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Thomas-Whitehead (TW) gravity was recently introduced as a projective gauge theory of gravity over a
d-dimensional manifold that embeds reparametrization invariance into the action functional for gravitation
through the use of the Thomas-Whitehead connection. The projective invariance in this d-dimensional
theory enjoys an intimate relationship with the Virasoro coadjoint elements found in string theory as one of
the components of the connection, D, is directly related to the coadjoint elements of the Virasoro algebra.
TW gravity exploits projective Gauss-Bonnet terms in the action functional which allows the theory to
collapse to Einstein’s theory of general relativity in the limit that D, vanishes. In this paper we develop the
graded extension of TW gravity, super-TW gravity, in the framework of a DeWitt supermanifold. We
construct the Lagrangian for super-TW gravity, give a detailed derivation of the classical field equations,
and discuss the graded extension of the projective connection as a prelude to a future understanding of
TW-supergravity (which has manifest supersymmetry) and its relationship to the super-Virasoro algebra.
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I. INTRODUCTION

It is known that the method of coadjoint orbits [1,2] of
the semidirect product of Kac-Moody algebras and the
Virasoro algebras [3—6] leads to the two-dimensional Wess-
Zumino-Witten (WZW) action [7,8] and the Polyakov
action [9,10] respectively. One may arrive at this by
integrating the Kirillov two-form [1,2] over any coadjoint
orbit as prescribed in [11-13] which produces these geo-
metric actions for their respective groups. One finds that
the coadjoint elements have been promoted to fields in the
geometric actions and the central extension to a coupling
constant. The geometric action interprets the elements of
the coadjoint representation of the Virasoro algebra as a
background field coupling to the Polyakov metric. For the
Virasoro group this background field has been called the
diffeomorphism field D,, and is akin to the Yang-Mills
connection, A,, that related the coadjoint elements of
the Kac-Moody group. One can extend these geometric
actions by adding dynamics to A, through the addition of
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the Yang-Mills action in the WZW case, and similarly by
adding the Thomas-Whitehead (TW) action [14-16] to
the Polyakov action to give dynamics to the D,,. This
reconciles the coadjoint elements of both the Kac-Moody
algebra and the Virasoro algebra with geometric connec-
tions in higher dimensions. In [15] a detailed overview of
Thomas-Whitehead gravity in a general setting is dis-
cussed. This includes a review of the relationship between
the projective structure from Sturm-Liouville theory and
the two cocycles of the Virasoro algebra as observed by
Kirillov [2,17] as well as a derivation of the spin connection
on the Thomas cone [18], the Dirac equation and the Dirac
Lagrangian for spin % spinors (fermions).

In [6,19,20], the authors applied the method of coadjoint
orbits to the super-Virasoro algebra and later extended
[21,22] in the context of studying superstring theories. This
recovered the supersymmetric extension of Polyakov’s
action. A natural question to ask is what the supersym-
metric extension of TW gravity is. In this paper, we study
the preliminary question by generalizing the theory of
Thomas-Whitehead gravity to a supermanifold with n
ordinary coordinates and m Grassmann coordinates. A
highly detailed discussion of the calculations can be found
in [23].

In Sec. II we briefly review the theory of TW gravity
and in Sec. III we briefly describe supervector spaces and
supermanifolds following the approach of [21,24]. The
consequences of the DeWitt topology and its relation to the
theory of supersymmetry is reviewed from the perspective

Published by the American Physical Society
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of [25,26]. Other excellent references on the theory of
supermanifolds include [26-29]. In Sec. IV we generalize
the TW connection to the graded manifolds by following
the approach in [15]. The theory of TW connections has
been studied in the graded setting before in [30-32].

II. REVIEW OF THOMAS-WHITEHEAD GRAVITY

In this section we review the TW gravity as developed in
[14-16]. Projective geometry, as a theory of gravity, has
been around for nearly a century as a strategy to incorporate
the ambiguity of geodesics in relation to connections due
to projective transformations [33-35]. The Thomas-
Whitehead gravitational action [14] (named after mathe-
maticians Tracy Thomas and J. H. C. Whitehead) uses the
covariant derivative and the fibration of the Thomas cone
from these early investigators to tie projective geometry to
string theory and higher dimensional gravity through
projective Gauss-Bonnet terms on the manifold. The
projective connection and the metric are treated as inde-
pendent in the spirit of the Palatini formalism [36]. This
allows the field equations to collapse naturally to the
Einstein-Hilbert field equations when the diffeomorphism
field vanishes and when the fundamental projective invari-
ant is evaluated on the affine connection compatible with
the Finstein metric. In this way projective geometry can
influence the Riemannian geometry by acting as sources in
the energy-momentum tensor. This provides an avenue for
geometric explanations of dark energy, dark matter, and
other physical phenomena.

To proceed we are given a connection ['“,. on a
Riemannian manifold. One can define the fundamental
projective invariant as

1
pe ————=(T4:6% +T94,5,), (1)

11, =TI
be m+1

which is invariant under projective transformations

A

Fabc = Fabc + 5‘1171;6 + 5acvb' (2)

Let J be the Jacobian of the coordinate transformation
x* — y“. Then we have the following identities:

0. log(det(J)) = —J*,0.(J7")P, = —

Jabac']ab’ (3)

xS

Jh,———
f ayhayc

= —0,, log(det(J))(J~)™... (4)

With this, the coordinate transformation law of the funda-
mental projective invariant is

a a f —ye (j-1)d itk
Hbc:‘]f H'de(] )c(" )b+W

b D tog et () (1), + (1))
5

From Eq. (5) it is apparent that II itself is not a
connection due to the extra terms arising in the trans-
formation law. To construct a connection realizing projec-
tive invariance we adopt the approach of Thomas [34,35]
and consider a connection not on M but instead on the
volume bundle VM, which is now called the Thomas cone.

Given an m-manifold M, a volume form can be con-
structed from a smooth nonvanishing function v: M — R,
and considering the m-form

[v(x)|dx! A Lo A dx™, (6)

which is a generic volume form on M. The Thomas cone
arises by interpreting the volume form as a a section of
the volume bundle VM, where we take the absolute value
of v to absolve the ambiguity of choice of orientation
[34,35,37]. VM is then defined as the collection of all such
sections, and is an R™ line bundle over M. As a manifold,
VM is one dimension higher than M.

We use A as the fiber coordinate on the Thomas cone, so
the coordinates on VM are (x°,x!,...,x""! 1), where
0 <4 < 0. In this section Greek letters (excluding A)
denote coordinates on VM while Latin letters range O to
m — 1 and denote coordinates on M.

The Thomas-Whitehead connection ™ By liveson VM, and
is both projectively invariant and houses II as a component.
The TW connection on VM can be decomposed as

I~ﬁahc = Habc
l:,a . FAbc = )“Dbc 7
pr — fa — fa — laa ’ ( )
b Ab 29 b

1:‘Ab/l = l:%/lb = 1:%2/1 =0

where D,,. is a (nontensorial) rank 2 object on M. In general
this need not be related to the Ricci tensor and when related
to the Virasoro algebra in the literature, it is known as the
diffeomorphism (diff) field [38]. Demonstrating this compo-
nent of the TW connection appears in the geometric action of
the diffeomorphism group of S! was the essence of [ 14]. ForI"
to be a connection on VM it must transform as

Pr"axd ayPayr 1T oxd ayrayP’

(8)

under coordinate transformations on VM. For this to happen
the transformation law for the diffeomorphism field must be
[15,34,35]
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oxe oxf

N J . . ..
Dy, = <Def_axgjf+ndef]d_]e]f> 9P oy°” )

where j, = d,log J, We emphasize that D, lives

exclusively on M and is required to ensure that I" transform
as a connection over VM.

III. A SUPERQUICK REVIEW OF
SUPERMANIFOLDS

This section is based primarily on the geometric treat-
ments in DeWitt’s book [24] and Rogers’s book [26], as
well as the [25], where a Rogers supermanifold is defined.
A review of a more algebraic approach is offered in [39].

A. Construction of supernumbers

Let 6% denote the generators of an algebra subject to the
relation

0a0b = —0boe, (10)

where a,b =1, ..., N. This algebra is the N-dimensional
Grassmann algebra Ay. As a vector space over C, Ay (C) is
2N_dimensional with a basis given by

1,609,090, 0°0°6¢, ..., 0'¢*...0N 1oV, (11)

Throughout we restrict our attention to the field of complex

numbers and denote Ay(C) by Ay. Taking N — co we

obtain the infinite-dimensional Grassmann algebra A,.
A supernumber z € A, is a sum

I
[]s

Cr o OO, (12)

n!

ay...a,

Il
=}

n

where ¢, ., € C. A useful decomposition of supernum-
bers is given by the splitting

Z=u+wv, (13)
S 1 145 a
u= Z (2n)lca1~-azn9 w,..0%, (14)
n=0
v = iéc G+t .9, (15)
o (2n+ 1); ay...dypyp

where u# and v are the even and odd parts of z and are
called c-numbers and a-numbers, respectively. The set of
c-numbers and a-numbers are denoted by C. and C,,
respectively, and are 2V¥~!-dimensional vector spaces over
C. C, is a subalgebra of A, while C, is not as it is not
closed under multiplication.

The real counterparts of C, and C, are denoted by R,
and R,, respectively and are introduced by defining
complex conjugation in the following fashion:

(21 +2)" =2 + 2, (16)
(2122)" = 2377, (17)
0 = g, (18)

where z; € A, and 6 are generators of A,. A super-
number z is real if z* = z and imaginary if z* = —z.

B. Supervectors and supermatrices

Here we present the most salient features of supervectors
and supermatrices we will encounter. The usual properties
of vector spaces persist in the graded setting, except scalar
multiplication is now distinct when acting on the left and
right. This can be appreciated via the decomposition

X=U+V, (19)
aU = Ua, (20)
aV = -Va, (21)

where a € C, and U, V are called the even and odd parts
of X, respectively. If the odd (even) part of a supervector is
not present the supervector is said to be c-type (a-type).
Supernumbers and supervectors of a definite type are called
pure. When both the supernumber and the supervector are
pure this becomes aX = (—1)** Xa, with the power of —1
reflecting the parity of the vectors, where the “X” in the
exponent of —1 is the parity of the pure vector X and “@”
is the parity of the pure supernumber a. For example, if
X is c-type then (—1)¥ =1, while if X is a-type then
(=1)X = —1. If X is not pure then (—1)* will depend on
the component of X in question. Let {,e} denote a discrete
set of basis supervectors and their duals {ei} such that
;e-e/ =5/, Then a supervector may be denoted as
X = X',e. Here we also introduce left and right derivations,

0 and e :%. Therefore X'e :Xii,: U-V,
a X ox'

J
ox°
while X'e; = X'-% = U + V. If the object of interest is
c-type (a-type), then its associated symbol equals 0 (1).
For pure supervectors, one convenience is to write
X = (-1)XX’, so in particular for c-type supervectors
X = X'. The advantage of writing X = X',e lies in the
minimization of parity factors.

Let ;K ! be a matrix of supernumbers. The components of
a supervector transform by X' = X/,K", as summation is
carried out only with adjacent indices. For K to preserve the
parity of X it must be a block matrix of the form

(49 -

Lle:
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where A and B are comprised of c-numbers and C and
D are comprised of a-numbers. Such matrices are c-type
precisely because they preserve the type of the supervector
they act on and thus introduce no parity of their own.
For c-type supermatrices we can form the product, super-
transpose, and supertrace, respectively, as

(KL) = ,K* L/ [product rule],

'K~ = (-1 KT = (—1)/0+) KT [supertranspose],
str(K) = K;' = (=1)!,K' [supertrace], (23)
where ~ denotes the supertranspose operation. The super-
determinant is defined for any supermatrix and enjoys the

usual multiplication laws. If K has the index structure , K/
or 'K ; then

sdet(K™~) = sdet(K), (24)

while if K has index structure ,K; or 'K/ then
sdet(M™~) = (—1)"sdet(M). (25)
LetA,B,C,and Dbem xm,n X n,m X n,n X m, m X n,

and n X m matrices with entries comprised of ¢, ¢, a, and a
numbers, respectively. Then

(
sdet
D

where sdet is defined only if B is invertible. The super-
determinant of a c-type matrix is a real c-number. See [24]
for a treatment of the superdeterminant for a-type matrices.

Z) — det(A — CB~'D)(det B)™', (26)

IV. THE SUPER THOMAS-WHITEHEAD
CONNECTION

A. Super coordinate and projective transformations

In the graded setting we consider the coordinate trans-
formation x* — y* with the super-Jacobian and its inverse

a a a a 5 a
Jp = (‘Ub( +b)b,y = (_l)b( +b)@y )
a - a 5 a a a 5 a
(I =x 0—yb = (=1)" +b>b,x = (=) +b)ﬁx ;
(27)
which satisfies analogs of the usual identities
wJh,bI. =95, = xai, (28)
¢ ¢ 0x¢

0
T, (I = 8% = — x4, 29
c b( ) c axcx ( )
0
and  x . = “(J7), I, (30)
’ ox

There are two graded analogs of the Jacobi formula, one
for left and one for right derivatives, respectively [24]:

-

aia In(sdet(M)) = str((M,e)M™") = ste(M~1 (M ,e)),

J L0
In(sdet(M = (=1)'M; — (M),
y 1
= (_l)ll(M_l)j]MiW~ (31)

The relationship between left and right derivatives can be
used to show that the supertrace is invariant under cyclic
permutations. A superprojective transformation is analo-
gous to the ungraded case and is given by the relation

Iﬁ‘abc = Fahc + aéhvc + aéc(_l)hcvh’ (32)

where v, are the components of a c-type 1-form.

B. The superfundamental projective invariant

The fundamental projective invariant, I, can be pro-
moted to a graded setting by replacing the trace with the
supertrace and adding necessary parity factors [30]. The
resulting geometrical object is the superfundamental pro-
jective invariant

%, =T%,. — D(%,(=1)T¢,, + %,.(=1)¢tbTe,,), (33)

where we set D = (m —n+ 1)~! for future convenience.
The coordinate transformation law of the superfundamental
projective invariant is

M1 = (=12 ST, 207, + 1 )

-

0
a f(r-1
+D<6bln(J>0xf (J ™,

(1) 20, ). (54)

C. The TW connection

The coefficients of the TW connection in the graded
setting are
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fwbc =11, = (_l)bcnacb

s [, = 1D, = (=1)"AD,

Faﬁ}’ = ~ab '“ab <1 a) ’ ’ (35)
F b/l — F lb - 15 b

f‘ﬂb/l = l:%ﬁb = 1:1/1,1 =0

where any components not listed vanish. The measure
transforms as

Ay — J""y = Jdm,nx’ (36)

under a coordinate transformation x’ — ¥(x), where
J =sdet(x' ;) is the super-Jacobian or Berezinian, and
where the number of a-type coordinates must be even
for the metric to be nonsingular. Latin indices range
over the supermanifold coordinates while Greek indices
(except 4) range over all coordinates, 4, x“.

As before, we check the connection coefficients recover
the transformation law for I1. The graded extensions of the
identities from before are

-

P
Ja Elog(J‘D)axa =log(J7?) ,=(AJ7P)

o1 oy O iy o
ﬂﬁz—log(l )—qg(J )a ==J"U)ar (38)

i(J_l)a = _Ajgg<‘]_1)a’ and (39)
A, =M"Pj,. (40)

With this, the transformation law for the super-TW con-
nection is

1:‘Ul/)’y - aJéxé.[)’y + (_1)”(e+ﬂ)ajﬁféene(J_l )/}n(]—l )y' (41)

The coordinate transformation law for the superdiffeo-
morphism field is

Dbc - (_l)ﬂbJre) (Def_je.f _jejf +jdndef)e(‘]_l )bf(‘,_l )c‘

(42)

The parity of D, is (—1)“**. Under an infinitesimal
coordinate transformation x¢ — x% — 8¢,
Dbc (X) - Dbz? (x) + 5(Dbc.i€i + Dbf(x)ef,c
+ (_1)C<h+e)pec (x)ee,h - D(_l)igi,ibc
+ D(=1)'€ g1 (x)),
where the coefficient of § is the super Lie derivative with

respect to the vector field e. Setting the fermionic dimen-
sion to zero and the bosonic dimension to one and noting

that the superdiffeomorphism has a single component, we
recover the following reduction:

1
D—>D+5(D’e+2D€’—§e’”>. (43)

After a redefinition of D, we recover the coordinate
transformation on a coadjoint Virasoro element [14,15].
It is sometimes convenient to express Il in terms of a
member in the equivalence class of connections and
subtracting out the trace of this member which we denote
by a. In general, our torsionless affine connection I' will
not be compatible with the metric. In terms of this member,
we have

Ay = _D(_l)ereea’ (44)
Habc = Fabc + 5abac + (_l)bcéacab' (45)

We may then express the projective Ricci symbol in terms
of this connection and its trace and write

Rbd _ (_1)c(b+c+d)1‘*chd’c _ (_1)d(b+c)+cl'*cdfl'*fch
+ (=) (agp — aTY ) + ap g — afT by
+(m—=n-1)aa,. (46)

If T is Levi-Civita then a, = —D~! log(gl/z)’a and
(-D%ay; = apq. (47)

The superprojective Ricci symbol transforms as the super-
diffeomorphism field up to a constant. This provides us
with an alternative way to deduce the parity of D.
Furthermore, we may define a tensor on M defined as

Pab = Dab — Qg + afrfab + a,0p. (48)
P is a rank-2c-type tensor with parity (—1)%*?, and is
known to differential geometers in the ungraded setting as
the projective Schouten tensor. If our connection is Levi-
Civita then P is supersymmetric, i.e., Py, = (=1)?P,,.
By inserting a parity factor and contracting over the first
and third indices of the superprojective Riemann curvature
symbol, we obtain the superprojective Ricci symbol from
before except that P and D are now present,

Rpa = (=1) IR,
= Rpq+ (m—=n—1)(Pyq — D)
+ (=1)May, — apg. (49)

Rearranging the above, we have the following form for the
superdiffeomorphism field:
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1
* (m -n—-1 (Rpa + (=1)"aqp — ap.q) + Pbd)-
(50)

One can always shift the superdiffeomorphism field by any
symmetric rank-2 tensor on M.

V. THE SUPER-THOMAS-WHITEHEAD
CURVATURE TENSOR

It is natural to form a curvature tensor from the super-TW
connection, which we call the super-TW curvature tensor or
the superprojective Riemann curvature tensor,

,Ca/}yg _ _f(lﬁy,é + (_1)}/51"—‘*(1[}5’]/ _ (_1)5(e+ﬂ+y)fw€§f~eﬁy

+ (—l)y(ﬁﬁ)ﬁleyfeﬂ& (51)

Before discussing how K“g,; transforms, we recall how a
tensor of rank (1,3) transforms under a change of basis,

Ta _ (_1)A4(a+b,b)Tbl

ayaszag —

_1~)a1 szuzbSLu3b4Lu4’

(52)

bybybab, (L

where A for a tensor of rank (r, s) is defined as (¢ = r + s)

b) = zn:a,bu. (53)

tu=l1
1<u

Hence, K%, transforms as

K i, = (= 1)A4((l+ﬁ,ﬂ)]cﬁl/}2ﬁ3ﬁ4ﬂl (L~ 1”)”'ﬁ2L B[, P,

a3 ay

(54)
The nonvanishing components of X%, s are

bc - /1(( 1) ac,b — Dab c + (_l)b(a+d)pdbndac
= (=1t ID, I1 ), (55)

Kabcd = Rabcd + (_l)bcéacpbd - (_l)d(b+c)5adDbc
= R%eq = 8 ((=1)Pye = Pea)
+ (=178 Ppg = (=145 Py,
where K¢, is called the superprojective Riemann curva-

ture tensor on M. For convenience we also introduce the
tensor

Y

1
K:abc = E’Ciabc' (56)

Under a superprojective transformation P transforms as

Pab - Pab + Vazp — VaUp- (57)
This transformation law arises from the definition of P, in
terms of Dy, as D, is invariant under projective trans-
formations. Rewriting the other components of the super-
Thomas-Whitehead curvature tensor, we have

kabc = (_1)Cb7)ac.b - Pab,c + ( I)Cbaapcb - aanc
+ (_1)b(a+d>7)dbrdac _ (_1)c(a+b+d Pdcrdab

+Papo. — <_1)bc7)acab - afRfabC' (58)
Similarly, the super-TW Ricci tensor is formed by con-
tracting the first and third indices of the super-TW
curvature tensor

Kpa = Rpa + (m=n)Ppg = (=1)"Pgy.  (59)
We can write the super-TW Ricci tensor in terms of the
connection by taking the trace

Rjy = (=1)"UTDRE,

and the super-TW Ricci scalar as

K=Kupg"*=R+ (m-n-1)P. (60)

VI. THE SUPER-THOMAS-WHITEHEAD ACTION

The TW action [14-16] is constructed from the sum of
the projective Einstein-Hilbert and projective Gauss-
Bonnet Lagrangians. In this section we construct the
analogous super-TW action as the sum of the superpro-
jective Einstein-Hilbert Lagrangian, Lqpgyy, and the super-
projective Gauss-Bonnet Lagrangian, Lgpggp. In the TW
action, g, I13 , and D,,, are all independent field degrees
of freedom, where the metric serves to build coordinate
invariant objects.

In the super-TW action, Lgppy generates the super
Einstein-Hilbert term and couples the metric on M and

the superdiffeomorphism field. The tensor IuCabC contains D,

I1, and derivatives on D. The square of IVC,I,,C sources
dynamics of D that arise in the projective Gauss-Bonnet
action. In the limit where II is compatible with the metric
and the diffeomorphism field vanishes the TW action
collapses to the Einstein-Hilbert action. This follows from
the fact that the Gauss-Bonnet action is a topological
invariant in four dimensions. Furthermore, it is known that
in any dimension, Lgpgp has only second-order derivatives
of the metric [40,41], which keeps the field equations from
developing higher time derivatives. Finally, we emphasize
that the TW Lagrangian over VM is invariant under both
supercoordinate and superprojective transformations.
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The first task is to endow our supermanifold M with a
metric g, and then promote g to a metric G on VM. Let us
recall the structure of a c-type matrix k that acts on an
(m, n)-dimensional supervector space:

Amxm Cle’l
k= , 61
(anm ) ( )

BﬂXVl
where A, B, C, and D are of type ¢, ¢, a, and a, respectively.
For the Thomas cone we need to increase the dimension of
the bosonic sector by one and arrange the decomposition of
the matrix in order to showcase both the pure and mixed
subsectors

A{xl A%xm C}xn
K = Afnﬂ Afnxm C%nxn . (62)
D}le D%xm ann

Even though we have changed the bosonic dimension and
offered a refined decomposition, the components of A, B/,
Ck, and D' are still of type c, c, a, and a, respectively. We
promote the metric over VM [14,15] to the graded setting

2 22 22
-3 -2 -9
_ A2
WGo = =29 a9y =899  a98 — 450998

2

A
=209 a9 — 499 498 — A54998

,Gi Gy, G
= aG/I aGb uGB 5 (63)
461 4Gy 4Gp

where a and b range over the even coordinates (except 1), A
and B range over the odd coordinates, ¢ and v range over all
coordinates, and g, = —D~'log(g'/?) , = (=1)%(,9). If we
choose the Levi-Civita connection, then g, = a,. 4¢ is
introduced in order to render the components of the metric
dimensionless and g, has units of inverse length.
Considering the case M = R’ x R, the metric simpli-
fies considerably as g, = g4, = 0 and g, = g4 = 0. The
canonical form of the metric on R2 x R2 is [24]

10 0 0
01 0 0 a0
n= = . (64)
0 0 0 i 0 s
0 0 —i 0

implying the metric on the volume bundle of R x R is

-4 0 o
be = 0 b 0 . (65)
0 0 anp

We have the relationship between the metric on M and
on VM

/12
sdet(ﬂGy) = —/1—2 sdet(l.lgﬁ), (66)

where 1, © range over all coordinates except 4. G satisfies
G" = (—=1)*G" and transforms on VM as

G

w = (=1)HG, (L), (L7, (67)

u

where the metric with both of its indices to the bottom right
takes the form

(68)

This metric is symmetric and invariant under superprojec-
tive transformations by construction. The inverse is

0 -4 0
Gv=1 0 g o |= ( 0 ) = 1G¥, (69)
0 g
0 0 ¢*

Now that we have a metric on VM we are ready to
construct an action. We revert back to our old convention
where Greek and Latin indices range over the coordinates
of VM and M, respectively. This change causes the metric
on VM to take the shape

G G -2 -1
WGy= (170 =< . o ) (70)
aG/l aGb —A a9 a9 — a99

with inverse given by
/12 mm nn -1 _/Immc
DGP_( (Gn"g"ng=1) 29 g>’ 1)
2" g bg

Our next task is to construct the square of the super-
projective Riemann curvature tensor, which has 12 parity
terms. Shifting the metrics to the left will result in many
more parity terms:
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’Caﬂyé ]Caﬂyé — (_ 1 )P(ﬂ+v+0‘+a+ﬂ)+o‘(ﬂ+y+a+ﬁ+},) Fu(pta)

X K% 5KH, 0y G oG G G, (72)

vpou

The next summand we need is the square of the super-
projective Ricci tensor, given by

KpskP = (=1) PPy, GG (73)

which can be written in terms of its ancestor, the super-
projective Riemann curvature tensor, as

Kﬂé,cﬁé — (_ 1 )y(v+a+ﬂ+y) +a(v+o)+p(v+p)+o(v+p)

X K%, KH s 5 GG (74)

Finally, we need the square of the superprojective Ricci
scalar

K2 = (=1)Pntowinreraatnga, Ku, 8,5 GG,
(75)

If we change the order of the tensors in this expression
more parity factors will arise, so our convention in
expressing candidates for £ will begin with products of
K, followed by ¢ and then G. Bringing everything together,

we have the superprojective Einstein-Hilbert Lagrangian
and the superprojective Gauss-Bonnet Lagrangian:

Lspen = K, (76)

ESPGB — ICaﬁy(glCaﬁyé - 4]Cﬁ5’C/j5 + ICZ
= Icaﬁyélcﬂupaco—&pyyﬁum (77)

where C is the superprojective Gauss-Bonnet tensor on VM

Caépyuﬂlm _ ((_1)5(u+v+p+a+ﬂ+y)+y(/4+v+a+ﬂ)+ﬁ(ﬂ+a)+ﬂG05prGvﬂGﬂa _ 4(_1)y(v+a+ﬂ+y)+a(u+a)+p(u+p)+a(v+ﬂ)5pﬂ5yaGyﬂGo§
+ (_1)Y(ﬂ+7)+p(v+p)+(v+a>(a+7)5p”57aG6vG5ﬂ)_ (78)
The motivation for the projective Einstein-Hilbert action arises directly from general relativity. The projective Gauss-
Bonnet term is added as it contains second-order derivatives on D, thus rendering D dynamical, while maintaining second-
order differential equations for the metric, which recovers the Einstein field equations in a certain limit. The possible

relation between the projective Gauss-Bonnet term and topological properties of supermanifolds is under investigation.
We define the super-Gauss-Bonnet symbol G on M and the super-Gauss-Bonnet tensor B on M as

ghd_qcfbw = (_ 1 )d(e+f+_q+a+b+c)+c(e+f+a+h)+h(e+a)+eghdggcgfb(gm _ gegu)
— 4(=1)cUHhtbte)ralf+h)+g(f+9)+h(f+h) 59 5¢  of b ghd

+ (_1 )c(b+c)+_q(f+g)+(f+h)(a+c)6geécaghfgdb’ (79)

hdgcfb  — (hdgcfb
B =9 ed (80) B, = 4(_1)c(f+h+b+c)+a(f+h)+g(f+g)+h(f+b)’ (83)

= Blghdggcgfbgea - 3259656419/%9}“1 + B359e56aghfgdbv

(81) By = (—1)c(b+otall o)+ (Fhate), (84)
where we have introduced
) We are now ready to expand the superprojective Gauss-
B, = (-1 )d(e+f+y+a+b+c)+C(e+f+a+b)+b(e+a)+e’ (82) Bonnet Lagrangian as
J
Lspcap = K,5K*,,,C71

= KcqK¢ fghghdycf b ou + K peat fghchdgcf b+ K peaK® fghchdgcf by + K9kt fghchdgcf b (85)

We tackle this Lagrangian one term at a time:
£y = KO pegKe 1 (BM91P,,, — (1)l toarbe)rolessvath)tblesa) e ghd e gfvg g ) (86)
L, = _,‘Cbcdk:fgh(_1)d(f+g+b+c)+c(f+b)ghdggcgfb’ (87)
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Ly = _I“Cbcdlcefgh(_1)d(e+f+g+h+c)+c(e+f+b)+e(h+e)ghdggcgfbge’ (88)
Ly = —K“bcdkfyh(—1)d(f+g+“+b+c)+C(f+“+b>+baghdggcgfbga- (89)

Let us rearrange £ to share the same index structure as £y, and vice versa:
Ly =-— Kabcdfcfgh g goe gl g, (—1)atS(crdraldtf)th(f+o) = 7, (90)

24 + Ly = _]Cabcdfcfghghdggcgfbga(_1)a+f(c+d)+g(d+f)+h(f+g)((_1)a(a+b+6+d)+b(c+d)+cd+f(g+h)+§h + 1)7 (91)

Ly = K pogKpgy (= 1)U Fatatbieytelfratbytbaghd goeglb (g ) = L, (92)

E3 =+ £3 _ _,“Cbcdlcefghghdggcgfbge(_1)d(e+f+g+b+c)+c(e+f+b)+e(b+e)((_1)e(e+f+g+h)+b(c+d)+cd+f(g+h)+gh + 1). (93)

A short calculation shows that (L5 + £3) = (L4 + L4). As P, = (=1)dU+gtbte)te(f+b), (96)
they are equivalent we pick (L4 + £4) to participate in our
action because there are fewer parity factors. For what ,
follows, we define four parity factors that will be useful: Py = (= 1)/ (et tald /) Th(f+o)

x ((=1)ala+btc+d)+b(c+d)+cd+f(g+h)+gh +1). 97

P, = (—1)dletfrgtatbre)re(etfratb)rblerajte  (95) Reintroducing the scale 4y and introducing two coupling
constants, & and /3, the final form of the super TW gravity
action is

|

Ssrw = a0 / K poad o Py GHdAd™ x4+ / K poakCe (BT — 2 g gfbg g PL)Ghdd™

- Poks / KpeaK sgng g% g'* P, G2did™ " x — A3 / K ypeaK rng"'g% ¢’ g, P G2dAd™ " x. (98)

|
As stated earlier, setting P to zero recovers the Einstein-
Hilbert action from the superprojective Riemann curvature
tensor since

Stw = aoC / Rg:d*x + B,C

X / (R%peqR .4 — 4R,yRY + R2)gpd x.

Kpea = R%peq, and (99)
K — _a Ra (100) The first term is the Einstein-Hilbert action, while the
bed it bed: second term is the Gauss-Bonnet action, which does not
Define the constant C as cpntribute to the Einstein field equations in four dimen-
sions [40].
12 /10 /12
C= Id/l = Ao log 1) (101) VII. THE FIELD EQUATIONS
A 1

The variation of the canonical measure function is
where 0 <A, <1, < oco. Recalling the relationship  given by
between G and g, we have the simplification

1 1 o
. | 8¢t =5g709 =3 ¢:(=1)'g,9..  (103)
/ G2dl = Cgp. (102)
A The variation of the inverse metric arises from

Setting n to zero and m to four, and letting P — 0, the

super-TW action reduces to 0 =5(“%,). (104)
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6gud — 5gabbgcgcd — _gahébgc cd

— (1) bre)erd) gab geds, o (105)

Let M be a Riemannian supermanifold. If M is compact,
then [24]

[ 0t annx= [ =1yigxan—o. (109
M M
implying
(5Fjjigki);k = (—l)k(i+k)5rjji;kgki, (107)
- g%(_l)j(srjji;kgki = —9%(_1)j+k(i+k)(5Fjji9ki);k
—@ (=D ((=1)/6TY ;;g™) , = —g(=1)*X*,. (108)
(BT gh).; = (1RSI s g, (110)
G(= 1RSI g = gr (= 1) (8T ). = g (=1)7 Y7,
(111)

We are now in a position to find field equations of the
dynamical fields I, D, and g in the action. We express the
action in terms of the superprojective Cotton-York symbol,
reducing the action to a functional that is on M, viz,

5
Sstw = Y Sis (113)
i=1
Sl = a()C/ ’Cabcdécagdbpog%dm'”x, (114)

S _ﬂoc/ICabcd}CefghBhdgcfbeag%dm'nx» (115)

1
S3 = —ﬁOC/%/’Cabcdlcefghghdggcgfbgegap192dm'"x,

(116)
Sy = _ﬁOCl(Z)/kbcdlucfghghdggcgfbP2g%dm’nx’ (117)

S5 = —BoC1} / Kabcd’vcfghghdggcgfbgaP3g%dm’nxv (118)

Bhdgcfbm = Blghdggcgfbgea - B259e50agfbghd

+ B389,5 g . (119)
Observe that the dependence on IT and D resides in the
superprojective Cotton-York symbol and the superprojec-
tive Riemann curvature tensor, while the metric dependence
resides only in the superdeterminant of the metric, the
inverse metric, and the super-Gauss-Bonnet tensor. Before
we proceed, we note that Sgtw can be expressed differently
with a particular combination [14,15] of the nontrivial
coefficients of the superprojective Riemann curvature
tensor on VM. This combination happens to be a tensor
over M, known as the projective Cotton-York tensor. The
ungraded version is

9aKbea + Kpea- (120)
In every variation below, we hide the constants, a, g, 4o,
and C.

A. Field equations for II

Varying §; with respect to the superfundamental pro-
jective invariant gives

5S1 _/6nyz(6ax5yb616flcadb,d(_l)d<a+b+c+d)+c_5ax6yb52dflCadb,c(_l)c<a+b>+5ax5yf6ZCHfbdflcadb(_1)C<b+c+f)

Hafcéfxéyb(szdf‘lcadb(_l)c(b+c+f)+(x+y+z)(a+c+f) 54 &fézdnfhc]_-l Y (

) d(b+c+f)+c

—I1° d&f 5yb5zc]:1cadb(_1)d(b+c+f)+c+(x+y+z)(a+d+f))7

]: c db __ ( 1)17(,‘66 gdbg%’

The variation of S, with respect to IT is

(121)

552 — /5nyz(6axéyb516f2d6ba,d<_l)d<a+b+c+d) _ 5ax5yb5Zd~7:2dCba,c(_I)C(a+b+c> + 5ax5yfézcnfbdf2dcba(_1)c(f+b)

+ yxéybézdnafcfzdcba(_1)c(f+b)+(f+b+d)(a+f+c)

— 89,8 ;8% IV ) Tyt (= 1)d(bHetf)
- ﬁx&bézcﬂafdfzd”’a (_1)d(b+c+f)+(a+f+d)(f+b+c))’

(122)
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J,:‘de?a = K:efgh (Bhdgcfhea + Bdhcghfaep7)g%7 (123)

P, = (_1)(a+b+c+d)(e+f+g+h). (124)
The variation of S; with respect to IT is

5S3 - _ / 5nyz (6ax5yh51cf3d6ba.d(_1 )d(a+b+c+d) _ 5(1){5}\’[75%,.7_"3dchmC (_ 1 )c(a+b+e) + 5ax5yf5zcnfhd:,t’3dcba (_1 )c(f+b)

+ y'xﬁy'hézdnafcj:’3dcba (_ 1 )C(f+b)+(f+b+d)(a+f+c) _ 5ax5yf5zdnfhcf3dcba (_ 1 )d(b+c+f)
— 5fx5yb5zcnafdf3d0ba (-1 )d(b+c+f)+(a+f+d) (f+b+c) ). (125)

The variation of S, with respect to II is

5s4 - _ / 5Hx}‘z<5ex5yb5zdpec(_1)(e+c)(e+b+d)+c(b+e) _ 5@X5yb5zCDed(_l)d(b+c+e)+(e+d)(e+b+c))]:'4dcba’ (126)

F by = Kpn(g"g7 ¢P Py + g™ g°9g" P, Py) . (127)
Py = (=1)U+gtbre)to(r+b), (128)
Py = (=1)re+d)(Frgth) (129)

Finally, the variation of S5 with respect to II is
5S5 - _ / 5nyz (5ax5yb5ch5dCba,d(_ 1 )d(a+b+c+d) _ 5ax5yb5zd]:5 dCba,c (_ 1)c(a+b+c) 4 5ax5yfézcnfbdf-5 dCba (_ l)c(erb)

+ 6.8, 8411, Fsdeb (=1)clf+b)+{Frbrd)(atfre) _ ga & 5 IV Fsdeb (= 1)dlbrets)
_ 5fx5yh5zcnafd]:'5dcba (_ 1 )d(b+c+j~)+(a+f+d) (f+bte) 4 (Sexéyfézhfpegf'éhgf (_ 1 ) (e+g)(e+f+h)+g(f+e)

— 8,8 157 D oy F "9 (= 1)U HgHe) et et f+g)) (130)
Fs' 0 = Kypg g 9" 9uP3g. (131) 05, = / 0D, (6507 40" o (=1)PeH e+
Fehal = K;abcdghdggcgfbgap3pgg%7 (132) _ 5xb5yc5ad(_l)d(h+c)+(b+c)(a+d) )fzdcba'
Py = (_1)(a+b+c+d)(f+g+h)' (133) The variation of Sy is
Adding up the Varigtions gives the ﬁqld equatiops for IL 583 = — / 5D,y (6,64 59, (—1)be(ate)(b+d)
The full field equations can be found in Appendix B [see
Eq (B1)]. _ 6xh6ycéad(_1 )d(b+6)+(b+c)(a+d) )f3d6ba-
B. Field equations for D, The variation of Sy is

Again we start with Sy:
554 _ _/Sny(_éxbéydfadCbaﬁc(_l)dc+c(a+b+c+d)

68, = /5'ny(5"175}"15“0(—l)bcHaJrc)(bHi) +5Xb5yc~7:4dCba_d(—l)d(a+b+c+d)

— 5xb5yC5ad(_1)d(b+c)+(b+c)(a+d))‘7_‘7cadb, + 5xe5ycnebd-7:4d6ba(_l)C(b+e)
F7cadb = 5cagdbpog%_ (134) - 5x65ydnebcf4dcba(_1)d(b+c+e)), (135)
The variation of S, is and lastly the variation of S5 is
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5S5 - _ / 5ny(5xh5yd5ac‘7:’5dcha(_] )hc+(a+c)(b+d) _ 5xb5)'06adf5dc'ba (_1 )d(b+c)+(h+c)(u+d)

- 5xf5yh]:6hgf’g(_ 1)hotolr+ath) 4 5xf5yg]:6hgf’h(_ 1)h(f+oth)
+ 5xe5ygnefhjr6hgf(_1 )g(f+6) — 5x65yhnefg]:6hgf(_1)h(f+g+e))_ (136)

The full field equations are again in Appendix B [see .
Eq. (B2)]. ! ¢ P : Sy = / V99" 9 ¢ F 1peargns (144)

C. The field equations for g, (=1)bretdtftoth —(145)

fllbcdfgh = _chcd’CfgIzPZ
Let us begin by rearranging and relabeling the action to

make the metric dependence explicit, while also keeping in S — / hd gge ofb g o a 146

mind the connection and metric are independent. We start 5 V995 5 90T 12 g (146)

by breaking up the action to give

F12edfoh = =K peakCpgnP3(—1)aoretdtioth —(147)

S| = b Fea, 137
: / V997 F spa (137) We will vary with respect to ¢g°*. The family of variations
that will be needed are
Fpa = Kpead*oPo(=1)774, (138)
596 = 5gabv1bac + 5gab,cv2bav
Sy, = Bhdgerb @ ocd’ Fahs 139 1
: /\/§ ea]:9 bed foh ( ) Vlbac = _gba,c(_l)a+b’ (148)
2D
Foped fgh = K beak tgn P10 (140) 1
Vaba = 57 Gpa(—1)c0TOITatd, (149)
- 2D
Pl() — (_1)a+b+c+d+e+f+g+h’ (141)
Sy = / \/f_}ghdggcgfbgegafloabcdefghv (142) Bz — _(_1)(f+b+h+d)<9+e+c+a)32, (]50)
F10%bed’ foh = =K peaK? pgnP1 P10, (143) By = (—1)(htSHdeb)gteteta gy, (151)

5Bhdgcfbea _ 59.)()1 [Bl (5hx5dyggcgfbgea + 5gx50yghdgfbgea (_1)(h+d)(g+c) 4 yxébyghdggcgea (_1)(h+d+g+c)(f+b)
+ VOexyaghdggcgfb<_1)(11+d+g+c+f+b)(e+a)) + BZ<5fx5byghd5‘qe56a + 5hx5dygfb5geéca (_1>(f+b)(h+d))
+ B3(8",6/ g™ 89,8 + 878" g1 89,5 (= 1) @]
69, = 5gxyvlyxa + 5gxy~av2yx- (152)

Using the above identities, the variation of S; with respect to the metric yields

1
= /5gxy K_E\@ygx(—l)x)gdb}_sm + 696" V/9F sba |- (153)

Similarly, the variation of S, with respect to the metric is
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1 :
08, = /5gxy |:<_§\/§ygx(_1)x> Bhdgcfbeaf9ahcdefgh + (B (5 5 ggcgfbg ea T 67,6 hdgfb

+ 6fx6byghdggcgea (_ 1 ) (htdtgte)(f+) + V()exyaghdggcgfb (_ 1 )

+ 6,64, g1 69,5, (—1

)(h+d)(g+c)

(hrdtgretf+b)eta)) 4 B, (8 8" ,g"89,5°,

First, we define F3 and F4 to clean up the variation below:

The variation of S5 with respect to the metric is

n yxéhy\/gghdggc(_l)(f+b)(h+d+g+c))f’l4hcdfyh:|.

The variation of S, with respect to the metric is

+ yxéb},\/éghdi(—l)(f+b)<h+d+g+c):| Fllbcdfgh'

We define F5 and F ¢ in order to clean up the variation below:

The variation of S5 with respect to the metric is

)(f+b>(h+d)) + E3(6hx5fygdb6‘qe§ca + 5dx5byghf6ge50a(_ )(h+f Jd+b) ))\/_}—9 bed fgh (154)
]:‘Bae — \/gghdggcgfhf‘loabcdefgh(_1)(e+a)(h+d+g+c+f+b), (155)
~7:14bcdfgh = gegafloahcdefgh' (156)
083 = /59” |:V1yxegaf13ae = (Voye0aF 13%) o + Vigxage F 139 (=1)% = (Vayege F 137 (=1)%) ,
((__\/—Vgx( ) ) hdggcgfb + 5h 5d \/‘aggcgfb 4 5gx5cy\/gghdgfb(_l)(h+d)(g+c)
(157)
1 .
6S4 = /59") |:< \/gygx( 1)x>ghdggcgfb+5hx5dy gggcgfb 59 56}\/_ghdg/‘b h+d )(g+c)
(158)
flecdfgh = ga]:uabcdfgh (159)
-7:]60 _ \/gghdggcgfbfmabcdfgh(_1)a<h+d+g+c+f+c)~ (160)
1
555 = /5gxy |:<<_§\/§ygx(_l)x> ghdggcgfb + 5hxb‘dy\/§ggcgfb + égxécy\/gghdgfb(_1)(h+d)(g+c)
(161)

+ yxéby\/gghdggc(_l)(f+b>(h+d+g+0)>flShcdfgh + Vlyxuflﬁa - (V2yxfl6a),a(_1)a<a+x+y> .

As before, the equations of motion for g,, are found in
Appendix B [see Eq. (B3)]. From here one may define an
energy-momentum tensor. In order to write the usual
Einstein equations, one would be obliged to decompose
the fundamental projective invariant into an affine con-
nection and a traceless Palatini tensor. Then one could have
the usual Riemannian geometric objects on the left-hand
side of these field equations, while the Palatini field
equations and the contributions from the diffeomorphism

field would move to the right-hand side forming projective
geometric sources.

VIII. SIMPLE COSMOLOGICAL MODEL

As a practical example we present the field equations in
one of the simplest possible limits and recover de Sitter
space as a solution. Assume that IT contains in its
equivalence class the metric compatible connection, so
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that IT and ¢ are no longer independent degrees of freedom.
The IT field equation will be trivially satisfied in the spirit of
Palatini formalism [36], so there are only two independent
fields in the theory, D and g. Motivated by cosmo-

|

logical implications, we will also impose the condition
Dy = Ag,. where A is some constant, so D is playing the
role of a cosmological constant. The field equation for D,
reduces to

ao(éxb(sydéac (_1)hc+(a+c)(b+d) _ 5xb5ycéad(_l)d(b+c)+(b+c)(a+d) )5CagdbPo
+ ﬁo(éxb(syd5ac (_1)bc+(a+c)(b+d) _ 5xb5y65ad(_1)d(b+c)+(b+c)(a+d))

X ((_l)fgéeg/\gfh - (_l)h(fl+g)56hAgf'g) (Bhdgcfbea + Bdhcghfaep7) = 07

(162)

which is satisfied whenever D,,. = Ag;., while the metric field equations become

2

m—n—1 1
(200} (‘7)79;(9‘”’/\91701(—1))‘ +5dx5by (m —n-— 1)Agbd> +po [—Eygxlghdgcfbea((—l)bcfsac/\gbd - <_1)d(b+c)5ad[\gbc)

X ((_ 1 )fgéegAgfh - (_ 1 )h(erg) 5ehAgfg)Pl()(_ 1 )x + (Bl (5hx6dyggcgfbgea + 5gx5cyghdgfbgea (_ 1 ) (h+d){gte)
+ y’xébyghdggcgw (_ 1 ) (h+d+g+c)(f+b) _ gexgyaghdggcgfb<_ 1 ) (h+d+g+c+f+b)(e+a)+(x+y)(e+x)+y)

+B,8/ 8", ¢"59,5¢ , + B,8" 50, g/1 89,6 ( (1)U HD It D) L Bosh 5 gh59,5¢,

+B36%,.8" g 89,5 (= 1) ") ((=1)P¢8 A gpa— (= 1)1 T8 Agpe ) (=1)98° )Ag = (= 1)U 95, Mgy, ) Py | =0,

which are proportional to the energy-momentum tensor.
We recognize this latter equation as the graded extension
[15,16] of the differential equation for (anti-)de Sitter
space, so taking the aforementioned limits we are able
to recover graded (anti-)de Sitter space as a solution to the
graded TW field equations.

IX. CONCLUSION

In this paper, we have generalized TW gravity to a
graded setting in the framework of a DeWitt supermanifold.
The super-TW gravity action is invariant under super-
projective transformations, yields second-order partial dif-
ferential equations for the metric, the superfundamental
projective invariant, and the superdiffeomorphism field.
Our construction generated an infinitesimal coordinate
transformation law for the superdiffeomorphism field,
which recovered the coadjoint action on a coadjoint
Virasoro element in a particular limit. Additionally, setting
the number of fermionic coordinates to zero, the number of
bosonic coordinates to four, and the tensorial relative to the
superdiffeomorphism field to zero, the super-TW action
simplified to the Einstein-Hilbert action. The super-TW
action is the natural precursor to understanding a theory of
projective supergravity with dynamical projective connec-
tions intimately connected to the super-Virasoro algebra.
For instance, setting one of indices of the super
Diffeomorphism field to a bosonic index and the other
to a fermionic index, one would expect the appearance
of a spin-3/2 Rarita-Schwinger field. Also, we expect a

|

supersymmetric version of the super-TW action to make
contact with the supersymmetric extension of the 2D
Polyakov action [6,9,19,20]. The super-TW action
described in this paper is not restricted to supersymmetric
coordinates and can be used to investigate other superspace
phenomena. Also, our analysis focused completely on
tensors and does not address the study of spinors in
superspaces and their coupling to the TW connection.
Details on the investigation of fermions in TW gravity in
the ungraded setting were discussed in detail in [15].
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APPENDIX A: SUMMARY OF CONVENTIONS

Parity factors:

Py

(_l)c(bJrc)’ (Al)
P, = (_1)d(e+f+g+a+b+c)+c(e+f+a+b)+b(e+a)+e’ (A2)
131 = (_1)h(e+f+g+a+b+c)+g(e+f+a+b)+f(e+a)+a’

(A3)

P, = (_1)d(f+g+b+c)+c(f+b)7 (A4)
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Py = (=1)hUtarbre)rag(f+b) (AS)
P; = (=1)atf(ctd)+g(d+f)+h(f+)

x ((—1)elatbrerdytblcrdtedtfgeh+oh 4 1) (A6)
P,= (_1)a+e(b+c+d+e)+f(c+d)+g(d+f)+h(f+g)

% (1 _ (_1)b(c+d)+cd+f(g+h)+gh)’ (A7)
Ps = (=1)f(c+d)+g(d+N)+h(f+g) (A8)
Pg = (_1)b(c+d)+cd+f(g+h)+gh’ (A9)
P, = (_1)(a+b+c+d)(e+f+g+h)’ (AlO)
Pg = (—1)brerd)(F+gth) (A11)
Py = (—1)(atbretd)(froth) (A12)
P = (_1)a+b+c+d+e+f+g+h’ (A13)
B, = (=1)d(etf+gtatbto)eletf+atb)tbleta)te, (A14)
B, = 4(—1)cU+htbte)talf+h)+o(f+o)+h(f+b) (A15)
B, =—(-1 )(f+h+h+d)(g+e+c+u) B, (A16)
B; = (_1)c(b+c)+g(f+g)+(f+h)(a+c)7 (A17)
By = (—1)(t/+dib)(gtereta) g, (A138)

Tensors and symbols:

T 1€ ,80 = (=1)bese gt gp, (A19)
Tyl = Kt g (BT - BIeAl?  Py)gh, (A20)

’ e c C 5 1
F3 = K on (9" 9 4" 9.9.P1 + 9™ 999" 9,9.P1P7) 2,

(A21)
File s = Kyn(d g7 g™ Py + g™ g9gP  PyPg) g, (A22)
Fstt = King" g% ¢ 9, P32 (A23)

fshgf = Kabcdghdggcgfbgaﬁpwéa (A24)
Fr® = 5ca9th09%» (A25)

Fspa = KpeadaPo(=1)""7, (A26)
Fobed” fgn = K beal rgnP1o- (A27)
F10%bed’ poh = =K peaK® pgn P1 P10, (A28)
Fiiveafgh = —KpealpgnPa(—1)P Tt oth, (A29)
Frovedfon = —KpealCrgnP3(=1)4T0Hert/roth - (A30)

]:] 3ae _ \/gghdggcgfbfl()abcdefgh (_ 1 ) (e+a)(h+d+g+c+f+b) ,

(A31)
-7:14bcdfgh = gega}-l()abcdefgha (A32)
-7:15bc¢fgh = ga]:12abcdfghv (A33)

F16a — \/gghdggcgfbfuabcdfgh (_1 )a(h+d+g+c+f+c) , (A34)

Vodabe = —GaaGpe(—1)@FONatd+D, (A35)
1 a+b

Vibae = Egba,c(_l) ; (A36)
1 .

Vaba = ﬁgba(—l)da%)wﬂq- (A37)
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APPENDIX B: FIELD EQUATIONS
1. Field equations for IT

agC (67,8 6 F 1€ % 4(—
+ 104,68/ 8,5 F 1€ %

)d (atbtetd)+e _ ga &b‘szdflLadb (_1)c(a+b) +5ux5yfézcnfbdflcadb(_l)c(b+c+f)
(-
—T1¢ fdéf S5 b52 f c db( 1) (b+c+f)+c+(x+y+z)(at+d+f) ) +ﬂoc(5a 5yb62 :,tzdcbad( 1)d(a+b+c+d)
1)t
(-

1) (b+c+f)+(x+y+z) (a+c+f) — 5 5yf5z Hf f‘lcadh(_ )d(b+c+f)+c

59,805 F 2 1eh (= 1)) 59,689 65 TV g Fyeh (= 1)U D) 4 6F 89,5 T10 TFyleb () U+D)+ (b at 4)
— 598 18, I/, Fpdeb, 1)d bietf) _ §f 8,6, Hafdj:zdcb (-1) (b+c+f)+(a+f+d)(f+b+c))
+ﬁocl1(2)(5ax5)’b5ch3dcba (- 1)d atbte+d) _ ga 5yb5Zd]:'3dcba.c(_l)c(a+b+c) +5ax5yf5zcnfbd]_—3dcba(_l)c(f+b)
8 (O N1 F 9P (=1)¢ (FHb)+(f+btd)(atf+e) _ ga & 18I F3deb (=1 yd(b+etf)

-8 R 1 Fdeb (- 1>d bretf)H(arf+d)(f+bre) 4 ge §¥, 5 D, ]_-4dcba(_1)(e+c)(e+b+d>+c(b+e)

— 5ex5yb5zc7_)ed]:4dcba(_1)d(b+c+e) (etd)(etbte) 4 5a &Y, 62 ]:SdCba.d<_1>d(a+b+c+d) _ 5ax5yb5zd]:5dcbw(_1)c(a+b+c)
+ 5ax5yfgzcnfbdf5dcb (=1)¢ (f+b) _ sa 5)f5zdnf JTFsdeb (_l)d(b+c+f)

+ 8 8007 T14 f F el (= 1)U tDIH(Frbrd)asf+e) _ f 5, 57 T10 .\ Fodeb (—1)dbress)tatf+d)(f+be)

4 5ex5yf5zh1)eg}“6hgf(_ )(e+g)(e+f+h)+g(f+8) _ 5ex5yf51gpeh]:6hgf(_1)h(f+g+9)+<e+h)(6+f+y)) = 0. (Bl)

2. Field equations for D

aOC(éxbéydéac (_1 )bc+(a+c)(b+d) _ 6xb5y66ad(_1)d(b+£)+(b+c)(a+d))f‘7cudb 4 ﬂoc(éxbéyd(sac (_1 )bc+(a+c)(b+d)
_ 5xb5y65ad(_1)d(b+c)+(b+c)(a+d) ):FZdCba + ﬁoC/I(Q) (5xb5yd5ac]:3d0bu (_1)bc+(a+c)(b+d)

_ 5xb5y65adf3dcha (_1)d(b+c)+(b+c)(a+d) _ 5xb5yd}‘4dcba'c (_1)dc+c(a+h+c+d) + 5xb5yc~7:4d6ha,d(_l)d<a+b+c+d>

+ 5,8 I1° bd]:'4dcba (_ 1 )c(b+e) _ 5xe6ydnebcf4d6ba (_ 1 )d(b+c+e) + 5xb5yd5ac~7:5 dCbu (_ 1 )bc+(a+c)(b+d)
_ 5xb5y65ad]:5dcba (_1)d(b+c)+(b+c)(a+d) _ 5xf5yh‘7:6hgf.g(_1)hg+g(f+g+h) + 5Xf5yg]:6hgf.h (_1)h(f+g+h)

+ 5x85ygnefh]:6hgf(_1)y(f+e) _ 5xe5yhnefg].‘6hgf(_1)h(f+g+€)) = 0. (B2)
3. Field equations for g

1 1
agC (— B ﬁygxgdbfsw(_l)x + 5dx5by\/§-7:8bd> + poC [— ) \/aynghdngbea}—9abcdefgh(_1)x

4 (Bl (5hx5dyggcgfbgea + 5gx50yghdgfbgea (_ 1 ) (h+d)(g+c) + y'x[;jbyghdggcgea (_ 1 ) (h4d+g+c)(f+b)
+ VOexyaghdggcgfb (_ 1 ) (h+d+g+c+f+b)(e+a)) =+ BZ&Cxabyghdégeéca + Bz5hx6dygfbége5ca (_ 1 ) (f+b)(h+d)

+ 336hx5fygdb5geécu + B35dx5byghfégeéca (_1 )(h+f><d+b>)\/§f9abcdefgh:|
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—ﬂ0C/1(2) |:V1yxega~7:13ae - (VZyxgaJ:Bue),e + Vlyxagej:Bue(_l)ae - (V2yxge~7:13ue(_1)ue),a

1
+ (__\/aygxghdggcgfb(_l)x_i_éhxﬁdy\/gggcgfb+5gxécy\/§ghdgfb(_1)(h+d)(g+c)

2

2

, : . 1 :
+6/.8% /g9 g (1)U ”’)(’”‘”"“)) Flaveargn + (— SV9,9:9" 9% g'" (=1)*

=+ 5hx5dy\/§ggcgfb + 5gx5cy\/gghdgfb(_l)(h-&-d)(g-‘rc) + 5fx5by\/.aghdggc(_1)(f+b)(h+d+g+c))fllbcdfgh

1 )
+ <_§\/§ygxghdggcgfb(_1)x_|_5hx5dy\/§ggcgfb+5gx5cy\/§ghdg/‘b(_1)(h+d)(g+c)

+ 5fx5by\/§ghdggc(_1)(f+b)(h+d+g+6))]:lsm_dfgh + Vlyxa]:16a _ (VZ},XFMLZ),a(_l)a(a+x+y):| =0. (B3)
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