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In this paper we present several set of solutions of static and spherically symmetric solitonic boson stars.
Each set is characterized by the value of σ that defines the solitonic potential in the complex scalar field
theory. The main features peculiar to this potential occur for small values of σ, but for which the equations
become so stiff as to pose numerical challenges. By solving the full system of field equations without
simplifications we build the sets for decreasing σ values and show how they change their behavior in the
parameter space, giving special attention to the region where thin-wall configurations dwell. The validity of
the thin-wall approximation is explored as well as the possibility of the solution sets being discontinuous.
We investigate five different possible definitions of a radius for boson stars and employ them to calculate
the compactness of each solution in order to assess how different the outcomes might be.
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I. INTRODUCTION

Boson stars (BSs) are among the most promising can-
didates for black hole mimickers. Since they first appeared
in the literature half a century ago [1,2] as the realization of a
free complex scalar field bound by its own gravitational
field, many generalizations have been made. Of particular
interest is the inclusion of self-interaction potentials that
allow bound states to arise even in the absence of gravity,
the so-called Q-balls [3]. These potentials must contain an
attractive term while still being bounded from below, such
that a degenerate vacuum state occurs with the appearance
of a local minimum. The shortest polynomial form of such a
potential in a parity-symmetric theory is given by a
quadratic, a quartic, and a sextic term, e.g., U ¼ c2ϕ2þ
c4ϕ4 þ c6ϕ6, with c2, c6 > 0 and c4 < 0. Q-Balls belong to
a particular class called nontopological solitons, whose
stability is only possible due to a conserved Noether charge
Q associated with the underlying internal symmetry of the
theory, hence the name.
This sextic potential has been widely investigated in the

literature. Static and rotating Q-balls first appeared together
in [4]. Extended solution sets for both Q-balls and boson
stars with different gravitational coupling strengths for both
static and rotating systems were done in [5] and extended
in [6] to include odd-parity solutions. Their stability
properties were studied via catastrophe theory for both
static [7] and rotating configurations [8]. Excited solutions

of rotating boson stars were studied in [9], while rotating
solutions of the gauged theory described by this self-
interaction were given in [10].
An interesting particular form of the sextic potential,

mostly referred to as “solitonic,” was proposed in [11] for
solitons in renormalizable theories containing a Hermitian
field. Its form is given by U ¼ μ2ϕ2ð1 − ϕ2=σ2Þ2 such that
the interacting sector is determined by the σ parameter.
These theories have the property of having a potential that
goes to zero at the false vacuum, where ϕ ¼ σ. For large
values of σ the system resembles that of miniboson stars,
but as this parameter’s value decreases, the equations
of motion get stiffer. In turn, the system has been less
investigated in its full nonlinear form, but a special
approximation becomes feasible in a certain point of the
parameter space where the solution is said to be the “ideal
thin-wall configuration.” In this configuration, the scalar
field is constant and equal to σ within the star and drops off
harshly to zero at the star’s effective surface transitioning
from the false to the true vacuum state. Assuming this
configuration is indeed a possible solution of the system,
the equations can be simplified considerably and it is within
this context that most studies involving solitonic boson
stars (SBSs) have been made. Two pioneer works in this
sense followed one another in the 1980s [12,13]. At the
same time, without any kind of approximations, the
equations of motion become increasingly stiffer as one
approaches the thin-wall regime, making it much more
challenging to handle numerically. Note that throughout
this paper, the word approximation is meant at the level of
the equations. In all numerical schemes there is always
some approximation present, such as the choice of dis-
cretization for instance.
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Boson stars have masses and sizes ranging from atomic
to Galactic scales, depending on the scalar field’s bare mass
and the potential defining the theory [14]. One of the main
motivations to study these systems is the possibility to
obtain highly compact solutions of astrophysical relevance
whose spacetime serves as stage to phenomenology much
similar to that of black holes’, hence the term black hole
mimicker. On the other hand, understanding how to tell
compact boson stars from black holes is fundamental to
probe their existence. Different types of observations
expected from future missions will guide us in this task.
Nevertheless, in the context of general relativity alone, the
parameter spaces that need to be swept when considering
boson stars and hairy black holes [15] are rich enough for
single observations to map to multiple configurations. Self-
gravitating scalar fields alter the spectrum observed from
x-ray binaries and the accretion process [16–22] and yield
different imaging results than bald black holes [23,24]
when comparing objects of equal mass and angular
momentum. The most stringent constraints will likely
come from gravitation waves detection, as they carry
imprints from regions beyond the light ring radius, besides
providing the clearest evidence of an event horizon, if
present. SBSs have been considered in some gravitational
wave studies. In [25], a hybrid scheme is used to calculate
the fluxes and waveforms of extreme mass ratio inspirals
(EMRIs) where the central object is a supermassive SBS in
the thin-wall regime. Since then, other works have been
done for both EMRIs and similar mass binaries [26–29].
Several boson star solutions containing light rings are

known in different interacting theories, but the maximum
compactness they might achieve is still an open question,
especially given that there is no clear and intuitive
definition for it. Recently, two papers came out in the
literature approaching among other things the question of
how compact SBSs can actually be. In [30], the authors
approximated solutions within the thin-wall regime and
found that in four spacetime dimensions the maximum
compactness is C ¼ 0.355. This value is way below the
Buchdahl bound (CB ¼ 4=9) [31], but just above the
maximum compactness (CBþC ¼ 0.354) a fluid star can
have if, besides obeying Buchdal’s assumptions, its equa-
tion of state is causal [32]. Beyond the approximations
supported by the thin-wall regime, the full set of nonlinear
equations were solved for different values of the σ
parameter in [33], for which the maximum compactness
achieved was C ¼ 0.336. There, the authors also find good
agreement between the solutions obtained numerically and
those from a semianalytical approach and investigate also
other forms of self-interaction.
Charged and uncharged SBSs are part of the scope of

investigation in [34], among with topological and non-
topological solitons. The authors find that, for a particular σ
value, the set of SBSs does not host thin-wall solutions,
but the gauged theory (with the appropriately chosen

elementary charge) does. As the configurations approach
the limit ϕð0Þ → σ, the mass and total charge diverge, which
is what also occurs to nontopological solitons. Similar results
were obtained in [30], where the authors showed that new
solutions exist for increasing ϕð0Þ > σ, departing from the
thin-wall regime. The solution curve is then discontinuous
and constituted of two disjoint branches.
In this work, we present several solution families,

focusing mainly on low values of σ for which the special
character of SBSs becomes more prominent. In Sec. II we
go over the theory of SBS, present the equations of motion,
boundary conditions required by the localized regular
system, and global charges and discuss the validity of
the thin-wall approximation. Different possibilities to
define an effective radius of a compact object are also
discussed. A brief description of the numerical methods
employed to solve the system of ordinary differential
equations (ODEs) is given in Sec. III and the results are
presented in Sec. IV. Section V explores the different
outcomes and possible pathology of the previously defined
radii in terms of the resulting compactness. We finally
conclude in Sec. VI. Throughout this paper we adopt the
metric signature ð−;þ;þ;þÞ and c ¼ 8πG ¼ 1.

II. THEORY

A. Action

The theory that gives rise to the self-gravitating scalar
matter we here present is simply general relativity with a
minimally coupled complex scalar field. The action is
given by

S ¼
Z �

R
2κ

− ∂μΦ�
∂
μΦ − UðjΦjÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where R is the scalar curvature, Φ is the scalar field with a
self-interaction potential U, κ is the gravitational coupling,
gμν is the metric tensor, and g is its determinant. Varying
this action with respect to gμν leads to Einstein’s field
equations,

Rμν −
1

2
Rgμν ¼ κTμν; ð2Þ

where the energy-momentum tensor reads

Tμν ¼ gμνLΦ − 2
∂LΦ

∂gμν

¼ −gμν½∂αΦ�
∂
αΦþ UðjΦjÞ� þ 2∂μΦ�

∂νΦ: ð3Þ

The extra equations come from varying Eq. (1) with
respect to the scalar field, yielding the Einstein-Klein-
Gordon equation, �

□ −
∂U
∂jΦj2

�
Φ ¼ 0: ð4Þ
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The potential function, together with its parameters,
define the complex scalar field theory. The character of
the solutions is highly dependent on it and many different
kinds have been extensively studied. A particular interesting
class of theories is the so-called solitonic, in which bound
configurations named Q-balls [3] exist even in the absence of
gravity. In order to achieve this feature, the potential must
contain both attractive and repulsive terms, as to profile a
local minimum corresponding to the false vacuum state. A
well-known form, which we adopt here, is simply

UðjΦjÞ ¼ μ2Φ2

�
1 −

Φ2

σ2

�
2

; ð5Þ

where μ is the mass of the boson and σ introduces a new
energy scale for the interaction. This is a particular case of
the more general sextic potential, as explained in Sec. I,
as the two vacuum states are degenerate [UðjΦj ¼ 0Þ ¼
UðjΦj ¼ σÞ ¼ 0]. This was first proposed in [13], but its full
numerical investigation without any approximations is
somewhat still lacking due to the stiffness properties of
the equations of motion that emerge from this choice of
potential. Recently, not approximated solutions have been
reported in [30] for a gauged theory and for a set of σ values
in the not gauged case in [33]. Here, however, we intend
to find extensive sets of solutions for low values of σ.
Throughout the rest of this paper, we assume κ ¼ 1.

B. Ansätze and equations

The objects we describe produce a static and spherically
symmetry spacetime which is asymptotically flat. We
employ spherical coordinates such that the line element
is written as

ds2 ¼ −eνdt2 þ eλdr2 þ r2dΩ2; ð6Þ

and ν and λ are the only two unknown metric functions.
The scalar field is time dependent, but only harmonically

such that its Lagrangian remains stationary. Thus,

Φðt; rÞ≡ ϕðrÞeiωst; ð7Þ

where ωs is the field’s natural frequency. Plugging these
parametrizations into Eqs. (2) and (4) results in a set of
three ODEs for the functions ν, λ, and ϕ that we need to
solve. We cast them as

λ0 þ eλ − 1

r
− rϕ02 − reλU − reλ−νω2

sϕ
2 ¼ 0; ð8Þ

ν0 þ 1 − eλ

r
− rϕ02 þ reλU − reλ−νω2

sϕ
2 ¼ 0; ð9Þ

ϕ00 þ
�
ν0 − λ0

2
þ 2

r

�
ϕ0 þ eλ−νω2

sϕ −
1

2
eλ

∂U
∂ϕ

¼ 0: ð10Þ

C. Boundary conditions and asymptotic expansions

The set of Eqs. (8)–(10) requires us to prescribe
boundary conditions as to grant regularity everywhere
and asymptotic flatness at spatial infinity. To that end,
we have at the origin

λð0Þ ¼ 0; ϕ0ð0Þ ¼ 0; ð11Þ

while at infinity the scalar field must trivialize

λðr∼∞Þ¼0; νðr∼∞Þ¼0; ϕðr∼∞Þ¼0: ð12Þ

Near the center of the star, by expanding each function
in a polynomial series and solving the equations for each
power of r, we find the leading order contributions to be

ϕðr ∼ 0Þ ¼ ϕ0 þ
ϕ0½ð3ϕ2

0 − σ2Þðϕ2
0 − σ2Þeν0 − ω2

sσ
4�

6eν0σ4
δr2;

ð13Þ

eνðr∼0Þ ¼ eν0 −
ϕ2
0½ðϕ2

0 − σ2Þ2eν0 − 2ω2
sσ

4�
3σ4

δr2; ð14Þ

eλðr∼0Þ ¼ 1þ ϕ2
0½ðϕ2

0 − σ2Þ2eν0 þ ω2
sσ

4�
3eν0σ4

δr2; ð15Þ

while at infinity

ϕðr → ∞Þ ¼ c0
exp ð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

s

p
Þ

r
; ð16Þ

e−λðr→∞Þ ¼ eνðr→∞Þ ¼ 1 −
2M
r

þOðr−2Þ; ð17Þ

where M is the Arnowitt-Deser-Misner mass of the star.

D. Charge, mass, and radius

The complex scalar field theory is endowed with a global
Uð1Þ symmetry, such that its Lagrangian is invariant under
transformations of the kind Φ → Φeiα, for any constant α.
This gives rise to a conserved Noether current,

jμ ¼ −iðΦ�
∂
μΦ −Φ∂

μΦ�Þ: ð18Þ

The projection of this current onto the future-directed
unit timelike vector nμ ¼ ðe−ν=2; 0; 0; 0Þ gives a charge
density such as measured by a fiducial observer. Hence, the
integral of this density over the whole three spatial volume
Σ yields a conserved Noether charge, associated with the
particle number of the bosonic ensemble,

Q ¼
Z
Σ
jμnμdV; ð19Þ

where it is clear that ∂tΦ ¼ 0 → Q ¼ 0.
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The global mass of the system can be extracted asymp-
totically with the aid of Eq. (17). Due to asymptotic
flatness, this matches the Komar integral in terms of the
Killing vector associated with stationarity, ημ ¼ ð1; 0; 0; 0Þ,

M ¼ −2
Z
Σ
RμνnμηνdV ¼ −

Z �
Tt

t −
1

2
T

� ffiffiffiffiffiffi
−g

p
dr: ð20Þ

It is useful to define a Komar density, given by the
integrand of the above expression, namely ρK ¼
ð1
2
T − Tt

tÞ ffiffiffiffiffiffi−gp
. Similarly, integrating Eq. (8) by parts

and using the expansion (17), one finds

M ¼ −
1

2

Z
r2Tt

tdr; ð21Þ

such that another density, as measured by a fiducial
observer, can be defined ρF ¼ − 1

2
r2Tt

t.
Boson stars possess no surface, i.e., there is no point

where the density goes abruptly to zero as the pressure
reaches the same value. The scalar field extends to infinity,
but falls off exponentially as given by Eq. (16). The
solitonic potential (5) allows for solutions characterized
by a sudden drop of the scalar field similar to a Heaviside
function as discussed bellow, but even then there is always
a residual tail in its profile. Hence, there is no unique and
straightforward definition of a radius and, consequently,
of the compactness of a boson star. Mostly, the radius is
assumed to be that which defines a surface that envelops
some percentage of total mass or charge of the star. Since
these stars are spherically symmetric and because of
Birkhoff’s theorem, it is also interesting to define a radius
as the point where some geometrical quantity matches that
of Schwarzschild metric to a chosen degree of accuracy. In
what follows, we make five different definitions of radius:

(i) R1: The radius of the 2-sphere that envelops 99.9%
of the mass, as the integral of the Komar density.

(ii) R2: The radius of the 2-sphere that envelops 99.9%
of the mass, as the integral of the fiducial density.

(iii) R3: The radius of the 2-sphere where gtt matches
Schwarzschild metric to 0.999 accuracy.

(iv) R4: The radius of the 2-sphere where grr matches
Schwarzschild metric to 0.999 accuracy.

(v) R5: The radius of the 2-sphere where the Kretsch-
mann scalar K≡ RμνγτRμνγτ matches Schwarzschild
metric to 0.999 accuracy.

The compactness is defined as the ratio between the
total mass and the radius and thus comprehends also five
definitions such as Ci ≡M=Ri for i ∈ ½1; 5�.

E. Thin-wall regime

Ideally, thin-wall configurations consist of solutions
whose scalar field profiles as a Heaviside function, being
constant in the interior region such that ϕ ¼ ϕ0 for
r ∈ ½0; RS� and zero thereafter, ϕ ¼ 0 for r > Rs. At the

point where the scalar field drops abruptly to zero, RS is
then identified with the star’s surface and all the solitonic
particles pile up there such that the interior is empty. Due to
spherical symmetry and the shell theorem, spacetime is
then flat inside and the metric function grr is discontinuous
at RS, where it jumps from one to log ð1 − 2M=RSÞ.
According to Eqs. (8)–(10), this regime is only exact if
either the field is trivial (and spacetime is flat everywhere)
or if ϕ ¼ σ in the interior and ωs ¼ 0. Recall that the latter
corresponds to the system being in a false vacuum state,
U ¼ ∂ϕU ¼ 0. However, a trivial field’s frequency yields
zero Noether charge and therefore the regime can only exist
approximately.
In fact, we can expand Eq. (10) around ϕ ¼ σ þ δϕ at

an arbitrary location inside the star. Assuming δϕ ≪ σ
and since δϕ0 and δϕ00 are higher order contributions, one
arrives at

δϕ ∼
ω2
sσ

4eν − ω2
s
; ð22Þ

in agreement with the statement above. Indeed one can
substitute ϕ ¼ σ þ δϕ from the equation above in Eq. (13)
to verify that the second order contribution trivializes at the
center. In fact, there are many solutions which resemble the
ideal thin-wall configuration. Those solutions comprehend
the “thin-wall regime,”where the expansion above is valid. In
this domain, as δϕ decreases, the stiffer the equations of
motion become due to the loss of smoothness in bothϕ and λ.

III. NUMERICAL SCHEME

In order to find the solutions we make no assumptions of
their nature, i.e., we do not employ usual approximations
describing system within the thin-wall regime, but rather
solve the full set of nonlinear equations and infer from the
results where this region resides. The set of ODE equa-
tions (8)–(10) is solved by employing a B-spline colloca-
tion method with a relaxed Newton scheme for the
nonlinear system with aid of the boundary-value-problem
solver COLSYS [35]. In every case, we adopted a tolerance
of 10−7 for each component for the Newton scheme.
Einstein’s field equations yield a fourth linearly indepen-
dent equation, which is computed as a consistency check.
The solution is accepted if the norm of the residual
averaged by the number of internal grid points is below
our tolerance.
Throughout the parameter space we adopt two strategies

to find the solutions. In the regions where the central value
of the scalar field varies monotonically from one solution to
the next, we promote ωs to a variable by adding to the set
the simple ODE dωs=dr ¼ 0. By doing so, we suggest a
value of this parameter as an initial guess, but gain one
extra boundary condition (BC) to assign. Therefore, we
set the two BCs in Eq. (11), the last two in Eq. (12), and
also set the central value of the scalar field ϕð0Þ ¼ ϕ0.
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Each solution serves well as an initial guess to the next one
until we reach a turning point in ϕ0. In this region, we
assign values for ωs instead and let ϕ0 be fixed by the
solution. In order to obtain solutions covering the whole
space, we compactify the radial coordinate as r¼x=ð1−xÞ,
and work with x instead, solving in the interval x ∈ ½0; 1�
corresponding to r ∈ ½0;∞Þ.
The main aim of this work is to evaluate and assess entire

families of solutions characterized by a particular value of σ.
As this parameter gets smaller, more and more solutions fall
within the thin-wall regime, and smaller is the minimum
value of δϕ from Eq. (22) therein. Thus, the system becomes
gradually stiffer until a point where our numerical methods
fail to converge within reasonable tolerance. As we keep
increasing ϕ0 convergence is eventually regained and new
solutions are found in a different part of the parameter space.
In turn, we obtain two disjoint branches of solutions. It is not
possible to assert whether solutions do indeed exist every-
where between the branches for every value of σ. Shooting
methods with a variety of algorithms suitable for stiff
problems were used with arbitrary precision and they all
rendered instabilities. More sophisticated methods are
required to evaluate this matter. Therefore, we present
solution sets with decreasing σ only until the first one
presents a gap, i.e., a region in the thin-wall regimewhere no
solutions were found. A similar discontinuity was reported
in [30] for gauged solitonic stars with sufficiently large
elementary charge, in the same region where the thin-wall
regime occurs, but for considerably larger σ.

IV. SOLUTIONS

We have computed extensive sets of solutions for eight
different values of σ, namely σ ¼ f0.1; 0.13; 0.15; 0.2; 0.3;

0.4; 0.5; 1.0g. We recall that the limit σ → ∞ corresponds
to the free theory that gives rise to miniboson stars. Figure 1
displays the ωs vs M diagram on the left panel and R vs M
on the right one, for the definition of the radius given in
terms of the Kretschmann scalar (R5). The usual spiraling
behavior peculiar to solitonic stars is also present in these
diagrams. This is highlighted by the insets shown in the left
panel, and solutions seem to exist indefinitely with increas-
ing ϕ0 and converging ωs. Furthermore, the smaller the
value of σ, the greater the range of solutions in ωs, M, and
R, and more compact solutions appear. The σ ¼ 1.0 case
resembles much more the miniboson star, as there is only a
global maximum of the mass before the turning point on the
left panel, indicating that this parameter value is already too
large to unveil the distinct features brought up by the
interacting theory. Note that the curve for the lowest
value σ ¼ 0.1 is composed by two disjoint branches.
The solutions of the second branch lie too near on another
in these diagrams, but will become clearer below.
Nevertheless, it is visible on the right panel around
R ∼ 50 and M ∼ 17. No solutions were found between
those branches and the gap becomes even greater for lower
values of the self-interaction parameter, for which reason
we take this to be our limiting solution set. Similar values
might appear for differently scaled Lagrangian densities,
which in reality rescales the value of the field and the
parameters involved. Recently, an involved study was
done in [33], for both Q-balls and boson stars, where
the authors compare numerical results with analytical
approximation made by considering three different zones
in the soliton, namely the interior, the boundary, and the
exterior. In two of their sets the σ value is small enough to
host thin-wall solutions. Nevertheless, to our knowledge,

FIG. 1. Solution sets for eight values of σ. Left: mass vs frequency diagram. Similar to the free theory and to other interacting
potentials, the curves wind up around a fixed point in ωs. The σ ¼ 1.0 case resembles the sets of miniboson stars where the upper branch
(before the turning point at minωs) contains only the global maximum in the mass. For the other sets, there is a local maximum of the
mass which approaches the limiting solution at ωs ∼ 1 the more σ decreases, while the global maximum is precisely at minωs. Two
insets are present (case σ ¼ 0.3) to highlight the spiral trait in the parameter space. Right: mass vs radius diagram. Lower values of the
interacting parameter yield sets of solutions containing more compact solutions.
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thorough investigation of lengthy sets of solutions for such
small values of σ as well as a detailed analysis of the
possible (non)existence of solutions in this regime has not
been reported in the literature before without imposing
approximations.
In Fig. 2 we present the parameter space of the solution

sets, as well as the mass vs the field’s central value (ϕ0)
diagram. While for large enough values of σ the solutions
can be parametrized by ϕ0, as miniboson stars can, this fails
to be true for lower values as the solutions are not uniquely
determined by it. Instead, by following the curves from the
top left (ωs=μ ¼ 1, ϕ0=σ ¼ 0), as they cross the vertical
line corresponding to ϕ0=σ ¼ 1 they bend back toward this
line and this effect is enhanced with decreasing σ. After
reaching a local minimum of ϕ0 > σ, the central value of
the scalar field starts to grow back and from there on
increases monotonically while slightly oscillating around a
particular value of ωs, which translates to the spiraling
regions of Fig. 1. It is precisely at this backbend region that
solutions in the thin-wall regime dwell. The vertical line
illustrates where solutions characterized by their cores
being in false vacuum state would lie. Because of
Eq. (22), we know that the curves cannot cross this line
after the backbend, as the ideal thin-wall solution would be
the point (ϕ0 ¼ σ, ωs ¼ 0) which is not a solution.
The solution set of σ ¼ 0.1 is more visible in this figure

as the second branch spans a wider range in ϕ0 than in the
previously shown parameters. The set presents a maximum
mass of Mmax ¼ 17.3=μ and a minimum of the frequency
of ωsmin ¼ 0.079μ. However, if solutions do exist in the
gap, meaning they were not found due to numerical
challenges, one can expect from the behavior of the other

sets that the maximum of the mass is to be higher than this
value and similarly the minimum of the frequency smaller
than the one found. In fact, discontinuous sets were found
for gauged solitonic stars if the elementary charge is large
enough [30,34]. The breaking point also happens as the
thin-wall solutions approach the ϕ0 ¼ σ limit. As reported
in those papers, the mass seems to diverge at this point and
gtt → 0. In contrast, we will see below that for SBSs gtt
tends to zero at the center of the spiraling region shown in
Fig. 1, as ϕ0 keeps increasing.
In Fig. 3 we show the behavior of the scalar field and the

metric functions for the two limiting solutions at the edges
of the gap in the set of σ ¼ 0.1. Notice that x is the
compactified coordinate defined previously. In both cases,
the scalar field drops to zero very abruptly but the interior
behaviors are fairly different. In the case depicting the first
edge of the gap, the solution is in the region of the thin-wall
regime. The central value is very close to σ and the first and
second derivatives of the field are negligible until the star’s
surface. The second edge solution is different as the field is
still dynamical in the interior. This is reflected in the profile
of the metric functions, shown in the right panel. The thin-
wall solution presents almost constant metric functions in
the interior, meaning that the spacetime is nearly flat inside
the star. This is simple to conceive since the thin-wall star
can be thought of as a massive shell of scalar matter and
because of spherical symmetry any point inside this shell is
not gravitationally affected by it. If the field keeps varying
in the interior, as it is for the second solution, the metric
functions must of course behave differently. Note that −gtt
drops very rapidly as one moves closer to the center of the
star where exp ν0 ∼ 1.5 × 10−4.

FIG. 2. Solution sets for eight values of σ. The set σ ¼ 0.1 features two discontinuous branches as solutions could not be found in the
region in between. Left: the field’s frequency against the central value of the field. We notice a backbend in the family of solutions with
σ ¼ 0.3 or lower, meaning that the central value does not uniquely determine the solution. This backbend branch where ωs decreases
with slightly decreasing ϕ0 is where the thin-wall solutions dwell. The smaller the self-interaction parameter is, the closer the curve gets
to the vertical line which characterizes solutions with ϕ0 ¼ σ, but also the greater the gap between the branches becomes. Right: mass
with respect to the central value of the field for the same families of solutions. Decreasing σ increases the maximum of the mass and
overall the solutions here presented span over 2 orders of magnitude in the mass.
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In the left panel of Fig. 4 we display the Kretschmann
compactness (defined as C5 ¼ M=R5) of the solutions
with respect to ϕ0=σ. In all cases, the solution with the
maximum compactness occurs at the minimum value of ωs,
still near ϕ0 ¼ σ. As expected, smaller σ generally result in
greater maximum compactness, but for σ ¼ 0.1 this fails to
be true as the gap between the branches encompasses the
region where the solution of maximum compactness should
reside. The solid parts of each curve contain no light rings
while the dashed ones possess two. The filled area on the
top of the plot encompasses the whole domain where
C5 > 1=3. For any sensible definition of compactness, any

solution that lies in this region should contain light rings.
Nevertheless, it is always possible to have light rings in
configurations of smaller compactness as those can reside
in the stars interior. The maximum compactness C5 for
each set is f0.321; 0.339; 0.334; 0.311; 0.260; 0.206; 0.160;
0.093g with increasing σ. This is in agreement with the
result reported in [33] which has a lowest σ value slightly
higher than our σ ¼ 0.13 and a less stringent definition for
the effective surface radius (one that encompasses 99% of
the mass). In the right panel we present the central value
of the scalar field as a function of the central value of −gtt.
While ϕ0 is not well suited to parametrize the solution,

FIG. 3. Limiting solutions at the gap of the set σ ¼ 0.1. Left: scalar field profile with respect to the compactified coordinate x. The
system right before the gap falls within the thin-wall regime, i.e., nearly constant ϕ in the interior followed by an abrupt drop off to zero
at the effective surface. At the other end of the gap, where solutions were again found, the system has departed considerably from this
regime, but there clearly is a similar drop off for the field. Right: the metric components gtt and grr for both solutions. In the interior of
the first solution these components are almost constant, yielding an almost flat spacetime. That is not the case for the second solution, for
which grr is much less smooth near the effective surface and gtt gets very close to zero in the interior.

FIG. 4. Left: compactness vs ϕ0, where we define C5 ¼ M=R5. The dashed parts correspond to solutions containing light rings, which
can occur for C5 < 1=3, since they can dwell in the interior domain. The highest compactness we find from all of these solutions happens
for σ ¼ 0.13, and not for σ ¼ 0.1which does not present solutions in this specific region. Right: the central value of the field is displayed
as a function of the central value of the metric function ν. This value can actually parametrize the solutions as it uniquely determines
them for each set. We see that asymptotically, as ϕ0 grows indefinitely, gtt tends to zero at the core.
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ν0 is. Its value uniquely determines the solution within each
set defined by σ. As we mentioned previously, solutions
continue to exist for ever-growing ϕ0, and we see from the
figure that, as we advance in this direction, gtt at the center
approaches zero asymptotically. We remark that these
solutions lie on the unstable branch and should probably
not exist in nature and that the central value of grr is set to
unity in all cases via the boundary conditions. Even in the
extreme case where gtt goes to zero at the center, that would
not represent a black hole as there would be no null
hypersurface. In fact, hairy black holes only exist for the
given theory if the synchronization condition is satisfied,
i.e., ΩH ¼ −ωs=m [15], where ΩH is the event horizon’s
angular velocity. Since we are restricting our analysis to

static spacetimes, the condition cannot be satisfied for a
nontrivial scalar field. Nevertheless, we remark that, in the
rotating case (where the curve is parametrized by ∂

m
r ϕ0),

the solitonic curve approaches asymptotically the extremal
hairy black holes curve [15]. Turning our attention back to
the system at hand, if exp ν0 → 0 as ϕ0 grows indefinitely,
asymptotically one should get a naked singularity instead
of a hole, as the scalar curvature at the origin

R0 ¼ 2

��
1 −

ϕ2
0

σ2

�
2

μ2 − ω2
se−ν0

�
ϕ2
0; ð23Þ

and the Kretschmann scalar

K0 ¼
4

3
ϕ2
0

��
1 −

ϕ2
0

σ2

�
2

μ2R0 þ 5e−2ν0ω4
sϕ

2
0

�
ð24Þ

both diverge. On the other hand, it is clear that in the
idealized thin-wall regime (ϕ0 ¼ σ and ωs ¼ 0) both
quantities disappear at the center as the interior spacetime
is flat.

V. COMPACTNESS

In what follows we focus on one particular set of
solutions, i.e., that of σ ¼ 0.15, and explore the different
definitions of compactness given in II D. This is the set with
largest value of σ to achieve C > 1=3. All five compactness
definitions for this set are plotted in Fig. 5 with respect
to ϕ0=σ. As previously, solutions lying in the solid parts
contain no light rings, while those in the dashed possess
two. We note that the definitions C2, C4, and C5 fall near
one another. Moreover, definitions C1 and C3 are patho-
logical as within them a star might have a compactness
greater than 1=3 but contain no light ring. Overall, the

FIG. 5. The five different compactness definitions for the
σ ¼ 0.15 set in terms of the scalar field’s central value. Defi-
nitions C2, C4, and C5 fall very near one another at the regime of
high compactness, while C1 and C3 present much higher values.
In fact, these latter two definitions are pathological as they allow
solutions to feature C > 1=3 in the absence of light rings.

FIG. 6. Selected solutions in and around the thin-wall regime for σ ¼ 0.15. Left: the field’s frequency against the central value of the
field for the whole set with the six solutions highlighted. Right: the scalar field’s profile of each of those solutions with respect to the
compactified coordinate x.
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definition of compactness is intuitively fuzzy as there is no
definition of local mass in general relativity. In most static
spacetimes this notion is more straightforward as there is a
clear radial value which defines an exterior Schwarzschild
region. Because boson stars have no surface, this concept
becomes ambiguous. Observationally, light rings are prob-
ably the most important feature to characterize a threshold
in any compactness definition. Objects with photon spheres
cast shadows and are therefore good contenders for black
hole mimickers. Yet, since this bosonic sector only interacts
gravitationally with ordinary matter, the existence of light
rings in the interior of the star yields even more confusion
to the definition of a compactness. After all, if a non-
compact star has a very dense core containing photon
spheres and light and matter can move freely in there, we
would perceive it as an exotic compact object.
We select six configurations of stars in or near the thin-

wall regime. These are depicted in Fig. 6. The left panel
displays the whole set in the ϕ0=σ vsωs=μ diagram with the
chosen solutions highlighted, while the right panel profiles
these scalar fields with respect to the compactified coor-
dinate x. Solutions S1 and S2 are still approaching the thin-
wall regime and feature wider tails in the scalar field
dropoff. On the other hand, solution S6 is departing from
this region, and while the field still drops off very steeply, it

is a bit bulgy in the outer core. Such effect is enhanced as
we move to the right in the left panel with increasing ϕ0=σ,
as can be read off from the left panel of Fig. 3.
The five values of compactness, corresponding to

each definition, are displayed in Table I. In any case, the
solutions S1–S6 go increasing in compactness. Overall, C2

tends to be more conservative and provide the smallest
values, while C1 yields the largest ones. As we move
across the solutions, the differences between the definitions
decrease and there is special good agreement between C2,
C4, and C5. The only solution featuring a compactness
of C > 1=3 according to at least one definition is S6,
which is the only one to contain light rings indeed. We
recall that light rings occur at a point where the quantity
δlr ¼ 2gtt − rg0tt becomes zero.
Definitions C3, C4, and C5 are based on geometrical

deviations from Schwarzschild metric. In Fig. 7 we show
the profile of the metric components of each selected
solution with respect to the radial coordinate and contrast
them with the Schwarzschild metric. In the left panel gtt is
plotted against r, and it is clear that, at the point of deviation
from Schwarzschild metric, the slope of the curves are
different. This is the reason why the first solutions to reach
C3 > 1=3 in Fig. 5 contain no light rings. The metric
component grr approaches Schwarzschild metric at a
considerably higher radius than gtt, as can be seen from
the right panel, yielding a smaller compactness in C4.
Similarly, we display C5 in the left panel of Fig. 8, which is
defined with respect to the deviation in the Kretschmann
scalar. This curvature invariant does not vary monotonically
with the radius in the presence of matter. In particular, as it
deviates from Schwarzschild metric with decreasing r,
there is a local maximum followed by a local minimum in
its profile. Thereon, the curvature might grow a small
amount and remain nearly constant until the core (those
solutions closer to the ideal thin-wall regime) or keep on

TABLE I. Compactness of each selected solution.

C1 C2 C3 C4 C5

S1 0.036 0.016 0.043 0.021 0.021
S2 0.057 0.029 0.046 0.034 0.034
S3 0.121 0.081 0.098 0.085 0.085
S4 0.258 0.204 0.222 0.206 0.207
S5 0.301 0.245 0.263 0.246 0.247
S6 0.388 0.330 0.350 0.329 0.332

FIG. 7. Metric deviation from Schwarzschild [Schwarzschild black hole (SBH)] for the selected solutions with respect to the radial
coordinate. Left: gtt component. Right: grr component.
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growing all the way to the center of the star (and in many
cases easily surpassing 0.75M4, that is its value at the event
horizon for a Schwarzschild black hole).
In order to clarify the main difference betweenC1 andC2

and justify why C1 is a bad choice of definition, we profile
the densities ρK and ρF for a typical solution in the right
panel of Fig. 8. The integrals of these densities are only
equal in the interval r ∈ ½0;∞Þ. Furthermore, as these
solutions violate the strong energy condition (SEC), ρK is
negative in some radial domain. Hence, by integrating it
subsequently in finite intervals of r, the value of 0.999M
is reached much earlier than when integrating ρF, as the
integral yields values above M before reaching the region
where ρK < 0. In passing, let us mention that solutions that
violate the SEC are much more abundant in solitonic
theories than others. Thus C1 may still give a reasonable
measure of compactness for noninteracting stars or BSs
with a quartic potential. By analyzing ρK , we see it is
negative when 2ω2

sϕ
2 < eνU. Because the potential (5) has

a local maximum between ϕ ¼ 0 and ϕ ¼ σ, this inequality
is realized around the point where the scalar field drops off.

VI. CONCLUSIONS

In this paper we investigated the existence domain of
solitonic boson stars for several values of the parameter σ
which controls the solitonic potential (5) and defines the
interacting theory. We have paid special attention to values
of the parameters leading to solutions belonging to the
so-called thin-wall regime, where the scalar field inside the
solitonic star is nearly constant, followed by a sharp drop
that is exactly the thin wall. Such solutions are particularly
interesting because they can achieve very high compact-
ness, thus serving as efficient black hole mimickers.
Contrary to most of the previous studies, the solutions in

the present paper were obtained numerically and self-
consistently without any approximation.
As the limit σ → ∞ corresponds to the free scalar field

theory, by decreasing σ the solution sets depart from that
resembling miniboson stars and particular features of
solitonic stars become more prominent. In particular, while
for large σ the solutions are uniquely identified via the
central value of the scalar field ϕ0, for small σ values there
is a region in the parameter space near ϕ0=σ ∼ 1 where
three different solutions can be found. This region contains
the solutions belonging to the thin-wall regime. The range
in ωs, the field’s natural frequency, that each solution set
spans is inversely proportional to σ. Also, as σ gets smaller,
wider is the range in ωs within the nonuniqueness region.
Similar to ground state boson stars with different interact-
ing potentials, solutions can be found for continuously
increasing values of ϕ0 where ωs asymptotically oscillates
around a fixed point. A parameter that can serve to uniquely
determine each solution is the value of gtt at the origin,
with which one can therefore parametrize the solution. As
ϕ0 → ∞, gtt → 0, and the curvature invariants are singular
at the center. Besides being unstable, if solutions in this
limit existed they would not be black holes for the lack of
the null hypersurface, but would characterize naked sin-
gularities instead.
Through the construction of several families of solutions

each defined by the σ, we could show that as σ decreases
the closer the curves get to the line of ϕ0=σ ¼ 1 represent-
ing the thin-wall regime. Nevertheless, by expanding the
equations around this point we showed that no solution
exists exactly over this line, in this regime. Thus, the
approximate treatment of this thin-wall regime that can be
found in the literature, albeit helpful in mimicking con-
figurations near ϕ0=σ ¼ 1, does not correspond to real
solutions. We also did not find solutions in this region for

FIG. 8. Left: Kretschmann scalar profile of each solution in contrast to that of a SBH. Right: the defined densities ρK and ρF for a
typical solution. Since these systems violate the strong energy condition, ρK < 0 in a certain region and is therefore not suitable to be
used as a measure defining the compactness.
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sufficiently small values of σ, and while this could simply
be due to numerical difficulties, we cannot rule out the
possibility that some of those solutions do not exist as they
would approach the vertical ϕ0=σ ¼ 1 line ever more, to the
point where Eq. (22) cannot be satisfied anymore.
An important part of the paper is the discussion on the

possible definitions of compactness since, as it turns out,
some of the standard definitions might be misleading for
solitonic BSs or, more generally, stars whose scalar field
theory accounts for the existence of a false vacuum. We
have analyzed five different radii (and therefore compact-
ness) definitions. The first two are the radii that contain
99% of the star’s mass, calculated differently. The remain-
ing three are based on geometrical deviation from
Schwarzschild metric. We showed that two of them
are bad measure, namely C1 and C3 defined at the end
of Sec. II D. The first one C1 uses the radius that contains
99.9% of the mass when integrating the Komar expression.
This raises issues, as the integrand cannot be taken to be a
local density measurement, and because these configura-
tions violate the strong energy condition. Hence, the
integrand in the Komar mass integral can be negative in
some radial range and the calculated radius turns out to
be much smaller than any other effective one seems to be.

The second problematic compactness definition C3 uses the
smallest radial value for which the gtt component of the
metric deviates less than 0.1% from Schwarzschild metric.
But because the slope of gtt at this point is much different
than that of a Schwarzschild metric, the radius it yields falls
also short of an effective one. In turn, these definitions
allow for configurations with a compactness C > 1=3 but
featuring no light rings. The other three definitions C2, C4,
and C5 we employed presented no such issues and yielded
similar results among themselves. The maximum compact-
ness (defined in terms of the Kretschmann invariant) we
obtained is of C5 ¼ 0.339, found for the σ ¼ 0.13 set. In a
future work, we intend to explore the properties of these
solutions in astrophysical phenomenology and investigate
what imprints could there be to tell one compact (C > 1=3)
from another and from a black hole.
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