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Expanding upon our previous study of competing critical phenomena in black hole formation, we
numerically investigate the behavior of dominant exponents across the boundary separating asymptotically
dispersing and collapsing regions in a two-dimensional configuration space of initial data. We find that
across the type II boundary section the dominant exponent remains constant, equal to the reciprocal of
Choptuik’s well-known quasiuniversal value, whereas across the type I section the exponent noticeably
varies. We postulate that this change reflects the existence of a third critical solution in addition to the
two primary competing solutions, possibly another member of the family of metastable soliton stars
constituting the type I attractor.
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I. INTRODUCTION

The study of black hole genesis has yielded a wealth of
insights into the behavior of classical gravity in the strongly
interacting regime. One of the cornerstones of numerical
relativity is the existence of critical phenomena accom-
panying their formation [1]. Generically, it has been found
that when some parameter (e.g., amplitude) characterizing
the abundance of matter sources in the initial data is varied
there exists a sharp delineation between the sources’
collapse into a black hole and asymptotic dispersal [2–4].
Time evolutions of initial data near this threshold exhibit
various quasiuniversal properties [1], such as mass power
laws with particular exponents, (discrete) self-similarity in
the form of echoing effects, and predictable scaling in the
time to collapse of the lapse [5,6]. It is by the analogy of
these with the physics of near conventional critical points
in statistical mechanics that this behavior is referred to as
critical phenomena.
In our previous paper [7] we observed the apparently

counterintuitive effects of multicritical collapse, whereby
two near-critical fields appeared to frustrate, rather than
accentuate, the process of collapse. The starting point for
our investigation was the idea that some kind of interesting
interaction should be observed between near-critical mas-
sive and massless scalar fields. Since the massive scalar
field exhibits type I and type II criticality in different
regions of the parameter space of initial data [8], it might
be reasonably hypothesized that such configurations are

especially susceptible to type II perturbations in the type I
phase. We observed that the two fields, when both are tuned
near criticality, appear to inhibit each other’s collapsing
tendencies and suggested that this result may be attributed to
the existence of a third critical solution, similar to a scenario
proposed by Gundlach et al. [9].
Figure 1 reflects the results of our first paper, here cast

into a wire mesh plot. It depicts a phase diagram with
respect to initial amplitudes for a massless and a massive
scalar field minimally coupled to gravity. The z axis reflects
the black hole formation mass derived from the radius at the
asymptotic time of collapse, given the initial coordinate
amplitudes. The lowest values at zero mass (dark purple)
indicate asymptotic dispersal. The thick lines in the
amplitude plane denote the critical amplitudes greater than
which collapse would occur if only a corresponding field
was present, approximately 0.0435 for the massless field
and 0.00111 for the massive. We additionally show in
Fig. 2 the region about the triple point in greater detail, as
well as a 3D scatter plot of the time to collapse in Fig. 3.
The two plateaus in this last plot correspond to the distinct
critical behaviors seen in Fig. 1 through their noticeably
different times to collapse.
While the initial waveforms were chosen to accentuate

the effects, the fact that dispersal scenarios exist at larger
amplitudes even past the intersection of the critical lines
of Fig. 1—that is, that the coordinate values of the “triple
point” are greater than the two critical amplitudes—
suggests that the two fields have a mutually inhibitory
effect on each other. This is a nonintuitive effect: what is in
a naive sense a greater concentration of mass energy has the
result of interfering, rather than augmenting, collapse.
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We suggested in our previous work that a rough
dynamical systems explanation suffices to explain our
results. The intuition is that the earlier critical evolution
of the massless field in a sense draws the spacetime away
from the critical surface corresponding to the massive field
that would otherwise determine asymptotic behavior. A
simple interpretation might reduce this to a triviality in
terms of an exchange of energy between the two fields,
wherein the massless field implodes through the origin,
carrying away some of the energy of the massive field.
What is significant is that this physical argument could just
as well be turned the other way: that is, the concentration of
the massive field about the origin could be suspected to
focus and retain the massless field. The dynamical systems
sense, however, gives us the argument that the (locally in
time) dominant exponent dictates the actual course of
evolution, which implicates the frustration we observe.
This also explains why the dispersal region impinges so
considerably across the type I critical vertical line—yet
barely across the type II critical horizontal line—in Fig 1.
The purpose of this paper is to more rigorously quantify

the dynamical mechanisms at work so as to solidify
assertions made in our previous paper, as well as explain
other phenomena we have found since. This quantification
justifies the loose time-to-collapse classification scheme
used previously, showing how very different perturbations
predominate across different parts of the collapse/dispersal
boundary. We also discuss how an observed change in
the value of the exponent associated with the dominant

FIG. 2. Mesh plot of a refined region about the triple point. The
data here come from jobs ran at high resolutions, showing that the
oscillations portrayed in the type I plateau are real and illustrating
the sharpness of the intersection of the two sections of the
boundary. As this is close to the triple point, the dispersal region
has been reduced to a mere sliver.

FIG. 1. Phase diagram of evolution behavior for the multi-
critical field configuration considered in this paper and its
predecessor. The x and y variables correspond to the amplitudes
tuning the initial data of the scalar fields that ultimately determine
whether the time evolution of that data collapses or disperses. The
z variable reflects the mass of the black hole formed, with
asymptotic dispersal signified by a mass of zero. The black lines
reflect the amplitudes greater than which, if one field were taken
alone, a black hole would form, approximately ∼0.001111 for the
massive field and ∼0.04347 for the massless. We repeat the
observation that the above picture suggests the presence of a
mechanism qualitatively inhibiting black hole formation.

FIG. 3. Another phase diagram similar to Fig. 1 above, here
expressed in terms of asymptotic time to the collapse of the lapse.
Triangles indicate type I collapse while diamonds denote type II.
The dashed square at the bottom circumscribes sampled data;
comparing with Fig. 1, scenarios with zero mass there do not
appear here, since there is no collapse. While type I points curve
noticeably upward near the dispersal boundary, this effect does
not manifest across the type II portion—all as expected.
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perturbation along the type I section of the boundary
suggests richer dynamical phenomena involving the type
I solution, possibly attributable to a third critical solution.
These effects may explain additional numerical complex-
ities we have found along the type I section of the boundary
further from the triple point.

II. METHODS

The methods employed in our numerical simulations are
the same standard techniques [10–12] as those adumbrated
in our previous paper [7]. We summarize our methodology
in the following.
We take the standard Arnowitt-Deser-Misner (ADM)

decomposition assuming spherical symmetry and work in
the polar areal gauge, corresponding to the line element
ds2 ¼ −α2dt2 þ a2dr2 þ r2dΩ2 [13]. Matter in the form of
massless and massive scalar fields is evolved in time via
step-doubling fourth-order Runge-Kutta using the coupled
equations

∂tΦi ¼ α
aΠi; i ¼ 1; 2;

∂tΨi ¼ ∂rðαaΠiÞ; i ¼ 1; 2;

∂tΠi ¼ 1
r2 ∂rðαr

2

a ΨiÞ − αam2
iΦi; i ¼ 1; 2;

m2 ¼ 0:

ð1Þ

Simple Sommerfeld boundary conditions are imposed
at large r, and appropriate (anti)symmetry constraints are
taken across a staggered origin. Meanwhile, the metric
equations are solved on each full time step (extrapolated
during intermediate steps) following

∂ra ¼ a
2

�
1 − a2

r
þ r
2

X2
i¼1

ðΠ2
i þΨ2

i Þ þ
m2

1r
2

a2Φ2
1

�
; ð2Þ

∂rα ¼ α

�
∂ra
a

þ a2 − 1

r
−
m2

1r
2

a2Φ2
1

�
; ð3Þ

subject to the boundary conditions of a being unity at the
origin and α taken asymptotically Schwarzschild-like.
Finally, in our previous paper we verified convergence
against the momentum constraint

0 ¼ M ≡ α
r
2
ðΠ1Ψ1 þ Π2Ψ2Þ − ∂ta; ð4Þ

which validates our code following typical tests, showing it
to be fourth-order accurate as designed. Finally, to resolve
near-critical type II behavior about the origin we use
familiar methods employing multiple spatial grids, refining
by a factor of 2 or 4 on each level up to five subgrids near
the origin. Refinement and unrefinement are conditioned
on thresholds of momentum constraint violation. Most data
come from simulations employing 64000–256000 coarse
radial grid points, with the radial grid extending out up to

r ¼ 800 in analysis of type I cases and truncated by an
order of magnitude for the most precise type II cases.
This paper employs standard elementary methods for

numerically analyzing dynamical systems [14–16]. Near
criticality, we expect that appropriately dimensionalized
functions Zpðx; tÞ may be expanded as

Zpðx; tÞ ≈ Z�ðx; tÞ þ CðxÞðp − p�Þeγt þ � � � ; ð5Þ

where Z� denotes the function Zp when the tuning
parameter p is at criticality p�, γ is the most dominant
perturbative exponent, and t is a time variable appropriate
to the critical system [5,6]. When analyzing type I
scenarios, we take t to be the difference between the
asymptotic time corresponding to the spacelike slice of the
coarsest grid and the time to collapse in the same measure,
both obtained from integration of the lapse at the radial
edge of the simulation. In the type II case, we consider the
negative logarithm of the negative of this quantity instead.
We shall refer to the quantity γ derived in these two cases as
γI and γII, respectively.
For the purposes of presentation, we consistently take p

to be the amplitude A of an initially ingoing spherically
symmetric Gaussian shell with profile

ϕðr; 0Þ ¼ Ar2 expð−ðr − r0Þ2=σ2Þ; ð6Þ
where σ ¼ 1.0 or 5.0 for the massless and massive fields,
respectively, and r0 ¼ 2.0 for both fields. This configura-
tion was specifically chosen such that the massive field
undergoes type I evolution and that both fields interact
substantially early on, thus magnifying the dynamical
effects of competition. By virtue of the mass, the two
fields will arrive at the origin at different times; numerical
considerations involving the growth of the amplitudes of
ingoing waves have prevented us from arranging simulta-
neity while maintaining respectable precision near critical-
ity in certain parts of the parameter space.
We variably take the perturbative Z to be Φ, rΠ, or rΨ.

For all simulations performed, each choice leads to the
same essential results and conclusions.
We perform this analysis by taking the difference of two

datasets very close to criticality, taking the L2 norm of this
quantity, and then carrying out an appropriate regression to
obtain an estimate for γ. Explicitly, we take the difference of
Eq. (5) for two distinct values of p,

Zp1
ðx; tÞ − Zp2

ðx; tÞ ≈ CðxÞðp1 − p2Þeγt þ � � � ; ð7Þ

then take the L2 norm to remove spatial dependence,
resulting in the approximation

yðtÞ ≈ Cðp1 − p2Þeγt þ � � � : ð8Þ

This is in a form readily subjected to regression analysis.
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This regression is typically valid for a reasonable time
interval near collapse. We determine collapse by mon-
itoring when the lapse drops beneath 10−7, or when
overflow errors arise from the substantial curvature
developing at the origin. The adjective “reasonable”
cannot be dispensed: data taken too close to collapse are
naturally subject to nonlinearities, with the higher-order
terms becoming relevant, while data coming from too
long before feature significant contributions from sub-
dominant terms. Since fine-structure undulations appear
in these regressions as well, the uncertainties for the
derived exponents are greater than those suggested by
the regressions alone.
We check the validity of these perturbative regression

estimates against other observable quantities dependent
upon γI=II and the tuning parameter p’s deviation from its
critical value p�. For type II collapse, we compare with a
regression on a local measure of black hole initial formation
mass near criticality [17],

M ≈ Aðp − p�Þ1=γII ; ð9Þ

where, for our purposes, we will be ignoring the well-
known fine-structure corrections [18], although their undu-
lations are readily observed in the results below.
Meanwhile, for type I collapse, we cross analyze with
the collapse time,

Tcollapse ≈ const: −
1

γI
logðjp − p�jÞ; ð10Þ

which, like above, we obtain from integration of the lapse at
the edge of the simulation.
Numerically solving for and perturbing the exact

solution would provide much more precise values of
the dominant exponent γ [19]. However, this would not
seem so feasible for our scenario, which admits features
that might preclude the simplest implementations of
both the single-variable discrete self-similarity of the
type II exact solution [17], as well as the simple single
metastable soliton star solution we obtain in the purely
massive field type I case [8,20,21]. We obtain regardless
sufficient agreement between the perturbative analysis
and criticality probes to make this more exacting
precision unnecessary for the particular results we report
and our analysis thereof.

III. RESULTS

A. Type II boundary

We find that the massive field does not significantly
affect the fundamental dynamics of type II criticality.
Quantitatively, we find that, although the presence of a
massive scalar field does have the inhibitory effect of
slightly raising the massless critical parameter (from

≈0.043479 to ≈0.043492), it does not alter the dominant
exponent associated with the choptuon in the limit of the
pure massless field.
Table I and Fig. 4 illustrate this point. Each entry in

Table I reflects a log-log regression of black hole
formation mass versus the massless field amplitude’s
deviation from criticality, while each panel in Fig. 4
shows a perturbative regression analysis via a log-log
regression of the L2 difference between two simulations
near criticality versus logarithmic time to collapse.
Figure 5 features all the mass regressions together for
ready comparison by eye.
The same value of the dominant exponent, γII ≈ 2.66,

is observed within reasonable precision across the
board. This is the same as the reciprocal of the critical
exponent as that associated with the case of the pure
massless field from the classic investigation by Choptuik
[1]. We find the expected echoing effect not only in the
massless field, but the emergence of a similar period in
the massive field as well. This is depicted in Fig. 6 in
terms of the partial currents associated with the Kodama
vector.
Thus, the presence of the massive field has only a

quantitative effect on evolutionary dynamics near criti-
cality. It does not qualitatively alter the fundamental
mechanisms near collapse as reflected in the dominant
exponent γII, although naturally the secondary field
continues to fall in after the lapse collapses and
contributes to the developing black hole mass.

B. Type I boundary

In contrast to the type II section of the boundary,
the presence of an additional field has a significant effect
upon type I collapse. This manifests quantitatively in the
behavior of the dominant exponent associated with the type

TABLE I. Linear regression analyses performed on the masses
of black holes formed along the type II section of the collapse/
dispersal boundary. Each row represents data taken with the
amplitude of the massive field fixed, while the massless field’s
amplitude varies. All values for γII agree with that of the pure
massless scalar field.

Type II collapse mass regressions

Massive field
amplitude Slope Intercept

Dominant
exponent (γII)

0.0 0.373 0.248 2.68
0.0006 0.378 0.308 2.64
0.0008 0.378 0.317 2.65
0.001 0.376 0.322 2.66
0.00111 0.378 0.315 2.67
0.001115 0.380 0.315 2.67
0.0011156 0.373 0.269 2.68
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FIG. 5. A compilation of the linear regression analyses performed on the masses of black holes formed near the type II section of the
dispersal/collapse boundary. Points of the same color have been shifted uniformly, keeping the slope intact, so as to better present all
slopes for comparison by eye. The points corresponding to fixed massive amplitudes 0.00111, 0.001115, and 0.0011156 correspond to
the red tracts in Fig. 1.

FIG. 4. Perturbative analyses performed on pairs of near-critical data arising from simulations near the type II section of the collapse/
dispersal boundary. Each panel (a–f) represents data taken with the amplitude of the massive field fixed, while the massless field’s varies.
The values for γII reasonably match their counterparts in Table I, validating our results.
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I critical solution, which we have found varies depending
on the massless field amplitude.
Table II and Fig. 7 communicate this point similar to

their foregoing type II counterparts. The rows of
Table II give the results of log-log regressions of the
asymptotic time to collapse versus the massive field
amplitude’s deviation from criticality, while the panels
collected in Fig. 7 show various perturbative analyses
performed via log-log regressions of the L2 difference
between two simulations near criticality versus time to
collapse. Figure 8 compiles all the time-to-collapse
regressions to better facilitate comparison by eye: in
contrast to Fig. 5, there appear to be two distinct slope
values.
We observe the expected periodicity of the under-

lying critical solution across the type I portion of the
boundary. Taking a representative case in Fig. 9, we find
that, during critical evolution, the field oscillates with

FIG. 6. Contour plots of the partial currents showing the expected echoing effect across the type II portion of the boundary. Time here
is obtained via integration of the lapse interpolated to the origin of the staggered grid. The massive field’s amplitude has been set to
0.0008. Being functions of the fields squared, the partial currents exhibit the expected period of half the conventional Δ ≈ 3.4. This can
be seen by eye, following a diagonal red dashed line from some neighborhood of Jðρ; τÞ and finding similar features around
Jðρ − Δ=2; τ − Δ=2Þ. What is remarkable is the development of weak echoing in the massive current—this is a consequence of strong
dynamical effects controlling the gravitational interaction.

TABLE II. Linear regressions performed on times to collapse of
the lapse for black holes forming along the type I section of the
collapse/dispersal boundary. Each entry represents data taken
with the amplitude of the massless field fixed, while the massive
field’s varies. γI appears to take on a different value depending on
whether the massless field amplitude places the scenario near the
triple point, or whether it is near the pure massive field case, and
may vary across different ridges of linearity appearing in the data.

Type I collapse time regressions

Massless field
amplitude Slope Intercept

Dominant
exponent (γI)

0.0 (I) −3.72 198. 0.269
0.0 (II) −3.72 451. 0.269
0.04 (I) −3.10 66.9 0.322
0.04 (II) −3.56 160. 0.281
0.043 −2.90 66.8 0.345
0.0434 −2.88 65.8 0.347
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FIG. 7. Perturbative analyses performed on pairs of near-critical data arising from simulations near the type I section of the collapse/
dispersal boundary. Each panel (a–f) represents data taken with the amplitude of the massless field fixed, while the massive field’s varies.
The values for γI reasonably match their counterparts in Table II, validating our results.

FIG. 8. A compilation of the linear regression analyses performed on the asymptotic times to collapse of the lapse along the type I
section of the dispersal/collapse boundary. Sets of points of the same color have been shifted uniformly, keeping their regression intact,
so as to better present all slopes for comparison by eye. The variation in slope is readily observed. The points with fixed massless
amplitudes 0.04 and 0.043 correspond to the yellow tracts in Fig. 1.
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frequency ≈0.80μ−1, with excited odd harmonics and
sidebands corresponding to the slower undulations.
Meanwhile, during the “radiating” period, the frequency
changes to ≈0.94μ−1 ≈ μ−1, with comparatively less
excited harmonics, all in fair agreement with previous
studies [8,20,21].
In contrast to the type II case, the value of the

dominant exponent γI noticeably changes. Near the triple
point, it takes on the value γI ≈ 0.34. However, near the
regime of a pure massive field, γI takes on a value closer
to ≈0.27. Moreover, we note a significant decrease in the
typical time to collapse as we near the triple point. This
second fact matches the intuition that frustrated multi-
criticality otherwise runs against: collapse still happens
“earlier,” as we might expect due to the presence of extra
matter in the form of the secondary field, despite the
counterintuitive inhibition of collapse seen in the shift in
criticality.
Some entries and sets in Table II and Fig. 7 are labeled by

additional suffixes. This is because, as shown in Fig. 10,
distinct and numerically consistent ridges appear in some
collapse-of-the-lapse regressions. Even moderately away
from the triple point, apparent jumps in the time to collapse
are observed along the type I section of the boundary. The
existence of these jumps, we suspect, may be attributed to a
quirk of the Gaussian initial data. Whether these jumps
completely disappear or not near the triple point has not
been determined.
While the two most prominent slopes in the left panel of

Fig. 10 appear to be equal, the two slopes in the panel on
the right slightly differ. Figures 11 and 12 depict this in
detail. This variance appears to not be numerical error, as it
is reflected in the perturbative analyses of Figs. 13 and 14
respectively. The top plot of Fig. 14 depicts a sort of
rotation of the right panel of Fig. 10; the evolution of the
perturbation passes through distinct regimes, with different
dominant slopes modulated by underlying undulations. The
two intervals of greatest growth are depicted in the lower
two plots of Fig. 14. The dominant exponents obtained
therefrom appreciably match those derived from the indi-
vidual ridges in Fig. 12, covering ordinate intervals roughly
commensurate with the abscissa intervals of their counter-
parts. The two apparent dominant exponents have approxi-
mate values 0.32 and 0.28. In contrast, in Fig. 13 the slopes
are approximately equal, consistent with the exponents
obtained in Fig. 11.

IV. TRANSFER OF ENERGY

In the Introduction, it was mentioned that the phenom-
enology we observe might be understood intuitively in

FIG. 9. The behavior of the massive field versus time elapsed at
the origin and Fourier transformations (FT) thereof during
different regimes. The scenario is slightly subcritical. The two
shaded regions in the top figure are the two regions subjected to
Fourier analysis shown in the lower two. Critical evolution
features peaks at ≈0.80μ−1 and odd harmonics with sidebands,
while dispersal behavior exhibits sharper peaks at ≈0.94μ−1 with
weaker harmonics.
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FIG. 10. Across the type I section of the dispersal/collapse boundary, jumps appear in the time to collapse of the lapse. The slopes of
the two most dominant ridges of the left panel are appreciably the same, while for the right they appreciably differ. This difference is
repeated in substance by their respective perturbative analyses in Figs. 13 and 14. While the existence of the jumps is likely merely a
quirk of the initial data, whether the slope changes or not is a deeper dynamical feature.

FIG. 11. Enlargement of regressions on the individual ridges seen in the left panel of Fig. 10. The equal dominant exponents derived
from these individual ridges coincide with the exponents derived from their respective intervals of perturbative evolution in Fig. 13.

FIG. 12. Enlargement of regressions on the individual ridges seen in the right panel of Fig. 10. The dominant exponents derived from
these individual ridges coincide with the exponents derived from their respective intervals of perturbative evolution in Fig. 14.
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FIG. 13. Evolution of a perturbation away from the critical
solution along the type I section of the collapse/dispersal
boundary in the case of the pure massive field. The top plot
depicts the time evolution over the course of the entire simulation
and illustrates how the perturbation undergoes different evolu-
tionary regimes. The lower plots show an enlargement of the two
intervals of greatest growth. Their appreciably equal slopes
correspond to equal dominant exponents.

FIG. 14. Evolution of a perturbation away from the critical
solution along the type I section of the collapse/dispersal
boundary with fixed massless field amplitude ¼ 0.04. The top
plot depicts the time evolution over the course of the entire
simulation and illustrates how the perturbation exhibits different
regimes. The bottom two plots show an enlargement of the two
intervals of greatest growth, whose differing slopes show that the
dominant perturbation undergoes a subtle changes.
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terms of a transfer of energy. While this approach may not
be helpful for its lack of decidability, in that a simple
hypothesis can just as easily guess at a catalyzation of
collapse instead of the inhibition we observe, it is never-
theless an interesting question to ask what this behavior
actually is.
Although most local definitions of energy in general

relativity suffer from various deficiencies in the absence
of any particular symmetry, in the simple spherical there
exists a conserved flux given as the contraction of the
stress-energy tensor with a vector field known as the
Kodama vector [22]. This is a kind of replacement for the
fluxes associated with Killing vectors. For the general
spherically symmetric line element ds2 ¼ gabdxadxb þ
R2dΩ2, its nonzero components may be written as
Ka ¼ ϵab∂bR, where ab are indices for the two-dimen-
sional metric gab. Here it takes the simple form K⃗ ¼ 1

aα ∂⃗t.
Contracting with the stress-energy tensor provides the
conserved current

Jμ ¼ Tμ
νKν;

¼ 1

aα
Tμ

0;

∝
1

aα

X
i

�
∂
μϕi∂0ϕi −

1

2a2
δμ0ðπ2i − ψ2

i −m2
i a

2ϕ2
i Þ
�
;

which yields, for the current case of interest,

J0 ∝
1

2a3α

X
i

ðπ2i þ ψ2
i þm2

i a
2ϕ2

i Þ: ð11Þ

We can now integrate this over a spacelike leaf of the
ADM foliation to obtain the conserved charge

QJ ¼
Z
V
ð�JÞ;

∝
Z

α

2a3
X
i

ðπ2i þ ψ2
i þm2

i a
2ϕ2

i Þ
ffiffiffiffiffijgjp
α2

drdθdφ;

∝
Z
V

X
i

r2

a2
ðπ2i þ ψ2

i þm2
i a

2ϕ2
i Þdr: ð12Þ

The above expression, after applying the equations of
motion, leads to the classic Misner-Sharp mass function
M ¼ r

2
ð1 − a−2Þ [23]. The thing of value obtained here is

how this derivation provides a natural splitting of the mass
aspect into a sum of the various fields’ contributions to the
stress-energy tensor. While these terms individually are not
conserved, they nevertheless sum to a conserved charge,
and so they can be used to monitor how energy moves
between matter sources. Even without this machinery, this
idea is well known and has been used as a diagnostic before
by other authors [24].
As an illustrative example, we show in Fig. 15 graphs of

the various currents for two scenarios across the type I and
type II portions of the boundary in Fig. 1. We numerically
observe, as claimed above, that the two partial charges
corresponding to integrals of the individual summands of
Eq. (12) sum to the conserved total Misner-Sharp mass
aspect. We not only obtain a quantitative value that can be
put to the transfer of energy mentioned before, but also
observe a distinct curiosity in how, for both scenarios, the
massive field charge increases in time at the expense of the
massless field.
This is similar to phenomenon observed by Hawley and

Choptuik [24], but where there the authors considered a
small massless field perturbing a complex massive boson

FIG. 15. Graphs of the total and constituent charges and Misner-Sharp mass corresponding to two slightly subcritical scenarios across
the type I/ and type II/dispersal parts of the phase diagram, Fig. 1. The left is subcritical with the massless amplitude equal to 0.043,
while the right is subcritical with the massive amplitude equal to 0.0008.
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star, here both fields are present in significant extent, the
massless charge in fact being greater than the massive
charge in the right graph of the figure. Despite this, a
sizable portion of the energy is still nevertheless transferred
around the time of the type II critical evolution to the
massive field.
More interesting is how applying a naive intuition to

consideration of these currents falls short. Comparing the
subcritical mixed field type I scenario in the left panel of
Fig. 15 with the supercritical case in Fig. 16 shows that
scenarios with not only greater total charge, but even
greater partial charges may not necessarily have a greater
propensity to collapse.
The idea that a less massive configuration may lead to

black hole formation, while a more massive one does not is

hardly inconceivable, since intuitively the relevant notion is
density. However, since the initial data for the massive field
do not differ significantly between the left panel of Fig. 15
and Fig. 16, this kind of difference in aspect is inadequate
to explain this. A qualitative change in the time evolution
due to gravitational coupling with the massless field
appears necessary; this is intriguing, since it might be
thought that the effect of gravity should be to concentrate
the fields together and hence promote, rather than inhibit,
collapse.
A look at the partial currents as a function of position and

time in Fig. 17 shows behavior that might provide such a
mechanism. The strong gravitational effects occurring
during critical evolution are seen to result in a transfer
of high-frequency modes from the massless field to the
massive field. These modes proceed to spill outward and
generate daughter modes as they scatter off of the original
massive current. This is a more dramatic manifestation of
the transfer of echoing seen in Fig. 6 and is likely the true
source of the decrease in compactification, hence the
ultimate cause of inhibited collapse.

V. DISCUSSION

In our previous paper, we postulated that the multicritical
phenomena seen in our scenario could reflect an alternative
dynamical situation considered by Gundlach et al. [9],
which they ultimately dismissed in the case they consid-
ered. This possibility is illustrated in Fig. 18 here, which
shares a kinship with Fig. 13 of their paper. Between the
two primary attractors at play (the choptuon and the family
of metastable soliton stars), there exists a third critical
solution influencing the dynamics with its own dominant
perturbative exponent. Our results above, featuring an
apparently changing dominant exponent along the type I

FIG. 16. Graph of the total current and Misner-Sharp mass for
the scenario of a pure slightly supercritical massive field.
Comparing with the left of Fig. 15, it is seen that although the
former has greater total partial charge in the massive field—and
greater total conserved current—the former nevertheless does not
collapse.

FIG. 17. Graphs of the individually nonconserved constituent currents going in Eq. (12) for a subcritical scenario across the type II
portion of the boundary. We observe the spontaneous emergence of a high-frequency outgoing mode during the type II critical evolution
period that, due to the strong coupling occurring near criticality, transfers to the massive current. This is the source of the change in the
partial charges.
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section of the boundary, support this conclusion: the
“competition” we observe in our setup would appear to
feature, as it were, a third belligerent.
Another comparison with the paper of Gundlach et al. is

apposite to our point. In Fig. 8 of their paper, they observe
“breaks” in the apparent critical exponent for their scenario
in the region of their phase space where the Yang-Mills
field mostly—but not overwhelmingly—dominates the
scalar field. They ascribe these breaks to a straightforward
change between their two critical solutions, moving from
the massless critical solution (γII ≈ 0.37) to the Yang-Mills
critical solution (γII ≈ 0.2). It might be wondered if the
“jumps” we observe are similar in nature.
We do not construe the evidence such that our results can

be attributed so. The dominant exponent along the type II
section of the collapse/dispersal boundary is ≈2.7, derived
from a logarithmic timescale. Meanwhile, the two differing
dominant exponents observed along the type I section of
the boundary appear to range around ≈0.32–0.34 and
≈0.26–0.28, which are derived from a linear timescale
operant upon values of asymptotic t orders of magnitude
greater than those reached in the type II case. By them-
selves, these differing values of γI=II are not directly
comparable precisely because they come from analysis
based upon different symmetry assumptions; however,
considering the type I section of the boundary in loga-
rithmic units does not yield dominant exponents consistent
with the collapse time regressions or even anything
appreciably linear. We accordingly cannot ascribe the
variation in γI to type II effects. An explanation is to be
sought from a different dynamical effect. We thus postulate
that a third critical solution, possibly another part of the
type I attractor which is a family of metastable soliton stars,
as a more reasonable explanation of our results.

A comparison with a study on Yang-Mills fields is also
appropriate [25]. There, the authors consider the critical
behavior of a two-parameter Yang-Mills kink, which like
ours in different parts of their configuration space (depicted
in their Fig. 4) variably exhibits type I and type II collapse
or asymptotic dispersal. Their three boundaries correspond
to the expected type I and type II critical solutions, as well
as a third class of static colored black holes along the type I/
type II interface. The authors entertain the thought of how a
two-parameter massive field might exhibit similar behavior
to their results, with the caveat that no-hair theorems dictate
the nonexistence of static solutions that would be analo-
gous to their type I/type II boundary.
Our paper does not exactly coincide with their work nor

their analysis, since it concerns two fields that, near the
triple point, are both simultaneously critical by themselves.
For the reason, too, that our code was designed to work
at such precision with mesh refinement as to ascertain
the correct scaling, echoing, periodicity, and the like to
numerical precision to solidify our claim of competing
critical effects coupled only by the gravitational interaction
between two separate fields, our method is not able to probe
the postcollapse behavior. However, we can report the
mass and time-to-collapse behavior near our type I/type II
interface goes as expected, with the former decreasing
toward the triple point and the latter increasing.
We close with a final mention of a curious behavior

we have encountered. Between the triple point and the
pure massive field regime in the phase portrait of scalar
amplitudes, we find behavior a great deal more elaborate
than that found by tracing out the type II section of the
boundary. This vexing situation is shown in Figs. 19 and 20.

FIG. 18. A simplified version of the possible dynamical system
investigated in this paper. The arrows suggest the local tendency
of time evolution through the phase space following the locally
dominant perturbation. In addition to the two most prominent
influences on the system—the type II choptuon critical point and
a particular metastable soliton star corresponding to the type I
critical solution—we detect an additional effect modifying the
type I critical exponent near the triple point.

FIG. 19. 3D scatter plot of the collapse time for the same region
as depicted in Fig. 20. As in Fig. 3, the dashed line surrounds the
sampled region. The various type I “fingers” have differing
slopes, corresponding to distinct critical evolutions.
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The choptuon being such a strong attractor likely explains
why this effect was not seen along the type II section of
the boundary. The influence of a hypothetical third critical
solution, whose properties would seem necessarily similar
to—but not precisely the same as—themetastable star,might
be responsible for this interesting behavior. Another explan-
ation could attribute the effect merely to a change in the
dynamical behavior of the type I attractor: in this case,
Figs. 19 and 20 suggests that this evolution in itself is a rather
involved phenomenon.

VI. CONCLUSION

We have put the claims advanced in our previous
paper [7] on more quantitative grounds by numerically
investigating dominant perturbative exponents across
the collapse/dispersal boundary of Fig. 1, employing two
separate methods as cross-checks to ensure consistency. We
justified our categorization for the reason of the drastically
different dominant exponents and timescales at play across
the various sections of the dispersal/collapse boundary.
Furthermore, our analysis of the varying dominant expo-
nent along the type I section of the boundary suggests
the existence of an emergent third critical solution, as we
suggested following an alternative possibility considered
by Gundlach et al. [9].
A large portion of the numerical region between the triple

point and the regime of the pure massive field has proven to
be numerically intractable using our current methods. While
a third critical solution with influence near that of the type I
solution could explain this difficult behavior, the lack of
quantitative surety leaves much unexplained absent results
by a satisfactory alternative approach.
Qualification, too, of the nature of the jumpswe observe in

the type I collapse times may warrant further investigation,
clarifying whether such jumps are seen close to the triple
point at greater precisions and what determines the height of
the jumps and the lengths of their associated ridges. For the
reason that the slopes of the ridges reflect a change in the
dominant perturbative exponent, we can wonder whether
structures in the numerically intractable region exhibit
features associated with such changes as well, since accord-
ing to our hypothesis they share a common origin.
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