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Standard dilatonic supergravity p-branes have scalar charges that are not independent parameters but are
determined by the brane tension and Page charges. This feature can be traced to the no-hair theorem in the
four-dimensional Einstein-scalar gravity, implying that more general solutions with independent scalar
charges can have naked singularities. Since singular branes are also of interest as tentative classical
counterparts of unstable tachyonic branes and/or brane-antibrane systems, it is worth investigating
branes with independent scalar charges in more detail. Here, we study singular branes associated with the
Fisher-Janis-Newman-Winicour solution of four-dimensional gravity. In the case of codimension three, we
also construct singular branes endowed with a Zipoy-Voorhees-type oblateness parameter. It is expected
that such branes will not be supersymmetric in the string theory. We demonstrate this in the special case of
NS5-branes of type II theory. We analyze geodesics and test scalar perturbations of new solutions focusing
on possible quantum healing of classical singularities.
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I. INTRODUCTION

Supergravity dilatonic p-branes are solutions of the
Einstein equations with dilaton and antisymmetric forms
[1–3]. As is well-known, a single electrically or magneti-
cally charged asymptotically flat brane with isotropic
transverse space satisfying the cosmic censorship condition
is determined by three parameters: tension, Page charge,
and asymptotic dilaton value [4]. The scalar dilaton charge
is also present, but it is of a secondary nature and is not a
free parameter in accordance with the well-known no-hair
theorem in the case p ¼ 0. Black dilatonic branes have two
horizons, the internal one being singular. So their extremal
limit has a singular even horizon, though still exhibits
supersymmetry. It turns out, however, that geodesic dis-
tance to the singularity is infinite, so the extremal horizon is
not observed as naked singularity [5].
More general solutions were found by direct integration

of Einstein equations (see, e.g., [6]), but thesewere shown to
contain naked singularities [4]. Singular branes with extra
parameters can also be of interest as tentative classical
counterparts of tachyonic branes or brane-antibrane systems
[7–11]. However, the general structure of singular branes
and their relationship to singular solutions of general
relativity do not seem to have been systematically inves-
tigated. As a step in this direction, we build and explore
singular branes related to the famous Fisher-Janis-Newman-
Winicour (FJNW) solution of Einstein’s four-dimensional

gravity minimally coupled to a massless scalar field. Recall
that the FJNW solution, first found by Fisher in 1948 [12],
was rediscovered in various forms in Refs. [13–16], the
equivalence ofwhich is shown in [17,18]. This solution has a
strong curvature singularity on the (would be) event horizon
[19–21]. It can be extended to higher dimensions [22] and
generalized to rotating solutions [23–25].
Recently, FJNW solution has become popular in four

dimensions, as modeling deviations from the standard
paradigm of the black hole physics in scalar-tensor theories
[26–29]. Geodesics, charged particle trajectories, accretion
disks in FJNW, and associated backgrounds were studied
[30–34]. Some predictions were formulated for observa-
tions that should be taken into account in astrophysics in
search of new physics. Additional interest in FJNW stems
from the fact that its counterpart in modified gravity models
such as Horndesky or DHOST may provide a nonsingular
solution to these theories [35,36].
The FJNW solution with a certain value of the scalar

charge can be recognized as the solution of the Einstein-
Maxwell-dilaton (EMD) theory in the limit of a vanishing
electromagnetic field. Mathematically, this connection can
be attributed to the existence of a three-dimensional sigma
model, the target space of which contains a subspace
corresponding to Einstein’s minimal scalar theory. This
fact can also be used as a generating tool. The isometry
transformations of the target space can be used to generate
charged black holes with singular horizon starting with
FJNW seed in four dimensions [23].
A similar generation technique has been proposed [37]

for multidimensional gravity-antisymmetric form actions,
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and here we use it to generate p-brane solutions with a
scalar charge as an independent parameter. It is achieved
via the application of the generalized Harrison transforma-
tions [38] to a Fisher-related seed, which has no electric
and/or suitable uncharged seed. The new solution opens a
way to contact the standard BPS dilatonic branes from a
new perspective. For a particular value of the dilaton
charge, the new family reduces to the standard class of
regular p-branes. This family contains, in particular, the
NS5-brane from type IIA/B supergravities. By explicitly
checking the Killing spinor equations, we prove that the
extended family contains no new supersymmetric solu-
tions, except for the well-known extremal dilaton class.
In the particular case of three-dimensional transverse

space, we also derive more general p-brane solutions
endowed, apart from an independent scalar charge, with
an additional oblateness parameter of Zipoy-Voorhees
type [39,40]. This is possible due to some special symmetry
of the Weyl-class solutions with the scalar charge.
We discuss behavior of geodesics near singularities,

identifying conditions when the latter are reached in finite
and/or infinite time. We also consider behavior of the test
scalar field near singularities, investigating whether they
can be regarded as unobservable in quantum theory.
The plan of the paper is as follows. In Sec. II, we briefly

recall the derivation of the Harrison transformation for
branes. This technique is then applied to construct Fisher
branes in arbitrary spacetime dimensions in Sec. III. In the
same section, we classify new solutions according to
their singularity structure, discuss their supersymmetry,
and show how to add Zipoy-Voorhees deformation to
the solution. The next Secs. IV and V are devoted to the
study of geodesics and the test scalar field near the
singularities.

II. HARRISON TRANSFORMATIONS
FOR BRANES

Here, we briefly recall the generating technique for
p-branes [37]. Consider Einstein gravity with dilaton
and antisymmetric form in D-dimensional spacetime,

S ¼ 1

2κ2D

Z
dDx

ffiffiffiffiffiffiffi
−G

p �
R −

1

2
ð∇ϕÞ2 − exp ð−αϕÞ

2ðnþ 1Þ! F
2
ðnþ1Þ

�
;

ð2:1Þ

where GMN is a D-dimensional spacetime metric, Fðnþ1Þ ¼
dAðnÞ is an antisymmetric nþ 1-form, ϕ is a dilaton field,
and α is the dilaton coupling constant, whose value is
prescribed in a concrete theory. The antisymmetric form is
squared with the weight one F2 ¼ FM1…Mnþ1

FM1…Mnþ1 .
The corresponding equations of motion are

RMN −
1

2
GMNR ¼ e−αϕTðFÞ

MN þ TðϕÞ
MN; ð2:2aÞ

∂Mðe−αϕ
ffiffiffiffiffiffiffi
−G

p
FMM1…Mn
ðnþ1Þ Þ ¼ 0; ð2:2bÞ

1ffiffiffiffiffiffiffi
−G

p ∂Mð
ffiffiffiffiffiffiffi
−G

p
GMN

∂NϕÞ þ
α

2ðnþ 1Þ! e
−αϕF2

ðnþ1Þ ¼ 0;

ð2:2cÞ

where the energy-momentum tensors for the antisymmetric
form and the dilaton read

TðFÞ
MN ¼ 1

2n!
ðFMM1…Mn

FM1…Mn
N Þ − 1

4ðnþ 1Þ!GMNF2
ðnþ1Þ;

ð2:3aÞ

TðϕÞ
MN ¼ 1

2

�
∂Mϕ∂Nϕ −

1

2
GMN∂Lϕ∂

Lϕ

�
: ð2:3bÞ

We assume that the brane is translation invariant in space
and time, which implies the existence of d commuting
Killing vectors, one of which is timelike. In adapted
coordinates, the metric of the D-dimensional spacetime
can be written in the form,

ds2 ¼ gμνðxÞdyμdyν þ ð ffiffiffiffiffiffi
−g

p Þ−2=shαβðxÞdxαdxβ; ð2:4Þ

where gμν and hαβ are metrics on the d-dimensional brane
world volume and the sþ 2-dimensional transverse space,
respectively, so that D ¼ dþ sþ 2. Both metrics depend
on the transverse coordinates only, and their indices vary as
μ; ν ¼ 0;…; d − 1 and α; β ¼ 1;…; sþ 2. We consider
separately electric and magnetic branes. In the first case,
n ¼ d and the form field Fðnþ1Þ ¼ dAðnÞ is generated by the
potential,

A01…d−1 ¼ vðxÞ: ð2:5Þ

In the magnetic case n ¼ s, and the form field reads

Fα1…αsþ1 ¼ eαϕffiffiffiffiffiffiffi
−G

p ϵα1…αsþ1β∂βuðxÞ: ð2:6Þ

Here, both the electric vðxÞ and the magnetic uðxÞ
potentials depend on the transverse coordinates as well.
It is convenient to rescale the world-volume metric as

gμν ¼ f2=dg̃μν, where f ¼ ffiffiffiffiffiffi−gp
, det g̃μν ¼ −1. In terms of

new variables, the equations of motion reduce to equations
of the sþ 2-dimensional sigma model,

S ¼ 1

2κ2D

Z
dsþ2x

ffiffiffi
h

p �
RðhÞ − hαβ

�
1

2
∂αϕ∂βϕ

þ sþ d
sd

∂αðln fÞ∂βðln fÞ þ
1

4
g̃μλ∂αg̃λνg̃νσ∂βg̃σμ

−
1

2
e−ψ∂αv∂βv

��
; ð2:7Þ
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where RðhÞ is the Ricci scalar of the metric hαβ and
ψ ¼ αϕþ 2 ln f. The matrix g̃μν decouples from the rest of
variables, interacting with them only through the gravita-
tional field hαβ. Since g̃μν is a symmetric matrix with
(minus) unit determinant, this part of variables parametrizes
a coset SLðd; RÞ=SOð1; d − 1Þ. Therefore, the metric on
the world volume of the p-brane is to a high extent
independent of the other σ-model variables, which only
influence its determinant. In the magnetic case, one has to
replace v by u and change the sign of the dilaton.
As result, we will get sþ 2-dimensional sigma-models

on the transverse space with the metric hαβ realized by the
target space variables f;ϕ; g̃μν, and v or u, respectively, for
electric (þ) and magnetic (−) cases [37]. The line elements
of the corresponding target spaces are

dl2e ¼ Adξ2þ þ Bdψ2þ −
1

2
e−ψþdv2

þ 1

4
tr½g̃−1dg̃g̃−1dg̃�; ð2:8aÞ

dl2m ¼ Adξ2− þ Bdψ2
− −

1

2
e−ψ−du2

þ 1

4
tr½g̃−1dg̃g̃−1dg̃�; ð2:8bÞ

where ξ�;ψ� are the following functions of ϕ and f∶

ξ� ¼�sdϕ−αðsþdÞ lnf; ψ� ¼�αϕþ2 lnf; ð2:9Þ

and A, B are constants,

A ¼ 1

sdΔ
; B ¼ sþ d

2Δ
; Δ ¼ α2ðsþ dÞ þ 2sd:

There is an electromagnetic duality between the electric
(2.8a) and magnetic (2.8b) sigma-models,

ϕ → −ϕ; u ↔ v; ð2:10Þ
which translates an electric solution into a magnetic and
vice versa. Keeping this in mind, let us consider the electric
case (2.8a).
The isometry group of the target space SLðd; RÞ=

SOð1; d − 1Þ × SLð2; RÞ=SOð1; 1Þ × R consists of the
transformations of the matrix g̃, translations along ξþ,
and the nontrivial transformations in the subspace ðψþ; vÞ
relevant for the generating technique. Similarly to the four-
dimensional Einstein-Maxwell model, one can define the
Ernst potentials,

Φ ¼ v

2
ffiffiffiffiffiffi
2B

p ; E ¼ expψþ −
v2

8B
: ð2:11Þ

A nontrivial isometry transformation, which preserves an
asymptotic behavior of the Ernst potentials E→1, Φ→0, is

Φ ¼ Φð0Þ þ cðcΦð0Þ þ Eð0Þ − 1Þ
1 − 2cΦð0Þ − c2Eð0Þ ;

E ¼ Eð0Þ þ 2cΦð0Þ − c2

1 − 2cΦð0Þ − c2Eð0Þ ; ð2:12Þ

where the index ð0Þ stands for the seed solution and c is a
real transformation parameter. If the seed solution is
uncharged v0 ¼ 0, the transformation (2.12) can be sim-
plified as

Φ ¼ c
Eð0Þ − 1

1 − c2Eð0Þ ; E ¼ Eð0Þ − c2

1 − c2Eð0Þ : ð2:13Þ

The magnetic isometry transformations of the target space
(2.8b) can be obtained by replacing v and ψþ with u and ψ−
in (2.11). These transformations represent the generalized
Harrison map for the model (2.1).

III. BRANES WITH INDEPENDENT
SCALAR CHARGE

To generate a charged brane with an independent scalar
charge, we will start with the seed solution of the model
(2.1) with the trivial antisymmetric form. This is related to
the FJNW solution in higher dimensions.

A. FJNW solution in D-dimensional spacetime

Four-dimensional FJNW solution was generalized to
arbitrary dimensions by Xanthopoulos and Zannias (XZ) in
Ref. [41]. For the theory with the action,

S ¼ 1

2κ2D

Z
dD̃x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∇ϕÞ2

�
; ð3:1Þ

the solution reads

ds2 ¼ −fσ1dt2 þ f
1−σ
D̃−3−1
1 dr2 þ r2f

1−σ
D̃−3
1 dΩ2

ðD̃−2Þ;

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̃ − 2

2ðD̃ − 3Þ

s
Σσ
M

ln f1; f1 ¼ 1 −
�
r0
r

�
D̃−3

;

rD̃−3
0 ¼ 2κ2DM

ðD̃ − 2ÞσSD̃−2
; σ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ Σ2
p ; ð3:2Þ

where the mass M and the scalar charge Σ are independent
parameters, Sn ¼ 2πðnþ1Þ=2=Γðnþ1

2
Þ is the surface area of a

unit n-sphere, dΩ2
ðnÞ is a line element of the unit n-sphere.

One can directly check that the equations of motion for the
model (3.1) correspond to the equations of motion (2.2)
with vanishing antisymmetric form Fðnþ1Þ ¼ 0. Thus, the
FJNW solution satisfies the equations of motion for the
model (2.1). The horizon at r ¼ r0 is always singular
for Σ ≠ 0 [21]. Zero scalar charge Σ ¼ 0 brings us back to
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the standard Schwarzschild-Tangherlini solution in D̃
dimensions.

B. Generation of the charged FJNW-brane

To get the charged FJNW-branes, one constructs the seed
solution complementing the FJNW metric (3.2) with a flat
subspace parametrized by the coordinates y1;…; yd−1. The
subspace metric in the sector t; y1;…; yd−1 and the space-

like section of the metric (3.2) are identified with gð0Þμν and

hð0Þαβ of the previous section, respectively. This gives us the

seed potentials in the form ψ ð0Þ
þ ¼ σU ln f1 and ξð0Þþ ¼

ξþ ¼ σV ln f1, where

U ¼
ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2s

r
αΣ0

M0

þ 1;

V ¼ sd

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2s

r
Σ0

M0

−
1

2
αðsþ dÞ: ð3:3Þ

Substituting ψ ð0Þ
þ and ξð0Þþ in (2.11), we will get the seed

Ernst potentials Eð0Þ ¼ fσU1 , Φð0Þ ¼ 0. Then the transfor-
mation (2.13) leads to the new Ernst potentials,

E ¼ fσU1 − c2

1 − c2fσU1
; Φ ¼ c

fσU1 − 1

1 − c2fσU1
: ð3:4Þ

Using (2.9) and (2.11), one finds new v, ϕ and f for the
generated solution. Finally, this leads to the metric of the
electric p-brane,

ds2 ¼ f4s=Δ2 ð−fσ1dt2 þ dy21 þ � � � þ dy2d−1Þ
þ f−4d=Δ2 fð1−σÞ=s1 ðdr2=f1 þ r2dΩ2

sþ1Þ;

ϕ ¼ σðU − 1Þ
α

ln f1 þ 4Bα ln f2;

A01…d−1 ¼ 2c
ffiffiffiffiffiffi
2B

p
ðfσU1 f2 − 1Þ; ð3:5Þ

where

f1 ¼ 1 −
rs0
rs
; f2 ¼

1 − c2

1 − c2fσU1
;

rs0 ¼
2κ2DM0

σðsþ 1ÞSsþ1

; σ ¼ M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ Σ2
0

p :

This new solution is physically meaningful only for
integers s, d ≥ 1. The independent parameters are the seed
mass and scalar charge M0, Σ0, as well as the Harrison
transformation parameter c. The solution (3.2) can be
restored setting c ¼ 0, d ¼ 1.
The magnetic brane can be obtained via electric-

magnetic duality (2.10). According to (2.6), the antisym-
metric form will read

Fα1…αsþ1
¼ c

1 − c2
s

sþ 1

4κ2DM0U
ffiffiffiffiffiffi
2B

p

Ssþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðsþ1Þ

q
ϵα1…αsþ1

;

ð3:6Þ

where ΩðnÞ is the determinant of the metric tensor of the
unit n-sphere, ϵα1…αsþ1

¼ �1.
Important examples of the generated family are F1 and

NS5 branes in supergravities of type II. The fundamental
string F1 is a solution with an electrically charged 3-form
with d ¼ 2, s ¼ 6, α ¼ 1. Its dual one is a five-brane
soliton NS5 with magnetic charge and d ¼ 6, s ¼ 2, α ¼ 1.

C. Charges

The ADM mass M and the electric Page charge Q per
unit area of the FJNW brane can be presented as the surface
integrals according to Eqs. (2.8) and (4.3) in Ref. [42],1

M ¼ M0ð1þ δMÞ; δM ≡ 4sU
Δ

c2

1− c2

�
d−

sðs− 1Þ
sþ 1

�
;

ð3:7aÞ

Q ¼ 1

κ2D

Z
S∞

e−αϕ � FðeÞ ¼ ð−1Þd s
sþ 1

c
1 − c2

4
ffiffiffiffiffiffi
2B

p
M0U;

ð3:7bÞ

where S∞ is a hypersurface of an infinitely distant sþ 1-
sphere (also, see Ref. [43] for details). In the magnetic case,
the charge corresponding to the undualized form integral,

P ¼ 1

κ2D

Z
S∞

FðmÞ; ð3:8Þ

formally coincides with the expression for the electric
charge (3.7b) up to sign.
In accordance with the dilaton asymptotics for r → ∞,

ϕ ≈ −
1

rs
2κ2D

ðsþ 1ÞSsþ1

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2s

r
Σ0ð1þ δΣÞ;

δΣ ¼ 4Bα2
U

U − 1
·

c2

1 − c2
; ð3:9Þ

it is reasonable to define the dilaton charge D of the brane
as follows:

1We have redefined the Page charge by a multiplicative
constant in order to get rid of an extra κD in the following
expressions and due to different weight of the Maxwell form in
the action from Eq. (2.1).
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D¼−
ffiffiffiffiffiffiffiffiffiffi
2s

sþ1

r
Σ0ð1þδΣÞ

α

¼−
�
1þ4Bα2c2

1−c2

� ffiffiffiffiffiffiffiffiffiffi
2s

sþ1

r
Σ0

α
−
8Bc2

1−c2
s

sþ1
M0: ð3:10Þ

Note that the dilaton charge is not associated with Noether
symmetry, so its choice is rather the matter of conven-
ience [44].
In Sec. III D, it will be shown that the necessary

condition for the horizon to be regular is the seed scalar
charge equal to zero: Σ0 ¼ 0. This condition does not mean
a zero dilaton charge D ¼ 0, since in this case U ¼ 1, and
the product Σ0δΣ is finite. Rather, in this limit we obtain a
constraint,

Q2 ¼ D
�
BD −

4s
1þ s

M
�
; ð3:11Þ

for the electric brane and

P2 ¼ D
�
BDþ 4s

1þ s
M

�
; ð3:12Þ

for the magnetic one (which can be obtained replacing
D → −D, Q → P), where

B ¼ 1

2B
−
4sðdsþ d − s2 þ sÞ

ðsþ 1Þðdþ sÞ : ð3:13Þ

For the parameter values d ¼ s ¼ 1, α ¼ ffiffiffi
3

p
(B ¼ 2), the

model is the four-dimensional α ¼ ffiffiffi
3

p
Einstein-Maxwell-

dilaton (EMD) theory, and the conditions (3.11), (3.12)
coincide with the charge constraint found by Rasheed [45].
The Eq. (3.11) has two roots with respect to D

D� ¼ 2Ms�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2s2 þBðsþ 1Þ2Q2

p
Bðsþ 1Þ : ð3:14Þ

If Q ¼ 0, the regularity condition (3.11) should coincide
with the regularity condition of the seed solution, namely
Σ0 ¼ D ¼ 0. Therefore, the rootDþ is unphysical and does
not correspond to the constraint Σ0 ¼ 0. Similarly, the plus
sign in the solution for Eq. (3.12) does not correspond to
regular magnetic solutions.
Another interesting limit is U → 0, c2 → 1. In this case,

the expressions for charges (3.7a), (3.7b), (3.10), and the
solution itself (3.5) have a nontrivial limiting form with
new metric function,

f2 ¼ ðζ ln f1 þ 1Þ−1; ð3:15Þ

where ζ is a new independent parameter. For ζ > 0, the
function f2 diverges at rζ ¼ r0ð1 − e−1=ζÞ−1=s > r0 as

1=ðr − rζÞ. For ζ < 0, the function f2 does not have roots
and tends to zero at r0 as 1= ln f1.
Similarly, the limit M0;Σ0 → 0; c2 → 1 leaves the

charges finite. Let us introduce an infinitesimal parameter
ϵ, such that the quantities M0;Σ0; c depend on it as
M0 ¼ ξϵ;Σ0 ¼ ζϵ; c ¼ �ð1 − ϵÞ, where ζ and ξ are some
constants. Then, the limit ϵ → 0 leads to redefinition,

f1 ¼ 1; f2 ¼
rs

ρs þ rs
; ð3:16Þ

and the new charges will be

M¼Φ
�
2Bþ sðd− sÞ

Δ

�
; D¼−2BΦ; Q¼�Φ

ffiffiffiffiffiffi
2B

p
;

ð3:17Þ

where

ρs ¼ κ2DΦ
sSsþ1

; Φ ¼ 2s
sþ 1

ξþ
ffiffiffiffiffiffiffiffiffiffiffi
2s

sþ 1

r
αζ:

In the magnetic case, the solution can be found from (3.17)
again replacing D → −D;Q → P. It can be verified that
the charge expressions satisfy identically the condition
(3.14). These solutions were found previously in Ref. [46].
The charges (3.17) satisfy the following constraints:

M2 ¼ Q2
ðsþ dþ sd − s2Þ2

ðsþ dÞΔ ; ð3:18aÞ

D2 ¼ 2BQ2; ð3:18bÞ

which can be combined into

M2þ
�

1

2B
−
�
sþdþ sd− s2

sþd

�
2
�
D2−Q2¼ 0; ð3:19Þ

resembling the no-force condition [47,48]. For d ¼ s ¼ 1
the mass constraint (3.18a) coincides with the known result
M2 ¼ Q2=ð1þ α2Þ for BPS-solutions in the EMD model
[45,49–51].
The limit c → ∞ leads to the function redefinition,

f2 ¼ f−σU1 ; ð3:20Þ

while the antisymmetric form becomes trivial. This solution
is a particular case of the wider family, which can be
obtained from the seed solution with SOð2Þ transformation
considered in Sec. III F.
The first limiting solution (3.15) does not differ quali-

tatively from the general family, while the second limiting
solution (3.20) is a special case of another wider family of
uncharged solutions that requires a separate study. In what
follows, we will discuss physical property of the general
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solution (3.5) and the second limiting solution (3.16),
denoting them as SG and SE, respectively.

D. Singularities

To perform an analysis of spacetime structure, we
calculate the Ricci scalar, contracting indices in
Eq. (2.2a), and substituting the general solution for elec-
tric/magnetic forms and the scalar field into the energy-
momentum tensor,

R ¼ 1

2
σ2f4d=Δ2 fðσ−s−1Þ=s1 f021 ðRF þ RϕÞ;

RF ¼ 4c2U2ðd − sÞf22fσU1
ð1 − c2Þ2Δ ;

Rϕ ¼
�
Σ0

M0

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2s

r
þ 2αc2Uðdþ sÞf2fσU1

ð1 − c2ÞΔ
�2

: ð3:21Þ

For the general family SG, the function f2 is regular at
r ¼ r0; therefore, this factor does not lead to the curvature
singularity. But for Σ0 ≠ 0, the Ricci scalar (3.21) contains

a diverging factor proportional to fðσ−s−1Þ=s1 due to the
negative exponent. For Σ0 ¼ 0,M0 > 0, the surface r ¼ r0
is regular and represents an event horizon if jcj < 1.
The function f2 diverges once its denominator is

zero: fσU1 ¼ c−2. The function f1 is bounded from above
by a value 1; thus, this is possible for c2 > 1 only. From
Eq. (3.21), it follows that this leads to the existence of one
more singularity at r0ð1 − c−2=σUÞ−s > r0.
In the limiting case SE, the scalar curvature becomes

R¼
�

2sρs

rsþ1Δ

�
2

f4d=Δþ2
2 dðΔ− sðdþ sÞÞ∼ r4ds=Δ−2: ð3:22Þ

To find out whether the point r ¼ 0 is singular, we look at
the extrema of the exponent −2þ 4ds=Δ with respect to
α2. This expression takes the lowest value −2 for α2 → ∞
and the largest value 0 for α2 ¼ 0. So, the family SE is
singular for α ≠ 0. For Δ − sðdþ sÞ ¼ 0 [i.e., α2 ¼
sðs − dÞ=ðsþ dÞ, s ≥ d] the metric tensor is Ricci flat.
However, the direct calculation of the scalars RMNRMN and
RMNLKRMNLK lead to the asymptotic ∼r4ðd−sÞ=ðdþsÞ as
r → 0, so they diverge if s ≠ d (the case s ¼ d brings
us back to α ¼ 0).
The outermost singularity/horizon surface for SG, c2 < 1

is r ¼ r0. Solutions with positive (negative) seed mass M0

have an infinite red shift gtt → 0 (blue shift gtt → ∞) at
r ¼ r0. In Sec. IV, we will show that the point r ¼ r0 is
approached by the radial geodesic in a finite time of the
remote observer for any σ ≠ 1. The outermost interesting
surface for SG, c2 > 1 is the surface f−12 ¼ 0. As gtt → ∞,
such solutions are naked singularities with an infinite blue
shift. The family SG cannot be extremal in the sense
g0ttðr0Þ ≠ 0 or grr0ðr0Þ ≠ 0, which can be verified directly.

According to this analysis, the generic family SG is a
naked singularity for σ ≠ 1 but may have some black hole
properties (redshift). The class SE represent extreme
solutions, that are regular only for α ¼ 0, representing
extreme Reissner-Nordström singly charged solutions.

E. Supersymmetry

The fact that singularities of spacetime may be compat-
ible with supersymmetry is known from the example of
domain walls [52]. Therefore, it makes sense to check the
possible supersymmetry of our singular branes from first
principles. It can be seen that the solution subfamily SE
contains the known family of the BPS saturating solutions
for any d, s, α, representing p-branes of the type IIA/IIB
superstring theories [53–55]. However, the question may
arise whether the general solution SG contains other
supersymmetric solutions.
We will study supersymmetry in the case of NS5-brane

(d ¼ 6, s ¼ 2, α ¼ 1) in type IIA supergravity. The
supersymmetry conditions have the simplest form in the

string frame GðsÞ
MN ¼ e−ϕ=2GMN ,

ds2ðsÞ ¼ f−σðU−1Þ=2
1 ð−fσ1dt2 þ dy21 þ � � � þ dy25Þ

þ f−12 f−ð1þσUÞ=2
1 ðdr2 þ r2f1dΩ2

3Þ;

ϕ ¼ −σðU − 1Þ ln f1 −
1

2
ln f2: ð3:23Þ

We will choose the three-sphere metric as follows:

dΩ2
3 ¼ dψ2 þ sin2ψðdθ2 þ sin2θdφ2Þ;ffiffiffiffiffiffiffiffiffi

Ωð3Þ
q

¼ sin2ψ sin θ; ð3:24Þ

so the magnetic three-form from the Neveu-Schwarz sector
HMNP reads

Hψθφ ¼ p sin2 ψ sin θ; p ¼ c
1 − c2

2κ2DM0U
3π2

; ð3:25Þ

where we introduced the constant p for convenience.
The variations of gravitino and dilatino for type IIA

supergravity with truncated Ramond-Ramond fields are
[56,57]

δψM ¼
�
∇M −

1

8
HMNPΓNPΓ11

�
ϵ; ð3:26aÞ

δλ ¼ −
1

3

�
Γμð∂μϕÞΓ11 −

1

12
HMNPΓMNP

�
ϵ; ð3:26bÞ

where
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∇μ ¼ ∂μ þ
1

4
ωMABΓAB; ΓM1…Mn ¼ Γ½M1…ΓMn�;

Γ11 ¼ Γ0Γ1…Γ9; ð3:27Þ

ωMAB is spin connection, and we use the convention

fΓM;ΓNg ¼ 2GðsÞ
MN .

Since the Killing spinor does not depend on the coor-
dinates along the orbits of the commutingKilling vectors yμ,
so the condition δψμ ¼ 0 reduces to ωμ

ν̄ r̄Γν̄ r̄ϵ ¼ 0, where
the flat indices with respect to the ten-dimensional metric

GðsÞ
MN are denoted by bars. As gamma matrices are not

degenerate, this requires the spin connection to be zero,

which is possible ifGðsÞ
μν is constant (for μ; ν ¼ 0;…5 only).

This is not possible for the general solution SG unless the
function f1 is constant. The function f1 is constant for the
subfamily SE only with f1 ¼ 1 and f2 ¼ rs=ðrs þ ρsÞ, and
there is no other solutions in SG satisfying this condition. As
we have mentioned, this solution is known to have Killing
spinors. For the completeness of the analysis, wewill obtain
the resulting Killing spinors. The component δψ r ¼ ∂rϵ is
zero if the Killing spinor ϵ depends on the angles ψ , θ, and φ
only. The remaining gravitino equations on the three-sphere
are solved by the spinor,

ϵ ¼ exp ð−Γψ̄Γr̄ψ=2Þ exp ð−Γθ̄Γψ̄ θ=2Þ exp ð−Γφ̄Γθ̄φ=2Þϵ0;
ð3:28Þ

where ϵ0 is a constant spinor and the exponents can be
expanded as

eΓ
MΓNx ¼ cos xþ ΓMΓN sin x; M ≠ N ≠ t: ð3:29Þ

The remaining dilatino equation (3.26b) for SE solutions is

ð1� Γ0Γ1Γ2Γ3Γ4Γ5Þϵ ¼ 0; ð3:30Þ
where the sign depends on the sign of the magnetic charge.
This condition breaks a half of supersymmetry.

F. FJNW-branes with oblateness parameter

Static uncharged solutions in general relativity with
minimally coupled scalar field, which is the truncation
of the theory (2.1) with F ¼ 0, can be reduced to a simple
sigma model. This opens a way to add the minimal
massless scalar field via the transformations.
To construct an appropriate sigma model, we can

truncate the previously derived ones (2.8a) or (2.8b) setting
zero electric v or magnetic u potentials. This gives the
target space metric,

dl20 ¼
sþ d
sd

ðd ln ffiffiffiffiffiffi
−g

p Þ2 þ 1

2
dϕ2: ð3:31Þ

It has an SOð2Þ symmetry, corresponding to the trans-
formation used in [21],

8<
:
ln

ffiffiffiffiffiffi−gp ¼ cosβ · ln
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffi
sd

2ðsþdÞ
q

sinβ ·ϕð0Þ

ϕ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ðsþdÞ

sd

q
sinβ · ln

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
þ cosβ ·ϕð0Þ

; ð3:32Þ

where β is a transformation parameter.
Starting with the four-dimensional vacuum axially sym-

metric Zipoy-Voorhees solution [39,40], the p-branes with
s ¼ 1 can be supplied with the deformation (oblateness)
parameter δ. One chooses the seed solution,

ds2 ¼ −f1ðxÞδdt2 þ f1ðxÞ−δds2ð3Þ; f1ðxÞ ¼
x − 1

xþ 1
;

ds2ð3Þ ¼ k2
��

x2 − 1

x2 − y2

�
δ2−1�

dx2 þ x2 − 1

1 − y2
dy2

�

þ ðx2 − 1Þð1 − y2Þdφ2

�
; ð3:33Þ

where k and δ are some constants, x and y are oblate
spheroidal coordinates, related to spherical coordinates as
x ¼ r

k − 1; y ¼ cos θ. Substituting d ¼ s ¼ 1, jgð0Þj ¼ fδ

and ϕð0Þ ¼ 0 in SOð2Þ-transformations (3.32) and redefin-
ing β through the charges, we will get a new solution,

ds2 ¼ −fδσ1 dt2 þ f−δσ1 ds2ð3Þ; ϕ ¼ Σ
k
ln f1; ð3:34Þ

where σ has the former expression, k ¼ M
σδ. The obtained

solution combines FJNW and Zipoy-Voorhees four-
dimensional solutions. Next, we can extend the solution
to D ¼ dþ 3 dimensions and apply the transformations
(2.13). We will get solution in the form of the previously
found FJNW brane (3.5) with the replacement fσ1 → fσδ1
and using the new form of dsð3Þ,

ds2¼f4=Δ2 ð−fσδ1 dt2þdy21þ���þdy2d−1Þ
þf−4d=Δ2 f−σδ1 ds2ð3Þ;

ϕðrÞ¼Σ
k
lnf1þ4Bα lnf2; f1ðrÞ¼

x−1

xþ1
;

f2ðrÞ¼
1−c2

1−c2fσδU1

; σ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þΣ2

p ; U¼1þΣα
M

; ð3:35Þ

with the electric potential,

A01…d−1 ¼
2

ffiffiffiffiffiffi
2B

p

c
ðf2 − 1Þ;

or the magnetic form,

Fyφ ¼ 4c
ffiffiffiffiffiffi
2B

p

1 − c2
ðM þ αΣÞ:
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This is a solution with both an independent scalar charge
and an arbitrary oblateness parameter δ (see Ref. [23] for
more details of the replacement σ → σδ).

IV. GEODESICS

Consider the geodesic equation,

d
dτ

ðGMN
_XNÞ − 1

2

dGPQ

dXM
_XP _XQ ¼ 0: ð4:1Þ

The metric (3.5) can be written in the form,

ds2¼−aðrÞdt2þbðrÞdy2þvðrÞdr2þwðrÞdΩ2
sþ1; ð4:2Þ

where

aðrÞ¼ f4s=Δ2 fσ1; bðrÞ¼ f4s=Δ2 ;

vðrÞ¼ f−4d=Δ2 fð1−s−σÞ=s1 ; wðrÞ¼ f−4d=Δ2 fð1−σÞ=s1 r2: ð4:3Þ

By virtue of the spherical symmetry, we can choose
geodesics lying in the equatorial plane of sþ 1-sphere
along the coordinate φ. Constants of motion for t, yi and φ
follows from Eq. (4.1),

_t ¼ Ea−1; _yi ¼ kib−1; _φ ¼ Lw−1: ð4:4Þ

Let us choose the affine parameter τ so that _XM
_XM ¼ −ϵ,

where ϵ ¼ −1, 0, 1 for spacelike, lightlike, and timelike
geodesics, respectively. Keeping in mind the constants of
motion (4.4), the radial equation reads

_r2 ¼ 1

av
ðE2 − VeffÞ; ð4:5Þ

VeffðrÞ ¼
a
b
k2 þ a

w
L2 þ aϵ; ð4:6Þ

where k2 is kikjδij. In terms of the time of an infinitely
distant observer, the radial equation has the form,

�
dr
dt

�
2

¼ a
E2v

ðE2 − VeffÞ: ð4:7Þ

The proper time and the distant observer time of motion
from r1 to r2, are

Δτ ¼ �
Z

r2

r1

ffiffiffiffiffiffi
av

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Veff

p ;

Δt ¼ �
Z

r2

r1

ffiffiffi
v
a

r
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Veff=E2
p : ð4:8Þ

Geodesics can reach the spherical surface S with radius
rS if the effective potential Veff does not tend to þ∞ at this
surface. For null and timelike worldlines, the effective
potential is a positive function in the exterior region of
the solution. Hence, it is enough to require Veff to be
bounded. If every term of the effective potential behaves as
∼ðr − rSÞa near S, where a is some constant, then the
necessary and sufficient condition is a ≥ 0 for every term in
the effective potential. If the geodesic curve intersects the
surface S, then the required time interval in some frame of
reference can be finite or infinite. For a distant observer, the
geodesic reaches the surface S in a finite time interval Δt if
and only if the quantity

ffiffiffiffiffiffiffiffi
v=a

p
is integrable near this

surface. Therefore, if we want the time interval to be finite,
the function

ffiffiffiffiffiffiffiffi
v=a

p
cannot diverge as ðr − rSÞ−1 or faster.

Similarly, for the proper time Δτ, we have a condition that
the function

ffiffiffiffiffiffi
va

p
cannot diverge as ðr − rSÞ−1 or faster.

According to the results of Table I, Table II gives the
corresponding condition for the functions a, a=b, a=w,ffiffiffiffiffiffi
va

p
and

ffiffiffiffiffiffiffiffi
v=a

p
.

Behavior of geodesics in the background of solutions SG
with c2 < 1 does not drastically differs from the motion in
uncharged FJNW-branes. Depending on the value of σ, the
effective potential can be either bounded or divergent in the
singularity. For σ ≥ 1=ð1þ sÞ, the effective potential is
always bounded for any geodesics; for 0 ≤ σ < 1=ð1þ sÞ
the potential is bounded for geodesics with zero angular
momentumL ¼ 0 only; in the case σ < 0, the singularity r0
is reachable for null radial geodesics only (ϵ ¼ k ¼ L ¼ 0).

TABLE I. Behavior of a, a=b, a=w, and
ffiffiffiffiffiffi
av

p
,

ffiffiffiffiffiffiffiffi
v=a

p
near the surface S of the radius rS up to a multiplicative

constant, x ¼ r − rS.

Quantity General expression SG; c2 < 1 SG; c2 > 1 SE

rS r0 r0ð1 − c−2=σUÞ−s 0
a f4s=Δ2 fσ1 xσ x−4s=Δ x4s

2=Δ

a=b fσ1 xσ x0 1
a=w f4ðsþdÞ=Δ

2 f
σ−1−σ

s
1 r−2 xσ−

1−σ
s x−4ðsþdÞ=Δ x−2þ4sðsþdÞ=Δffiffiffiffiffiffi

av
p

f2ðs−dÞ=Δ2 f
ð1−sÞð1−σÞ

2s
1

x
ð1−sÞð1−σÞ

2s x2ðd−sÞ=Δ x2sðs−dÞ=Δffiffiffiffiffiffiffiffi
v=a

p
f−2ðsþdÞ=Δ
2 f

−ðsþ1Þσþ1−s
2s

1
x
−ðsþ1Þσþ1−s

2s x2ðsþdÞ=Δ x−2sðsþdÞ=Δ
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Geodesics always traverse the surface r0 in a finite proper
time Δτ. The distant observer can observe this in a finite
time Δt only in the singular case σ ≠ 1.
Solutions SG with c2 > 1 have another outermost sin-

gularity, which has different properties for geodesics.
Timelike geodesics never reach this singularity due to an
unbounded growth of the effective potential. Null geodesics
can reach the singularity only if they are purely radial,
L ¼ 0. From the point of view of the distant observer, null
geodesics can reach the singularity in a finite time Δt and a
finite Δτ.
The effective potential of geodesics in the background

of SE with α2 ≤ α2crit, α2crit ¼ 2s2=ðsþ dÞ is bounded.
Geodesics traverse the surface r ¼ 0 in a finite Δτ, but
an infinite Δt. For the other case α2 > α2crit, the effective
potential with a nonzero angular momentum L unbound-
edly grows at the singularity, and geodesics with zero
angular momentum L ¼ 0 reaches the singularity with
finite Δt and Δτ. In the case of the NS5-brane, the dilaton
coupling constant has a critical value α ¼ αcrit ¼ 1.

V. TEST SCALAR FIELD

The physical effects of the field theory that can manifest
themselves in a singular spacetime are interesting both
from the point of view of the search for new physics [58,59]
and from a theoretical point of view. First of all, one has to
construct the self-adjoint wave operators, which is a non-
trivial task in singular curved spacetimes, since the usual
axioms of the quantum field theory break there [60]. This is
an important question, since it is believed that quantum
effects are of decisive importance near singularities.
A related issue is the possible quantum unobservability

of classical singularities. It was argued that if there is a
unique self-adjoint extension of the wave operator in a
singular spacetime, then classical singularity is quantum
mechanically unobservable by the corresponding field
[60,61]. This issue was investigated in a number of
subsequent works. The situation simplifies in the static
spaces. There are two simple ways to check the essential
self-adjointness of symmetric operators. The first is the
calculation of the defect indices (von Neumann). The
second one uses Weyl’s theorem: the wave operator is
not self-adjoint if both local solutions in a neighborhood of

the singular submanifold satisfy the criterion of square
integrability limit circle). Indeed, in this case, it is necessary
to make additional assumptions about boundary conditions
on which the evolution of the solution will depend. If only
one solution is locally square integrable (limit point), the
evolution of the waves will be uniquely determined, so the
wave packet will not feel the presence of the singularity. In
this case, in the vicinity of the singularity, as a rule, a
repulsive barrier arises. The idea was formulated by Wald
[60] and more specifically implemented by Horowitz and
Marolph [61] in the case of the scalar field. Later work in
this direction includes Refs. [62–64] and others. The scalar
theory was generalized to the Maxwell and Dirac fields
[64]. The possibility of quantum healing of geodesically
incomplete manifolds has been tested for a number of static
and conformally static singular solutions of Einstein theory
in four and three dimensions (see the recent review [65]).
A closely related problem is that of stability of singular

spacetimes. Stability of a solution is related to the sign of
the imaginary part of the frequencies of normal modes
defined with appropriate boundary conditions in singular-
ities. It may happen that different choice of boundary
conditions in the case where both local solutions are square
integrable, may lead to different conclusions about stability
[66,67]. Physically this means that the full specification of
the singular spacetime must include prescription of boun-
dary conditions for perturbations in singularities. This issue
requires further study which is beyond the scope of the
present work. But the crucial question is the number of
local solutions near the singularities which are square
integrable.
To investigate the stability and quantum healing of

singularities, one has to deal with perturbations in super-
gravity/string theory backgrounds, which are driven by
Lichnerowitz type operators. But here we will not delve
into these rather complicated issues, confining ourselves to
a simpler analysis of the Klein-Gordon operator following
[60–65]. Using the definitions (4.3), the Klein-Gordon
equation ð□ − μ2Þϕ ¼ 0 can be written in the form,

−a−1∂2tϕþb−1∂2iϕþ 1

R
∂rðRv−1∂rϕÞþ

1

w
Δsþ1

S ϕ−μ2ϕ¼ 0;

ð5:1Þ

TABLE II. Regularity condition of various terms in effective potential (4.6) and conditions of finiteness of the
required time for geodesics to traverse the surface S of the radius rS in terms of the proper time τ and the distant
observer time t for different solutions; eϵ, ek, eL, eτ, et are the exponents of the leading term in the expansion of the
functions a, a=b, a=w,

ffiffiffiffiffiffi
av

p
,

ffiffiffiffiffiffiffiffi
v=a

p
near the surface S, respectively.

Solution rS eϵ ≥ 0 ek ≥ 0 eL ≥ 0 eτ > −1 et > −1

SG; c2 < 1 r0 σ ≥ 0 σ ≥ 0 σ ≥ 1
1þs

Always σ ≠ 1

SG; c2 > 1 r0ð1 − c−2=σUÞ−s Never Always Never Always Always
SE 0 Always Always α2 ≤ 2s2

sþd
Always α2 > 2s2

sþd
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where Δsþ1
S is the Laplace-Beltrami operator of a unit

sþ 1-sphere, and

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−G=Ωðsþ1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abd−1vwsþ1

p
¼ f−4d=Δ2 f

1−σ
s
1 rsþ1:

Substituting the ansatz ϕ ¼ expf−iωtþ ikiyigΦðrÞYK
l ðθÞ,

where K is a set of quantum numbers of the sþ 1-sphere
harmonics YK

l , except for the quantum number of the total
angular moment l. Taking into account the eigenvalues of
the harmonics Δsþ1

S YK
l ¼ −lðlþ sÞYK

l [the eigenvalue l is
degenerate with the degree ð2lþ sÞðlþ s − 1Þ!=l!s! [68] ],
we will get

1

R
∂rðRv−1∂rΦÞþ

�
ω2

a
−
k2

b
−
lðlþ sÞ

w
−μ2

�
Φ¼ 0: ð5:2Þ

Let us make a coordinate transformation ∂r ¼ WðϱÞ∂ϱ and
substitutionΦ ¼ PðrÞχðrÞwith some arbitrary functionsW
and P. We would like to find functions W, P, such that the
equation takes the Schrödinger form,

χ00 þ ðω2 − VeffÞχ ¼ 0; ð5:3Þ

where prime denotes the derivative with respect to ϱ. To
achieve this goal, we must put

W2 ¼ v
a
;

P ¼
ffiffiffiffiffiffiffiffi
v

WR

r
¼ f

sþd
Δ
2 f−ð1−σÞðsþ1Þ=4s

1 r−ðsþ1Þ=2: ð5:4Þ

Substituting (5.4) in Eq. (5.2), we will get the effective
potential Veff for the test scalar field,

Veff ¼ k2
a
b
þ lðlþ sÞ a

w
þ aμ2 þ V0; ð5:5Þ

V0 ¼ ðlnPÞ02 − ðlnPÞ00: ð5:6Þ

The first three terms of Veff coincide with the effective
potential for geodesics up to the change of constants of
motion to the quantum numbers. Note that L2 integrability
of the solutions does not depend on the choice of the
functions W and P, if we choose the correct integration
measure in the corresponding Sturm-Liouville problem:
R=adr for (5.2), and dϱ for (5.3).
Consider the limit r → þ∞. Then, the measure asymp-

totically tends to rsþ1dr, so the L2-integrable scalar field
mode should tend to zero faster than r−1−s=2. At the same
time, the solution of Eq. (5.2) has an asymptotic form,

Φ ≈ r−s=2ðC1Jlþs=2ðκrÞ þ C2Ylþs=2ðκrÞÞ;
κ2 ¼ ω2 − k2 − μ2:

For κ2 > 0, the solutions are wavelike, and they are not L2

integrable, which is evident from the asymptotic behavior
of the oscillation amplitude r−ðsþ1Þ=2. The case κ2 ¼ 0 leads
to the solution of the form Φ ≈ C1rl þ C2r−l−s, where the
only square integrable mode is the second term for s > 2 or
l > 0. In the case κ2 < 0, one mode exponentially diverges
and another exponentially decays. So only half of them are
L2 integrable. Summing up, the L2 integrability implies the
inequality ω2 < k2 þ μ2 (which can be not strict for s > 2
or l > 0).
Consider the solution near the outermost singularity

(which is of the Fisher type for SG; c2 < 1). The asymptotic
behavior of the function W ¼ ffiffiffiffiffiffiffiffi

v=a
p

has been classified in
Table I. Generally, W ∼ xm, where m is some constant,
depending on the parameters of the theory. The new
coordinate can be expressed in terms of the old one
asymptotically as follows: ϱ ∼ xmþ1 (or ρ ∼ ln x for
m ¼ −1) up to a multiplicative constant and an arbitrary
additive constant. The new radial coordinate, which brings
the equation to the Schrödinger form, strongly depends on
whether the geodesics can achieve the singularity with a
finite time interval of the distant observer or not. Near the
singularity the function P behaves as xn up to a coefficient,
where n is some constant. From Eq. (5.6), for m ≠ −1, it
follows that V0 ≈ ðν2 − 1Þϱ−2=4, where

ν ¼ 2nþmþ 1

mþ 1
: ð5:7Þ

Let us find the form of the solution in the vicinity of the
singularity for each metric subfamily.

A. Solution SG with c2 < 1

The exponent m ¼ −1þ ð1þ sÞð1 − σÞ=2s achieves its
minimum for σ ¼ 1 equal to −1. The case σ ¼ 1 is similar
to the test scalar field case in the background of the regular
Schwarzschild or Reissner-Nordström solutions [69,70], so
we will not consider it here. For all other cases, we have
m > −1, so near the singularity ϱ → 0. To avoid terms in
Veff more singular than ϱ−2 from V0, it is necessary to
require the following inequality:

σ

mþ 1
≥ −2;

�
σ −

1 − σ

s

�
=ðmþ 1Þ ≥ −2:

Both conditions strictly hold after the substitution of m,
so the most singular term of the effective potential is
contained in V0. Function P has an asymptotic x−

mþ1
2 , where

we find n ¼ −ðmþ 1Þ=2 and ν ¼ 0. The solution of the
Eq. (5.3) with such an effective potential near r ¼ r0 has
the form,

Φ ≈ Pϱ1=2ðC1 þ C2 ln ϱÞ ≈ C0
1 þ C0

2 ln x: ð5:8Þ
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Both modes are square integrable near the singularity (limit
circle). Thus, in this case the singularity is not healed. The
test scalar field is regular if C0

2 ¼ 0 [71].

B. Solution SG with c2 > 1

With similar calculations, we havem ¼ 2ðsþ dÞ=Δ > 0,
n ¼ −m=2, and ϱ → 0 near the singularity. Conditions for
the other terms in Veff to be less singular than V0, are

ðmþ 1ÞΔ − 2s > 0; ðmþ 1ÞΔ − 2ðdþ sÞ > 0;

and they hold for any parameters. Substituting the values of
m and n in (5.7), we get ν ¼ 1=ðmþ 1Þ. The solution of
Eq. (5.3) with such an effective potential near the singu-
larity is

Φ ≈ P
ffiffiffi
ϱ

p ðC1ϱ
þν=2 þ C2ϱ

−ν=2Þ ≈ C1xþ C2: ð5:9Þ

Both modes are regular and square integrable near the
horizon. The singularity is not healed either.

C. Solution SE with α2 ≠ α2
crit = 2s

2=ðs+ dÞ
Such solutions in a theory with α ¼ 0 are regular

extreme Reissner-Nordström black holes [72] and will
not be considered here; we will assume α ≠ 0 only.
From the asymptotics of W and P, we find

m¼ −2sðsþ dÞ=Δ ≠ −1; n¼ −
mþ sþ 1

2
; ð5:10Þ

ϱ ≈
rmþ1

ρmðmþ 1Þ : ð5:11Þ

Let us keep only the leading terms in the expansion for each
term in the effective potential,

Veff ≈ k2 þ q
�

rmþ1

ρmðmþ 1Þ
�−2

þ μ2
�
r
ρ

�
4s2=Δ

; ð5:12Þ

where

q ¼ lðlþ sÞ
ðmþ 1Þ2 þ

ν2 − 1

4
¼

�
lþ s=2
mþ 1

�
2

−
1

4
: ð5:13Þ

Solutions will be square integrable near the singularity if
RjΦj2=a decays faster than r−1. Taking into consideration
Eq. (3.16), an integrable solution Φ must decay faster than
r−s=2−1þ2sðdþsÞ=Δ near r ¼ 0. We will use this condition
further to analyze cases α2 > α2crit and α

2 < α2crit separately.
For m > −1 (α2 > α2crit), the leading term in Eq. (5.3)

comes from the second term of Veff , i.e., qϱ−2. In this case,
the solution near the singularity is

Φ ≈ P
ffiffiffi
ϱ

p �
C1ϱ

ffiffiffiffiffiffiffiffiffiffi
qþ1=4

p
þ C2ϱ

−
ffiffiffiffiffiffiffiffiffiffi
qþ1=4

p �
≈ C0

1r
l þ C0

2r
−l−s: ð5:14Þ

The first mode rl satisfies the square integrability condition
if l > 2sðdþ sÞ=Δ − 1 − s=2. As we consider the case
α2 > α2crit, we can substitute α2 ¼ α2crit þ xα, xα > 0

obtaining a new constraint l > −1 − s=2þ 2s=ð2sþ xαÞ.
This inequality always holds, and the mode rl is always
integrable. The second mode r−l−s is integrable if
l < −s=2þ xα=ð2sþ xαÞ, which is possible only for
l ¼ 0, s ¼ 1, α2 > 2ðdþ 2Þ=ðdþ 1Þ. This mode, however
should be excluded from the spectrum on the same ground
as the corresponding mode in the nonrelativistic quantum
mechanics (appearance of the delta function under the
action of the full Laplacian). Therefore, this case corre-
sponds to the limit point.
For the case m < −1 (α2 < α2crit) with k2 ≠ ω2, the

coordinate ϱ tends to infinity, so the equation for χ has
the form,

χ00 þ κ2χ ≈ 0; κ2 ¼ ω2 − k2:

The solution for this equation asymptotically has the
form,

Φ ≈ rnðC1 expðiκϱÞ þ C2 expð−iκϱÞÞ: ð5:15Þ

For κ2 > 0, the solution near the singularity oscillates
infinitely fast, it diverges due to n < 0 and is not integrable.
For κ2 < 0, one of two modes exponentially diverges, and
another exponentially decays, being square integrable near
the horizon. However, for κ2 ¼ 0, the leading term is qϱ−2.
Thus, this case is similar to the previous one α2 > α2crit with
the solution (5.14) except the fact that xα < 0 now.As the rhs
of the inequality for the square integrability is a monotonic
function of α2, we can draw conclusions from the corner
casesα2 ¼ 0; α2crit. One can find that themode rl is integrable
except the case d ¼ 1 with α2 ≤ 2s2=ðsþ 1Þðsþ 2Þ, and
the mode r−l−s is always nonintegrable.

D. Solution SE with α2 =α2
crit = 2s

2=ðs + dÞ
In this case, we have m ¼ −1, n ¼ −s=2,

ϱ ≈ ρ ln r → −∞. Substituting the background solution
in Eq. (5.6), we get an exact expression for V0,

V0¼
1

4
ðrsþρsÞ−2ðsþ1Þ

s ððs2−1Þr2sþ2sðsþ1Þrsρsþ s2ρ2sÞ:
ð5:16Þ

In the singular point, the expression (5.16) tends to the
finite positive value V0jr¼0 ¼ ðs=2ρÞ2. With account for the
other terms, the effective potential tends to the value
Veff ≈ k2 þ ðlþ s=2Þ2=ρ2. In this case, the equation has
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the form (5.15) up to the replacement of κ2 → ω2 − k2 −
ðlþ s=2Þ2=ρ2 and the dependence ϱðrÞ. For κ2 > 0, modes
remain singular and nonintegrable. For κ2 < 0, the solution
can be simplified

Φ ≈ C1r−jκjρ−s=2 þ C2rjκjρ−s=2:

The first mode is singular and always nonintegrable. The
other mode is regular if jκjρ ≥ s=2 [which can be rewritten
ω2 ≤ k2 þ lðlþ sÞ=ρ2], and it is always integrable. In the
case κ2 ¼ 0, we have to choose the next leading term in the
effective potential with the lowest exponentVeff ≈ b1ra1 . For
themassive scalar field, the effective potential asymptotically
behaves as Veff ≈ μ2ðr=ρÞa1 , where a1 ¼ 2s=ðdþ sÞ, and
for the massless case it is Veff ≈ s−1ðs2 − 2ls − 2l2Þρ−s−2rs
with a1 ¼ s (note, the expression s2 − 2ls − 2l2 cannot be
zero for integer l, s). Then the solution is

χ00 − b1 exp ða1ϱ=ρÞχ ≈ 0;

Φ ≈ r−s=2
�
C1I0

�
2

ffiffiffiffiffi
b1

p
ρ

a1
ra1=2

�
þ C2K0

�
2

ffiffiffiffiffi
b1

p
ρ

a1
ra1=2

��
≈ C0

1r
−s=2 þ C0

2r
−s=2 ln r;

where I0, K0 are modified Bessel functions of the second
kind. Solutions we obtained diverge, and they are not
integrable for anyC1,C2. As there are at most one integrable
mode for each set of quantum numbers, the singularity is
healed.
The summary of the square integrability and regularity of

the modes in the background of the different classes of the
solution is given in Table III. The general class is always
unhealed since the number of square integrable modes is
two. In the case of the Fisher-like singularity (SG; c2 < 1),
one of these modes is integrable. Contrary, in the solu-
tion with a singularity of the Reissner-Nordström type
(SG; c2 > 1), both modes are regular. In the solution SE,

there is at most one square integrable mode, except for one
special case. This case is l ¼ 0, for the solution SE; α2 >
2 dþ2
dþ1

> α2crit with s ¼ 1. However, similarly to quantum
mechanics, this mode can be excluded from the spectrum as
a solution for the pointlike (δ-function distribution) source.
If we exclude this mode, all SE solutions contain a quantum
unobservable singularity; otherwise, the singularity is
observable only in the special case. All square integrable
modes are regular except this special l ¼ 0 case, and one
more case with a critical coupling constant α2 ¼ α2crit within

the certain interval of the frequency lðlþsÞ
ρ2

þ k2 < ω2 <

ðlþs=2
ρ Þ2 þ k2.

VI. CONCLUSIONS

In this article, we have constructed charged p-branes
with primary scalar charge in Einstein gravity with dilaton
and antisymmetric forms using Harrison transformations
adapted for branes applied to an extended Fisher solution.
The obtained branes, spherically symmetric in the trans-
verse space, generically have naked singularities, except for
those obtained from the regular subfamily of the seed
solutions and Harrison transformation parameter c2 < 1.
Using some limiting procedure in the space of param-

eters, we also found a special solution, denoted as SE,
satisfying a constraint on the physical charges which
reduces to the “no-force” condition in EMD theory with
α2 ¼ 3. Exploring supersymmetry of the full new family of
solutions corresponding to NS5 branes, we found that
supersymmetry holds only in the limiting case SE, which
coincides with the standard BPS NS5-branes.
We investigated the geodesic motion in the vicinity of

the outermost singularity of the obtained solutions. In
the general case with c2 < 1 with Fisher singularity, the
parameter σ plays the key role in the behavior of the
geodesics. In the general case with c2 > 1, the behavior

TABLE III. The number of square integrable modes and regular modes for each class of solutions and a certain
interval of ω2. If the case contains some special case, this special case is given in the last column, and the number of
modes for the special case is given in the brackets.

Solution Condition on ω2
No. of square
int. modes

No. of regular
modes Special case

SG; c2 < 1 Any 2 1
SG; c2 > 1 Any 2 2
SE; α2 > α2crit Any 1 (2) 1 (1) l ¼ 0; s ¼ 1; α2 > 2 dþ2

dþ1

SE; α2 < α2crit ω2 > k2 0 0
ω2 ¼ k2 0 (1) 0 (1) d ¼ 1; α2 ≤ 2s2

ðsþ1Þðsþ2Þ
ω2 < k2 1 1

SE; α2 ¼ α2crit ω2 − k2 ≥ ðlþs=2
ρ Þ2 0 0

lðlþsÞ
ρ2

< ω2 − k2 < ðlþs=2
ρ Þ2 1 0

ω2 − k2 ≤ lðlþsÞ
ρ2

1 1
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does not differ appreciably for different theory parameters
and charges of a solution. The behavior of motion near the
singularity for SE family depends on the relation between
the coupling constant α and its critical value α2crit ¼
2s2=ðsþ dÞ. If α2 ≤ α2crit; geodesics near the singularity
behave similarly to the motion near a black hole surface:
the effective potential is always bounded, a particle
achieves the singularity with an infinite time with respect
to a distant observer. Otherwise, if α2 > α2crit, the effective
potential for geodesics with nonzero angular moment
diverges, but radial geodesics achieve the singularity with
a finite time of a distant observer.
We considered a massive test scalar field in the back-

ground of the obtained solutions. By transforming the
dynamical variable and the radial coordinate, one can
represent the Klein-Gordon equation in the form of the
Schrödinger equation with some effective potential. We
investigated the possibility to heal the singularity in a
quantum sense, based on the analysis of square integrability
of the test field. For the solution family SE, it was shown
that the behavior of the test scalar field depends on whether
the coupling constant α get over the critical value αcrit or
not. For SE, at most one mode is square integrable near the
singularity (and so the singularity is healed), except the
case s ¼ 1, α2 > 2ðdþ 2Þ=ðdþ 1Þ > α2crit for the mode

l ¼ 0. But this latter mode should be excluded from the
spectrum of perturbations as a solution for a pointlike
source, similarly to the nonrelativistic quantum mechanics.
For a general family with arbitrary c2, all modes are

square integrable near the singularity. Thus, the choice of
boundary conditions remains an important issue of the
stability of the solution with respect to test disturbances of
the scalar field in the general case.
Finally, in the case of codimension three, we constructed

the branes equipped with Zipoy-Voorhees oblateness
parameter, which do not have spherical symmetry in
transverse space. These solutions do not seem to be known
before.
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