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The neutron star-black hole binary (NSBH) system has been considered one of the promising detection
candidates for ground-based gravitational-wave (GW) detectors such as LIGO and Virgo. The tidal effects
of neutron stars (NSs) are imprinted on the GW signals emitted from NSBHs as well as binary neutron
stars. The NS tidal deformability (λNS) was successfully measured by the binary neutron star signal
GW170817 but could not be constrained in the analysis of the two NSBH signals GW200105 and
GW200115 due to the low signal-to-noise ratio. In this work, we study how accurately the parameter λNS
can be measured in GW parameter estimation for NSBH signals. We set the parameter range for the NSBH
sources to ½4 M⊙; 10M⊙� for the black hole mass, ½1 M⊙; 2M⊙� for the NS mass, and ½−0.9; 0.9� for the
dimensionless black hole spin. For realistic populations of sources distributed in different parameter spaces,
we calculate the measurement errors of λNS (σλNS ) using the Fisher matrix method. In particular, we perform
a single-detector analysis using the advanced LIGO and the Cosmic Explorer detectors and a multidetector
analysis using the 2G (advanced LIGO-Hanford, advanced LIGO-Livingstone, advanced Virgo, and
KAGRA) and the 3G (Einstein Telescope and Cosmic Explorer) networks. We show the distribution of σλNS
for the population of sources as a one-dimensional probability density function. Our result shows that the
probability density function curves are similar in shape between advanced LIGO and Cosmic Explorer, but
Cosmic Explorer can achieve ∼15 times better accuracy overall in the measurement of λNS. In the case of
the network detectors, the probability density functions are maximum at σλNS ∼ 130 and ∼4 for the 2G and
the 3G networks, respectively, and the 3G network can achieve ∼10 times better accuracy overall.
Specifically, we investigate the distribution of σλNS for 10

3 Monte Carlo sources in our parameter range with
the NS mass fixed to m2 ¼ 1.4 M⊙, and the result shows that if the sources are located at dL ≃ 100 Mpc,
the parameter estimation results for ∼80% of the sources can distinguish between the theoretical EOS
models at the 1–σ level, using the 3G network. Additionally, we demonstrate that our probability density
function results are almost unaffected by different choices of the true value of λNS.
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I. INTRODUCTION

Since the first gravitational-wave (GW) signal was
detected in 2015 [1], the network of the two advanced
LIGO (aLIGO) [2] and advanced Virgo [3] detectors has
observed 90 GW candidates [4–7] through three observing
runs. All GW signals were emitted from a compact binary
coalescence (CBC) system such as binary black hole
(BBH), binary neutron star (BNS), and neutron star-black
hole binary (NSBH). Most GW sources originated from
BBHs, and various BH masses and spins were measured
from these signals. The sources of the two signals
GW170817 [8,9] and GW190425 [10] were identified as
BNSs, and GW170817 enabled us to directly measure
the NS tidal deformability for the first time through

observation means. In particular, since GW170817 had a
high signal-to-noise ratio (SNR) ∼32, it could be inferred
that the soft equation-of-state (EOS) model is preferred
over the stiff EOS model [9]. In parameter estimation for
BNS signals, a well-constrained tidal parameter is the
effective tidal deformability rather than the component
tidal deformability. The effective tidal deformability is
defined by the combination of the masses (mi) and the
component tidal parameters (λi). Since λ1 and λ2 are
generally strongly correlated, their measurement errors
can be large even though the effective tidal parameter is
well constrained as shown in the result of GW170817 [9].
On the other hand, the two NSBH signals GW200105

and GW200115 were also captured by the LIGO-Virgo
network during the third observing run [11] (for a brief
overview of NSBH mergers, refer to [12]). Since the GWs
from NSBHs also contain an NS tidal effect, information*chohs1439@pusan.ac.kr
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on the tidal parameter can be extracted from those
signals.However, the contribution of tidal deformability
to the waveform of the NSBH system is relatively small
compared to that of the BNS system, especially when the
BH mass is much larger than the NS mass. Therefore, a
sufficiently high SNR is required to measure the tidal
deformability from the NSBH signals. Unfortunately, the
observed NSBH signals were not able to constrain the tidal
deformability of the NSs well due to their low SNRs.
Meanwhile, a large advantage of the NSBH signals when
measuring the tidal parameter is that the individual NS tidal
deformability rather than the effective tidal deformability
can be obtained directly through parameter estimation
because the tidal deformability of BH is zero.
The purpose of this work is to investigate how accurately

the NS tidal deformability (λNS) can be measured from
NSBH signals. To this end, we utilize the Fisher matrix
method implemented in the PYTHON packageGWBench [13]
and calculate the measurement errors of λNS for realistic
populations of NSBH sources. Several parameter estimation
studies on the measurability of the NS tidal deformability
have been done using Bayesian analysis with stochastic
sampling on NSBH systems as well as Fisher matrix studies.
Lackey et al. [14] estimated tidal deformability from NSBH
systemswith nonspinningBHsby applying the Fishermatrix
method to the hybrid waveforms based on BBH waveforms
calibrated to NSBH numerical simulations, and they
extended it to the spinning NSBH systems in subsequent
work [15]. In the former, they showed that for a single aLIGO
detector, the tidal parameter λNS can be extracted to 10–40%
accuracy from single events for mass ratios of q ¼ 2 and 3 at
a distance of 100 Mpc, and in the latter, for q ¼ 2–5, BH
spins χBH ¼ −0.5–0.75, NS masses mNS ¼ 1.2 M⊙–
1.45M⊙, and a distance of 100 Mpc, a single aLIGO
detector can measure λNS to a 1–σ uncertainty of
∼10–100%. For both works, they showed that the uncer-
tainty in λNS is an order of magnitude smaller for the 3G
detector Einstein Telescope. On the other hand, Kumar et al.
[16] performed a Bayesian analysis of NSBH systems
with spinning BHs to study the measurability of λNS with
aLIGO and found that 20–35 events can constrain λNS within
25–50%, depending on the EOS.
This paper is organized as follows. In Sec. II, we introduce

various waveform models recently developed for use in GW
data analysis for BNS or NSBH systems based on the
effective-one-body (EOB) formalism and the phenomeno-
logical fit approach. Next, we give a brief overview of the
Bayesian parameter estimation and the Fisher matrix
approach in terms of parameter measurement accuracy and
list the 2G and the 3G detectors used in our analysis. The
results are given in Sec. III. First, we compare the parameter
measurement errors obtained from theFishermatrix approach
with those obtained from the Bayesian parameter estimation
simulations and verify the reliability of the Fisher matrix
method in our analysis. Next, we investigate the suitability of

four recent waveform models for applying the Fisher matrix
method to NSBH sources in our parameter range and adopt a
representative waveform model (denoted by SEOBNR_T in
this work). Then, we apply the Fisher matrix method to
SEOBNR_Tand calculate the measurement errors of λNS for
our NSBH sources. We perform a single-detector analysis as
well as a multidetector analysis and provide comparisons
between the 2G and the 3G detectors. In particular, using the
results for the 3G network, we present a specific example
describing how well the theoretical EOS models can be
constrained by the NSBH signals. In Sec. IV, we summarize
our results and provide some discussion.

II. METHOD

A. Waveform models

To simulate anNSBH signal, thewaveformmodel requires
the full inspiral-merger-ringdown (IMR) expression, includ-
ing the NS tidal effect. To date, various IMR waveform
models havebeendeveloped and implemented inLAL (LIGO
Algorithm Library [17]) for use in GW data analysis. Those
models are roughly classified into two waveform families
according to the construction formalism. One is based on the
EOB formalism and the other is based on the phenomeno-
logical fit approach. In both approaches, the waveform from
the late inspiral to the merger ringdown is calibrated against
thealigned-spinBBHNRwaveforms.So they are represented
by the “SEOBNR” and “IMRPhenom” models.
The EOB formalism is basically constructed in the time

domain. For computational efficiency, the frequency-domain
model SEOBNRv4_ROM [18,19] has been developed based
on the time-domain model SEOBNRv4 using a reduced-
order quadrature rule [20]. SEOBNRv4_ROM_NRTidalv2
builds on SEOBNRv4_ROM by adding tidal correction
terms that are constructed from high-resolution BNS NR
simulations [21,22]. SEOBNRv4_ROM_NRTidalv2_NSBH
[23] was built from SEOBNRv4_ROM_NRTidalv2 to gen-
erate aligned-spinNSBHwaveformsby adding corrections to
the wave amplitude [24].
Meanwhile, the IMRPhenom models are defined in the

frequency domain. Early versions of the IMRPhenommodels
were developed for the BBH system. IMRPhenomPv2 has
been mainly used for CBC analyses in recent years. This
model is based on the precessing-spin model IMRPhenomP
[25] and the aligned-spin model IMRPhenomD [26,27].
IMRPhenomPv2_NRTidalv2 is based on IMRPhenomPv2
and includes the same tidal correction terms [21,22] as in
SEOBNRv4_ROM_NRTidalv2. The IMRPhenom family
also has an NSBH model IMRPhenomNSBH [28]. This
model is based on the amplitude of IMRPhenomC [29] and
the phase of IMRPhenomD [26,27], and incorporates NS
tidal effects [22] and amplitude corrections [24] similar to
SEOBNRv4_ROM_NRTidalv2_NSBH.
In this work, four recent IMR waveform models con-

taining NS tidal effects are considered, which are listed in
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Table I. Finally, we note that the TaylorF2 model also
includes NS tidal effects but generates inspiral-only wave-
forms. TaylorF2 is reliable in parameter estimation for BNS
systems such as GW170817 [9] and GW100425 [10].
However, after some consistency tests, we have verified
that TaylorF2 is not suitable for the analysis of our NSBH
sources.

B. Bayesian parameter estimation

The physical properties of the GW source can be
measured in the parameter estimation procedure [30].
This process is based on Bayesian inference statistics,
and the algorithm explores the entire parameter space,
computing the overlaps between model waveforms and
detector data. The result of Bayesian parameter estimation
can be given as the posterior probability density functions
(PDFs) of the parameters considered. Given the detector
data x containing the GW signal s and noise n, the overlap
between x and the model waveform h is defined as

hxjhi ¼ 4Re
Z

∞

0

x̃ðfÞh̃�ðfÞ
SnðfÞ

df; ð1Þ

where the tilde denotes the Fourier transform of the time-
domain waveform, SnðfÞ is the detector’s noise
power spectral density (PSD). For efficiency, the integra-
tion is performed in the frequency range ½fmin; fmax�, and
the choice of these frequencies depends on the PSD curve.
The Bayesian posterior probability that the GW signal s

contained in the data x is characterized by the parameters θ,
where θ is the set of parameters considered in the analysis,
can be given by the prior pðθÞ and the likelihood LðxjθÞ as

pðθjxÞ ∝ pðθÞLðxjθÞ: ð2Þ

The likelihood is given as [31,32]

LðxjθÞ ∝ exp

�
−
1

2
hx − hðθÞjx − hðθÞi

�
ð3Þ

¼ exp

�
−
1

2
hsþ n − hðθÞjsþ n − hðθÞi

�
: ð4Þ

If the signal is strong enough (i.e., high SNR limit), the
noise can be removed from the above equation, giving the
likelihood function as

LðθÞ ∝ exp

�
−
1

2
fhsjsi þ hhðθÞjhðθÞi − 2hsjhðθÞig

�
: ð5Þ

Employing the definition of SNR ρ ¼ ffiffiffiffiffiffiffiffiffiffihsjsip
[33], the

above equation can be rewritten as

LðθÞ ∝ exp½−ρ2f1 − hŝjĥðθÞig�; ð6Þ

where ĥ≡ h=ρ, and we assume that the waveform model
can describe the signal waveform almost exactly, i.e.,
hðθ0Þ ≃ s (where θ0 represents the true parameter values),
hence hhðθ0Þjhðθ0Þi ≃ hsjsi ¼ ρ2. In the above equation,
the term hŝjĥðθÞi represents the distribution of the nor-
malized overlaps between the signal and the model wave-
forms, and this overlap distribution is maximum at θ ¼ θ0.
Therefore, the shape of the likelihood surface can be given
by the overlap distribution, and its scale of interest depends
on the SNR [34]. At small scales (i.e., high SNRs), the
shape of the overlap distribution is nearly quadratic around
the maximum position. If we assume a flat prior in Eq. (2),
the posterior distribution is equivalent to the likelihood
distribution. Therefore, in the high SNR limit, the posterior
PDF follows a multivariate Gaussian distribution centered
around the position of the true parameter values.

C. Fisher matrix

If a multivariate Gaussian function is represented by

fðxÞ ¼ expð−Σ−1
ij xixj=2Þ; ð7Þ

Σij corresponds to the covariance matrix, and its inverse
matrix represents the Fisher matrix (Γij). Therefore, given
the Gaussian function above, the Fisher matrix can be
obtained by

Γij ¼ −
∂
2 ln fðxÞ
∂xi∂xj

: ð8Þ

Analogously, since the likelihood in Eq. (6) follows a
multivariate Gaussian distribution, the corresponding
Fisher matrix can be given by

Γij ¼ −
∂
2 lnLðθÞ
∂θi∂θj

����
θ¼θ0

¼ −ρ2
∂
2hŝjĥðθÞi
∂θi∂θj

����
θ¼θ0

: ð9Þ

Thus, the Fisher matrix describes the curvature of the log-
likelihood or the overlap surface at the position of the true
parameter values, Furthermore, the second equality means

TABLE I. Waveform models used in our analysis for NSBH
systems.

Full name (implemented in LAL) References
Short label (used in this work) Base model Corrections

SEOBNRv4_ROM_NRTidalv2 [18–20] [21,22]
SEOBNR_T
SEOBNRv4_ROM_NRTidalv2_
NSBH [23]

[18–20] [21,22,24]

SEOBNR_NSBH
IMRPhenomPv2_NRTidalv2 [25–27] [21,22]
IMRPhenomP_T
IMRPhenomNSBH [28] [26,27,29] [22,24]
IMRPhenom_NSBH
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that a specific isomatch contour in the overlap surface
corresponds to a specific confidence region of the like-
lihood distribution for a given SNR [35–37]. Using the
relation ĥ≡ h=ρ, the above formula can equivalently be
written as [38–40]

Γij ¼ −ρ2
∂
2hŝjĥðθÞi
∂θi∂θj

����
θ¼θ0

¼
�
∂hðθÞ
∂θi

���� ∂hðθÞ
∂θj

�����
θ¼θ0

: ð10Þ

The last term is the familiar expression of the Fisher matrix.
In a multivariate Gaussian distribution, the measurement
error (σi) and the correlation coefficient (Cij) can be
obtained from the Fisher matrix as

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; Cij ¼

ðΓ−1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1ÞiiðΓ−1Þjj

q : ð11Þ

Since the Fisher matrix has a simple functional form and
is easy to apply to analytical waveform models, this
approach has been mainly used in many past works since
it was introduced in [32,41]. However, the Fisher matrix
has some well-known limitations (for detailed reviews,
refer to [39]). First of all, the Fisher matrix is only reliable
at high SNRs because it is derived with a high SNR
assumption as described above. In addition, since the
computation of the Fisher matrix is entirely dependent
on the waveform model hðθÞ as in Eq. (10), the results
highly rely on the accuracy of the model used. Some issues
induced by using the inspiral-only waveform model
TaylorF2 have been thoroughly studied in past works
[36,42,43]. Recently, Harry and Lundgren [44] pointed
out that the TaylorF2-applied Fisher matrix is unsuitable to
predict the match between two BNS waveforms when
including tidal terms. Another well-known limitation of the
Fisher matrix is the poor applicability of prior information.
Bayesian parameter estimation allows for all forms of prior
information, while only Gaussian prior functions can be
applied analytically to the Fisher matrix method [32,41].
Cho [45] showed that the measurement error of the intrinsic
parameters can be reduced to∼70% of the original priorless
error (σpriorlessθ ) if the standard deviation of the Gaussian
prior is similar to σpriorlessθ , and thus the prior effect can be
ignored at sufficiently high SNRs. Therefore, we choose
the IMR waveform model and the high SNR in our analysis
to avoid the above limitations.
To describe the waveforms of an aligned-spin NSBH

system, five extrinsic parameters (true distance dL, orbital
inclination θJN , polarization angle Ψ, and sky position
angles RA, DEC), five intrinsic parameters (two masses
m1, m2, dimensionless spins χBH; χNS, and dimensionless
NS tidal deformability λNS), and two arbitrary constants
(coalescence time tc and coalescence phase ϕc) are
required. Since the NS mass is much smaller than the
BH mass and the NS spins observed from BNS systems are

very small (χNS ≲ 0.05) [46,47], the NS spin has a
negligible contribution to the wave phase and thus has
no effect on our analysis. Therefore, for simplicity, we
assume the NS spin to be zero and consider only the BH
spin (χBH) in this work. In addition, we adopt the soft EOS
model APR4 [48], which is one of the most preferred
models in the parameter estimation results for GW170817
[9], to choose the true value of λNS.
A GW waveform can be described as

hðfÞ ¼ AðfÞeiψðfÞ: ð12Þ

The signal strength (i.e., SNR) is entirely governed by the
wave amplitude (A), and the amplitude is given by the
extrinsic parameters and the chirp mass [Mc ≡ ðm1þ
m2Þη3=5, where η≡ ðm1m2Þ=ðm1 þm2Þ2 is the symmetric
mass ratio]. The wave phase ψðfÞ is only a function of the
intrinsic parameters and tc and ϕc. The true values of tc and
ϕc can be arbitrarily selected, and their choice does not affect
the measurement accuracy of other parameters. However,
since these two parameters are strongly correlated with the
intrinsic parameters, theymust be considered variables when
constructing theFishermatrix (e.g., seeTableA1of [45]).On
the other hand, the extrinsic parameters are strongly corre-
lated with each other but weakly correlated with the intrinsic
parameters. Thus, when focusing on the intrinsic parameters,
it is very efficient to use a single effective parameter that
represents the five extrinsic parameters, and we use the
parameter deff (effective distance [33]) in this work. At
leading order, the wave amplitude can be given by
A ∝ M5=6

c =deff . For fixed deff , the measurement errors of
the intrinsic parameters are independent of the choice of the
individual extrinsic parameters, so the extrinsic parameters
are not considered variables in our Fisher matrix. Therefore,
in this work, the Fisher matrix can be given by a 6 × 6matrix
with the components fMc; η; χBH; λNS; tc;ϕcg.

D. Detectors

We consider the four 2G GW detectors, aLIGO-Hanford
(H) and Livingstone (L) [2], advanced Virgo (V) [3], and
KAGRA (K) [49], and the two 3G detectors, Cosmic
Explorer (CE) [50] and Einstein Telescope (ET) [51].
The sensitivity curves of the detectors are shown in
Fig. 1. These PSDs are available in GWBench [13], labeled
aLIGO (H & L), Vþ (V), Kþ (K), ET (ET), and CE1-40-
CBO (CE). We assume fmin ¼ 10 and 5 Hz for the 2G and
the 3G detectors, respectively, and fmax ¼ 2048 Hz for all
detectors. The locations (longitude and latitude) and the
orientations (orientation of the y-arm with respect to due
East) of the detectors are summarized in Table III and Fig. 4
of [13]. Note that H and L have the same PSD curve but
their locations and orientations are different. CE (Idaho,
USA) is located at a site similar to H (Washington, USA)
but has a different orientation. ET is set to the same
coordinates as V (Cascina, Italy) and consists of three
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V-shaped detectors, ET1, ET2, and ET3, that form an
equilateral triangle, and one of them has the same ori-
entation as V.

III. RESULT

A. Comparison between Bayesian parameter
estimation and Fisher matrix

We assume our fiducial NSBH sourcewith the true values
fm1; m2; χBH; λNS; tc;ϕcg ¼ f5 M⊙; 1.4M⊙; 0; 251; 0; 0g.
Here, the true value of λNS is determined by theNSmass (m2)
according to the APR4 EOS model. We inject the fiducial
NSBH signal into the aLIGO PSD1 and perform Bayesian
parameter estimation using the BILBY library [52], which is
one of the parameter estimation packages. We use the
DYNESTY nested sampling algorithm [53] and the multi-
banded likelihood technique described in [54]. The param-
eter estimation algorithm typically explores the entire
extrinsic and intrinsic parameter space. However, since we
focus on the intrinsic parameters, we fix the extrinsic
parameters with their injection values that satisfy ρ ∼ 200,
thus the algorithm runs in the 6D space with the parameters
fMc; η; χBH; λNS; tc;ϕcg. Note that, even if the extrinsic
parameters are considered variables in the parameter esti-
mation runs, the results of the intrinsic parameters are nearly
unchanged, (e.g., see, Fig. 16 of [55]). We assume the flat
priors in the ranges ½mi − 1 M⊙; mi þ 1M⊙� form1 andm2,

½−0.9; 0.9� for χBH, and [0, 5000] for λNS. The priors of tc and
ϕc are given as ½−1s;þ1s� and [−π;þπ], respectively.
To verify consistency between the four waveform

models, we perform four parameter estimation runs using
those models for the same fiducial NSBH source. The
results for the main intrinsic parameters are displayed in
Fig. 2, showing similar posterior distributions for all
waveform models. In each panel, the 2D contours corre-
spond to 39, 86, and 99% confidence regions, respectively.
The three parametersMc; η, and χBH are strongly correlated
with each other but weakly correlated with the NS tidal
parameter λNS. For direct comparison, we show the 1D PDF
curves for all waveform models together in Fig. 3. In each
plot, all curves are similar to Gaussian distributions and
show similar confidence intervals (i.e., measurement
errors).
We also calculate the measurement errors for the main

intrinsic parameters using the Fisher matrix method. The
results for the four waveform models are listed in Table II.
The SEOBNR_T, SEOBNR_NSBH, and IMRPhenomP_T
models show very consistent errors for all parameters, but
the IMRPhenom_NSBH model gives significantly smaller
errors compared to the other models, especially for the tidal
parameter. For a measurement error given by the Fisher
matrix, one can set a Gaussian PDF with the standard
deviation equal to the error. Figure 4 shows the Gaussian
PDFs determined by the measurement errors in Table II,
ignoring the result for IMRPhenom_NSBH. For all param-
eters, the Gaussian curves for the three models are nearly
identical. We also present the Bayesian posterior PDF for
the SEOBNR_T model together with the Gaussian curves.
It can be seen that all posterior PDFs are slightly asym-
metric but their maximum positions are unbiased from the
true values. The comparison between the Bayesian and the
Gaussian PDF curves shows that the Fisher matrix and
Bayesian parameter estimation give similar results at high
SNRs, which is indeed an underlying assumption for doing
any Fisher matrix study in the first place.

B. Choice of the waveform model: SEOBNR_T

We set our parameter range in the m1–m2 plane to
½1 M⊙; 2M⊙� for the NS mass and ½4 M⊙; 10M⊙� for the
BH mass. For NSBH sources distributed in our parameter
space, we calculate the measurement errors of the intrinsic
parameters, Mc; η; χBH, and λNS, using the Fisher matrix
method. We adopt the aLIGO PSD and assume χBH ¼ 0
and deff ¼ 40 Mpc2 for all sources. Figure 5 shows the
measurement errors in the m1–m2 plane for the four
waveform models. The first three models show similar
trends of contours across the parameter space for all

FIG. 1. Amplitude spectral densities (ASDs)
ffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
of the 2G

and 3G detectors used in this work. The frequency range is set to
fmin ¼ 10ð5Þ Hz for the 2(3)G detectors and fmax ¼ 2048 Hz for
all detectors.

1For our fiducial binary system, the time to merger from
fmin ¼ 5 Hz is about 2400 seconds, which is about 6.5 times
longer than that from fmin ¼ 10 Hz, so a much longer time is
required to run parameter estimation for 3G detectors. Moreover,
the reliability of the Fisher matrix method is almost independent
of PSD. Therefore, in this work, for comparison with the Fisher
matrix results, we perform Bayesian parameter estimation only
for the aLIGO detector.

2The condition deff ¼ 40 Mpc can be simply obtained by
choosing the distance dL ¼ 40 Mpc, the optimal sky position
(i.e., the direction perpendicular to the plane given by the detector
arms), and the optimal orientation (Ψ ¼ θJN ¼ 0).
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parameters, but the IMRPhenom_NSBH model gives
significantly inconsistent results. Thus, we rule out the
IMRPhenom_NSBH model from our analysis. Meanwhile,
the results of SEOBNR_NSBH and IMRPhenom_NSBH
exhibit irregular behavior in the bottom-left corner, where
the measurement errors of the masses and the spin
parameters abruptly drop off. Thus, we also rule out the
SEOBNR_NSBH model from our analysis. Finally, the

SEOBNR_T and the IMRPhenomP_T models show
relatively consistent error contours, but the result of
SEOBNR_T looks more clear and has less variation in
contours, especially for the tidal parameter. Therefore, we
select SEOBNR_T as our reference waveform model for
our main analysis of the NS tidal deformability. Although
the tidal correction terms of SEOBNR_T are calibrated to
equal-mass BNS systems [21,22], the error contours for this

SEOBNR_T

SEOBNR_NSBH

IMRPhenomP_T

IMRPhenom_NSBH

FIG. 2. Posteriors for our fiducial NSBH source with the true values fm1; m2; χBH; λNS; tc;ϕcg ¼ f5 M⊙; 1.4M⊙; 0; 251; 0; 0g. We
use the aLIGO PSD and assume ρ ¼ 200. The 2–D contours correspond to 39, 86, and 99% confidence regions. Note that the results
for tc and ϕc are omitted here.
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model are similar to those for SEOBNR_NSBH overall and
do not show any irregular behavior in our entire mass range.
Therefore, we conclude that SEOBNR_T is suitable for our
Fisher matrix study.
To investigate the origin of the irregular behavior in the

two NSBH-dedicated models, we compare the NSBH-
dedicated models with SEOBNR_T. To carry out their
comparisons, we calculate the faithfulness, which is deter-
mined by maximizing the normalized overlap over the
coalescence time and phase,

F ¼ max
hh1ðtc;ϕcÞjh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð13Þ

where h1 and h2 represent the waveforms of two different
models with the same intrinsic parameters. The result is
given in Fig. 6. We obtain good agreement between the
SEOBNR_T and the NSBH-dedicated models with
F > 0.99, and find no irregular behavior in the entire
parameter space. We also find that the IMRPhenomP_T
waveform is very consistent with the SEOBNR_T wave-
form. Additionally, we have verified that the correlation
between any two of theMc; η, and χBH parameters suddenly
decreased significantly or changed the sign in the bottom-
left corner for the NSBH-dedicated models, and these
irregular behaviors were independent of the accuracy of the
matrix inversion. Therefore, we conclude that the issue is

with the Fisher matrix method and not with using a
particular waveform model, which is otherwise sound, as
the issues only arise when combined with Fisher matrix
techniques.

C. Single detector analysis

In this subsection, we perform a single-detector analysis
using the aLIGO and the CE PSDs, respectively. We
prepare three populations of NSBH sources. In the first
population (Pop-I), we produce 103 Monte Carlo sources
distributed in the 2D m1–m2 space assuming χBH ¼ 0 and
deff ¼ 40 Mpc. In the second population (Pop-II), we
produce 2 × 103 Monte Carlo sources distributed in the
3D m1–m2 − χBH space assuming deff ¼ 40 Mpc. Finally,
in the third population (Pop-III), we produce 3 × 103

Monte Carlo sources distributed in the 5D m1–m2−
χBH–RA-DEC space assuming dL ¼ 40 Mpc and
θJN ¼ Ψ ¼ 0. The ranges of the intrinsic parameters are
given as ½4 M⊙; 10M⊙� for m1, ½1 M⊙; 2M⊙� for m2, and
½−0.9; 0.9� for χBH. We do not restrict the range of the
sky position, i.e., ½0; 2π� for RA and ½0; π� for DEC. The
description of the populations is summarized in Table III.
Using these populations, we calculate the SNRs and obtain
the measurement errors from the 6 × 6 Fisher matrices with
the variables fMc; η; χBH; λNS; tc;ϕcg.
Figure 7 shows the SNR results for the sources in Pop-I.

The left panel displays the SNRs in the m1–m2 plane for
the aLIGO and the CE detectors. For both detectors, the
contours show a very smooth and clear trend. The
right panel shows the SNRs as a function of the chirp
mass (Mc), and this result clearly describes the SNR’s
strong dependence onMc. The CE detector can have much
larger SNRs than those for aLIGO, and the SNR ratios
(ρCE=ρaLIGO) are distributed in a very narrow range
∼½21.4; 22.2�.
Similarly, Figure 8 shows the measurement errors of the

NS tidal deformability for the sources in Pop-I. As in the

FIG. 3. Comparison of the PDFs between the waveform
models. All PDF curves show similar confidence intervals.

FIG. 4. Gaussian PDFs described by the measurement errors in
Table II. For comparison, we also present the Bayesian posterior
PDF for the SEOBNR_T model (shaded curve).

TABLE II. Measurement errors (σi) calculated by the 6–D
Fisher matrix for our fiducial NSBH source with fm1;m2; χBH;
λNS; tc;ϕcg ¼ f5 M⊙;1.4M⊙;0;251;0;0g assuming ρ¼ 200.

Waveform model σMc
[M⊙] ση σχBH σλNS

SEOBNR_T 7.16×10−5 1.61×10−3 7.21×10−3 155
SEOBNR_NSBH 7.29×10−5 1.67×10−3 7.42×10−3 152
IMRPhenomP_T 6.91×10−5 1.56×10−3 6.94×10−3 141
IMRPhenom_
NSBH 4.86×10−5 0.96×10−3 4.44×10−3 26
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case of SNR, the error contours also show similar trends
between aLIGO and CE. However, the errors seem to
depend mainly on the mass ratio rather than the chirp mass.
We have verified that the error distribution exhibits the
narrowest band if we display the errors as a function of the
effective mass ratio defined by qeff ≡m2=m

2=3
1 , which is

shown in the right panel. We performed the same analysis
using the TaylorF2 waveform model, and the errors showed
a narrower distribution like a thin curve (see Appendix V).
We tried to figure out how qeff could be derived from the

post-Newtonian equation through the Fisher matrix for-
malism, but it was unsuccessful. The definition of qeff was
empirically chosen from the shape of the contours. Further
study is needed for a reasonable explanation, and we leave
it for future work. The CE detector can measure the tidal
deformability much more accurately than aLIGO, and the
error ratios (σCE=σaLIGO) are distributed in a range
∼½5.5; 8.3�%.
To see the dependence on the BH spin (χBH), we select

three sources with different masses, and for these signals,

FIG. 5. Measurement errors (σi) calculated by the Fisher matrix method using the four waveform models. We use the aLIGO PSD and
assume χBH ¼ 0 and deff ¼ 40 Mpc for all sources. Each plot is given in the m1–m2 plane in the range ½4 M⊙; 10M⊙� for m1 and
½1 M⊙; 2M⊙� for m2.
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we calculate the SNRs and the errors σλNS varying the true
value of χBH in the range ½−0.9; 0.9�. The results are given
in Fig. 9. For efficiency, we give the fractional values,
where ρ0 and σ0 denote the values of the SNR and the error
at χBH ¼ 0, respectively. In the upper panel, the SNR is
quite symmetric between positive and negative spins and
depends almost linearly on the BH spin for all sources. The
variation in ρ=ρ0 is more pronounced for aLIGO and larger
for more massive binaries. The largest variation is ∼6% and
∼2.6% at χBH ¼ −0.9 for aLIGO and CE, respectively. In
the lower panel, the errors do not show consistent behavior
between aLIGO and CE as well as between the sources.
The variation in σλNS=σ0 is much larger than the variation in
ρ=ρ0 and increases up to ∼� 40% in our spin range for
both detectors.
Geometrically, an L-shaped single detector configuration

such as LIGO can have two optimal positions and four
hidden positions. The optimal positions correspond to the
two directions perpendicular to the detector-arms plane,
and the hidden positions correspond to the four directions
that bisect the detector-arms axes. Figure 10 shows the
SNR distribution in the RA–DEC (sky position) plane

obtained by using the aLIGO-Hanford (H) and the CE
detectors, respectively. Again, we assume the fiducial
NSBH source (m1 ¼ 5 M⊙; m2 ¼ 1.4M⊙; χBH ¼ 0) with
a fixed distance (dL ¼ 40 Mpc) and the optimal orbital
orientation (θJN ¼ Ψ ¼ 0). In the upper panel, the optimal
sky positions, where the SNR is maximum, for H and CE
are very similar because they are located at a similar site.
However, they have different hidden sky positions due to
their different orientations. On the other hand, the shape of
the PDF curve is almost identical between the two detectors
independently of the detector location because the two
detectors have the same L-shaped arms and the SNRs are

TABLE III. Description of Pop–I, Pop–II, and Pop–III. In
Pop–III, we assume the optimal binary orientation (θJN ¼Ψ¼0).

Population Parameter space χBH deff dL

Pop-I m1–m2 0 40 Mpc · · ·
Pop-II m1–m2–χBH · · · 40 Mpc · · ·
Pop-III m1–m2–χBH–RA–DEC · · · · · · 40 Mpc

FIG. 7. SNRs for the sources in Pop-I distributed in the m1–m2

plane (left) and given as a function of the chirp mass (right).
FIG. 6. Faithfulness between SEOBNR_T and the other three
models. We use the aLIGO PSD and assume χBH ¼ 0. These
results do not show any irregular behavior in our entire parameter
space.

FIG. 8. Measurement errors (σλNS ) for the sources in Pop-I
distributed in them1–m2 plane (left) and given as a function of the
effective mass ratio qeff ≡m2=m

2=3
1 (right).
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averaged over the entire sky position. The SNR PDF
gradually increases in the low region but falls quickly at
the end. The SNR value ranges from zero to ∼140ð3000Þ
and is maximum at ∼100ð2200Þ for aLIGO (CE).
To obtain generalized PDFs of the SNR and σλNS , we

perform the Fisher matrix analysis on the sources in Pop-I,
Pop-II, and Pop-III, respectively. In Fig. 11, we display the
PDF of the SNR (top), the PDF of σλNS (middle), and its
cumulative distribution function (CDF) (bottom). In the top
panel, it can be seen that although the parameter space has
been extended from two to three dimensions by including

the BH spin parameter, there is no noticeable difference
between the Pop-I and Pop-II PDFs. This is because the
SNR fluctuations due to the BH spin are only a few percent
as shown in Fig. 9, and thus the overall distribution is rarely
affected by the spin. However, the PDF of Pop-III is more
widely distributed in the lower region. In this case, the SNR
can have a very small value around the hidden positions.
The SNR ranges from ∼110ð2200Þ to ∼210ð4500Þ for
aLIGO (CE) in both the Pop-I and the Pop-II cases. In the
case of Pop-III, the SNR value starts from zero but can
increase to the same value as the maximum value of Pop-II
when the source is located at the optimal sky position. In
the middle panel, the PDF curves of σλNS are similar in
shape between H and CE but different between the three
populations. In the case of Pop-I, the PDF has a sharp peak
in the low region and slowly decreases. As the parameter
dimension of the population increases, the peak becomes
lower and flatter and the tail becomes longer. The errors
range broadly from ∼40ð2Þ to more than 2500(200) for
H (CE), but most errors are concentrated in the low region.
The results of σλNS for the single-detector analysis are
summarized in Table IV. In the case of H, the values of
σpeak, where the PDF is maximum, are given as σpeak ∼ 140,
190, and 210, and the values of σ90%, where CDF ¼ 0.9,
are given as σ90% ∼ 840;∼1130, and ∼1500 for Pop-I,
Pop-II, and Pop-III, respectively, In the case of CE, those
are σpeak ∼ 9, 14, and 15 and σ90% ∼ 55;∼56, and ∼96,
respectively. Overall, our results suggest an improvement
of about 20 times between H and CE in tidal deformability
measurements. On the other hand, Lackey et al. [15] also

FIG. 9. Dependence of the SNR (ρ) (upper panel) and the
error (σλNS ) (lower panel) on the BH spin. Here, ρ0 and σ0 denote
the values of the SNR and the error at χBH ¼ 0, respectively. We
assume deff ¼ 40 Mpc.

FIG. 10. SNR distribution in the RA–DEC (sky position)
plane obtained from a single-detector analysis for the fiducial
NSBH source (m1 ¼ 5 M⊙; m2 ¼ 1.4M⊙; χBH ¼ 0) assuming
dL ¼ 40 Mpc and θJN ¼ Ψ ¼ 0.

FIG. 11. PDF of the SNR (top panel), PDF of σλNS (middle), and
CDF of σλNS (bottom) for the sources in Pop-I, Pop-II, and
Pop-III. The zoom-in plot shows the PDFs in the low region.
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estimated the measurement errors of λNS from NSBH
systems for single aLIGO and (L-shaped) ET detectors
and found an order of magnitude better accuracy in the case
of ET. The PDFs for the other three intrinsic parameters are
given in Appendix VI.

D. Multidetector network analysis

In this subsection, we perform a multidetector analysis
using the networks of the 2G and the 3G detectors,
respectively. We adopt the 2G network HLVK consisting
of aLIGO-Hanford (H), aLIGO-Livingstone (L), advanced
Virgo (V), and KAGRA (K), and the 3G network ETCE
consisting of Einstein Telescope (ET) and Cosmic Explorer
(CE). In a network, the SNR can be given by

ρ2net ¼
X
i

ρ2i ; ð14Þ

where ρi indicates the SNR of the ith detector. Similarly,
the measurement error can be calculated from the network
Fisher matrix given by

Γnet ¼
X
i

Γi: ð15Þ

Figure 12 shows the SNR distribution in the RA–DEC
plane obtained by using the 2G and the 3G networks,
respectively. We assume the fiducial NSBH source
(m1 ¼ 5 M⊙; m2 ¼ 1.4M⊙; χBH ¼ 0) with a fixed dis-
tance (dL ¼ 40 Mpc) and the optimal orbital orientation.
Unlike the single detector case, the trends of the SNR
contours are quite different between the 2G and the 3G
networks, and there are no hidden positions. The SNR
ranges from ∼180ð1100Þ to ∼250ð3400Þ for the 2G(3G)
network, and the shapes of the PDF curves are signifi-
cantly different between the two networks. The PDF is
maximum at ρ ∼ 230 and ∼3100 for the 2G and the 3G
networks, respectively.
In Fig. 13, we display the PDF of the SNR (top), the PDF

of σλNS (middle), and its CDF (bottom) for the sources in
Pop-III. In the top panel, the SNR ranges from ∼150 to
∼360 for the 2G network and from ∼1000 to ∼5000 for the
3G network. The SNR PDFs are maximum at ∼230 and
∼3400 for the 2G and the 3G networks, respectively, and

they are much larger than those in the single detector case.
In the middle and the bottom panels, the overall trends of
the PDF and the CDF curves are similar to those in the
single detector case, but of the two networks, the 3G
network can have a PDF curve with a sharper peak and a
longer tail between the two networks. The results of σλNS for
the multidetector analysis are summarized in Table V. The

TABLE IV. Summary of the measurement errors for the single-
detector analysis. Here, σpeak indicates the value where the PDF is
maximum, and σn% corresponds to the value where CDF ¼ n%.

aLIGO (H) CE

Population σpeak σ30% σ60% σ90% σpeak σ30% σ60% σ90%

Pop-I 140 220 400 840 9 13 24 55
Pop-II 190 225 460 1130 14 12 23 56
Pop-III 210 360 700 1500 15 19 39 96

FIG. 12. SNR distribution in the RA–DEC plane obtained from
a multidetector analysis for the fiducial NSBH source
(m1 ¼ 5 M⊙; m2 ¼ 1.4M⊙; χBH ¼ 0) assuming dL ¼ 40 Mpc
and θJN ¼ Ψ ¼ 0.

FIG. 13. PDF of the SNR (top panel), PDF of σλNS (middle), and
CDF of σλNS (bottom) for the sources in Pop-III. The zoom-in plot
shows the PDFs in the low region.
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σpeak values are given as σpeak ∼ 130 and ∼4 and the σ90%

values are given as σ90% ∼ 470 and ∼53 for the 2G and the
3G networks, respectively. The PDFs for the other three
intrinsic parameters are given in Appendix VI.

E. Constraining EOS models

Here, we utilize our results to evaluate how well the
theoretical EOS models can be constrained by GW para-
meter estimation for NSBH signals. We choose four EOS
models, WFF1, APR4, SLy, and MPA1 [48], which lie well
inside of the 90% credible region of the PDFs for all
waveform models used in the analysis of GW170817 [9]. In
Fig. 14, the upper panel presents the tidal parameter λNS as
a function of the NS mass (m2). For all models, λNS
monotonically decreases with increasing NS mass, and the
stiffer EOS model gives a higher parameter value for a
given NS mass. The parameter values of λNS atm2 ¼ 1 M⊙
are widely distributed from ∼1000 to ∼3000 depending on
the EOS model, but they are less than 50 at m2 ¼ 2 M⊙ for
all models. The lower panel displays the distribution of σλNS
for the sources in Pop-III obtained with the 3G network.

The error distribution is also wider for smaller NS masses.
However, the distribution width is much narrower than that
of λNS (in the upper panel) in the low-mass region but is
comparable in the high-mass region. This implies that the
smaller the NS mass, the better the recovered value of λNS
can be constrained between different EOS models.
We provide a concrete example to illustrate how well

the EOS models can be distinguished from each other.
We prepare a specific population Pop-IV, where 103

Monte Carlo sources are distributed in the 4D m1–χBH–
RA–DEC space with the NS mass fixed to m2 ¼ 1.4 M⊙.
For all sources, we assume dL ¼ 40 Mpc and
θJN ¼ Ψ ¼ 0. Thus, this population is equivalent to
Pop.III except that the NS mass is fixed. For all sources,
we obtain the errors σλNS from the 6D Fisher matrices
using the 3G network. In Fig. 15, the upper panel shows
the CDF curves of σλNS for the sources in Pop-IV located at
dL ¼ 40, 100, and 200 Mpc, respectively. Note that the
results for dL ¼ 100 and 200 Mpc can be obtained simply
by applying a scale factor as σnMpc ¼ σ40 Mpc × n=40. The
horizontal dashed line indicates CDF ¼ 0.8. We find
σ80% ∼ 33, 82, and 164 for the cases dL ¼ 40, 100, and
200 Mpc, respectively, and that means 80% of the sources
in Pop-IV satisfy σλNS ≲ 33, 82, and 164, respectively.
These error scales are illustrated in the lower panel, where
the gray line indicates the value of λNS according to the

FIG. 14. Upper panel: Tidal parameter value given as a function
of the NS mass for different EOS models. Lower panel:
Distribution of σλNS for the sources in Pop-III obtained with
the 3G network.

FIG. 15. Upper panel: CDF curves of σλNS obtained by using
103 Monte Carlo sources in Pop-IV. We assume three different
distances, dL ¼ 40, 100, and 200 Mpc, and use the 3G network.
We find σ80% ∼ 33, 82, and 164 for dL ¼ 40, 100, and 200 Mpc,
respectively. Lower panel: The value of λNS according to the EOS
model (gray). The error bars correspond to σλNS ¼ 33 (black),
82 (red), and 164 (blue), respectively.

TABLE V. The same as in Table IV but obtained with the
multidetector networks.

HLVK ETCE

Population σpeak σ30% σ60% σ90% σpeak σ30% σ60% σ90%

Pop-III 130 140 260 470 4 10 21 53
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EOS model for an NS with m2 ¼ 1.4 M⊙, and the error
bars correspond to σλNS ¼ 33 (black), 82 (red), and 164
(blue), respectively. This plot shows the measurability of
each EOS model for the sources in Pop-IV located at a
certain distance. For example, if enough sources in
Pop-IV located at dL ≃ 200 Mpc are detected by the 3G
network, ∼20% of their parameter estimation results
cannot distinguish the two models SLy and APR4 at
the 1σ level, where we assume that the true value of λNS is
determined by SLy or APR4. On the contrary, if
dL ≃ 100 Mpc, ∼80% of the parameter estimation results
can distinguish between all EOS models well.

F. Dependence on the EOS model

In the above analysis, we adopted the soft EOS model
APR4 to choose the true value of λNS. In this subsection we
show how our results can be affected if the true value of λNS
is given by other EOS models. To this end, we perform the
same Fisher matrix analysis for the sources in Pop-I with
the aLIGO PSD using the stiffer EOS model MPA1 [48].
The comparison result between APR4 and MPA1 is given
in Fig. 16. The upper panel shows the error contours for the
soft (σsoft) and the stiffer (σstiffer) EOS models in them1–m2

plane, where the result of σsoft is taken from Fig. 8. The
result exhibits a highly consistent contour trend between
the soft and the stiffer EOS models but shows small
differences in the bottom-left region. In the lower panel,
the left plot displays the PDFs of σλNS for both EOS models.

For the same population of sources, the two EOS models
provide PDF curves that are similar overall but slightly
different. These small differences are well quantified in the
right plot, which shows the PDF and the CDF curves of
the fractional difference Δσ ≡ jσstiffer − σsoftj=σsoft between
the error for the stiffer (σstiffer) and the error for the soft (σsoft)
models. We have verified that ∼90ð99Þ% of the 103

Monte Carlo sources can satisfy Δσ < 5ð10Þ%, and all of
the sources with Δσ > 7% are concentrated in the bottom-
left region (m1 < 5 M⊙; m2 < 1.4M⊙). Therefore, we con-
clude that the PDF curves obtained in this work are almost
unaffected by the choice of the EOS model.

IV. SUMMARY AND DISCUSSION

In this work, we investigated how accurately the NS
tidal deformability (λNS) can be measured by GW para-
meter estimation for NSBH signals. For the three popula-
tions of NSBH sources distributed in the 2D m1–m2 space
(Pop–I), the 3D m1–m2–χBH space (Pop–II), and the 5D
m1–m2–χBH–RA–DEC space (Pop–III), we calculated the
measurement errors (σλNS) using the Fisher matrix method
and showed their general distributions as the 1D PDFs. We
chose as our reference waveform model SEOBNR_T,
which is one of the recent IMR models including the NS
tidal effect, and adopted the four 2G detectors, H, L, V, and
K, and the two 3G detectors, ET and CE.
We performed a single-detector analysis for the sources

in Pop–I, Pop–II, and Pop–III and compared the SNRs (ρ)
and the measurement errors (σλNS) between the aLIGO and
the CE detectors. We find that the PDF curves of ρ and σλNS
are similar in shape between the two detectors, but CE can
achieve ∼15 times better accuracy overall in the measure-
ment of the NS tidal deformability λNS. We also performed
a multidetector analysis using the 2G and the 3G networks
for the sources in Pop–III. The PDF curves of σλNS are
maximum at ∼130 and ∼4 for the 2G and the 3G networks,
respectively. Overall, the 3G network can achieve ∼10
times better accuracy in the measurement of λNS. The
results for the single and the network detectors are
summarized in Tables IV and V, respectively. From the
results for the 103 Monte Carlo sources distributed in the
4D m1–χBH–RA–DEC space with the NS mass fixed to
m2 ¼ 1.4 M⊙, we found that if dL ≃ 100 Mpc, the param-
eter estimation results for ∼80% of the sources can
distinguish between the EOS models, WFF1, APR4,
SLy, and MPA1, at the 1σ level, using the 3G network.
Finally, we demonstrated that the PDF curves obtained in
this work are almost independent of the true value of λNS.
To date, since there are only two NSBH signals,

GW200105 and GW200115, detected by the LIGO-
Virgo network, it is difficult to predict how many NSBH
signals will be detected in the 3G network era. Our PDF
curves may not be suitable for direct application to a small
number of detection signals because the PDFs represent the

FIG. 16. Upper panel: Contours of σλNS for the soft EOS model
APR4 (σsoft) and the stiffer EOS model MPA1 (σstiffer) obtained
by using the sources in Pop-I with the aLIGO PSD. Lower
panel: PDFs of the error σλNS for the soft and the stiffer EOS
models (left) and the PDF and the CDF curves of the fractional
difference Δσ ≡ jσstiffer − σsoftj=σsoft. Note that all sources satis-
fying Δσ > 7% are concentrated in the bottom-left region
(m1 < 5 M⊙; m2 < 1.4M⊙).
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statistical distributions obtained by using Monte Carlo
samples.
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APPENDIX A: RESULTS OF THE TaylorF2
WAVEFORM MODEL

Figure 17 shows the SNRs and the measurement errors
σλNS for the sources in Pop-I obtained by using the TaylorF2
waveform model. We assume fmax to be the frequency at
the innermost-stable-circular-orbit. The upper (lower) panel
clearly shows the strong dependence of the SNR (error) on
the chirp mass (effective mass ratio). These results are
obtained by using the same sources (Pop-I) and the same
PSD (aLIGO) as in Figs. 7 and 8, hence directly compa-
rable to the results for SEOBNR_T. Note that the results for
σλNS are significantly different between TaylorF2 and
SEOBNR_T, especially in the low-mass ratio region,
indicating the inadequacy of the TaylorF2 model in our
analysis. APPENDIX B: RESULTS OF THE OTHER

INTRINSIC PARAMETERS

In Fig. 18, we present the results of the chirp mass, the
symmetric mass ratio, and the BH spin for the sources in
Pop-I, Pop-II, and Pop-III, obtained by the single-detector

FIG. 18. PDFs of σMc
(top), ση (middle), and σχBH (bottom) for

the sources in Pop-I, Pop-II, and Pop-III, obtained by the single-
detector analysis.

FIG. 19. PDFs of σMc
(top), ση (middle), and σχBH (bottom) for

the sources in Pop-III obtained by the multidetector analysis.

FIG. 17. Upper panel: SNRs given in the m1–m2 plane (left)
and given as a function of the chirp mass (right). Lower panel:
Measurement errors σλNS given in the m1–m2 plane (left) and

given as a function of the effective mass ratio (qeff ≡m2=m
2=3
1 ).

These results are obtained by using the same sources (Pop-I) and
the same PSD (aLIGO) as in Figs. 7 and 8, but the TaylorF2
waveform model is used here. For comparison, we also present
the results for SEOBNR_T (red).
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analysis using aLIGO (H) and CE. In Fig. 19, we also
present the results of the three parameters for the sources in
Pop-III obtained by the multi-detector analysis using the
2G and the 3G networks.

APPENDIX C: ACCURACY OF THE
MATRIX INVERSION

We examine the inversion accuracy of our covariance
matrix by measuring the matrix norm

ϵ≡ jjΓ · Σ − Ijjmax; ðC1Þ

where I is the identity matrix. If ϵ is larger than a certain
threshold, the covariance matrix cannot be trusted. We
empirically selected the threshold 104 in this work
(cf. [56]). We have verified that almost all NSBH sources
used in our 6D Fisher matrices can satisfy ϵ < 10−4, and we
disregarded the sources with ϵ values beyond the threshold
in our PDFs.
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