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We construct higher-dimensional generalizations of the Eguchi-Hanson gravitational instanton in the
presence of higher-curvature deformations of general relativity. These spaces are solutions to Einstein
gravity supplemented with the dimensional extension of the quadratic Chern-Gauss-Bonnet invariant in
arbitrary even dimension D ¼ 2m ≥ 4, and they are constructed out of nontrivial fibrations over (2m − 2)-
dimensional Kähler-Einstein manifolds. Different aspects of these solutions are analyzed; among them, the
regularization of the on-shell Euclidean action by means of the addition of topological invariants. We also
consider higher-curvature corrections to the gravity action that are cubic in the Riemann tensor and
explicitly construct Eguchi-Hanson type solutions for such.
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I. INTRODUCTION

Discovered in 1979 by Tohru Eguchi and Andrew
Hanson [1,2], and independently by Eugenio Calabi [3]
the same year, the Eguchi-Hanson metric represents an
interesting example of gravitational instanton [4–11]: It is a
Ricci flat metric, and it corresponds to a noncompact, self-
dual, Euclidean solution to Einstein equations in vacuum
andwith vanishing cosmological constant (Λ ¼ 0); although
an analog of the solution with nonvanishing Λ also exists
[12]. When Λ ¼ 0, the space is asymptotically locally
Euclidean (ALE). More precisely, it is asymptotically
R4=Z2. It admits a nonsingular case whose topology is
the cotangent bundle of the 2-sphere T�ðS2Þ ¼ T�ðCP1Þ,
beingR × S2 at the so-called origin (r ¼ a in the coordinates
(1)–(3) below with m ¼ 2 and Λ ¼ 0) and asymptotically
RP3 (at r ¼ ∞). The projective space RP3 ¼ S3=Z2 is iso-
morphic to the 3-dimensional rotation group SOð3Þ≃
SUð2Þ=Z2, and the isometry group of the Eguchi-Hanson
space is thus given byUð1Þ × SUð2Þ=Z2 ≃Uð2Þ. As it is for

the K3 Calabi-Yau space, the reduced holonomy group of
Eguchi-Hanson space is SUð2Þ, and this makes it possible
to approximate the former space by combinations of copies
of the latter. This is related to the fact that Eguchi-Hanson
may be regarded as the resolution of the A1 singularity,
according to the ADE classification. In fact, Eguchi-
Hanson has interesting applications in string theory in
relation to the resolutions of orbifold singularities. It also
has other interesting applications, such as serving as a seed
for constructing higher-dimensional spaces with special
holonomy [13–19]. Multicenter, asymptotically R4=Zk
generalization of the Eguchi-Hanson instanton can also
be constructed [6].
In this paper, we are interested in studying the higher-

dimensional extension of the Eguchi-Hanson space, given
by the metric (1)–(3) below. Considering the higher-
dimensional generalization of Einstein spaces, however,
makes it natural to consider, in addition to the Einstein
tensor, higher-curvature contributions yielding second-
order, covariantly conserved, rank-2 tensors in the field
equations, cf. [20]. Such contributions do not exist in 4
dimensions [21] but are certainly possible in dimension 5
and higher [22]. Here, we will take them into account.
Higher-dimensional, higher-curvature gravitational instan-
tons have been studied before; see for instance [23–27] and
references therein and thereof. Here, we will explicitly
construct generalizations of Eguchi-Hanson space in arbi-
trary even dimension D and with quadratic curvature
contributions. We will also consider examples with cubic
curvature corrections.
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The paper will be organized as follows: In Sec. II, we will
study the higher-dimensional analog of the Eguchi-Hanson
space with cosmological constant. In Sec. III, we will
introduce the higher-curvature terms we will consider. In
Sec. IV, we will present a six-dimensional version of the
Eguchi-Hanson space, including the higher-curvature modi-
fication. We will discuss different version of the solution,
exhibiting diverse topologies in the base manifold. In Sec. V,
wewill discuss the topological invariants and the regularized
on-shell action associated to the six-dimensional solution.
The D-dimensional solution will be presented in Sec. VI,
where, in addition to the quadratic corrections; we will also
consider cubic terms in the Riemann tensor in Sec. VII.

II. HIGHER-DIMENSIONAL EGUCHI-HANSON
IN EINSTEIN GRAVITY

For the sake of completeness, let us review first the
D-dimensional Eguchi-Hanson solution in Einstein gravity.
Inhomogeneous Einstein metrics were constructed as the
nontrivial fibration over arbitrary Kähler-Einstein mani-
folds in Ref. [8] (see also [28]) in even higher dimensions
D ¼ 2m with m ∈ Z. A particular case is the higher-
dimensional generalization of the Eguchi-Hanson metric
[2], whose line element is given by

ds2 ¼ r2

4
fðrÞðdτ þ BÞ2 þ dr2

fðrÞ þ
r2

4
dΣ2; ð1Þ

where B ¼ Bμdxμ denotes the Kähler potential 1-form such
that Ω ¼ dB defines the symplectic real form associated to
the (2m − 2)-dimensional Kähler base manifold with line
element dΣ2. In four dimensions, when the base manifold
is S2, the metric (1) can be written in terms of the left-
invariant Maurer-Cartan forms of SUð2Þ. In that case, the
isometry group is Uð1Þ × SUð2Þ=Z2 and this solution is
usually referred to as the gravitational analog of the
Belavin-Polyakov-Schwartz-Tyupkin instanton in Yang-
Mills theory [29].
For concreteness, let us consider that the base space is

the complex projective space CPk, with k ¼ m − 1. Then,
the metric (1) is a solution of the 2m-dimensional Einstein
field equations with cosmological constant,

Rμν −
1

2
gμνRþ Λgμν ¼ 0; ð2Þ

provided that the metric function fðrÞ is given by

fðrÞ ¼ 2

m

�
1 −

�
a
r

�
2m
�
−

1

2ðm2 − 1ÞΛr
2; ð3Þ

where a is an integration constant. This metric is com-
pletely regular provided the parameters are chosen in such a
way that there is no conical singularity at the bolt; the latter
being defined as the (2m − 2)-dimensional set of fixed

points located at the locus fðrbÞ ¼ 0. Since the metric is
positive definite in Euclidean signature, the range of the
radial coordinate is r ∈ R≥jrbj. The regularity condition can
be achieved by demanding periodicity on the τ coordinate,
namely τ ∼ τ þ βτ, with βτ defined through

βτ ¼
8π

rbf0jr¼rb

; ð4Þ

where the prime denotes differentiation with respect to the
radial coordinate r.
In four dimensions (m ¼ 2) with a base manifold of S2

topology, themetric (1) is endowed with aMisner string [30]
along the z-axis as noticed in Ref. [31]. However, its position
can bemade unobservable by demanding extra conditions on
the periodicity of τ [30]. For instance, the topology at r ¼
constant hypersurfaces becomes S3=Zn if 0 ≤ τ ≤ 4π=n.
Thus, the absence of conical singularities alongside the
unobservability of the Misner string demands [12]

8π

rbf0jr¼rb

¼ 4π

n
→ rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2ðn − 2Þ

Λ

r
: ð5Þ

The case with Λ ¼ 0 leads to the original Eguchi-Hanson
metric where βτ ¼ 2π and r ≥ a, representing a space with
S3=Z2 topology. However, depending on whether the
cosmological constant is positive or negative, different
topologies can be obtained. As shown in Ref. [32], the value
of rb in Eq. (5) is modified in non-Einstein spaces with
negative constant scalar curvature. Indeed, this is also the
case in presence of higher-curvature corrections as we
study here.
In four dimensions, this metric is globally (anti-)self-

dual in absence of the cosmological constant (Λ ¼ 0). In
that case, βτ ¼ 2π and the action and topological invariants
were obtained in Refs. [1,2]. Specifically, its Eucliden on-
shell action vanishes, its Euler characteristic is χ ¼ 2, and
its Hirzebruch signature is τ ¼ −1. This implies that there
exists only one anti-self-dual 2-form with the Atiyah-
Patodi-Singer boundary conditions [33–35]. Moreover,
since the index of the Dirac operator vanishes, there is
no axial asymmetry whatsoever between left and right-
handed Dirac spinors. Nevertheless, there is an excess of
two negative-chiralty spin 3=2 spinors as it can be seen
from the index of Rarita-Schinger operator [1,2].
The Euclidean Taub-NUT metrics [4,7] and the Eguchi-

Hanson metric have similar off-diagonal components; they
signal nontrivial circle bundles. Moreover, the Taub-bolt
and Eguchi-Hanson spaces have the same type of degen-
erate submanifolds (bolts), although their global structures
are different. Additionally, the self-dual Taub-NUT metric
is hyper-Kähler, while that of Eguchi-Hanson is Kähler. In
the presence of a negative cosmological constant, these
two spaces differ in their asymptotic behavior: while the
Taub-NUT metric is asymptotically locally hyperbolic, the
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Eguchi-Hanson metric is not [32]. These features represent
the main differences between Taub-NUT and Eguchi-
Hanson spaces.
In the following, we study how the higher-dimensional

Eguchi-Hanson instanton is modified by the presence of
higher-curvature corrections. In particular, we focus on
terms of the Lovelock’s series such that the field equations
remain of second order.

III. EINSTEIN-GAUSS-BONNET GRAVITY

On a D-dimensional manifold M, the most general
metric theory that is invariant under diffeomorphisms and
local Lorentz transformations, which leads to second order
field equations is known as the Lanczos-Lovelock theory of
gravity [20,21]. Its dynamics is dictated by the action
principle

I½gμν� ¼
X½D−1

2
�

p¼0

Z
M

dDx
ffiffiffiffiffi
jgj

p
αpLðpÞ; ð6Þ

where g ¼ det gμν is the metric determinant, ½…� represent
the integer part, αp are the Lovelock’s couplings, and the
pth order Lagrangian is defined as

LðpÞ ¼ 1

2p
δ
μ1…μ2p
ν1…ν2p R

ν1ν2
μ1μ2…R

ν2p−1ν2p
μ2p−1μ2p ; ð7Þ

where δμ1…μk
ν1…νk ¼ k!δ½μ1½ν1…δμk�νk� denotes the completely anti-

symmetrized Kronecker delta of rank k. The field equations
are obtained by performing stationary variations of the
action (6) with respect of the metric, giving

Eμ
ν ≡ −

X½D−1
2
�

p¼0

αp
2pþ1

δ
μμ1…μ2p
νν2…ν2p R

ν1ν2
μ1μ2…R

ν2p−1ν2p
μ2p−1μ2p ¼ 0: ð8Þ

These equations of motion are at most of second order in
derivatives of the metric and they propagate DðD − 3Þ=2
degrees of freedom [36] around flat space; the same as
general relativity in a D-dimensional space, the latter being
the particular case when αp≥2 ¼ 0. Since we are interested
in nontrivial fibrations of Kähler-Einstein manifolds, we
shall focus on even-dimensional manifolds henceforth.1

The so-called Einstein-Gauss-Bonnet theory can be
obtained by truncating the Lovelock series to second order
in p. Nevertheless, we will also keep the highest-order term
in the Lovelock series [22] which corresponds to the 2m-
dimensional Euler density [37]; namely, LðmÞ ¼ E2m (see
Eq. (21) below). Being a topological invariant, the addition
of the latter to the action does not modify the bulk

dynamics, but it plays a crucial role in renormalizing the
Euclidean on-shell action as well as in the computation of
conserved charges in asymptotically locally AdS (AlAdS)
spaces, providing a bulk counterterm once its corresponding
coefficient is fixed [38–43]. Moreover, in four dimensions,
when evaluated in configurations with (anti-)self-dual
Weyl tensor, the topologically renormalized action yields
an Euclidean on-shell action that is proportional to the
Pontryagin index [27,44], similarly as it happens for
instantons in Yang-Mills theory. For nonconformally flat
boundaries, additional counterterms based on the conformal
completion of Einstein-AdS gravity may also be needed in
order to render the Euclidean on-shell action and conserved
charges finite [45–47]. Adding the Pontryagin density into
the four-dimensional action with fixed coupling is also an
interesting possibility, since it sets any the (anti-)self-dual
configurations as the ground state of the theory [48,49].
Setting α0 ¼ −2κΛ, α1 ¼ κ, α2 ¼ κα, and κ ¼

ð16πGNÞ−1 with GN being the Newton’s constant, the
action becomes

IEGB½g� ¼ κ

Z
M

d2mx
ffiffiffiffiffi
jgj

p
ðR − 2Λþ αGþ ζE2mÞ; ð9Þ

where α and ζ are dimensionful coupling constants, and G
is the Chern-Gauss-Bonnet term, namely,

G ¼ 1

4
δμνλραβγδR

αβ
μνR

γδ
λρ ¼ R2 − 4Rμ

νRν
μ þ Rμν

λρR
λρ
μν: ð10Þ

In four dimensions, this term represents the bulk piece of
the Euler characteristic [see Eq. (21) below] and, therefore,
it does not contribute to the bulk dynamics [21]. In
dimensions higher than four, in contrast, this term does
modify the field equations, leading to

Rμ
ν −

1

2
δμνRþ Λδμν þ αHμ

ν ¼ 0; ð11Þ

where Hμ
ν is the contribution to the field equations of the

Chern-Gauss-Bonnet term defined through

Hμ
ν ¼ −

1

8
δμμ1…μ4
νν1…ν4 R

ν1ν2
μ1μ2R

ν3ν4
μ1μ4

¼ 2Rμρ
σλR

σλ
νρ − 4Rσ

ρR
μρ
νσ þ 2RRμ

ν − 4Rμ
λR

λ
ν −

1

2
δμνG: ð12Þ

Different analytic solutions to the field equations (11) are
known; these include black holes [50,51], wormhole
geometries [52,53], Taub-NUT type gravitational instan-
tons [23] and many other examples. In the next section, we
provide a novel stationary solution to the field equations in
Euclidean signature which represents a higher-dimensional
generalization of the Eguchi-Hanson metric.

1Generalizations of Eguchi-Hanson spaces in odd dimensions
were considered in [19].
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IV. SIX-DIMENSIONAL EGUCHI-HANSON
SOLUTION

Let us begin by considering the six-dimensional case,
which is the simplest in which the quadratic curvature terms
contribute in deforming the geometry in presence of an
Kähler-Einstein base manifold. To solve the field equa-
tions (11), we focus on a six-dimensional Eguchi-Hanson-
inspired ansatz (1). In particular, we consider different
topologies for the latter, these being fibrations over CP2,
CH2, T4, S2 × S2, and H2 × H2. More details of these
geometries can be found in the next section. With these
Kähler-Einstein base manifolds, the field equations (11)
turn out to be solved by the metric function

f�ðrÞ¼
2

3

"
γþ r2

16α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3ΛαÞ−128σα2

r4
þ32αa6

r8

s !#
;

ð13Þ
where a is an integration constant, γ is related to the
constant curvature of the base manifold, and σ measures
whether the latter is conformally flat (σ ¼ 0) or not
(σ ¼ 1).2 Specifically, the values of these parameters can
be summarized as follows

CP2 CH2 T4 S2 × S2 H2 × H2

γ 1 −1 0 1 −1
σ 0 0 0 1 1

ð14Þ

The metric has a bolt at r ¼ rb defined as the largest root of
the polynomial fðrbÞ ¼ 0 in Eq. (13). Additionally, since
the Euclidean signature implies that the metric is positive
definite, the range of the radial coordinate is restricted to be
r ∈ R≥jrbj. The absence of conical singularities is guaran-
teed as long as Eq. (4) holds for the solution (13).
Asymptotically, the metric behaves as

f�ðrÞ ≃
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3Λα
p Þr2
24α

þ 2γ

3
∓ 8σα

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Λα

p
r2

� 2½ð1þ 3ΛαÞa6 − 128σ2α3�
3ð1þ 3ΛαÞ3=2r6 þOðr−10Þ: ð15Þ

Thus, one can directly notice that ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Λα

p Þ=ð24αÞ
plays the role of effective cosmological constant, as long as
α ≠ 0. The solution is neither asymptotically conformally

flat nor asymptotically locally AdS. In fact, the Weyl tensor
squared behaves like

Wμν
λρW

λρ
μν ≃

2½2þ 3Λα� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Λα

p �
5α2

þOðr−8Þ as r → ∞; ð16Þ
and it does not vanish at infinity. Notice that the branch f−ðrÞ
of the solution (13) is continuously connected to the solution
of Einstein gravity [cf. Eq. (3)] in the limit α → 0, since

f−ðrÞ ≃
2

3

�
γ −

a6

r6

�
−
Λr2

16
þOðα=r2Þ: ð17Þ

Also notice that, on the curve of the parameter space
defined by Λα ¼ −1=3, the solution acquires a rather
simple form; namely,

f�ðrÞ ¼
2

3

"
γ þ r2

16α

 
1� 1

3Λr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
96Λa6

r4
− 128σ

s !#
:

ð18Þ

This is the confluent point where fþðrÞ ¼ f−ðrÞwhen a ¼
σ ¼ 0 and, in many aspects, it exhibits certain features
analogous to the so-called Chern-Simons point of Lovelock
theory, cf. [55]. Nevertheless, it is worth emphasizing that
this special curve on the parameter space is not the one that
leads to a single maximally symmetric vacuum in the
Einstein-Gauss-Bonnet theory; in the conventions we are
using, the maximally symmetric vacua coincide at Λα ¼
−5=12 instead. For generic, fixed values of the Kähler
potential B, we are working with spaces that are not
continuously connected with a maximally symmetric vac-
uum, regardless of the precise expression for the fðrÞ;
nevertheless, there is still a particular value of the couplings
for which the two branches coincide when both σ and a
vanish. Since our spaces are not of constant curvature, the
perturbations of the field equations around the solution at
this special point may have support, in contrast to what
happens with the perturbations around the maximally
symmetric vacuum when both vacua coincide.
On the curve of the parameter space where Λα ¼ −1=3,

the radial coordinate is bounded if σ ¼ 1 according to

rb ≤ r ≤
�
−
3a6Λ
4

�1
4

; ð19Þ

with Λ < 0 and a ∈ R. When σ ¼ 0, the solution becomes

f�ðrÞ ¼ −
Λr2

8
þ 2γ

3
� a3

r2

ffiffiffiffiffiffiffiffi
−
Λ
6

r
; ð20Þ

and it exists only for Λ < 0. The latter implies that both
branches have a bolt at f�ðrbÞ ¼ 0 depending on the values

2This is similar to what happens for solutions of the Einstein-
Gauss-Bonnet field equations in the simpler geometries of the
form M2 ×w Σd−2, where ×w stands for a warped product. In that
case, when Σd−2 is not conformally flat, there is an extra constant
in the lapse function—analogous to σ here—which leads to a
slow decay of the metric at infinity relative to the r-dependent
behavior that depends on the integration constant a, cf. Ref. [54].
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of the parameters γ and a. In particular, for γ ¼ 1 and γ ¼ 0
we find that fþðrÞ and f−ðrÞ have a bolt if a < 0 and
a > 0, respectively, and the space is thus completely
regular. In contrast, if γ ¼ −1 with σ ¼ 0 the metric
exhibits a naked curvature singularity at r ¼ 0.

V. TOPOLOGICAL INVARIANTS AND
RENORMALIZED ACTION

In this section, we compute the renormalized Euclidean
on-shell action and Euler characteristic for the Eguchi-
Hanson metric (13) with compact base manifolds CP2, T 4,
and S2 × S2. In the next section we will present the higher-
dimensional generalization of the Eguchi-Hanson metric to
arbitrary even dimension D, and, in particular, we will see
that the solution in D ¼ 8 has also nontrivial Pontryagin
index, as it happens in D ¼ 4.

Let us first compute the Euler characteristic χðM6Þ for
the solution presented in Eq. (13). In arbitrary even
dimensions D ¼ 2m, the Euler theorem states thatZ

M2m

dx2m
ffiffiffiffiffi
jgj

p
E2m ¼ ð4πÞm m!χðM2mÞ

þ
Z
∂M2m

d2m−1x
ffiffiffiffiffiffi
jhj

p
C2m−1; ð21Þ

where E2m ≡ LðmÞ [cf. Eq. (7)] is the Euler density in D ¼
2m dimensions, χðM2mÞ is the Euler characteristic of the
2m-dimensional manifoldM2m, h is the determinant of the
induced metric hμν ¼ gμν − nμnν with nμ being a spacelike
unit vector that is normal to the (2m − 1)-dimensional
boundary ∂M2m, and C2m−1 is the Chern form on ∂M2m
defined through the parametric integral as

C2m−1 ¼ 2m
Z

1

0

ds δμ1…μ2m−1
ν1…ν2m−1 K

ν1
μ1

�
1

2
Rν2ν3

μ2μ3 − s2Kν2
μ2K

ν3
μ3

�
×… ×

�
1

2
Rν2m−2ν2m−1

μ2m−2μ2m−1 − s2Kν2m−2
μ2m−1K

ν2m−1
μ2m−1

�
; ð22Þ

withRμν
λρ andKμν ¼ hλμ∇λnν being the intrinsic and extrinsic

curvature, respectively. These are related with the Rieman-
nian curvature through the Gauss-Codazzi relation

Rμν
λρ ¼ hμαhνβh

γ
λh

δ
ρR

αβ
γδ þ Kμ

λK
ν
ρ − Kμ

ρKν
λ: ð23Þ

Focusing on the compact cases of the solution (13), a direct
evaluation of the Euler characteristic in Eq. (21) yields
χðM6Þ ¼ 3, χðM6Þ ¼ 0, and χðM6Þ ¼ 4 for the fibered
basemanifoldsCP2, T4, andS2 × S2, respectively. The latter
can be equivalently obtained by means of the Künneth
theorem, since χðS2 × S2Þ ¼ χðS2Þ × χðS2Þ ¼ 2 × 2 ¼ 4.
Here, we focus on the curve of the parameter space when

Λα ¼ −1=3 for the sake of simplicity. For conformally flat
boundaries, the renormalized Euclidean on-shell action can
be obtained by appropriately fixing the coupling constant ζ
of the six-dimensional Euler density [cf. Eq. (9)]. The latter
plays the role of topological counterterms in even-
dimensional AlAdS solutions. Although the Eguchi-
Hanson solution in Einstein-Gauss-Bonnet gravity is not
AlAdS, there is still a nontrivial value of the Euler density
coupling that yields a finite result; this corresponds to
ζΛ2 ¼ 1=9 in Eq. (9). On the other hand, when σ ¼ 1, the
boundary is not conformally flat; nevertheless, the radial
coordinate is naturally bounded according to (19), and so
there is no need to include neither topological counterterms
nor conformal completion to render the action finite. This
means that in that case we can set ζ ¼ 0 in a natural way.
This is different to what happen when σ ¼ 0, for which the
condition ζΛ2 ¼ 1=9 is needed for finiteness. Then, con-
sidering Λ < 0 and the solutions with compact base
manifolds, we obtain

IEGB ¼

8>>>>>><
>>>>>>:

4κa9βτπ2

3r6b

ffiffiffiffiffiffiffi
− 6

Λ

q
for CP2;

2κa9βτβθ1βϕ1βθ2βϕ2
27r6b

ffiffiffiffiffiffiffi
− 6

Λ

q
for T4;

− 2κβτπ
2r2b½2r4bþΛa6−

r4
b
Λ

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð8r4bþ6Λa6Þ

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ð8r4bþ6Λa6Þ
p for S2 × S2:

ð24Þ

The renormalized Euclidean on-shell action can be used
in the path integral approach to study the contribution of
these instantons, for instance resorting to the saddle point
approximation [56]. In the case of AlAdS spaces, the
Euclidean path integral approach permits to explore the
thermodynamics; for instance, it enables to study the well-
known phase transitions that black holes develop in that
sector at certain critical temperature [57]. A similar
behavior may be found for solutions whose Euclidean
version corresponds to AlAdS gravitational instantons
[58,59]. Thermodynamics and phase transitions of
AlAdS solutions have also been studied in Lovelock theory,
for instance in [60–68]. In the case of Eguchi-Hanson
solutions, being intrinsically Euclidean and not AlAdS, the
interpretation of the path integral results would be different.
However, it would still be interesting to study whether any
sort of phase transitions occurs in this sector. Instantons can
contribute to the vacuum persistence amplitude in gauge
theory [69], and a similar computation can be performed in
the case of gravitational instantons, cf. [70]. In the latter
work, the authors provided a general formula for the one-
loop determinant in terms of the renormalization group
invariant masses, the volume of space, and topological
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invariants, by performing linear perturbations around the
instantonic background. We believe these are interesting
applications that can be studied using the analytic solutions
found here.
In the next section, we generalize the Eguchi-Hanson

instanton of Einstein-Gauss-Bonnet gravity to arbitrary
even dimensions. Moreover, we show how the solution
is modified in presence of cubic curvature terms in the
Lovelock series.

VI. GENERALIZATION TOHIGHERDIMENSIONS

Let us extend our solution to higher dimension. The
general even-dimensional case, say D ¼ 2m with m ≥ 3,

can be solved analytically by considering different topol-
ogies of the base manifold. This was done in Sec. IV for six
dimensions as a particular case, and here we consider the
metric Ansatz (1) with base manifold of topology CPk,
CHk, ðT 2Þk, ðS2Þk, and ðH2Þk; the last three are the product
of k ¼ m − 1 constant curvature 2-manifolds. Compact
base manifolds with negative constant curvature can also be
considered, for example, by taking spaces locally equiv-
alent to ðH2Þk constructed out of quotients of the hyperbolic
space by discrete subgroups. The Kähler potential and line
element for each of these (2m − 2)-dimensional base
manifolds is given below. The field equations of
Einstein-Gauss-Bonnet gravity (11) are solved analytically
by the line element (1) with the metric function

f�ðrÞ ¼
2

m

(
γ þ r2

16αðm − 2Þ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðm − 2Þ

�
Λαm
m2 − 1

þ 4αa2m

r2ðmþ1Þ −
32σα2ðm − 2Þ
r4ðm − 1Þ

�s #)
: ð25Þ

Here a is an integration constant, while γ and σ are
parameters that depend on the topology and they admit
the same geometric interpretation as the one given above
Eq. (14). In particular, for the topologies considered in this
section, their values are

CPk CHk ðT2Þk ðS2Þk ðH2Þk
γ 1 −1 0 1 −1
σ 0 0 0 1 1

ð26Þ

Kähler spaces naturally allow for circle fiber bundles to
be constructed on them. This is relevant for the construction
of the higher-dimensional versions of the Eguchi-Hanson
space discussed here. Kähler manifolds are described by a
Riemannian metric with associated line element dΣ2 and a
compatible symplectic closed 2-form Ω. It is convenient to
parameterize the symplectic form by a potential 1-form B
defined by Ω ¼ dB. For our purposes, we require the
Kähler base manifolds to be, in addition, Einstein spaces. In
two dimensions all spaces trivially fulfill these conditions;
in higher dimensions, however, this is actually a stringent
constraint. One way of constructing higher-dimensional
Kähler-Einstein manifolds in arbitrary even dimension 2k is
as the direct product of k 2-dimensional spaces of equal
curvature. For example, the product spaces ðT2Þk, ðS2Þk
and ðH2Þk meet these requirements whenever their geom-
etries are of the form detailed in the following Table:

Space Bi dΣ2
i θi range ϕi range

ðT 2Þk θidϕi dθ2i þ dϕ2
i ½0; βθi � ½0; βϕi

�
ðS2Þk cos θidϕi dθ2i þ sin2θidϕ2

i ½0; π� ½0; 2π�
ðH2Þk cosh θidϕi dθ2i þ sinh2 θidϕ2

i ð−∞;∞Þ ½0; 2π�

This Table shows a list of Kähler-Einstein spaces with
symplectic potential B ¼Pk

i¼1 Bi and a compatible
Riemannian metric dΣ2 ¼Pk

i¼1 dΣ2
i . For k > 1, even-

dimensional hyperspheres are Einstein spaces but not
Kähler manifolds. In contrast, complex projective spaces
CPk are Kähler-Einstein manifolds for arbitrary k when
they are equipped with the Fubini-Study metric. Complex
hyperbolic spaces with the Bergman metric also fulfill the
geometric desiderata for our construction. Part of our
calculations is benefited from considering the iterative
construction of complex projective spaces [71]. In this
case, both the metric and the potential are written recur-
sively; namely

BðkÞ ¼ ðkþ 1Þsin2ψk

�
dϕk þ

1

k
Bðk−1Þ

�
; ð27aÞ

dΣ2
ðkÞ ¼ 2ðkþ 1Þ

�
dψ2

k þ sin2 ψkcos2 ψk

�
dϕk þ

1

k
Bðk−1Þ

�
2

þ 1

2k
sin2 ψkdΣ2

ðk−1Þ

�
; ð27bÞ

where 0 ≤ ψk ≤ π=2 and 0 ≤ ϕk ≤ 2π. The base case
(k ¼ 1) is provided by the sphere. The iterative formulas
above take advantage of the fact that CPk admits a foliation
by S2k−1, modulo two points. The complex hyperbolic
space CHk admits a similar slicing; namely,

B ¼ ðkþ 1Þsinh2 ψk

�
dϕk þ

1

k
Bðk−1Þ

�
; ð28aÞ
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dΣ2 ¼ 2ðkþ 1Þ
�
dψ2

k þ sinh2 ψk cosh2 ψk

�
dϕk þ

1

k
Bðk−1Þ

�
2

þ 1

2k
sinh2 ψkdΣ2

ðk−1Þ

�
; ð28bÞ

where −∞ < ψk < ∞ but all else is as in Eq. (27).
As in the lower-dimensional examples, the bolt of the

2m-dimensional solution we are constructing is defined as
the (2m − 2)-dimensional set of fixed points, located at the
locus f�ðrbÞ ¼ 0. This condition, alongside the absence of
conical singularities, leads to a space that is geodesically
complete. The branch f−ðrÞ is continuously connected to
the Einstein solution in arbitrary even dimensions
[cf. Eq. (3)] in the limit α → 0. Additionally, defining
Δ≡ ðm2 − 1Þ½8Λαmðm − 2Þ þm2 − 1�, we find that the
asymptotic behavior of this metric is given by

fðrÞ ≃

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ

ðm2−1Þ2
q i

r2

8αmðm − 2Þ þ 2γ

m
∓ 16ασmðmþ 1Þ

ðm − 2Þ ffiffiffiffi
Δ

p
r2

∓ 1024α3σ2m3ðmþ 1Þ2
ðm − 2Þ ffiffiffiffi

Δ
p

r6
þOðr−10Þ;

as r → ∞. The asymptotic of the branch f−ðrÞ matches the
Einstein gravity solution at large r for any Kähler-Einstein
base manifold. Solution (25) is the generalized Eguchi-
Hanson space in arbitrary even dimension D ¼ 2m, and in
presence of quadratic curvature terms.

VII. GENERALIZATIONS WITH
CUBIC TERMS AND HIGHER

The solution we have just presented can be extended to
Lovelock theory with higher-curvature terms, cf. [72,73].
As an example, in eight dimensions (m ¼ 4) consider a
6-torus base manifold T 6 (i.e., k ¼ 3). For this ansatz, we
can solve the equations of motion for the Lagrangian (7)
with p ¼ 0, 1, 2, 3 explicitly. That is to say, consider, in
addition to the quadratic terms in (9)–(10), the following
cubic term in the action

Ið3Þ½g� ¼ α3κ

8

Z
M

d2mx
ffiffiffiffiffi
jgj

p
ðR3 − 12RRμνRμν þ 16RμνRμ

ρRνρ þ 24RμνRρηRμνρη þ 3RRμνρηRμνρη − 24RμνRμ
ρησRνρησ

þ4RμνρηRμναβRρη
αβ − 8Rμνρ

ηRμαρβRν
αηβÞ: ð29Þ

It can easily be checked that a polynomial equation implicitly
determines the metric function fðrÞ. More precisely, in
D ¼ 8, the field equations now take the form Gμν þ Λgμνþ
α2Hμν þ α3Mμν ¼ 0, where Hμν is defined in Eq. (12) and
Mμν comes from the variation of (29); namely

Mμ
ν ¼ −

1

16
δμλ2…λ7
νρ2…ρ7R

ρ2ρ3
λ2λ3

Rρ4ρ5
λ4λ5

Rρ6ρ7
λ6λ7

: ð30Þ

This yields the Wheeler type polynomial [72,73]

384α3r4fðrÞ3 − 32α2fðrÞ2r6 þ r8fðrÞ þ Λ
30

r10 þ a8 ¼ 0;

ð31Þ

where a is an integration constant. To see how this poly-
nomial compares to others like it in the literature, recall that
the Eguchi-Hanson metric closely resembles that of Taub-
NUT, and this similarity carries over to their respective
generalizations. However, in spite of these parallels Eq. (31)
is quite different from those found for Taub-NUT, see
Ref. [26].

Furthermore, Eq. (31) is a polynomial equation that can
be solved explicitly; however, its generic solution is
cumbersome and not particularly illuminating. In order
to have a clearer picture of the cubic solution, let us
consider a particular case that enables us to visualize the
form of the metric: Consider α3 ¼ 8α22=9, for which we find

fðrÞ ¼ r2

32α2
−

r2

32α2

�
1þ 16α2Λ

5
þ 96α2a8

r10

�1
3

: ð32Þ

This is an exact 8-dimensional solution of the cubic theory
that behaves as the solutionof 8-dimensional Einstein gravity
in the small α2 limit; namely fðrÞ ≃ − Λr2

30
− a8

r8 þOðα2Þ.
It is asymptotically equivalent to (1) with dΣ2 being the
flat metric on T6. Function (32) has its root(s) at
rb ¼ ð−30a8=ΛÞ1=10. This is a concrete example of exact,
analytic solution of the cubic Lovelock theory that asymp-
totically approaches a higher-dimensional generalization of
Eguchi-Hanson space in presence of cosmological constant.
Further examples can easily be obtained by following the
method we described in this paper, i.e., by solving a
polynomial of degree n, analogous to (31), when the
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2m-dimensional extension of the n-dimensional Euler char-
acteristics of orderOðRnÞ, with n ≤ m − 1, are added to the
gravity action.
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