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We consider a braneworld scenario in the simplest setting, M4 × S1, with a four-dimensional (4D)
Minkowski metric induced on the brane, and establish the possibility of superluminal propagation. If the
brane is at rest, the 4D Lorentz symmetry of the brane is exact, but if the brane is in motion, it is broken
globally by the compactification. By measuring bulk fields, an observer on the brane sees a slice through a
higher-dimensional field profile, which carries an imprint of the extra dimensions even when the brane is at
rest. If the brane is in motion, we find that bulk fields can propagate outside the brane light cone by a
parametrically large amount set by the brane velocity. We mention observational tests and possible
applications to cosmology.
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I. INTRODUCTION

Imagine living on a brane with a single extra transverse
dimension compactified on a circle. Suppose a high-
priority signal needs to be sent by massless messenger
between two points on the brane. Since the bulk spacetime
is multiply connected, there is a choice: is it better to send
the signal along the brane or launch it into the bulk? If the
brane is at rest, it is clearly optimal to send the signal along
the brane. One might guess that sending along the brane is
also optimal if the brane is in motion, but we will see that
this is not the case; signals sent into the bulk can beat
signals sent along the brane, by an amount that depends on
the brane velocity and can be arbitrarily large.
To describe this in more detail, consider a braneworld

scenario with a single circular extra dimension. We begin
with a higher-dimensional Minkowski space with d space-
time dimensions and split the coordinates as xμ ¼ ðt;x; zÞ.

We compactify the z coordinate on a circle of radius R so
that

ds2bulk ¼ −dt2 þ jdxj2 þ dz2 x ∈Rd−2; z≈ zþ 2πR:

ð1Þ

This defines a preferred frame in which the identification is
purely spatial. In this frame, there is an exact Lorentz
symmetry acting on the ðt;xÞ coordinates, the usual lower-
dimensional Lorentz symmetry that is preserved by Kaluza-
Klein compactification.
We will be interested in the effects of brane motion, so

instead of working in the preferred frame, we consider a
frame moving in the compact direction. We introduce
boosted coordinates ðt0;x0; z0Þ by setting x0 ¼ x and

�
t0

z0

�
¼
�

γ −γβ
−γβ γ

��
t

z

� �
t

z

�
¼
�

γ γβ

γβ γ

��
t0

z0

�
:

ð2Þ

Locally, these coordinates have the same metric as (1),
ds2 ¼ −ðdt0Þ2 þ jdxj2 þ ðdz0Þ2, although the identification
is no longer purely spatial. Instead, it is given by trans-
forming ð0; 0; 2πRÞ into the boosted frame, which means
the identification is
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For a braneworld located at z0 ¼ 0, meaning a moving
brane located at position z ¼ βt in the preferred frame, the
induced metric is

ds2brane ¼ −ðdt0Þ2 þ jdx0j2: ð4Þ

The brane metric is invariant under Lorentz transformations
of the ðt0;x0Þ coordinates, and brane-localized matter would
presumably respect this symmetry. This could lead a brane
observer to believe that world volume Lorentz invariance is
fundamental. And yet, not only is it not fundamental, but
for β ≠ 0, it is not even a symmetry since it does not
preserve the identification (3). The would-be Lorentz
symmetry on a moving brane is broken by global effects.
Our goal is to explore a few of the consequences of this

global breaking. For reviews of Lorentz violation, see
Refs. [1,2], and for related previous work, see Ref. [3].
We will examine how bulk signals—excitations which
propagate causally in the bulk—are perceived by a brane
observer. We will see that violation of the would-be Lorentz
symmetry on the brane allows for some curious effects.
We start in Sec. II by examining causality, the crudest

aspect of signal propagation. Brane-localized observers
could be misled into thinking that causality with respect to
the brane metric is fundamental. This can be phrased as the
requirement that in time t0 a signal can spread on the brane
according to

brane causality∶ jx0j ≤ t0: ð5Þ

In truth, only causality with respect to the bulk metric is
fundamental. We will see that bulk causality allows signals
to spread on the brane at a faster rate given by

bulk causality∶ jx0j ≤ γt0: ð6Þ

The bulk bound is generically saturated at late times (large
t0). In short, causal signals in the bulk become tachyons on
the brane; they travel faster than light with respect to the
brane metric, by an amount which can be parametri-
cally large.
At a more refined level, bulk fields propagate in a space

with additional compact dimensions. In Sec. III, we discuss
the imprint this has on observations made on the brane. By
measuring a bulk field, a brane observer can directly see a
slice through a field propagating in higher dimensions. The
extra dimensions leave an observable imprint, even if the
brane is at rest, simply because the retarded Green’s
function is dimension dependent and sensitive to the
compactification geometry. We illustrate this in a simple
example and also show how the signal observed on the

brane is modified when the brane is in motion. This lets us
illustrate the full range of imprints of a compact dimension,
from early times to late times. In Sec. IV, we mention some
observational tests and directions for further development.
Relevant facts about the Green’s functions are collected in
Appendix.

II. BULK CAUSALITY ON A MOVING BRANE

In this section, we examine bulk causality from the brane
point of view and show that it allows for apparent faster-
than-light travel on the brane. We first show this from
simple geometric considerations involving light cones, then
study the effect in more detail in terms of retarded Green’s
functions.

A. Light cones

The geometric argument runs as follows. Imagine a
source of light at the origin t ¼ x ¼ z ¼ 0. In the covering
space where the z coordinate is unwrapped, this source
corresponds to an infinite series of image charges at

tw ¼ xw ¼ 0 zw ¼ 2πRw w ∈ Z: ð7Þ
At time t, the light cones of these image charges form a
series of circles,

jxj2 þ ðz − zwÞ2 ¼ t2: ð8Þ

In the boosted frame, the image charges are located at

t0w ¼ −γβ2πRw x0
w ¼ 0 z0w ¼ γ2πRw; ð9Þ

and their light cones expand as

jx0j2 þ ðz0 − z0wÞ2 ¼ ðt0 − t0wÞ2: ð10Þ

Noting that t0w ¼ −βz0w, this can also be written as

jx0j2 þ ðz0 − z0wÞ2 ¼ ðt0 þ βz0wÞ2: ð11Þ

As shown in Fig. 1, the envelope forms a cone along the
z0 axis with the tip of the cone at z0 ¼ − 1

β t
0 and an opening

angle α satisfying

sin α ¼ radius of light cone
tip-to-center distance

¼ β: ð12Þ

At any given z0, the envelope has an extent in the directions
parallel to the brane

jx0j ¼
�
z0 þ 1

β
t0
�
tan α ¼ t0 þ βz0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p : ð13Þ

In particular, on a brane located at z0 ¼ 0, the envelope
expands according to
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jx0j ¼ γt0: ð14Þ

This exceeds the speed limit suggested by the induced
brane metric by a factor of γ. The reason for the super-
luminal propagation can be seen in Fig. 2. Wave fronts
produced by image charges to the right hit the brane and
eventually spread farther along the brane than the wave
front produced by the image charge at the origin. The effect
becomes more pronounced as β increases, since the open-
ing angle α → π=2 as β → 1.
For later reference, it is useful to note the time at which

the various image charges first becomes visible to observers
on the brane. The wth image charge can first be seen on the
brane at position x0 ¼ z0 ¼ 0 at a time

t0 ¼ t0w þ jz0wj ¼
8<
:

2πRw
ffiffiffiffiffiffiffi
1−β
1þβ

q
for w > 0

−2πRw
ffiffiffiffiffiffiffi
1þβ
1−β

q
for w < 0:

ð15Þ

These are nothing but the usual relativistic Doppler for-
mulas. Image charges in the direction of motion are seen at

a blueshifted frequency, while image charges behind the
observer are redshifted. It is worth noting that as β → 1 all
of the image charges with w > 0 appear instantly on the
brane; the time delay one might expect, due to the travel
time around the compact dimension, gets completely
Doppler-shifted away.
We can also be more explicit about how the light cones

of the image charges appear on the brane. Setting z0 ¼ 0 in
(11), we see that the light cone of the wth image charge
spreads along the brane according to

jx0j2 ¼ ðt0 þ βz0wÞ2 − ðz0wÞ2: ð16Þ

This defines a spacelike hyperboloid on the brane, illus-
trated in Fig. 3, with the special case w ¼ 0 being the brane
light cone jx0j ¼ t0. The hyperboloid is asymptotic to a light
cone originating from t0 ¼ −βz0w, so all image charges
produce signals that asymptotically expand at the speed of
light on the brane. If the brane velocity is nonzero, the
image charges with w > 0 have origins at t0 < 0 and
eventually spread outside the brane light cone, while image
charges with w < 0 produce hyperboloids that forever
remain inside the brane light cone.
The expression (16) is useful for understanding how a

particular image charge appears on the brane, but to
understand the envelope effect discussed above, it is better
to rewrite (16) in the equivalent form

jx0j2 ¼ ðγt0Þ2 − ðγβt0 − 2πRwÞ2: ð17Þ

In this form, we see that for any given t0 the leading-edge
signal on the brane is produced by the image charge with
w ≈ γβt0=2πR. For this particular image charge, the final
term vanishes, and the signal has spread a distance

FIG. 1. Blue circles: light cones produced by image charges on
a slice of constant t0. At time t0, the light cone centered at z0w has
radius t0 þ βz0w. The envelope of the light cones forms a cone
along the z0 axis with tip at z0 ¼ −t0=β and opening angle
α ¼ sin−1 β.

FIG. 2. Blue circles: light cones produced by image charges on
a slice of constant t0. The brane is at z0 ¼ 0. The wave front
centered to the right has spread farther along the brane than the
one centered at the origin.

FIG. 3. An image charge with w > 0 produces the spacelike
hyperbola shown in blue. The signal first appears on the brane at a
time given by the Doppler formula (15) and asymptotically
approaches the light cone with origin at t0 ¼ −βz0w shown in solid
black. It eventually spreads outside the brane light cone shown in
dotted black. The plot is for w ¼ 1, R ¼ 1, β ¼ 0.6.
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jx0j ≈ γt0, showing that a succession of image charges with
increasing values of w are responsible for the envelope
discussed above.

B. Green’s functions

The effect can be understood in more detail from a study
of the retarded Green’s function for a bulk field. In parallel
with our split of the coordinates as xμ ¼ ðt;x; zÞ, we split
the momenta as kμ ¼ ðω;k; qÞ.
Consider a bulk scalar field of mass m. We denote the

retarded Green’s function GðdÞ
R ðt;x; zÞ, where d is the

number of spacetime dimensions and R is the radius of
the circle. We start from the retarded Green’s function in the
covering space which satisfies

ð−∂μ∂μ þm2ÞGðdÞ
∞ ðt;x; zÞ ¼ δðtÞδd−2ðxÞδðzÞ

GðdÞ
∞ ðt;x; zÞ ¼ 0 for t < 0:

This Green’s function has a representation

GðdÞ
∞ ðt;x; zÞ ¼

Z
dω
2π

dd−2k
ð2πÞd−2

dq
2π

e−iωteik·xeiqz

−ω2 þ jkj2 þ q2 þm2
;

ð18Þ
where the ω contour is deformed to pass above the poles.
Although it is not obvious from the integral representation,
causality requires

GðdÞ
∞ ðt;x; zÞ ¼ 0 for t <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ z2

q
: ð19Þ

To compactify the z direction, we introduce an image
sum which can also be thought of as a sum over winding
numbers,

GðdÞ
R ðt;x; zÞ ¼

X
w∈Z

GðdÞ
∞ ðt;x; z − 2πRwÞ: ð20Þ

Alternatively, we can compactify the z direction by making
the sum over momentum modes discrete,1

GðdÞ
R ðt;x; zÞ

¼ 1

2πR

X
n∈Z

Z
dω
2π

dd−2k
ð2πÞd−2

e−iωteik·xeinz=R

−ω2 þ jkj2 þ ðnRÞ2 þm2
: ð21Þ

Now, we can see how the field responds to a source at the
origin. At early times t < 2πR, only the w ¼ 0 term in the
winding sum contributes, so

GðdÞ
R ðt;x; zÞ ¼ GðdÞ

∞ ðt;x; zÞ for t < 2πR: ð22Þ

This is an exact statement, enforced by causality. It means
that at early times the field propagates as though the theory
had full d-dimensional Lorentz invariance.
As time goes by, more and more image charges will

contribute. At late times, the winding sum becomes
continuous,

P
w∈Z →

R
dw. Making this replacement in

(20) and using (18), we see that the winding sum leads toZ
dwe−iq2πRw ¼ 1

R
δðqÞ: ð23Þ

This freezes the q integral and leads to the late-time
behavior

GðdÞ
R ðt;x; zÞ → 1

2πR
Gðd−1Þ

∞ ðt;xÞ: ð24Þ

An equivalent statement is that the late-time behavior is
dominated by the Kaluza-Klein mode with n ¼ 0. At late
times, the z dependence drops out, and the behavior is
governed by the Green’s function in d − 1 dimensions.
The late-time Green’s function has the expected (d − 1)-

dimensional Lorentz symmetry of the preferred frame. In
particular, at late times, signals propagate causally in the
preferred frame with

jxj < t: ð25Þ

But clocks on a moving brane run slow. The coordinates
appropriate to a brane observer are obtained by setting
t ¼ γt0 and x ¼ x0, and in these coordinates, the bound
becomes

jx0j < γt0: ð26Þ

To a brane observer, it appears that bulk fields can
propagate superluminally, in agreement with (14).

III. BULK FIELDS ON A MOVING BRANE

We have seen that the retarded Green’s function under-
goes crossover from the Green’s function in d noncompact
dimensions at early times to the Green’s function in d − 1
noncompact dimensions at late times. The timescale for the
crossover is set by 2πR in the preferred frame, the moment
at which bulk fields first notice the compactification. Here,
we study the crossover in more detail and point out some of
the observational consequences.
Brane motion is not essential to most of the discussion in

this section. The crossover phenomenon is present even for

1To see the equivalence of the winding and momentum
forms consider

P
w∈Z eiqðz−2πRwÞ. This is periodic in z and so

can be expanded in a Fourier series
P

n cne
inz=R with coef-

ficients given by cn ¼ 1
2πR

R
2πR
0 dze−inz=R

P
w∈Z eiqðz−2πRwÞ ¼

1
2πR

R
∞
−∞ dze−inz=Reiqz ¼ 1

R δðq − n
RÞ. This leads to the identityP

w∈Z eiqðz−2πRwÞ ¼ 1
R

P
n∈Z δðq − n

RÞeinz=R. Using this for the
sum in (20) leads to (21).
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a brane at rest, so we begin by illustrating it in that context,
then present the straightforward generalization to a mov-
ing brane.
Closely related phenomena have been studied in the

literature. For a brane at rest, the crossover in the static
(purely spatial) Green’s function is responsible for the
famous modification of the Newtonian potential at short
distances in the large extra dimension scenario [4], while
modifications to the Newtonian potential on a moving
brane have been studied in Ref. [3]. In a sense, our goal
here is merely to extend the analysis from a static Green’s
function to a retarded Green’s function. This will allow us
to make contact with our previous discussion of causality
on a moving brane.
Let us imagine that an observer on the brane has access

to a source JðxÞ that can excite a bulk field ϕðxÞ (and for
definiteness, we set d ¼ 5). The source should be well
localized, both on the brane and in the compact dimension.
The bulk field will then propagate in all dimensions
according to the retarded Green’s function,

ϕðxÞ ¼
Z

d5x0Gð5Þ
R ðx − x0ÞJðx0Þ: ð27Þ

We have in mind the simplest setting where the bulk field is
massless and the compact dimension is a circle of radius R.

The appropriate Green’s functionGð5Þ
R is given by the image

sum (20),

Gð5Þ
R ðt;x; zÞ ¼

X
w∈Z

Gð5Þ
∞ ðt;x; z − 2πRwÞ; ð28Þ

where the Green’s function in the covering space Gð5Þ
∞ is

given in (A5),

Gð5Þ
∞ ðt;x; zÞ ¼ i

8π2
θðtÞ

�
1

ðjxj2 þ z2 − ðt − iϵÞ2Þ3=2

−
1

ðjxj2 þ z2 − ðtþ iϵÞ2Þ3=2
�
: ð29Þ

Here, ϵ → 0þ serves to define the singularities in the
Green’s function. At late times t ≫ 2πR, we expect to have

Gð5Þ
R ðt;x;zÞ→ 1

2πR
Gð4Þ

∞ ðt;xÞ¼ 1

4π2R
θðtÞδðt2− jxj2Þ ð30Þ

by the arguments of Sec. II B. This should be understood as
convergence in the sense of a distribution.
To present explicit results, we need to choose a source

function JðxÞ. This introduces a great deal of freedom. A
convenient choice is simply to keep ϵ small but nonzero in
(29). This smooths out the Green’s function and defines a
corresponding source JϵðxÞ through

ð∂2t −∇2
x − ∂

2
zÞGð5Þ

∞ ðt;x; zÞ ¼ JϵðxÞ: ð31Þ

As ϵ → 0þ, we are guaranteed that JϵðxÞ → δdðxÞ, but for
finite ϵ, the source is smeared over a length scale ∼ϵ.
At this point, we present some numerical results. We

imagine that the source JϵðxÞ is centered at the origin,
t ¼ x ¼ z ¼ 0, and we start by considering a stationary
brane located at z ¼ 0. An observer on the brane could
measure the field profile produced by the source. This can
be obtained by setting z ¼ 0 in (28),

ϕstationaryðt;xÞ

¼ i
8π2

θðtÞ
X
w∈Z

1

ðjxj2þð2πRwÞ2− ðt− iϵÞ2Þ3=2þ c:c: ð32Þ

This is illustrated in the left panel of Fig. 4. A few
comments are in order. First, since the brane is stationary,

FIG. 4. The field profile on a brane at rest (left panel) and a brane in motion with β ¼ 0.6 (right panel). Note the resemblance to Fig. 3.
When the brane is in motion, the image charges in the direction of motion are blueshifted and spread outside the light cone of the induced
metric on the brane. In both figures, the compactification radius is R ¼ 1, and the source is smeared with ϵ ¼ 0.5.
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there is an unbroken Lorentz symmetry that acts on the
ðt;xÞ coordinates. The field would look the same to any
inertial observer on the brane, and the naive brane causality
bound jxj ≤ t is obeyed. However, at early times, an
observer on the brane sees a slice through the five-
dimensional (5D) Green’s function which—unlike the
4D Green’s function—is nonvanishing inside the future
light cone (the so-called Hadamard tail; see Ref. [5] for a
recent discussion). Thus, even at early times, a brane
observer can see an imprint of the extra dimension. At
t ¼ 2πR, the observer can start to see image charges, an
even more dramatic signal of the extra dimension. At late
times, the image charges accumulate, and the signal
approaches the 4D Green’s function. In other words, the
signal approaches what one would expect from Kaluza-

Klein reduction, which means that for observers on a
stationary brane the imprint of the extra dimension goes
away at late times.
The situation becomes more interesting if the brane is in

motion. Suppose the brane is moving in the z direction,
z ¼ βt. In the boosted frame (2), the moving brane is
located at z0 ¼ 0. Coordinates on the brane ðt0;x0; z0 ¼ 0Þ
correspond to coordinates in the bulk via the inverse
Lorentz transformation

t ¼ γt0 x ¼ x0 z ¼ γβt0: ð33Þ

To get the field profile on a moving brane, we simply plug
these coordinates into our general expression for the
Green’s function (28). This gives

ϕmovingðt0;x0Þ ¼ i
8π2

θðt0Þ
X
w∈Z

1

ðjx0j2 þ ðγβt0 − 2πRwÞ2 − ðγt0 − iϵÞ2Þ3=2 þ c:c:; ð34Þ

which is illustrated in the right panel of Fig. 4.
Again, a few comments are in order. The term with w ¼ 0 has 5D Lorentz invariance and is not sensitive to the motion of

the brane, so at early times, we have

early times∶ ϕmovingðt0;x0Þ ¼ i
8π2

θðt0Þ 1

ðjx0j2 − ðt0 − iϵÞ2Þ3=2 þ c:c: ð35Þ

At early times, the would-be 4D Lorentz symmetry on the
brane is respected, and the naive brane causality bound
jx0j ≤ t0 is obeyed. The field is still a slice through a 5D
Green’s function, hence nonzero in the future light cone;
however, there is no sign that the brane is in motion. But

after a time t0 ¼ 2πR
ffiffiffiffiffiffiffi
1−β
1þβ

q
, the image charges start to

become visible, and these do violate the would-be Lorentz
symmetry of the brane. In particular, at late times, when the
winding number becomes continuous, there is always an
image charge with γβt0 − 2πRw ≈ 0. From (34), we can see
that these image charges have light cones that spread on the
brane at a rate that saturates the bulk causality bound
jx0j ≤ γt0.

IV. FURTHER DEVELOPMENTS

In this paper, we have examined the behavior of bulk
fields from the perspective of a brane observer. For a brane
at rest, world volume Lorentz transformations are an exact
symmetry, but even so, a brane observer can see an imprint
of the extra dimensions since the bulk field profile is
sensitive to the compactification. If the brane is in motion,
the world volume Lorentz symmetry is broken by global
effects, with the curious consequence that bulk fields can
propagate faster than the speed of light that is induced on
the brane. These phenomena are most likely to be relevant

if there are large extra dimensions [4,6,7], a scenario
recently revisited in Ref. [8].
Related studies have been carried out in the literature. In

particular, Ref. [3] considered the Kaluza-Klein tower seen
by a moving brane, obtaining the dispersion relation from
the brane point of view

ω0 ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk0j2 þm2 þ

�
n
R

�
2

s
−
γβn
R

: ð36Þ

The effects of brane motion are encoded in this dispersion
relation. Note that world volume Lorentz invariance is
violated when the brane is in motion. Also a Kaluza-Klein
mode propagates on the brane with group velocity

vg ¼
dω0

dk0
¼ γjk0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk0j2 þm2 þ ðnRÞ2
q : ð37Þ

Not surprisingly, at large jk0j, the group velocity saturates
the propagation speed we found for brane-localized sources
at late times, vg → γ as jk0j → ∞.
We conclude with a few further developments which can

also be viewed as directions for future work.
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A. Observational tests

To detect the effects we have discussed, a brane observer
must be able to interact with a bulk field. Various
candidates for bulk fields have been proposed including
gravity [4,9] and sterile neutrinos [8,10,11]. The Hadamard
tail of the higher-dimensional Green’s function [5] would
provide a clear signal of extra dimensions, as would the so-
called fireworks associated with image charges [4] which
are modified if the brane is in motion [3].
More generally, on a moving brane, the world volume

Lorentz symmetry is broken by global effects. Lorentz
violation has been investigated extensively; for reviews,
see Refs. [1,2]. As a direct and dramatic signal of Lorentz
violation, we focus on the possibility of faster-than-light
travel on the brane. Here, the constraints from multimes-
senger astrophysics [12,13] can be very stringent. Assuming
that light travels on the brane with speed c while a bulk field
propagates with speed cþ Δc, the velocity bound (6)
directly translates to

Δc
c

¼ γ − 1: ð38Þ

The speed of electron antineutrinos compared to photonswas
measured in the time-of-flight experiment conveniently
provided by supernova SN1987a which led to bounds
Δc=c≲ 10−8 [14] andΔc=c≲ 2 × 10−9 [15]. These bounds
were later improved to Δc=c≲ 10−10 [1,16]. The speed of
gravitational waves compared to photons was likewise
measured using the binary neutron star merger
GW170817/GRB 170817A with the result [17]

−3 × 10−15 ≤
Δc
c

≤ þ7 × 10−16: ð39Þ

If we entertain the possibility that these are bulk degrees of
freedom, the bounds on brane velocity become very strict.

B. Applications to cosmology

Although observational tests suggest stringent con-
straints on brane motion today, the situation could be
different in the early Universe. This raises an interesting
possibility for addressing the horizon problem.
To illustrate the idea, we consider the same static bulk

geometry with an extra dimension compactified on a circle
of radius R, but we allow the brane velocity to depend on
time, β → βðtÞ. Assuming the brane velocity changes
adiabatically, the induced metric on the brane is approx-
imately Minkowski, and for brane-localized matter, the
particle horizon—the distance a particle can travel from
time t01 to time t02—is simply

dbraneH ¼ t02 − t01: ð40Þ
However, bulk fields travel at speed γ, so for bulk fields, the
particle horizon is

dbulkH ¼
Z

t0
2

t0
1

γðt00Þdt00: ð41Þ

If the brane is in motion, we have dbulkH > dbraneH . In this way,
bulk fields could inprinciple thermalize regionswhich abrane
observer might think are out of causal contact. The mecha-
nism has the flavor of variable-speed-of-light cosmology,
with different effective propagation speeds for different
species of particles, although in our case the various
speeds have a unified higher-dimensional description. For
a recent discussion of variable-speed-of-light cosmology, see
Ref. [18]. As a direction for further work, it would be
interesting to extend the above analysis beyond a static bulk
geometry and consider cosmologicalmetrics on the brane and
in the bulk. In particular, it would be interesting to see if it can
be applied to the ekpyrotic scenario [19].

C. Other compactifications

We considered the simplest possibility of a single extra
dimension compactified on a circle, but it would be
interesting to consider the effects of brane motion in more
general and realistic compactifications. Simple toroidal
compactifications should be straightforward to analyze
as they amount to replacing the winding sum in (20) with
a sum over a lattice. More ambitiously, it would be
interesting to consider the effects of brane motion in
realistic string or F-theory compactifications, perhaps
including the scenario outlined in Ref. [8]. An intermediate
step might be to consider brane motion on orbifolds or
simple Calabi-Yau manifolds such as a K3 surface.
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APPENDIX: RETARDED GREEN’S FUNCTIONS

The Green’s functions for the wave equation may be a
venerable topic [20], but properties of the Green’s functions
are not so familiar especially in position space in higher
dimensions. For this reason, we collect a few results in this
Appendix. A pedagogical review for physicists has been
prepared by Balakrishnan [21,22], and lecture notes for
mathematicians are available from Oh [23].
We begin with the Fourier representation of the retarded

Green’s function,

GðdÞ
∞ ðt;xÞ ¼

Z
dω
2π

dd−1k
ð2πÞd−1

e−iωteik·x

−ω2 þ jkj2 : ðA1Þ

This is the Green’s function in d noncompact dimensions.
(We have lumped all the spatial coordinates into x.)
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To simplify the expressions that follow, we have set the
mass to zero. To produce a retarded Green’s function, the
contour for the ω integral is deformed to pass above
the poles at ω ¼ �jkj. This ensures that the Green’s
function satisfies

ð∂2t −∇2
xÞGðdÞ

∞ ðt;xÞ ¼ δðtÞδd−1ðxÞ
GðdÞ

∞ ðt;xÞ ¼ 0 for t < 0: ðA2Þ

For t < 0, the ω contour can be closed in the upper half-
plane, and the Green’s function vanishes. For t > 0, it can
be closed in the lower half-plane where it encircles the
poles and leads to

GðdÞ
∞ ðt;xÞ ¼ i

Z
dd−1k
ð2πÞd−1

�
e−ijkjteik·x

2jkj −
eijkjteik·x

2jkj
�
: ðA3Þ

This expresses the Green’s function as a difference of two
distributions. The first term is the boundary value of a
function analytic in the lower half of the complex t plane,
which means it can be defined by a t → t − iϵ prescription.
The second term is the complex conjugate of the first. It is
analytic in the upper half of the complex t plane and can be
defined by t → tþ iϵ.
To proceed, it is convenient to set x ¼ 0 so the

momentum integral is spherically symmetric; the depend-
ence on x can be restored later by Lorentz invariance. For
the first term in (A3), this gives

i
Z

dd−1k
ð2πÞd−1

e−ijkjðt−iϵÞ

2jkj ¼ ivolðSd−2Þ
2ð2πÞd−1

Z
∞

0

dkkd−3e−ikðt−iϵÞ

¼ Γðd−2
2
Þ

4πd=2
i

ðitþ ϵÞd−2 : ðA4Þ

In the second line, we used volðSd−2Þ ¼ 2π
d−1
2 =Γðd−1

2
Þ, and

in the final line, we made use of some Γ-function identities.
Restoring Lorentz invariance and recalling that the Green’s
function is only nonzero for t > 0, this means

GðdÞ
∞ ðt;xÞ ¼ iΓðd−2

2
Þ

4πd=2
θðtÞ

"
1

ðjxj2 − ðt − iϵÞ2Þd−22

−
1

ðjxj2 − ðtþ iϵÞ2Þd−22

#
: ðA5Þ

A few key features are now transparent. The Green’s
function vanishes at spacelike separation, where the iϵ
prescription is not needed and the two terms in (A5) exactly
cancel. When the spacetime dimension d is even, the
Green’s function only has poles, meaning it only has
support on the future light cone, but when d is odd, there
is a branch cut, and it also has support in the interior of the
future light cone.

For future reference, it is convenient to work in terms
of proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − jxj2

p
and write the Green’s

function as

GðdÞ
∞ ðt;xÞ ¼ θðtÞðHðdÞðτÞjt→t−iϵ þ c:c:Þ; ðA6Þ

where

HðdÞðτÞ ¼ i
Z

dd−1k
ð2πÞd−1

e−ijkjτ

2jkj

¼ i

4πd=2
Γ
�
d − 2

2

�
ð−τ2Þ2−d2 : ðA7Þ

There is an amusing relation between Green’s functions in
different dimensions, since it is straightforward to check
that HðdÞðτÞ satisfies

Hðdþ2ÞðτÞ ¼ −
1

2πðd − 1Þ
d2

dτ2
HðdÞðτÞ ðA8Þ

(a second derivative with respect to τ) as well as

Hðdþ2ÞðτÞ ¼ 1

π

d
dðτ2ÞH

ðdÞðτÞ ðA9Þ

(a first derivative with respect to τ2).
Explicit Green’s functions in low dimensions are listed in

Table I. For d ¼ 1, 2 themomentum integral in (A3) diverges
in the IR. In these cases, one can obtain the Green’s function
by introducing amassm as a regulator and sendingm → 0 at
the end of the calculation; alternatively, one can check
directly that the differential equation (A2) is satisfied. The
result in d ¼ 3 follows from the discontinuity across
the branch cut in (A5). To obtain the result in d ¼ 4, we
used the identity 1

xþiϵ ¼ PV 1
x − iπδðxÞ.

However, our main interest is in higher dimensions,
where the Green’s function (A5) becomes increasingly
singular on the light cone. To make sense of the singularity,
note that our real goal is to find the field produced by a
source JðxÞ. That is, we must regard the Green’s function as
a distribution and interpret the integral

TABLE I. Retarded Green’s functions for a massless field in d
noncompact dimensions.

Spacetime dimension d GðdÞ
∞ ðt;xÞ

1 tθðtÞ
2 1

2
θðtÞθðt2 − x2Þ ¼ 1

2
θðtþ xÞθðt − xÞ

3 1

2π
ffiffiffiffiffiffiffiffiffiffiffi
t2−jxj2

p θðtÞθðt2 − jxj2Þ
4 1

2π θðtÞδðt2 − jxj2Þ

GREENE, KABAT, LEVIN, and MENON PHYS. REV. D 106, 085001 (2022)

085001-8



ϕðxÞ ¼
Z

ddx0GðdÞ
∞ ðx − x0ÞJðx0Þ: ðA10Þ

To do this, we use the recursion relation (A9). The aim is to
write GðdÞ as a differential operator acting on a lower-
dimensional, hence less singular, Green’s function and
integrate by parts. To do this, we must promote d

dðτ2Þ to a

vector field on spacetime. There is no unique way to do
this, and the most obvious choice (making the vector field
orthogonal to hypersurfaces of constant τ) is badly
behaved.2 Instead, it is convenient to note that for any
function of τ2 ¼ ðt − t0Þ2 − jx − x0j2 we have

∂

∂t0
fðτ2Þ ¼ −2ðt − t0Þ d

dðτ2Þ fðτ
2Þ: ðA11Þ

This lets us write the recursion relation (A9) in the form

Hðdþ2ÞðτÞ ¼ −
1

2πðt − t0Þ
∂

∂t0
HðdÞðτÞ: ðA12Þ

Although not manifestly Lorentz covariant, this can be used
in (A10) to obtain for example

ϕðxÞ ¼ 1

2π

Z
ddx0Gðd−2Þ

∞ ðτÞ

×

�
1

t − t0
∂

∂t0
Jðx0Þ þ 1

ðt − t0Þ2 Jðx
0Þ
�
: ðA13Þ

We conclude with a few additional results from the
literature. Up to an overall normalization, the massless
Green’s function is fixed by Lorentz and scale invariance
and can be written in any dimension as a fractional
derivative of a δ-function [23],

GðdÞ
∞ ðτÞ ¼ θðtÞ 1

2π
d−2
2

�
d

dðτ2Þ
�d−4

2

δðτ2Þ: ðA14Þ

The extension to massive fields is straightforward but a bit
cumbersome. For example, in place of (A7), we have
(ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
)

HðdÞðτÞ ¼ i
Z

dd−1k
ð2πÞd−1

e−iωkτ

2ωk
¼ −

1

4

�
m
2πτ

�d−2
2

Hð1Þ
d−2
2

ð−mτÞ;

ðA15Þ

where Hð1Þ
d−2
2

is a Hankel function, and the recursion relation

(A8) is replaced with [21,22]

Hðdþ2ÞðτÞ ¼ −
1

2πðd − 1Þ
�
d2

dτ2
þm2

�
HðdÞðτÞ: ðA16Þ
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