)-D Thirring model under consideration
has the following form (see, e.g., Refs. [16,32]):

L ¼ Ψkγ
νi∂νΨk −

Gv

2N
ðΨkγ

μΨkÞðΨlγμΨlÞ þ
Gs

2N
ðΨkτΨkÞ2;

ð1Þ

where for each k ¼ 1;…; N the field Ψk ≡Ψkðt; x; yÞ is a
(reducible) four-component Dirac spinor [its spinor indices
are omitted in Eq. (1)], γν (ν ¼ 0; 1; 2) are 4 × 4 matrices
acting in the four-dimensional spinor space (the algebra of
these γ matrices and their particular representation used in
the present paper is given in Appendix A, where in addition
the matrices γ3, γ5, and τ ¼ −iγ3γ5 are also introduced),
and the summation over repeated k, l and μ, ν indices is
assumed in Eq. (1) and below. The bare coupling constants
Gv and Gs have a dimension of ½mass�−1. As discussed,
e.g., in Refs. [16,32], at N ¼ 2 the model (1) provides a
fairly good description of the low-energy physics
of graphene in the continuum limit. But we consider the
N-flavor variant of the model in order to compare its
phase structure obtained in the framework of the HF
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effective approach with the results of the large-N inves-
tigation [9,10].
Together, all four-component spinor fields Ψk

(k ¼ 1;…; N) form a fundamental multiplet of the UðNÞ
group, so the invariance of the Lagrangian (1) with
respect to this group is obvious [and in the following
the UðNÞ symmetry of the model remains unbroken]. It is
not so obvious that, in reality, the continuous symmetry

group of the three-dimensional generalized Thirring model
is wider and is Uð2NÞ. This fact can be easily established
if we rewrite the expression (1) in terms of two-component
spinors. Namely, for each fixed k ¼ 1;…; N we set
Ψt

k ¼ ðψ t
2k−1;ψ

t
2kÞ, where the superscript t means the

transposition operation, and ψ2k−1 and ψ2k are two-com-
ponent spinors (see Appendix A). Then we have

L0 ≡Ψkγ
νi∂νΨk ¼ ψ1γ̃

νi∂νψ1 þ ψ2γ̃
νi∂νψ2 þ � � � þ ψ2N γ̃

νi∂νψ2N;

Ψkγ
νΨk ¼ ψ1γ̃

νψ1 þ ψ2γ̃
νψ2 þ � � � þ ψ2N γ̃

νψ2N;

ΨkτΨk ¼ ψ1ψ1 þ ψ2ψ2 þ � � � þ ψ2Nψ2N; ð2Þ

where γ̃ν are 2 × 2 matrices (see Appendix A). Assuming formally that the set of all two-component spinors ψ2k−1 and ψ2k
(k ¼ 1;…; N) forms a fundamental representation of theUð2NÞ group, it is easy to see that both structures (2) and the entire
Lagrangian (1) are invariant under this group.
More important for us is that the Lagrangian (1) is invariant under three discrete transformations; two of them are the so-

called chiral transformations Γ5 and Γ3,

Γ5∶ Ψkðt; x; yÞ → γ5Ψkðt; x; yÞ; Ψkðt; x; yÞ → −Ψkðt; x; yÞγ5;
Γ3∶ Ψkðt; x; yÞ → γ3Ψkðt; x; yÞ; Ψkðt; x; yÞ → −Ψkðt; x; yÞγ3: ð3Þ

The next one is the space reflection, or parity, trans-
formation P under which ðt; x; yÞ → ðt;−x; yÞ and1

P∶ Ψkðt; x; yÞ → γ5γ1Ψkðt;−x; yÞ;
Ψkðt; x; yÞ → Ψkðt;−x; yÞγ5γ1: ð4Þ

Due to the symmetry of the model (1) with respect to each
of the discrete Γ5, Γ3, andP transformations, different mass
terms are prohibited to appear perturbatively in this
Lagrangian. Indeed, the most popular Dirac mass term
has the form mDΨkΨk ¼ mDðψ2k−1ψ2k−1 − ψ2kψ2kÞ, but it
breaks both Uð2NÞ and chiral Γ5 and Γ3 symmetries
of the model, although it is P even. There is another
well-known fermionic mass term that is often discussed in
the literature. This is a mass term of the form mHΨkτΨk ¼
mHðψ2k−1ψ2k−1 þ ψ2kψ2kÞ (recall, here the 4 × 4 matrix τ
is defined in Appendix A) and sometimes it is referred
to as the Haldane mass term (see, e.g., Refs. [4,21]).2

But nonzero Haldane mass mH breaks the parity P
invariance of the model [although it is Uð2NÞ invariant
and chirally Γ5 and Γ3 symmetric]. So both Dirac and
Haldane mass terms cannot appear in the model (1) when it
is studied by the usual perturbative technique. However,
within a framework of nonperturbative approximations (for
example, in the 1=N expansion, etc.), fermion mass can
arise dynamically, thereby breaking the original symmetry
in a spontaneous way.
In our paper, we continue the investigation of (2þ 1)-D

models with four-fermion interactions by the so-called
HF method, which was started in our papers [27,28].
This time we use it to explore the possibility of dynamical
mass generation within the framework of the generalized
Thirring model (1). Note that theoretical ground
of the HF method is the effective Cornwall-Jakiw-
Tomboulis action for composite operators [29], which
also provides a systematic way to go beyond the HF
approximation.

B. From CJT to Hartree-Fock approach

Let us define ZðKÞ, the generating functional of the
Green’s functions of bilocal fermion-antifermion composite
operators

P
N
k¼1 Ψ̄α

kðxÞΨkβðyÞ in the framework of the
(2þ 1)-D Thirring model (1) (the corresponding technique
for theories with four-fermion interaction is elaborated in
details, e.g., in Ref. [37])

1In 2þ 1 dimensions, parity corresponds to inverting only one
spatial axis [1,33], since the inversion of both axes is equivalent to
rotating the entire space by π.

2The appearance of the Haldane mass term is related to the
parity anomaly in (2þ 1) dimensions, to generation of the Chern-
Simons topological mass of gauge fields [34,35], as well as to the
integer quantum Hall effect in planar condensed matter systems
without external magnetic field, etc. [36].
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ZðKÞ≡ expðiNWðKÞÞ ¼
Z

DΨ̄kDΨk exp

�
i

�
IðΨ;ΨÞ þ

Z
d3xd3yΨ̄α

kðxÞKβ
αðx; yÞΨkβðyÞ

��
; ð5Þ

where α; β ¼ 1; 2, 3, 4 are spinor indices, Kβ
αðx; yÞ is a bilocal source of the fermion bilinear composite field Ψ̄α

kðxÞΨkβðyÞ
(recall that in all expressions the summation over repeated indices is assumed).3 Moreover, IðΨ̄;ΨÞ ¼ R Ld3x, where L is
the Lagrangian (1) of the model under consideration. Hence,

IðΨ;ΨÞ ¼
Z

d3xd3yΨα
kðxÞDβ

αðx; yÞΨkβðyÞ þ IintðΨα
kΨkβÞ; Dβ

αðx; yÞ ¼ ðγνÞβαi∂νδ3ðx − yÞ; Iint ¼ Iv þ Is;

Iv ¼ −
Gv

2N

Z
d3xðΨkγ

μΨkÞðΨlγμΨlÞ

¼ −
Gv

2N

Z
d3xd3td3ud3vδ3ðx − tÞδ3ðt − uÞδ3ðu − vÞΨα

kðxÞðγμÞβαΨkβðtÞΨρ
l ðuÞðγμÞξρΨlξðvÞ;

Is ¼
Gs

2N

Z
d3xðΨ̄kτΨkÞðΨ̄lτΨlÞ

¼ Gs

2N

Z
d3xd3td3ud3vδ3ðx − tÞδ3ðt − uÞδ3ðu − vÞΨ̄α

kðxÞðτÞβαΨkβðtÞΨ̄ρ
l ðuÞðτÞξρΨlξðvÞ: ð6Þ

Note that in Eq. (6) and similar expressions below, δ3ðx − yÞ denotes the three-dimensional Dirac delta function. There is an
alternative expression for ZðKÞ,

ZðKÞ ¼ exp

�
iIint

�
−i

δ

δK

��Z
DΨ̄kDΨk exp

�
i
Z

d3xd3yΨkðxÞ½Dðx; yÞ þ Kðx; yÞ�ΨkðyÞ
�

¼ exp

�
iIint

�
−i

δ

δK

��
½detðDðx; yÞ þ Kðx; yÞÞ�N

¼ exp

�
iIint

�
−i

δ

δK

��
exp½NTr lnðDðx; yÞ þ Kðx; yÞÞ�; ð7Þ

where instead of each bilinear form Ψα
kðsÞΨkβðtÞ appearing

in Iint of Eq. (6) we use a variational derivative
−iδ=δKβ

αðs; tÞ. Moreover, the Tr operation in Eq. (7) means
the trace both over spacetime and spinor coordinates. The
effective action (or CJT effective action) of the composite
bilocal and bispinor operator Ψα

kðxÞΨkβðyÞ is defined as a
functional ΓðSÞ of the full fermion propagator Sαβðx; yÞ by a
Legendre transformation of the functional WðKÞ entering
in Eq. (5),

ΓðSÞ ¼ WðKÞ −
Z

d3xd3ySαβðx; yÞKβ
αðy; xÞ; ð8Þ

where

Sαβðx; yÞ ¼
δWðKÞ
δKβ

αðy; xÞ
: ð9Þ

Taking into account the relation (5), it is clear that Sðx; yÞ is
the full fermion propagator at Kðx; yÞ ¼ 0. Hence, in order
to construct the CJT effective action ΓðSÞ of Eq. (8), it is
necessary to solve Eq. (9) with respect to K and then to use
the obtained expression forK (in fact, it is a functional of S)
in Eq. (8). It follows from the definition (8)–(9) that

δΓðSÞ
δSαβðx; yÞ

¼
Z

d3ud3v
δWðKÞ

δKμ
νðu; vÞ

δKμ
νðu; vÞ

δSαβðx; yÞ
− Kβ

αðy; xÞ

−
Z

d3ud3vSνμðv; uÞ
δKμ

νðu; vÞ
δSαβðx; yÞ

: ð10Þ

[In Eq. (10) and below, the Greek letters α, β, μ, ν, etc., also
denote the spinor indices, i.e., α;…ν;… ¼ 1;…; 4.] Now,
due to the relation (9), it is easy to see that the first term in
Eq. (10) cancels there the last term, so

δΓðSÞ
δSαβðx; yÞ

¼ −Kβ
αðy; xÞ: ð11Þ

Hence, in the true theory, in which bilocal sources Kβ
αðy; xÞ

are zero, the full fermion propagator is a solution of the
following stationary equation:

3We denote a matrix element of an arbitrary matrix (operator)
Â acting in the four-dimensional spinor space by the symbol Aα

β ,
where the upper (lower) index αðβÞ is the column (row) number
of the matrix Â. In particular, the matrix elements of any γμ matrix
is denoted by ðγμÞαβ.
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δΓðSÞ
δSαβðx; yÞ

¼ 0: ð12Þ

Note that in the nonperturbative CJT approach the sta-
tionary/gap equation (12) for fermion propagator Sβαðx; yÞ is
indeed a Schwinger-Dyson equation [37]. Further, in order
to simplify the calculations and obtain more detailed
information about the phase structure of the model, we

calculate both the effective action (8) and the gap equa-
tion (12) up to a first order in the couplings Gv and Gs.
We call such an approach to studying the properties of

any model with four-fermion interactions [including the
generalized Thirring model (1)] the Hartree-Fock method
(a more detailed justification for this name is given at the
end of this section).
In this case (see Appendix B)

ΓðSÞ ¼ iTr lnðiSÞ þ
Z

d3xd3ySαβðx; yÞDβ
αðy; xÞ −Gv

2

Z
d3s tr½γρSðs; sÞ�tr½γρSðs; sÞ�

þ Gv

2N

Z
d3s tr½γρSðs; sÞγρSðs; sÞ� þ

Gs

2

Z
d3sðtr½τSðs; sÞ�Þ2 − Gs

2N

Z
d3s tr½τSðs; sÞτSðs; sÞ�: ð13Þ

Notice that in Eq. (13) the symbol tr means the trace of an operator over spinor indices only, but the symbol Tr is still the
trace operation both over spacetime coordinates and spinor indices. Moreover, the expression for operator Dðx; yÞ is
presented in Eq. (6). The stationary equation (12) for the CJT effective action (13) looks like4

−i½S−1�βαðx; yÞ −Dβ
αðx; yÞ ¼ Gsτ

β
αtr½τSðx; yÞ�δ3ðx − yÞ −GvðγρÞβαtr½γρSðx; yÞ�δ3ðx − yÞ

−
Gs

N
½τSðx; yÞτ�βαδ3ðx − yÞ þ Gv

N
½γρSðx; yÞγρ�βαδ3ðx − yÞ: ð14Þ

Now suppose that Sðx; yÞ is a translationary invariant operator. Then

Sβαðx; yÞ≡ SβαðzÞ ¼
Z

d3p
ð2πÞ3 S

β
αðpÞe−ipz; SβαðpÞ ¼

Z
d3zSβαðzÞeipz;

ðS−1Þβαðx; yÞ≡ ðS−1ÞβαðzÞ ¼
Z

d3p
ð2πÞ3 ðS

−1ÞβαðpÞe−ipz; ð15Þ

where z ¼ x − y and SβαðpÞ is a Fourier transformation of SβαðzÞ. After Fourier transformation Eq. (14) takes the form

−iðS−1ÞβαðpÞ − ðp̂Þβα ¼ Gsτ
β
α

Z
d3q
ð2πÞ3 tr½τS̄ðqÞ� − GvðγρÞβα

Z
d3q
ð2πÞ3 tr½γρS̄ðqÞ�

−
Gs

N

Z
d3q
ð2πÞ3 ½τS̄ðqÞτ�

β
α þ Gv

N

Z
d3q
ð2πÞ3 ½γ

ρS̄ðqÞγρ�βα; ð16Þ

where p̂ ¼ pνγ
ν. It is clear from Eq. (16) that in the

framework of the four-fermion model (1) the Schwinger-
Dyson equation for fermion propagator S̄ðpÞ reads in the
first order inGs;v like the Hartree-Fock equation for its self-
energy operator ΣðpÞ (the last quantity is nothing but the
expression on the left side of this equation). As a result, we
will henceforth refer to Eq. (16) as the Hartree-Fock
equation. In particular, the first two terms on the right-
hand side of Eq. (16) are the so-called Hartree contribution,

whereas the last two terms there are the Fock contribution
to fermion self-energy (for details, see, e.g., Sec. 4.3.1 in
Ref. [30] or Sec. II C in Ref. [31]).
Finally, note that both the CJT (or HF) effective action

(13) and its stationary equations (14)–(16), in which Gs;v

are bare coupling constants, contain ultraviolet (UV)
divergences and need to be renormalized. In the next
sections, using a rather general ansatz for propagator
S̄ðpÞ, we find the corresponding modes of the coupling
constants Gs;v behavior vs cutoff parameter Λ, such that
there occurs a renormalization of the gap Hartree-Fock
equation (16), and it is possible to obtain its finite solution
in the limit Λ → ∞.

4The first term on the left-hand side of Eq. (14) can be easily
obtained using Eq. (B2) from Appendix B.
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III. POSSIBILITY FOR DYNAMICAL GENERATION OF THE DIRAC AND HALDANE MASSES

Let us study on the basis of the HF equation (16) the possibility for dynamical generation of the Hermitian mass term
ΨkðmD þmHτÞΨk in the massless (2þ 1)-D Thirring model (1). It means that we should find the solution S̄ðpÞ of this
equation, which looks like

S̄ðpÞ ¼ −iðp̂þmD þmHτÞ−1 ¼ −i
�
p̃þmD þmH; 0

0; −p̃þmD −mH

�−1

¼ −i

 
ðp̃þmD þmHÞ−1; 0

0; ð−p̃þmD −mHÞ−1

!
¼ −i

 p̃−mD−mH
p2−ðmDþmHÞ2 ; 0

0; −p̃−mDþmH
p2−ðmD−mHÞ2

!
; ð17Þ

where mD and mH are finite unknown quantities, and in Eq. (17) the 4 × 4 matrix S̄ðpÞ is presented in the form of a 2 × 2
matrix each element of which is, in tern, a 2 × 2 matrix. Moreover, there p̃ ¼ γ̃νpν, where γ̃ν (ν ¼ 0, 1, 2) are 2 × 2 Dirac

gamma matrices (see Appendix A). It is evident that in this case S−1ðpÞ ¼ iðp̂þmD þ τmHÞ. Using Eq. (17) in the HF gap
equation (16), we obtain for the quantities mD and mH the following unrenormalized system of gap equations

mD ¼
�
3iGv

2N
−
iGs

2N

�Z
d3p
ð2πÞ3

�
mD þmH

p2 − ðmD þmHÞ2
þ mD −mH

p2 − ðmD −mHÞ2
�
;

mH ¼
�
2iGs −

iGs

2N
þ 3iGv

2N

�Z
d3p
ð2πÞ3

�
mD þmH

p2 − ðmD þmHÞ2
−

mD −mH

p2 − ðmD −mHÞ2
�
: ð18Þ

Performing in the integrals of Eq. (18) a Wick rotation, p0 → ip3, and then using in the obtained three-dimensional
Euclidean integration space the spherical coordinate system, p3 ¼ p cos θ, p1 ¼ p sin θ cosϕ, p2 ¼ p sin θ sinϕ, we have
(after integration over angles, 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π, and cutting off the region of integration of the variable p, 0 ≤ p ≤ Λ)
the following regularized gap system:

mD ¼
�
3Gv

2N
−
Gs

2N

�Z
Λ

0

p2dp
2π2

�
mD þmH

p2 þ ðmD þmHÞ2
þ mD −mH

p2 þ ðmD −mHÞ2
�
;

mH ¼
�
2Gs −

Gs

2N
þ 3Gv

2N

�Z
Λ

0

p2dp
2π2

�
mD þmH

p2 þ ðmD þmHÞ2
−

mD −mH

p2 þ ðmD −mHÞ2
�
: ð19Þ

Since

Z
Λ

0

p2

p2 þM2
dp ¼ Λ −

π

2
jMj þMO

�
M
Λ

�
; ð20Þ

the Eqs. (19) can be presented in the following asymptotic forms:

mD

A
¼ 2mDΛ −

π

2
½ðmD þmHÞjmD þmHj þ ðmD −mHÞjmD −mHj� þmDO

�
mD

Λ

�
;

mH

B
¼ 2mHΛ −

π

2
½ðmD þmHÞjmD þmHj − ðmD −mHÞjmD −mHj� þmHO

�
mH

Λ

�
; ð21Þ

where

A ¼ 3Gv

4Nπ2
−

Gs

4Nπ2
; B ¼ Gs

π2
−

Gs

4Nπ2
þ 3Gv

4Nπ2
: ð22Þ

To remove the UV divergences from Eqs. (21), we suppose that bare quantities A≡ AðΛÞ and B≡ BðΛÞ are such that
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1

AðΛÞ ¼ 2Λþ π

2
gA þ gAO

�
gA
Λ

�
;

1

BðΛÞ ¼ 2Λþ π

2
gB þ gBO

�
gB
Λ

�
; ð23Þ

where gA and gB are some finite Λ-independent and
renormalization group invariant quantities with dimension
of mass. In this case, at Λ → ∞ the system of stationary
equations (21) acquire the following renormalized form:

mDgA þ ðmD þmHÞjmD þmHj þ ðmD −mHÞjmD −mHj ¼ 0;

mHgB þ ðmD þmHÞjmD þmHj − ðmD −mHÞjmD −mHj ¼ 0: ð24Þ

Moreover, it is clear from Eq. (23) that at sufficiently large
values of Λ

AðΛÞ ¼ 1

2Λ

�
1 −

π

4Λ
gA þ � � �

�
;

BðΛÞ ¼ 1

2Λ

�
1 −

π

4Λ
gB þ � � �

�
: ð25Þ

So, taking into account the relations (22), we have for the
bare constants Gs;v the following asymptotic expansions at
Λ → ∞:

Gs ≡GsðΛÞ ¼ π2ðB − AÞ ¼ π3

8Λ2
ðgA − gBÞ þ � � � ;

Gv ≡GvðΛÞ ¼
π2

3
ðB − AÞ þ 4π2N

3
A

¼ 2π2N
3Λ

−
π3

24Λ2
½ð4N − 1ÞgA þ gB� þ � � � : ð26Þ

As a rule, the stationary equation (12) has several
solutions. To find which one is more preferable, it is
necessary to consider the so-called CJT effective potential
VðSÞ of the model which is determined on the basis of the
CJT effective action (8) by the following relation [29]:

VðSÞ
Z

d3x≡ −ΓðSÞjtransl:−inv:Sðx;yÞ; ð27Þ

and that solution S of the stationarity equation (12), on
which the effective potential VðSÞ takes the least value, will
correspond to the true fermion propagator Sðx; yÞ of the
model. To find CJT effective potential VðSÞ in the Hartree-
Fock approximation, we should use in Eq. (27) the
expressions (13) and (17) for CJT effective action ΓðSÞ
and for the full fermion propagator Sðx; yÞ, respectively.
But in this case the obtained expression for VðSÞ contains
UV divergences. However, they are eliminated if bare
couplingsGs;v are constrained by relations (26). As a result,
in the Hartree-Fock approximation we obtain for the CJT
effective potential VðSÞ≡ VðmH;mDÞ the following renor-
malized expression

VðmD;mHÞ ¼
1

12π
ð3gAm2

D þ 3gBm2
H þ 2jmD þmHj3

þ 2jmD −mHj3Þ ð28Þ

(this expression is valid up toan unessential mD, mH-
independent infinite constant). Note that the HF gap
equations (24) are also the stationary equations for the
effective potential (28). Now it is clear that the form of the
global minimum point (GMP) of the function VðmD;mHÞ
determines the phase structure of the generalized Thirring
model (1) when coupling constants Gs;v are constrained by
the conditions (26).
Let us study the behavior of the GMP of the function

VðmD;mHÞ (28) vs finite couplings gA;B. First, note that
this function is symmetric under the transformationsmD →
−mD and/or mH → −mH. So, for simplicity, it is enough to
look for its GMP only in the regionmD;mH ≥ 0. Second, it
is evident that at gA; gB ≥ 0 the GMP of VðmD;mHÞ lies at
the point ðmD ¼ 0; mH ¼ 0Þ, which means that no fermion
masses are generated in this region, and symmetry
remains intact. In other regions for gA and gB, it is easy
to find the following form of the GMP of the function
VðmD;mHÞ (28):
The region gB < 0, gA > gB.—In this case the system of

gap equations (24) has a nontrivial solution of the form
ðmD ¼ 0; mH ¼ −gB=2Þ, which corresponds to the free-
energy density equal to VðmD ¼ 0; mH ¼ −gB=2Þ ¼
1

48π g
3
B < 0, and this quantity is smaller than the value of

the CJT effective potential (28) at another, trivial solution
ðmD ¼ 0; mH ¼ 0Þ of the gap equations (24). So, in the
region under consideration only the Haldane mass term can
be generated dynamically, and parity P (4) is broken
spontaneously.
The region gA < 0, gB > gA.—In this case the GMP of

VðmD;mHÞ is arranged at the point ðmD ¼ −gA=2;
mH ¼ 0Þ. Hence, in this gA, gB region only the Dirac mass
is allowed to be generated and the phase with spontaneous
breaking both of the chiral [see in Eq. (3)] and Uð2NÞ
symmetries is realized (parity P is conserved). The density
of free energy in this phase is equal to VðmD ¼ −gA=2;
mH ¼ 0Þ ¼ 1

48π g
3
A < 0.

In terms of the finite gA, gB couplings, the phase portrait
of the model is depicted in Fig. 1. Note that on the line
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L ¼ fðgA; gBÞ∶gA ¼ gB; gA < 0g of this figure there is a
first-order phase transition from chiral symmetry broken
(CSB) (at gB > gA) to P-broken phase (at gA > gB). On the
line L we have an equality of the free-energy densities of
the ground states of these phases. In other words, it means
that at gA ¼ gB the two phases coexist. Moreover, it is clear
from (26) that at gA ¼ gB we have A ¼ B, i.e., Gs ¼ 0. So
in a massless (2þ 1)-D pure Thirring model (without Gs
coupling) the ground state is indeed a mixture of CSB and
P-breaking phases, i.e., this state can be imagined as a
space filled with one of the above phases, in which bubbles
of another phase can exist.

IV. PHASE PORTRAIT IN TERMS OF
DIMENSIONLESS BARE COUPLINGS

Finally, let us look at the properties of the model (1) from
a renormalization group point of view, i.e., try to find a
position of its UV-stable fixed point as well as depict its
phase portrait, in contrast to the phase diagram of Fig. 1, in
terms of some dimensionless parameters. To this aim, we
should attract some dimensionless bare quantities and then
find the zeros of the corresponding Callan-Simanzik β
functions. In our case, it is most convenient to deal with the
bare quantities A and B (22). We have shown that in the
Hartree-Fock approximation the model is renormalizable if
these couplings behave vs Λ as it is shown in Eqs. (23).
Taking into account such a dependence of A and B onΛ, we
can now determine the following dimensionless bare
quantities λ≡ λðΛÞ ¼ ΛAðΛÞ and μ≡ μðΛÞ ¼ ΛBðΛÞ,
and the corresponding Callan-Simanzik β functions (for
definition, see, e.g., Sec. 2.7 of Ref. [22])

βAðλÞ≡ Λ∂λ=∂Λ ¼ 2λ

�
1

2
− λ

�
;

βBðμÞ≡ Λ∂μ=∂Λ ¼ 2μ

�
1

2
− μ

�
: ð29Þ

Due to the structure (29) of these Callan-Simanzik β
functions, it is clear that both λðΛÞ and μðΛÞ tend to
1=2 when Λ → ∞. It means that in the ðμ; λÞ plane there
exists a UV-stable fixed point with coordinates ð1=2; 1=2Þ.5
Then, taking into account the relations (25), it is also
possible to establish that at sufficiently high values of Λ

λ−1=2¼−
πgA
8Λ

þ���; μ−1=2¼−
πgB
8Λ

þ��� : ð30Þ

It follows from Eqs. (30) that at λ < 1=2 and μ < 1=2 we
have both gA > 0 and gB > 0. According to a phase portrait
of Fig. 1, it corresponds to the symmetrical phase of the
model. It means that in the region fðμ; λÞ∶λ < 1=2;
μ < 1=2g of the ðμ; λÞ plane the symmetric phase is
arranged. In a similar way, using the relations (30) between
dimensional gA, gB and dimensionless λ, μ couplings and
taking into account the phase diagram of Fig. 1, one can
draw the phase portrait of the model in terms of λ and μ in
some vicinity of the UV-stable fixed point with coordinates
ð1=2; 1=2Þ (see Fig. 2).
Alternatively, it is also possible to remake the phase

portrait of Fig. 2 of the model in terms of other, more

FIG. 1. ðgA; gBÞ phase portrait of the generalized Thirring
model. Here, we use the notations CSB and “P-broken” for
chiral symmetry breaking and parity P-breaking phases, respec-
tively. The notation SYM means the symmetrical phase without
mass generation. On the straight line L gA ¼ gB.

FIG. 2. Phase portrait of the model in terms of dimensionless
bare couplings μ and λ defined in the text before Eq. (29). The
point (0.5,0.5) of the ðμ; λÞ plane is the UV-fixed point. The line l
is defined by equation λ ¼ μ. Other notations are introduced
in Fig. 1.

5Note that this conclusion also follows directly from Eq. (25)
when Λ → ∞.
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natural and physically acceptable dimensionless coupling
constants, gs ≡ ΛGs and gv ≡ ΛGv. Due to Eqs. (22), they
are connected with λ and μ by the relations

4Nπ2λ¼−gsþ3gv; 4Nπ2μ¼ð4N−1Þgsþ3gv: ð31Þ

It is clear from Eq. (31) that the lines μ ¼ λ, λ ¼ 1=2, and
μ ¼ 1=2 of Fig. 2 transforms, respectively, to the lines
gs ¼ 0, l1, and l2 of the ðgs; gvÞ plane, where

l1∶ gv¼
1

3
gsþ

2Nπ2

3
; l2∶ gv¼−gs

4N−1

3
þ2Nπ2

3
: ð32Þ

These lines intersect in the UV-fixed point with coordinates
ðgs ¼ 0; gv ¼ g�vÞ, where g�v ¼ 2Nπ2

3
. So in Fig. 3 the

ðgs; gvÞ-phase portrait of the model is presented in some
neighborhood of this UV-fixed point.
It follows from the phase diagram of Fig. 3 that in the

framework of the HF approximation the initial symmetry of
the generalized Thirring model (1) can be broken dynami-
cally at an arbitrary fixed value of N. Namely, suppose that
gv ≳ g�v. Then at sufficiently small and positive values of gs
the P-breaking phase is realized in the model and the
Haldane fermion mass is dynamically generated. However,
when gs is small and negative, then fermions acquire
dynamically the Dirac mass, and in this case both chiral
and Uð2NÞ symmetries of the model are broken sponta-
neously. In the particular case when gs ¼ 0, but gv > g�v,
there is a coexistence of these phases [this situation is
realized in the original (2þ 1)-D Thirring model with only
one nonzero coupling Gv].
It is clear from Eq. (32) that straight lines l1 and l2

intersect the gs axis of Fig. 3 in the points g�s and g��s ,

respectively, where g�s ¼ −2Nπ2 and g��s ¼ 2Nπ2

4N−1. Hence if
N → ∞, then we have g�v → ∞, g�s → −∞ and g��s → π2=2.
As a result, we have in this case the expansion of the
symmetrical phase over the whole region of the ðgs; gvÞ
plane, such that gs < π2=2 (of course, it contains the gv
axis). This fact corresponds to the absence of symmetry
breaking effects in the generalized massless (2þ 1)-D
Thirring model if it is studied by the HF method at
N → ∞ (and for sufficiently small values of gs < π2=2).
The similar property of the pure (2þ 1)-D massless
Thirring model is observed when it is investigated in the
framework of the leading order of the large-N technique
(see, e.g., Ref. [9]).

V. SUMMARY AND CONCLUSIONS

In this work, the phase structure of the massless
(2þ 1)-D generalized Thirring model (1), in which fer-
mions are four-component, is studied by the Hartree-Fock
method. The method is based on the Cornwall-Jackiw-
Tomboulis effective action for composite operators (see in
Sec. II) calculated up to the first order in the coupling
constants [29]. In our opinion, one of the advantages of this
CJT approach is the possibility to study the phase structure
of any four-fermionic quantum field theory model without
introducing auxiliary scalar (as it is often done in the case
of the Gross-Neveu models) or vector fields—in the case of
Thirring model, etc.
Prior to this, the HF approach was not used when

considering the properties of the pure Thirring model,
i.e., when Gs ¼ 0 in Eq. (1). At the same time, other
approaches (1=N expansion, variational method, etc.) gave
contradictory information regarding the structure of the
ground state (≡ of the vacuum) of the model. For example,
some papers predict the dynamic generation of the Dirac
mass mDΨ̄kΨk and appearance of a phase with broken
chiral symmetry [9–11]. In others, the ground state is
characterized by P-parity violation and the appearance of
Haldane mass mHΨ̄kτΨk [12,13] for fermions (about other
inconsistences see, e.g., Refs. [17–20]).
Using the HF approach, we were able to show that there

is no contradiction between the above mentioned results,
since in fact the vacuum of the (2þ 1)-D pure Thirring
model is really a mixed state in which these two phases
coexist. In other words, in a part of the two-dimensional
space, the Dirac mass is dynamically generated for fer-
mions, and chiral symmetry is spontaneously broken in this
region. At the same time, the region of this phase can
border on areas of another phase, in which the Haldane
mass is generated, and P parity is spontaneously broken.
During the transition from one phase to another, a first-
order phase transition occurs in the system (see the last
paragraph of Sec. III). Moreover, it is clear that in the
framework of the HF approach to the pure (2þ 1)-D
Thirring model (1) the dynamical mass generation comes

FIG. 3. Phase portrait of the model in terms of dimensionless
bare couplings gs and gv defined in the text before Eq. (31). The
point ð0; g�vÞ (where g�v ¼ 2Nπ2=3) of the ðgs; gvÞ plane is the UV-
fixed point. The lines l1 and l2 are defined in Eq. (32). Other
notations are introduced in Fig. 1.
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at any finite N only from the Fock term of Eq. (16). At
Gs ¼ 0 the Hartree term makes no contribution to the
regularized HF equation (19). Since the Fock term is
proportional to 1=N, we see the absence of dynamical
mass generation in the limit N → ∞. The same result was
obtained in the leading order of the 1=N-expansion
approach to this model [9].
Returning to the results obtained when considering the

properties of the generalized Thirring model (1) by the HF
method, we note that renormalized (i.e., finite) expressions
both for the effective potential (28) and for the HF
equation (16) itself can only be obtained for a well-defined
behavior (26) of the bare coupling constants GsðΛÞ and
GvðΛÞ vs cutoff parameter Λ, in which two finite (and
renormalization group invariant) constants gA and gB
appear. In this case, for arbitrary fixed values of gA and
gB, only one of the phases is realized in the model,
symmetric, P-breaking, or a phase with chiral symmetry
breaking (the last two phases are characterized by dynamic
appearance of the Haldane or Dirac mass, respectively), and
the ðgA; gBÞ-phase portrait of the model is shown in Fig. 1.
Then, using the dimensionless couplings gs ≡ ΛGsðΛÞ

and gv ≡ ΛGvðΛÞ, we have shown that generalized Thirring
model (1) is characterized by nontrivial UV stability. It
means that in the ðgs; gvÞ plane there exists a so-called UV-
stable fixed point ðgs ¼ 0; gv ¼ g�vÞ, where g�v ¼ 2Nπ2

3
, such

that in the limit Λ → ∞ we have ðgs; gvÞ → ð0; g�vÞ. Phase
portrait of themodel in someneighborhoodof thisUV-stable
fixed point is given in Fig. 3.
It follows from Fig. 3 that at each fixed N, when the UV-

fixed point is finite, dynamical generation of fermion mass,
Dirac or Haldane, is possible in the generalized Thirring
model (see discussion at the end of Sec. IV). However, if
N → ∞, then the UV-fixed point tends to ∞ along the gv
axis, and for arbitrary fixed values of dimensionless
couplings gs and gv (when gs is a rather small) the point
ðgs; gvÞ lies in the region corresponding to symmetrical
phase, i.e., the dynamical generation of any fermion mass is
absent [similar to the results of Refs. [9,11] obtained in the
pure (2þ 1)-D Thirring model].
Finally, two remarks are in order. First, in the recent

study of the (2þ 1)-D Gross-Neveu model by HF method
[27] just the Hartree term gives the main contribution to the
dynamic generation of the fermion mass, i.e., to the effect
that is also observed in the leading order of the large-N
approximation [22] (the contribution of the Fock term in
this case is not so significant). In contrast, the present
investigation of the generalized (2þ 1)-D Thirring model
(1) by the HF method shows that at Gs ≠ 0 the Fock terms
of the stationary equation (16) play a more important role in
the dynamical generation of a fermion mass (and atGs ¼ 0,
i.e., in the original Thirring model, the appearance of this
effect is entirely due to the Fock terms). Since the Fock
terms are proportional to 1=N, it might seem that the HF
approach to fermion self-energy is equivalent to its study in

the framework of the first two orders of large-N expansion.
Indeed, as it is discussed in Ref. [31], taking into account
the Hartree terms in equations of the type (16) is equivalent
to considering the properties of the fermion propagator in
the leading order of the 1=N expansion. However, there are
a lot of diagrams that are of 1=N order, but which lie
outside the scope of the HF consideration and are not
described by Fock terms [31]. Thus, it is because of the
presence of the Fock terms that the difference between the
HF and large-N methods appears.
Second, the HF method is a kind of the well-known

mean-field approach widely used in both field theory and
many-particle physics. And, of course, its scope is limited.
For example, the HF approach to (2þ 1)-D Thirring model
predicts dynamical symmetry breaking at any fixed finite
value of N. However, if the model is investigated by other
and more sophisticated nonperturbative methods (such as
the functional renormalization group, the Dyson-
Schwinger method, and, especially, the lattice approach,
which is based on the first principles of quantum field
theory), the acceptable values of N < Nc are rather small
(the value of Nc is discussed, e.g., in the recent review
[19]). In such cases, in our opinion, it is possible to improve
the results of the HF method by going beyond the mean-
field approach using the next orders over couplings Gs;v in
the CJT effective action ΓðSÞ (8).
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APPENDIX A: ALGEBRA OF THE γ MATRICES
IN THE CASE OF SOð2;1Þ GROUP

The two-dimensional irreducible representation of the
(2þ 1)-dimensional Lorentz group SOð2; 1Þ is realized by
the following 2 × 2 γ̃ matrices:

γ̃0 ¼ σ3 ¼
�
1 0

0 −1

�
; γ̃1 ¼ iσ1 ¼

�
0 i

i 0

�
;

γ̃2 ¼ iσ2 ¼
�

0 1

−1 0

�
; ðA1Þ

acting on two-component Dirac spinors. They have the
properties

Trðγ̃μγ̃νÞ ¼ 2gμν; ½γ̃μ; γ̃ν� ¼ −2iεμναγ̃α;

γ̃μγ̃ν ¼ −iεμναγ̃α þ gμν; ðA2Þ

where gμν ¼ gμν ¼ diagð1;−1;−1Þ; γ̃α ¼ gαβγ̃β; ε012 ¼ 1.
There is also the relation

Trðγ̃μγ̃νγ̃αÞ ¼ −2iεμνα: ðA3Þ
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Note that the definition of chiral symmetry is slightly
unusual in (2þ 1) dimensions [spin is here a pseudoscalar
rather than a (axial) vector]. The formal reason is simply
that there exists no other 2 × 2 matrix anticommuting with
the Dirac matrices γ̃ν which would allow the introduction of
a γ5 matrix in the irreducible representation. The important
concept of “chiral” symmetries and their breakdown by
mass terms can nevertheless be realized also in the
framework of (2þ 1)-dimensional quantum field theories
by considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinors ψ have the
following form:

ψðxÞ ¼
�
ψ̃1ðxÞ
ψ̃2ðxÞ

�
; ðA4Þ

with ψ̃1; ψ̃2 being two-component spinors. In the reducible
four-dimensional spinor representation one deals with
4 × 4 γ matrices: γμ ¼ diagðγ̃μ;−γ̃μÞ, where γ̃μ are given
in (A1). (This particular reducible representation for γ
matrices is used, e.g., in Ref. [33].) One can easily show
that (μ, ν ¼ 0, 1, 2):

TrðγμγνÞ ¼ 4gμν; γμγν ¼ σμν þ gμν;

σμν ¼ 1

2
½γμ; γν� ¼ diagð−iεμναγ̃α;−iεμναγ̃αÞ: ðA5Þ

In addition to the Dirac matrices γμ (μ ¼ 0, 1, 2) there exist
two other matrices, γ3 and γ5, which anticommute with all
γμ (μ ¼ 0, 1, 2) and with themselves

γ3 ¼
�
0; I

I; 0

�
; γ5 ¼ γ0γ1γ2γ3 ¼ i

�
0; −I
I; 0

�
;

τ ¼ −iγ3γ5 ¼
�
I; 0

0; −I

�
ðA6Þ

with I being the unit 2 × 2 matrix.

APPENDIX B: CALCULATION OF THE ΓðSÞ UP
TO A FIRST ORDER IN Gs;v: HARTREE-FOCK

APPROXIMATION

1. The case Gs;v = 0

In this case expðiIintð−i δ
δKÞÞ¼1, so we have from

Eqs. (5)–(7)

expðiNWðKÞÞ ¼ exp½NTr lnðDðx; yÞ þ Kðx; yÞÞ�
⇒ WðKÞ ¼ −iTr lnðDðx; yÞ þ Kðx; yÞÞ: ðB1Þ

Now, using a well-known relation [see, e.g., Eq. (11.101) of
Ref. [38] ],

∂

∂α
Tr lnMðαÞ ¼ Tr

�
M−1 ∂M

∂α

�
; ðB2Þ

where M≡MðαÞ is a matrix, we have from Eqs. (9)
and (B1)

Sαβðx; yÞ ¼
δWðKÞ
δKβ

αðy; xÞ
¼ −i

Z
d3sd3t

X
μν

½ðDþ KÞ−1�μνðs; tÞ δK
ν
μðt; sÞ

δKβ
αðy; xÞ

¼ −i
Z

d3sd3t
X
μν

½ðDþ KÞ−1�μνðs; tÞδ3ðt − yÞδ3ðs − xÞδνβδμα ¼ −i½ðDþ KÞ−1�αβðx; yÞ: ðB3Þ

Solving this equation with respect to K, we obtain

K ¼ −iS−1 −D: ðB4Þ

Finally, after substituting the relation (B4) into Eq. (B1)
and taking into account the definition (8) of the CJT
effective action ΓðSÞ, we have (omitting independent S
terms) for it the following expression at G ¼ 0:

ΓðSÞ ¼ −iTr lnð−iS−1Þ þ
Z

d3xd3ySαβðx; yÞDβ
αðy; xÞ:

ðB5Þ

Starting from the CJT effective action (B5), it is possible to
obtain the stationary equation [see Eq. (12)] for the genuine
spinor propagator S of the generalized (2þ 1)-D Thirring

model at Gs;v ¼ 0. Taking into account the relation (B2), it
can be presented in the following form:

0 ¼ i
Z

d3sd3t
X
μν

½S−1�μνðs; tÞ δS
ν
μðt; sÞ

δSαβðx; yÞ
þDβ

αðy; xÞ

¼ i½S−1�βαðy; xÞ þDβ
αðy; xÞ; ðB6Þ

where a trivial relation δSνμðt;sÞ
δSαβðx;yÞ ¼ δ3ðt − xÞδ3ðs − yÞδναδμβ is

taken into consideration. Hence, in the absence of inter-
action in the generalized Thirring model (1), i.e., at
Gs;v ¼ 0, the stable and stationary form of the propagator
is the following, S ¼ −iD−1, where D is presented in
Eq. (6).
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2. CJT effective action in the first order in coupling constants

In this case the functional WðKÞ (7) looks like (here and below we use the definition Δ≡Dþ K)

expðiNWðKÞÞ ¼
�
1þ iIv

�
−i

δ

δK

�
þ iIs

�
−i

δ

δK

��
expðNTr lnΔÞ

¼
�
1þ i

Gv

2N

Z
d3sd3td3ud3vδ3ðs − tÞδ3ðt − uÞδ3ðu − vÞðγρÞβα δ

δKβ
αðs; tÞ

ðγρÞνμ
δ

δKν
μðu; vÞ

− i
Gs

2N

Z
d3sd3td3ud3vδ3ðs − tÞδ3ðt − uÞδ3ðu − vÞτβα δ

δKβ
αðs; tÞ

τνμ
δ

δKν
μðu; vÞ

�
expðNTr lnΔÞ: ðB7Þ

In the following, two relations are needed,

δTr lnΔ
δKν

μðu; vÞ
¼ ðΔ−1Þμνðv; uÞ; ðB8Þ

which is a consequence of Eq. (B3) or Eq. (B2), and

δ

δKβ
αðs; tÞ

ðΔ−1Þμνðv; uÞ ¼ −
Z

d3v0d3u0
X
μ0;ν0

ðΔ−1Þμμ0 ðv; v0Þ
δΔμ0

ν0 ðv0; u0Þ
δKβ

αðs; tÞ
ðΔ−1Þν0ν ðu0; uÞ: ðB9Þ

Note that Eq. (B9) follows from a rather general formula (11.94) of Ref. [38]. Taking into account in Eq. (B9) that
δΔμ0

ν0 ðv
0;u0Þ

δKβ
αðs;tÞ

¼ δ3ðv0 − sÞδ3ðu0 − tÞδμ0βδν0α, we have

δ

δKβ
αðs; tÞ

ðΔ−1Þμνðv; uÞ ¼ −ðΔ−1Þμβðv; sÞðΔ−1Þανðt; uÞ: ðB10Þ

Applying the relations (B8) and (B10) in Eq. (B7), we obtain

expðiNWðKÞÞ ¼
�
1þ i

GvN
2

Z
d3sðtr½γρΔ−1ðs; sÞ�tr½γρΔ−1ðs; sÞ�Þ − i

Gv

2

Z
d3s tr½γρΔ−1ðs; sÞγρΔ−1ðs; sÞ�

− i
GsN
2

Z
d3sðtr½τΔ−1ðs; sÞ�Þ2 þ i

Gs

2

Z
d3s tr½τΔ−1ðs; sÞτΔ−1ðs; sÞ�

�
expðNTr lnΔÞ; ðB11Þ

where tr means the trace operation only in the spinor space. It follows from Eq. (B11) that up to a first order in Gv;s

WðKÞ ¼ −iTr lnΔ −
Gs

2

Z
d3sðtr½τΔ−1ðs; sÞ�Þ2 þ Gs

2N

Z
d3s tr½τΔ−1ðs; sÞτΔ−1ðs; sÞ�

þGv

2

Z
d3sðtr½γρΔ−1ðs; sÞ�tr½γρΔ−1ðs; sÞ�Þ − Gv

2N

Z
d3s tr½γρΔ−1ðs; sÞγρΔ−1ðs; sÞ�: ðB12Þ

To find the effective action ΓðSÞ in the first order ofGv andGs (i.e. in the HF approximation), we must use in Eq. (8), as well
as in Eq. (9), the expression (B12) for WðKÞ. In particular, it follows from Eqs. (9) and (B12) that

Sαβðx; yÞ≡ δWðKÞ
δKβ

αðy; xÞ
¼ −iðΔ−1Þαβðx; yÞ þGs

Z
d3s½Δ−1ðx; sÞτΔ−1ðs; yÞ�αβtr½τΔ−1ðs; sÞ�

−
Gs

N

Z
d3s½Δ−1ðx; sÞτΔ−1ðs; sÞτΔ−1ðs; yÞ�αβ

− Gv

Z
d3s½Δ−1ðx; sÞγρΔ−1ðs; yÞ�αβtr½γρΔ−1ðs; sÞ� þ Gv

N

Z
d3s½Δ−1ðx; sÞγρΔ−1ðs; sÞγρΔ−1ðs; yÞ�αβ;

ðB13Þ
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where the relation (B10) was applied. Now, the next problem is to express the bilocal sourceK as a function(al) of Swith the
help of Eq. (B13). Wewill use the perturbation approach over the coupling constantsGs;v, i.e., will suppose that the solution
of Eq. (B13) has the form

KðSÞ ¼ K0 þ δK; ðB14Þ

where δK ∼ Gs;v and K0 is the solution of Eq. (B13) at Gs;v ¼ 0, and it is given in Eq. (B4), i.e., K0 ¼ −iS−1 −D. Recall
that Δ−1 in Eq. (B13) is indeed a functional of K, i.e., Δ−1 ≡ Δ−1ðKÞ. So, let us expand this quantity in a Taylor series
around K0 up to a first order in a small perturbation δK of Eq. (B14),

ðΔ−1ðKÞÞαβðx; yÞ ¼ ðΔ−1ðK0ÞÞαβðx; yÞ þ
Z

d3ud3vδKν
μðu; vÞ

δðΔ−1ðKÞÞαβðx; yÞ
δKν

μðu; vÞ
����
K¼K0

þ � � � : ðB15Þ

Taking into account in Eq. (B15) the derivative rule (B10) as well as the trivial relation ðΔ−1ðK0ÞÞαβðx; yÞ ¼ iSαβðx; yÞ, we
obtain

ðΔ−1ðKÞÞαβðx; yÞ ¼ iSαβðx; yÞ þ
Z

d3ud3vSανðx; uÞδKν
μðu; vÞSμβðv; yÞ þ � � � : ðB16Þ

After a substitution of the relation (B16) instead of a first term in the right-hand side of Eq. (B13) and replacing all Δ−1 in
other terms of Eq. (B13) by iS, we find the following equation on the quantity δK:

Z
d3ud3vSανðx; uÞδKν

μðu; vÞSμβðv; yÞ ¼ −Gs

Z
d3s½Sðx; sÞτSðs; yÞ�αβtr½τSðs; sÞ� þ

Gs

N

Z
d3s½Sðx; sÞτSðs; sÞτSðs; yÞ�αβ

þGv

Z
d3s½Sðx; sÞγρSðs; yÞ�αβtr½γρSðs; sÞ� −

Gv

N

Z
d3s½Sðx; sÞγρSðs; sÞγρSðs; yÞ�αβ:

ðB17Þ

Its solution with respect to δK has the following form:

δKα
βðx; yÞ ¼ −Gsτ

α
βtr½τSðx; xÞ�δ3ðx − yÞ þGs

N
½τSðx; xÞτ�αβδ3ðx − yÞ þGvðγρÞαβtr½γρSðx; xÞ�δ3ðx − yÞ

−
Gv

N
½γρSðx; xÞγρ�αβδ3ðx − yÞ: ðB18Þ

Bearing in mind this expression for δK as well as that K0 ¼ −iS−1 −D, we obtain, up to a first order in Gs;v, the solution
KðSÞ (B14) of Eq. (B13),

Kα
βðx; yÞ ¼ −iðS−1Þαβðx; yÞ −Dα

βðx; yÞ −Gsτ
α
βtr½τSðx; xÞ�δ3ðx − yÞ þ Gs

N
½τSðx; xÞτ�αβδ3ðx − yÞ

þ GvðγρÞαβtr½γρSðx; xÞ�δ3ðx − yÞ −Gv

N
½γρSðx; xÞγρ�αβδ3ðx − yÞ: ðB19Þ

It follows from Eq. (B19) that

ΔðKÞαβðx; yÞ≡ Kα
βðx; yÞ þDα

βðx; yÞ ¼ −iðS−1Þαβðx; yÞ − Gsτ
α
βtr½τSðx; xÞ�δ3ðx − yÞ þGs

N
½τSðx; xÞτ�αβδ3ðx − yÞ

þGvðγρÞαβtr½γρSðx; xÞ�δ3ðx − yÞ −Gv

N
½γρSðx; xÞγρ�αβδ3ðx − yÞ: ðB20Þ

Now, it is clear from Eqs. (B19) and (B20) that (also up to a first order in Gs;v)
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−iTr lnΔ ¼ −iTr lnð−iS−1Þ − Gs

Z
d3s½trðτSðs; sÞÞ�2 þ Gs

N

Z
d3s tr½τSðs; sÞτSðs; sÞ�

þGv

Z
d3s tr½γρSðs; sÞ�tr½γρSðs; sÞ� −

Gv

N

Z
d3s tr½Sðs; sÞγρSðs; sÞγρ�;

−
Z

d3xd3ySαβðx; yÞKβ
αðy; xÞ ¼

Z
d3xd3ySαβðx; yÞDβ

αðy; xÞ þ Gs

Z
d3s½trðτSðs; sÞÞ�2

−
Gs

N

Z
d3s tr½τSðs; sÞτSðs; sÞ� −Gv

Z
d3s tr½γρSðs; sÞ�tr½γρSðs; sÞ�

þGv

N

Z
d3s tr½Sðs; sÞγρSðs; sÞγρ� ðB21Þ

(the last equation is valid up to an unessential and S-independent infinite constant). Finally, replacing all Δ−1 functions in
the last four terms of Eq. (B12) for WðKÞ by iS, and taking into account the relations (B21), we obtain in the first order in
Gs;v for the CJT effective action ΓðSÞ (8) the expression (13) [where we also took into account the trivial
relation, lnð−iS−1Þ ¼ − lnðiSÞ].
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