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We show how the recently developed string-inspired, projectively invariant gravitational model Thomas-
Whitehead gravity (TW gravity) naturally gives rise to a field acting as the inflaton. In the formulation of TW
gravity, a fieldDab is introduced into the projective connection components and is related to a rank-two tensor
field Pab. Through the dynamical action of TW gravity, in terms of projective curvature, the tensor field Pab

acquires dynamics. By decomposing Pab into its trace and traceless degrees of freedom, and choosing the
connection to be Levi-Civita, we demonstrate that TW gravity contains a nonminimally coupled scalar field
with a specific potential. Considering only the trace degrees of freedom, we demonstrate that the scalar field
acts as an inflaton in the slow-roll approximation. We find a range of values for the parameters introduced by
TW gravity that fit the experimental constraints of the most recent cosmological data.

DOI: 10.1103/PhysRevD.106.084049

I. INTRODUCTION

Since the initial formulation of cosmological inflation in
the late 1970s to early 1980s [1–4], dynamical scalar fields
representing the so-called inflaton field have appeared in
many unique forms. Despite the overwhelming evidence
that the inclusion of scalar fields both alleviates long-
standing cosmological problems and predicts the observed
nearly scale-invariant spectrum of CMB perturbations,
there are few proposals for a fundamental physical origin
of the inflaton. Indeed, as explained by Kolb and Turner

That paradigm [inflation], however, is still without a
standard model for its implementation. Of course, that
shortcoming should be viewed in light of the fact that
our understanding of physics at energy scales well
beyond that of the standard model of particle physics
is still quite incomplete.

-E. Kolb and M. Turner [5]

Due to the expectation that physics beyond the standard
model should have something to say about inflation,
substantial effort has been focused on teasing out the
emergence of inflation through string theory motivated
models [6]. Attempts have also been made to realize the
inflaton as the standard model Higgs field [7,8]. Here, the
Higgs is only a potentially viable inflaton if it couples
nonminimally to the gravitational sector with a coupling
of the form ξϕ2R. More general models of nonminimally
coupled inflation consider various other forms for the
potential and coupling [9–13].
Thomas-Whitehead gravity (TW gravity) [14–16] is a

string-inspired model of gravity that emerges from the
projective geometry of Thomas and Whitehead [17–19].
In this paper, we demonstrate this model could be the
aformentioned raison d’etre for inflation, the foundational
principle being projective symmetry. The importance of
projective symmetry arises upon extending a coadjoint
element of the Virasoro algebra to higher dimensions
[14,16,20–26]. That the ultimate foundational piece of
TW gravity is the Virasoro algebra is why TW gravity is
said to be string inspired. We find solutions to TW gravity
that describe an early universe inflationary epoch fitting
current cosmological data [27]. These solutions are para-
metrized by a set of three fundamental constants in TW
gravity. One choice of these parameters would correspond
to a certain combination of scalar field (nonminimally
coupled) inflationary models investigated in [13].
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This paper is structured as follows. In Sec. II we review
TW gravity. We demonstrate how projective symmetry is
utilized in the construction of TW gravity and summarize
the connection to the deeper underlying Virasoro algebra.
In Sec. III we demonstrate how a nonminimally coupled
(NMC) model for inflation with a specific potential
naturally emerges from TW gravity. This NMC model
has three free parameters inherited from the full TW gravity
model. In the slow-roll approximation we constrain these
three parameters within a range that matches the current
observational data for the spectral index ns, tensor-to-scalar
ratio r, and scalar amplitude As for e-foldings of N ¼ 50,
60, and 70. In Sec. IV we make concluding remarks. The
Appendixes show our conventions, reviews of background
material, and supporting calculations.

II. REVIEW OF THOMAS-WHITEHEAD GRAVITY

In this section we review TW gravity by defining
projective connections, building from this projective cur-
vature, and from this constructing projective invariants.
We then show how the projectively invariant action of TW
gravity is composed of these projective invariants.

A. Projectively equivalent paths
and projective connections

Here we briefly review the necessary components of
TW gravity, as generalized recently in [16] from the
constant volume form of [14,15]. TW gravity is a theory
of dynamical projective connections. For a detailed review
of the theory of projective connections, we refer the reader
to [28]. A connection ∇a with coefficients Γa

bc describes a
geodesic path with coordinates xa and parametrization τ.
These satisfy the geodesic equation

dxb

dτ
∇b

dxa

dτ
≡ d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
¼ 0: ð2:1Þ

The same geodesic path with coordinates xa can be
described by a different connection ∇̂a with coefficients
Γ̂a

bc and reparametrization σ ¼ σðτÞ. These also satisfy the
geodesic equation

dxb

dσ
∇̂b

dxa

dσ
≡ d2xa

dσ2
þ Γ̂a

bc
dxb

dσ
dxc

dσ
¼ 0; ð2:2Þ

so long as the connection coefficients and parametrizations
are related as follows

Γa
bc ¼ Γ̂a

bc þ δabvc þ δacvb; ð2:3Þ

d2σ
dτ2

¼ −2
�
dσ
dτ

�
2 dxa

δσ
va: ð2:4Þ

Equation (2.3) is known as a projective transformation,
with va an arbitrary one-form. That Eqs. (2.1) and (2.2)
take the same form demonstrates the projective equivalence
of the connections ∇a and ∇̂a.
The theory of projective connections seeks to make

this equivalence of paths under reparametrizations into a
manifest symmetry. Given the base spacetime M, where
the spacetime connection ∇a is defined, projective con-
nections are defined in the space of one higher dimension.
We refer to this dþ 1-dimensional space as the Thomas-
Cone N . Like the usual spacetime connection ∇a, the
projective connection can be used to form curvature
invariants and, through these curvature invariants, one
can write dynamical actions which are invariant under
both projective transformations and general coordinate
transformations.
We now seek to make explicit the construction of

the projective connection. In the following, Latin
indices a; b; c;… ¼ 0; 1;…; d − 1 are reserved for the
d-dimensional spacetime M coordinates xa and Greek
indices α; β; γ;… ¼ 0; 1;…d, excluding λ, are reserved for
the dþ 1-dimensional Thomas-Cone N coordinates xα.
The index λ refers to the extra coordinate xd ¼ xλ ≡ λ
of the Thomas-Cone N . The coefficients of the projective
connection ∇̃α are defined by requiring that

∇̃αϒβ ¼ δα
β; ð2:5Þ

where ϒ is the fundamental vector field of the Thomas-
Cone N generating projective transformations. Explicitly,
the projective connection coefficients are defined by

Γ̃α
βγ ¼

8>>>>>><
>>>>>>:

Γ̃λ
λa ¼ Γ̃λ

aλ ¼ 0

Γ̃α
λλ ¼ 0

Γ̃a
λb ¼ Γ̃a

bλ ¼ αλδ
a
b

Γ̃a
bc ¼ Πa

bc

Γ̃λ
ab ¼ ϒλDab

; ð2:6Þ

where

Πa
bc ¼ Γa

bc þ δaðcαbÞ; αa ¼ −
1

dþ 1
Γm

am; ð2:7Þ

ϒρ ¼ ð0; 0;…; 0; λÞ; αρ ¼ ðαa; λ−1Þ: ð2:8Þ

In Eqs. (2.6)–(2.8), Γa
bc are the connection coefficients on

the d-dimensional spacetime M. The object Πa
bc appear-

ing with all indices on M is known as the fundamental
projective invariant. This object is invariant under the
projective transformation Eq. (2.3). Thus, Πa

bc determines
the equivalence classes of projectively related connections.
Note that at this point the spacetime connection Γa

bc is not
necessarily constrained to be the Levi-Civita connection,
though we will later make this assumption. Instead, Γa

bc is
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a representative of the projective equivalence class of
connections ½Γa

bc�, which are equivalent under projective
transformations and reparametrization as in Eqs. (2.3)
and (2.4). The one-form α is related to ϒ by the conditions
that αρϒρ ¼ 1 and Lϒαρ ¼ 0, where Lϒ denotes the Lie
derivative with respect to ϒ.
The symmetric field Dab, known as the diffeomorphism

field, is not a tensor due to its appearance as part of the
connection coefficient Γ̃λ

ab. It transforms as follows

D0
ab ¼

∂xm

∂x0a
∂xn

∂x0b
½Dmn − ∂mjn − jmjn þ jcΠc

mn�; ð2:9Þ

jm ≡ ∂m log

���� ∂xb
∂x0c

����
1

dþ1

; ð2:10Þ

with j ∂xb
∂x0c j the Jacobian of the transformation. For an

infinitesimal coordinate transformation x0 ¼ x − ξðxÞ in
d ¼ 1-dimension, the transformation Eq. (2.9) becomes

D0ðxÞ ¼ DðxÞ þ 2
dξðxÞ
dx

DðxÞ þ ξðxÞ dDðxÞ
dx

−
1

2

d3ξðxÞ
dx3

;

ð2:11Þ

to first order in ξ. The details of this dimensional reduction
are shown in Appendix B. Equation (2.11) is the same
transformation law as a coadjoint elementD of the Virasoro
algebra, up to rescalings of D. The diffeomorphism
field Dab is usually seen as the dynamical extension of a
coadjoint element of the Virasoro algebra to higher dimen-
sions, rather than the dimensional reduction that was
described here. From this vantage point, TW gravity as
the resulting dynamical model for Dab is said to be string-
inspired from the core foundational Virasoro algebra in
one dimension. More details can be found in the seminal
works [14,16,20–26].
Once in arbitrary d-dimensions, it is advantageous to

form a tensor by adding various objects to Dbc that remove
the nontensorial pieces from its transformation law. This is
accomplished through the definition of the tensor field Pbc

Pbc ¼ Dbc − ∂bαc þ Γe
bcαe þ αbαc: ð2:12Þ

Note that Pbc is symmetric only if the curl of αc vanishes,
one possible solution being that the spacetime connection is
Levi-Civita with respect to a metric gab on M such that
Γm

am ¼ ∂a ln
ffiffiffiffiffijgjp

. This field Pbc, related to the diffeo-
morphism field Dbc via Eq. (2.12), transforms as a tensor
on the spacetimeM and will be shown to act as a source of
cosmological inflation under certain assumptions.
Under a general coordinate transformation on M, the

spacetime connection Γa
bc transforms as an affine con-

nection

Γ0a
mn ¼

∂x0a

∂xb
∂xp

∂x0m
∂xq

∂x0n
Γb

pq þ
∂
2xb

∂x0m∂0n
∂x0a

∂xb
: ð2:13Þ

The projective connection Γ̃α
μν transforms as an affine

connection

Γ̃0α
μν ¼

∂x0α

∂xρ
∂xσ

∂x0μ
∂xβ

∂x0ν
Γ̃ρ

σβ þ
∂
2xβ

∂x0μ∂0ν
∂x0α

∂xβ
ð2:14Þ

under what we refer to as a Thomas-Cone transformation
on N (TCN transformation) [14–18,29]

x0α ¼ ðx00ðxmÞ; x01ðxmÞ;…; x0d−1ðxmÞ; λ0 ¼ λJ1=ðdþ1ÞÞ;
J ¼ j∂xm=∂x0nj: ð2:15Þ

The TCN transformation is seen to be a general coordinate
transformation onMwith an additional Jacobian scaling of
the λ direction. We refer to objects transforming as a tensor
with respect to TCN transformations as TCN tensors.
Now we have the technology to write the manifestly TCN
covariant and manifestly projectively invariant geodesic
equation

dxμ

dτ
∇̃μ

dxα

dτ
≡ d2xα

dτ2
þ Γ̃α

μν
dxμ

dτ
dxν

dτ
¼ 0: ð2:16Þ

This equation is manifestly TCN covariant in that dxμ=dτ
and ∇̃μ are both TCN tensors. At the same time, it is also
manifestly projectively invariant in that Γ̃α

μν is invariant
with respect to projective transformations as in Eq. (2.3).

B. Projective curvature

Since the projective connection coefficients Γ̃α
μν trans-

forms as an affine connection under a TCN transformation,
we can straightforwardly compute its curvature invariants.
Explicitly, on a vector field κα and co-vector κα in N , we
define the projective curvature tensor Kγ

ραβ through the
usual relations

½∇̃α; ∇̃β�κγ ¼ Kγ
ραβκ

ρ; ½∇̃α; ∇̃β�κγ ¼ −Kρ
γαβκρ: ð2:17Þ

In terms of the connection coefficients, we can write the
projective curvature as

Kμ
ναβ ≡ Γ̃μ

ν½β;α� þ Γ̃ρ
ν½βΓ̃μ

α�ρ: ð2:18Þ

The extended metric Gαβ on the ðdþ 1Þ-dimensional
manifold N is written succinctly as

Gαβ ¼ δaαδ
b
βgab − λ20gαgβ; ð2:19Þ

Gαβ ¼ gabðδαa − gaϒαÞðδβb − gbϒβÞ − λ−20 ϒαϒβ; ð2:20Þ
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where gα ¼ ðga; 1=λÞ and ga ≡ − 1
dþ1

∂a ln
ffiffiffiffiffijgjp

. This
extension of a d-dimensional metric was detailed in [16],
where the previous restriction of constant-volume coordi-
nates was lifted. The general volume coordinate metric Gαβ

can be written as the sum of the constant volume metric

Gð0Þ
αβ and finite correction ΔGαβ:

Gαβ ¼ Gð0Þ
αβ þ ΔGαβ; Gαβ ¼ Gαβ

ð0Þ þ ΔGαβ; ð2:21Þ

Gð0Þ
αβ ¼

�
gab 0

0 −l−2

�
; Gαβ

ð0Þ ¼
�
gab 0

0 −l2

�
; ð2:22Þ

ΔGαβ ¼
�

−λ20gagb −λ0l−1ga
−λ0l−1gb 0

�
;

ΔGαβ ¼
�

0 −λgamgm
−λgbmgm λ2gmngmgn

�
; ð2:23Þ

where l≡ λ=λ0.
Note again that if the spacetime connection Γa

bc is the
Levi-Civita connection then ga¼αa, since Γa

ab¼ ∂b ln
ffiffiffiffiffijgjp

.
The determinate of the metric Gαβ is the same as for

Gð0Þ
αβ [14,15]

G≡ detðGαβÞ ¼ detðGð0Þ
αβ Þ ¼ −l−2g; g≡ detðgabÞ:

ð2:24Þ

The only nonvanishing components of Kα
βμν are

Ka
bcd ¼ Ra

bcd þ δ½caPd�b − δabP½cd�; ð2:25Þ

K̆nab ≡ αλKλ
nab ¼ Pn½b;a� þ α½bPa�n þ αnP½ab� − Rm

nabαm;

ð2:26Þ

Kab ¼ Kμ
aμb ¼ Rab þ dPba − Pab ð2:27Þ

K≡GαβKαβ ¼ Rþ ðd − 1ÞP ð2:28Þ

Rab ≡ Rm
amb; R≡ gabRab; P ≡ gabPab: ð2:29Þ

Ra
bcd ¼ ∂cΓa

db − ∂dΓa
cb þ Γa

ceΓe
db − Γa

deΓe
cb: ð2:30Þ

The projective curvature tensor satisfies the following

Kαβμν ¼ −Kαβνμ; Kα½βμν� ¼ 0: ð2:31Þ

An important object to consider will be the projective
Cotton-York tensor

Kναβ ≡ gμKμ
ναβ; ð2:32Þ

which is a TCN -tensor. Its only nonvanishing components
are

Knab ¼ ∇½aPb�n − ΔnP½ab� þ Δ½aPb�n þ ΔmRm
nab; ð2:33Þ

Δa ¼ ga − αa; ð2:34Þ

Notice on the Levi-Civita shell, Δa ¼ 0 and the Cotton-
York tensor becomes simply

Knab ¼ ∇½aPb�n with Δa ¼ 0 ð2:35Þ

and can be thought of as a gravitational analog of an
electromagnetic field strength. The existence of such an
analogy is not surprising. The more general Yang-Mills
theory can be birthed from the Kac-Moody algebra in an
analogous fashion to how TW gravity is birthed from the
Virasoro algebra as summarized in Sec. II A. More details
can be found in the seminal works [14,16,20–26].

C. Projectively invariant action

We now detail the dynamical action describing TW
gravity. This action is built from the projective curvature
invariants described in the previous section and appears as

STW ¼ −
1

2κ̃0

Z
dl ddx

ffiffiffiffiffiffiffi
jGj

p
ðKþ 2Λ0Þ

− J̃0c
Z

dl ddx
ffiffiffiffiffiffiffi
jGj

p
½K2 − 4KαβKαβ

þKα
βμνKα

βμν�: ð2:36Þ

This first line of Eq. (2.36) includes a projective Ricci
scalar and cosmological constant, mimicking the usual
Einstein-Hilbert action. The second line is the projective
Gauss-Bonnet action allowing for Pab to acquire dynamics.
Specifically, dynamics is given to Pab through the K̆nab
components of Kα

βμν as seen in Eq. (2.26). The trade off is
the quadratic curvature terms over the manifold M which
we will show how to manage. Let us demonstrate these
features by making the following expansions

KαβKαβ ¼ KabKab; ð2:37aÞ

Kα
βμνKα

βμν ¼ gaeKa
bcdKebcd − λ20KabcKabc: ð2:37bÞ

These expansions can be easily derived via use of the
succinct form of the metric in Eq. (2.19) and taking into
account that the only nonvanishing λ components of either
Kαβ or Kα

βμν are Kλ
βμν. Notice the expansion Eq. (2.37b)

contains the projective Cotton-York tensor, Eq. (2.33),
which we see leads to quadratic derivatives on Pab in
the action and thus provides dynamics to the field equations
for Pab. Continuing our electromagnetic analogy, Knab is to
Fab as Pab is to Aa.
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Expanding further the components of Ka
bcd, Kab, and

ffiffiffiffiffiffiffijGjp
from the previous section, the action can be written as

STW ¼ −
1

2κ̃0

Z
dll−1

Z
ddx

ffiffiffiffiffi
jgj

p
ðRþ ðd − 1ÞP þ 2Λ0Þ − J̃0c

Z
dll−1SGB

þ J̃0c
Z

dll−1
Z

ddx
ffiffiffiffiffi
jgj

p
ðλ20KabcKabc − PabP̃

ab� − pðdÞPabP½ab�Þ ð2:38Þ

SGB ¼
Z

ddx
ffiffiffiffiffi
jgj

p
ðR2 − 4RabRab þ Ra

bcdRa
bcdÞ;

pðdÞ ¼ 2ð4d2 − 3d − 2Þ; ð2:39Þ

with the following definitions in a slightly different con-
vention from [15]

P̃ab ≡ ðd − 1ÞPab þ 2Rab; ð2:40Þ

P̃ab� ≡ ðd − 1ÞgabP̃ − 2ð2d − 3ÞP̃ab: ð2:41Þ

Notice the term P½ab� ¼ Pab − Pba in the action above.
Generally, Pab and Rab are not independent as their
antisymmetric parts are proportional to the curl of αb

P½ab� ¼
1

dþ 1
R½ab� ¼ −∂½aαb�: ð2:42Þ

Up until this point, the connection Γa
bc has been

incompatible with the metric gab. From here on in this
paper, we set the connection Γa

bc to be a Levi-Civita
connection,

Γm
ab ¼

1

2
gmnðgnða;bÞ − gab;nÞ; ð2:43Þ

compatible with the metric gab. This forces αa ¼
− 1

dþ1
Γe

ea ¼ − 1
dþ1

∂a ln
ffiffiffiffiffijgjp ¼ ga and P½ab� ¼ R½ab� ¼ 0,

reducing the action to

STW ¼ −
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
ðRþ ðd − 1ÞP þ 2Λ0Þ

þ J0c
Z

ddx
ffiffiffiffiffi
jgj

p
½λ20KabcKabc − PabP̃

ab� �

− J0cSGB; ð2:44Þ

where now we have from here on in this paper

Kabc ¼ ∇½bPc�a; Pab ¼ Pba; Rab ¼ Rba: ð2:45Þ

We have performed the integrations over l, absorbing the
result into a redefinition of the constants

1

κ̃0

Z
lf

li

dll−1 ¼ lnðlf=liÞ
κ̃0

⇒ κ0 ≡ κ̃0
lnðlf=liÞ

; ð2:46aÞ

J̃0

Z
lf

li

dll−1 ¼ J̃0 lnðlf=liÞ ⇒ J0 ≡ J̃0 lnðlf=liÞ:

ð2:46bÞ

This integration along the projective direction allows for a
natural scaling of both the gravitational coupling constant
κ0 and projective angular momentum parameter J0. Notice
if lf and li are chosen to grow the angular momentum
parameter J̃0 into a larger J0, the gravitational constant κ̃0
necessarily shrinks to the smaller κ0. This could tie the
weakness of the gravitational force to a large angular
momentum of the Universe. The fact that the Gauss-
Bonnet term is a topological invariant in four dimensions
removes any potential higher-order metric terms from
the equations of motion. At this point it is also clear that
the TW gravity action reduces to Einstein-Hilbert when
Pab ¼ 0.

III. REALIZATION OF NMC INFLATION

Inflation via nonminimal coupling has been investigated
for at least three decades. In a paper published in 1990 [9],
Fakir and Unruh sought to remedy the issue of generically
large density perturbations inherent to chaotic inflation
scenarios by removing the assumption of minimal coupling
between the inflaton field and the Ricci scalar curvature.
Indeed, inflation via this nonminimal coupling has been
shown to result in acceptable values for the spectral index
ns and tensor-to-scalar ratio r [7,11,12]. Additionally,
NMC inflation has been shown to provide a natural
mechanism for the reheating phase occurring after
inflation [10]. Initially, the form of the nonminimal
coupling was commonly assumed to be ϕ2R, while more
recent studies have investigated coupling of the more
general form fðϕÞR [11]. Inflationary scenarios based on
the more general nonminimal coupling have since been
shown to also result in viable experimental predictions
for ns and r [11]. This section details the main result of this
paper, which is how TW gravity naturally realizes inflation
with a nonminimal coupling.
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A. Tensor decomposition of Pab

From here on out we write the characteristic projective
length scale λ0 in units of Planck length such that
λ0 ¼ nλ

ffiffiffiffiffiffi
8π

p
lp ¼ nλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ=c3

p
, where nλ is a dimension-

less scaling. We also write the projective angular momen-
tum parameter in units of ℏ such that J0 ¼ nJℏ, where nJ is
a dimensionless scaling. For the remainder of this paper, we
take natural units ℏ ¼ c ¼ 1. The only remaining units will
be written in terms of the reduced Planck mass

Mp ¼
ffiffiffiffiffiffiffiffiffi
ℏc
8πG

r
: ð3:1Þ

All physical constants will now be written as

κ0 ¼ nκM−2
p ; λ0 ¼ nλM−1

p ; J0 ¼ nJℏ ¼ nJ: ð3:2Þ

Here we include arbitrary factors nλ, nκ, and nJ noticing
there is no naturalness argument to use to constrain nλ as it
is the scale of the projective direction and we have no
a priori notion of how large this scale should be. In the
following, we seek to constrain nλ from experiment to give
us a window into the size of the projective direction that
gives rise to inflation. At the same time, a resulting

constraint on nJ gives us a window into the angular
momentum scale involved in these projective directions
as well. In a similar previous work [15], we saw the angular
momentum scale J0 to be of the order of the observable
Universe when the cosmological constant arising from the
vacuum solution of TW gravity was used to constrain J0. It
is possible that a constraint on nκ and the rescaling of the
parameters κ̃0 and J̃0 as shown in Eqs. (2.46) could be
related to quantum gravitational effects. Further research
into the quantization of this theory needs to be done to
investigate this possibility.
Using the following tensor decomposition of Pab, we

may cast the dynamics of TW gravity into its trace and
traceless degrees of freedom

Pab ¼
Mp

nλ
ϕgab þ w0Wab; W ¼ gabWab ¼ 0; ð3:3Þ

where the field dimensions are ½Pab� ¼ M2, ½ϕ� ¼ M,
½gab� ¼ M0, and ½Wab� ¼ M2. The constant w0 is dimen-
sionless while the factor of ðλ0Þ−1 ¼ Mp=nλ is included on
the ϕ term to provide the correct units for a scalar field
½ϕ� ¼ L−1 ¼ M and to cancel the λ20 proportionality factor
on the kinetic term in Eq. (2.44) as shown below. This leads
to the following decomposition of the action,

STW ¼ −
M2

p

2nκ

Z
ddx

ffiffiffiffiffi
jgj

p
½fðϕÞRþ 2Λ0� þ w0

Z
ddx

ffiffiffiffiffi
jgj

p
LW

þ 4ðd − 1ÞnJ
Z

ddx
ffiffiffiffiffi
jgj

p �
1

2
∇aϕ∇aϕ − VðϕÞ

�
− J0cSGB ð3:4Þ

LW ¼ w0

2nJn2λ
M2

p

�
∇mWnb∇½mWn�b þ

ðd − 1Þð2d − 3ÞM2
p

n2λ
WabWab

�
þ 4ð2d − 3ÞnJRabWab

−
4nJnλ
Mp

∇aϕ∇bWab −
4nJnλ
Mp

W

�
□ϕþ ðd − 1ÞM3

p

8nλnJnκ
fðϕÞ þ ðd − 1ÞMp

2nλ
R

�
þ λ̂W2 ð3:5Þ

fðϕÞ ¼ 1þ 4ðd − 2Þðd − 3ÞnκnJ
nλMp

ϕ; VðϕÞ ¼ dM4
p

64n2Jn
2
κðd − 2Þðd − 3Þ ðfðϕÞ

2 − 1Þ: ð3:6Þ

The Lagrange multiplier1 λ̂ is placed in by hand to enforce
tracelessness of Wab at the equations of motion level but
not at the Lagrangian level. This ensures that the equations
of motion are the same whether performing the decom-
position before or after they are derived from variation of
the action. That is, varying the action Eq. (2.44) with
respect to gab, Pab and then performing the decomposition

Eq. (3.3) yields the same equations of motion as varying the
action Eq. (3.4) with respect to the set of fields gab,Wab, ϕ.
We notice a potential VðϕÞ that is quadratic in ϕ has

developed from the decomposition. This is as expected as
the action Eq. (2.44) was quadratic in Pab. The potential
includes a linear term in ϕ which can be removed via field
redefinition fðϕÞ ¼ ϕ̃ leading to a correction to the cos-
mological constant proportional to M2

p=nJ. In fact, the
opposite was investigated in [15] where a field redefinition
was used to generate an Einstein-Hilbert term with cosmo-
logical constant, setting all other dynamical fields to zero.

1Technically, the Lagrange multiplier is λ̂þ ðd − 1Þ2w0nJ . In
the classical theory, this can be reabsorbed with no loss of
generality. In the quantum theory, this may have to be revisited.
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We notice that as the potential’s dependence on fðϕÞ is
purely second order the minimum of the potential occurs
where fðϕminÞ ¼ 0

Vmin ¼ −
dM4

p

64n2Jn
2
κðd − 2Þðd − 3Þ at

ϕmin ¼ −
nλMp

4ðd − 2Þðd − 3ÞnJnκ
: ð3:7Þ

At this potential minimum, the Einstein-Hilbert term
vanishes, as it is proportional to fðϕminÞ which vanishes,
and the theory is that of the rank-two, symmetric traceless
field Wab coupled to the metric. An interesting future work
would be to investigate the theory at and around this
potential minimum and possible connections to the cos-
mological constant. Our focus in this paper will instead be
on making connections to slow-roll inflationary cosmol-
ogy, through nonminimally coupled inflation, to which we
turn in the next sections.

B. Canonicalization of the scalar field

We now consider Eq. (3.4), with the assumptions w0 ¼ 0
and Λ0 ¼ 0, in d ¼ 4 dimensions. Taking w0 ¼ 0, we see
Pab has only a trace degree of freedom held by the scalar
field ϕ. The action in Eq. (3.4) now reduces to

S ¼ −
M2

p

2nκ

Z
d4x

ffiffiffiffiffi
jgj

p
fðϕÞR

þ 12nJ

Z
ddx

ffiffiffiffiffi
jgj

p �
1

2
∇aϕ∇aϕ − VðϕÞ

�
; ð3:8Þ

fðϕÞ¼1þ 8

n̂Mp
ϕ; VðϕÞ¼ M4

p

32n2Jn
2
κ
ðfðϕÞ2−1Þ; n̂¼ nλ

nJnκ
;

ð3:9Þ

where we have neglected SGB as in d ¼ 4 dimensions the
variation δSGB is a boundary term and thus adds nothing
to the equations of motion [30]. This action is seen to
be a particular case of a nonminimally coupled inflaton
action in Jordan frame with a potential of the form
VðϕÞ ¼ Aϕ2 þ Bϕ. We note that TW gravity has reduced
in Eq. (3.8) to a composite of the linear and quadratic
potential cases studied by [11,13], after setting their
dimensionless coupling parameter ξ ¼ 8

n̂ and our nκ ¼ 1.
Thus, our inflaton coupling parameter is formed from a
combination of free parameters, as seen in Eq. (3.8), rather
than being an additional free parameter of the model.
Furthermore, TW gravity as reduced to Eq. (3.8) falls into
the categorization of models in [13] as anF -dominant case.
To manipulate this action into a form where we can

easily apply the usual slow-roll analysis, we transform from
Jordan to Einstein frame via the conformal transformation

gab ¼ e−2ωg̃ab; ð3:10Þ

where gab and g̃ab are Jordan and Einstein frame metrics,
respectively. We demonstrate the details in switching from
Jordan to Einstein frame in Appendix C, which follows
closely [31,32]. For d ¼ 4 we have

ω ¼ ln

ffiffiffiffiffiffiffiffiffiffi
fðϕÞ
nκ

s
: ð3:11Þ

Under a conformal transformation with this ω, the two parts
of the Lagrangian in Eq. (3.8) transform as

−
M2

p

2nκ

ffiffiffiffiffi
jgj

p
fðϕÞR ¼ −

M2
p

2

ffiffiffiffiffi
jg̃j

p �
R̃þ 24

n̂MpfðϕÞ
□̃ϕ

−
9

2

�
8

n̂MpfðϕÞ
�

2∇̃aϕ∇̃aϕ

�
ð3:12Þ

12nJ
ffiffiffiffiffi
jgj

p �
1

2
∇aϕ∇aϕ − VðϕÞ

�

¼ 12nJ
ffiffiffiffiffi
jg̃j

p �
1

2

nκ
fðϕÞ ∇̃

aϕ∇̃aϕ −
M4

p

32n2J
ð1 − fðϕÞ−2Þ

�
:

ð3:13Þ

Substituting into the action Eq. (3.8) and combining like
terms we find

S ¼
Z

d4x
ffiffiffiffiffi
jg̃j

p �
−
M2

p

2
R̃þ AðϕÞ 1

2
∇̃aϕ∇̃aϕ

þ BðϕÞ 1
2
□̃ϕ − ṼðϕÞ

�
ð3:14Þ

with

AðϕÞ ¼ 288

n̂2fðϕÞ2
�
1þ n̂nλ

24
fðϕÞ

�
; BðϕÞ ¼ −

24Mp

n̂fðϕÞ
ð3:15Þ

ṼðϕÞ≡ 3M4
p

8nJ

�
1 −

1

fðϕÞ2
�

¼ 6M4
pϕðMpn̂þ 4ϕÞ

nJðMpn̂þ 8ϕÞ2 :

ð3:16Þ

Integrating by parts the BðϕÞ term and neglecting boundary
terms yields

S ¼
Z

d4x
ffiffiffiffiffi
jg̃j

p �
−
M2

p

2
R̃þ CðϕÞ 1

2
∇̃aϕ∇̃aϕ − ṼðϕÞ

�
;

ð3:17Þ
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CðϕÞ≡ 12

n̂2fðϕÞ2 ½8þ n̂nλfðϕÞ�

¼ 96

n̂2fðϕÞ2
�
1þ n̂nλ

8
þ nλ
Mp

ϕ

�
: ð3:18Þ

Defining the canonical field as2

dh
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffi
CðϕÞ

p
ð3:19Þ

leads to the canonical scalar field action

S¼
Z

d4x
ffiffiffiffiffi
jg̃j

p �
−
M2

p

2
R̃þ1

2
∇̃ah∇̃ah− ṼðϕðhÞÞ

�
: ð3:20Þ

The differential equation Eq. (3.19) defining the canonical
field h can be solved piecewise exactly by separation of
variables

hðϕÞ ¼

8>>><
>>>:

ffiffiffi
6

p
Mp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n̂nλ

8
fðϕÞ

q
− tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n̂nλ

8
fðϕÞ

q �
− 8

n̂nλ
< fðϕÞ < 0

ffiffiffi
6

p
Mp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n̂nλ

8
fðϕÞ

q
− coth−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n̂nλ

8
fðϕÞ

q �
fðϕÞ > 0:

ð3:21Þ

The potential minimum Ṽ ¼ −∞ corresponds to the
point h ¼ −∞. In the large ϕ limit, this relationship
becomes

h ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mpnλϕ

q �
1 −

�
1 −

n̂nλ
8

�
Mp

2nλϕ

�
; ð3:22Þ

which can be inverted to solve for ϕ

ϕ ≈
h2

6Mpnλ

�
1þ

�
1 −

n̂nλ
8

�
6M2

p

h2

�
: ð3:23Þ

C. Slow-roll parameters, observables, and the
corresponding range of TW gravity parameters

At this point, we can perform the calculation of slow-roll
parameters and their corresponding observables in terms of
the canonicalized scalar field h in the Einstein frame. We
first calculate the slow-roll parameters ϵ and η using the
equations for a canonical scalar field

ϵ ¼ M2
p

2

�
∂Ṽ=∂h

Ṽ

�
2

; η ¼ M2
p
∂
2Ṽ=∂h2

Ṽ
: ð3:24Þ

As we do not have a closed form solution for Ṽ in terms
of h, we cast these in terms of derivatives of ϕ via use of the
chain rule and the relationship in Eq. (3.19)

ϵ ¼ M2
p

2C

�
∂Ṽ=∂ϕ

Ṽ

�
2

; η ¼ M2
pffiffiffiffi
C

p
Ṽ

∂

∂ϕ

�
C−1=2 ∂Ṽ

∂ϕ

�
: ð3:25Þ

Carrying out the derivatives and simplifying yields the
following forms of the slow-roll parameters

ϵ ¼ 32

3ðf2 − 1Þ2ð8þ n̂nλfÞ
;

η ¼ −
16

3

32þ 5n̂nλf
ðf2 − 1Þð8þ n̂nλfÞ2

; ð3:26Þ

which, in the large field limit become

ϵ ≃
M5

pn̂4

3072nλϕ5
; η ≃ −

5M3
pn̂2

96nλϕ3
: ð3:27Þ

We see that the necessary conditions ϵ ≪ 1 and jηj ≪ 1,
for the slow-roll approximation to hold, are satisfied in the
large field limit of Eq. (3.27). Once we have solved for
these slow-roll parameters, we will use them to calculate
the scalar-mode spectral index ns, scalar-mode amplitude
As, and tensor-to-scalar amplitude ratio r via the equations

ns ¼ 1− 6ϵþ 2ηjϕ� ; As ¼
1

24π2M4
p

Ṽ
ϵ

����
ϕ�

; r¼ 16ϵjϕ� ;

ð3:28Þ

where ϕ� is the field value corresponding to the number
of e-foldings during inflation. In order to evaluate these
expressions we need to obtain ϕ� as a function of e-foldings
N. We calculate this using the standard slow-roll expression

N ≃
1

M2
p

Z
h�

hend

Ṽ

∂Ṽ=∂h
dh ð3:29Þ

as we do not have closed form expressions for Ṽ in
terms of h, we must change variables back to ϕ using
dh ¼ ffiffiffiffiffiffiffiffiffiffiffi

CðϕÞp
dϕ from Eq. (3.19),

2Technically the canonical field h would be defined as plus or
minus that in Eq. (3.19). This sign does not affect the analysis of
the slow-roll parameters, which ultimately only depend on ϕ and
h2, so we simply choose the plus solution hereafter for simplicity.
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N ≃
1

M2
p

Z
ϕ�

ϕend

ṼC

∂Ṽ=∂ϕ
dϕ: ð3:30Þ

Integrating this equation yields

N ≃
1

32
ðn̂nλðα3 − 1Þf3end þ 12ðα2 − 1Þf2end

− 3n̂nλðα − 1Þfend − 24 ln αÞ ð3:31Þ

α≡ fðϕ�Þ
fðϕendÞ

; fend ¼ fðϕendÞ: ð3:32Þ

Since ϵϕend
≃ 1 signals the approximate end of inflation,

we can solve Eq. (3.26) for the product n̂nλ as a function
of fend

n̂nλ ¼
32

3fendðf2end − 1Þ2 −
8

fend
: ð3:33Þ

TW gravity has three free parameters (nJ, nλ, nκ) that
we will fit using data from the Planck, BICEP2, and Keck
array [27]. Our solution proceeds as follows:
(1) Solve Eq. (3.33) for the range of fend corresponding

to positive n̂nλ. Recall n̂ was defined in terms of the
three free parameters in Eq. (3.6) which are all
positive.

(2) Plug Eq. (3.33) into Eq. (3.31), and solve for fend as
a function of f� for various e-foldings N.

(3) For each of these solutions for f� and corresponding
n̂nλ, calculate r and ns from Eq. (3.28).

(4) Fit these solutions to the Planck, BICEP2, and Keck
array data [27]. For the range of solutions for f� that
fits the r and ns data, solve Eq. (3.28) for the
corresponding range for nJ that also fits the As data.

(5) This will give a range of values for the three
parameters (nJ, nλ, nκ) of the TW gravity model
of slow-roll inflation that fits the current inflationary
data [27].

1. Constraining f � and f end for various e-folds

Figure 1 demonstrates that the valid range of solutions

for Eq. (3.33) are for the range 1 < fend <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
≈

1.47. The lower limit fend > 1 can be seen to arise
from Eq. (3.16) where Ṽ must be positive to ensure
the slow-roll approximation Ṽ ≫ _h2=2 is valid. An asymp-
tote n̂nλ → ∞ occurs at this lower limit. The upper limit

fend <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
is enforced by the fact that n̂nλ must

be positive (the free TW gravity parameters all must be
positive).
Next, we insert this range of solutions for n̂nλ into

Eq. (3.31) and solve for fend as a function of the initial
condition f� ¼ fðϕ�Þ. Solutions are plotted in Fig. 2 for the
number of e-folds N ¼ 50, 60, and 70. These solutions all

satisfy the necessary condition f� > fend, which ensures
that inflation occurs prior to the condition ϵϕ� ≈ 1 is
realized, which shuts off inflation. These solutions also
satisfy fend > 1 necessary for the validity of the slow-roll
approximation as previously described.
The range of f� corresponding to positive n̂nλ is to three

significant figures as follows:

1.00 < f� ≲ 11.8 N ¼ 50; ð3:34aÞ

1.00 < f� ≲ 12.9 N ¼ 60; ð3:34bÞ

1.00 < f� ≲ 13.9 N ¼ 70: ð3:34cÞ

FIG. 1. Solution to Eq. (3.26) when ϵϕend
¼ 1. The vertical

asymptote is at precisely fend ¼ 1 and the y-axis crossing occurs

at fend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
≈ 1.47.

FIG. 2. Solutions to Eqs. (3.31) and (3.33) for N values of 50,
60, and 70. All satisfy f� > fend > 1 that is a necessary condition
for inflation in the slow-roll approximation.
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Each upper limit on f� results in the upper limit

for fend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
for which n̂nλ → 0 as previously

explained.

2. Fitting the Planck, BICEP2, and Keck array data

Now that we have valid ranges for f� for various
e-folds N, using Eq. (3.28) we can calculate a range of ns
and r predicted by our TW gravitational model. Using the
most recent combination of Planck, BICEP2, and Keck
array data presented in [27] to constrain ns and r, we are
able to place constraints on the product of dimensionless
constants n̂nλ. In Fig. 3 we display the 68% and 95%
confidence intervals from [27] with predictions from our
TW gravitational model overlayed. Figure 3 is in agree-
ment with the predictions of [13] for the case of chaotic
inflation with power-law F in the metric formulation
for ðn; pÞ ¼ ð1; 1Þ.

Critical values for the parameters that yield values for
r and ns at the confidence level boundaries of Fig. 3 are
listed in Table I. We see that the range of n̂nλ values
that fits the currently accepted confidence intervals for
ns and r depends heavily on the number of e-folds N.
Smaller values of N have a larger range of values of
n̂nλ that fit within the confidence intervals than larger
values of N.
The observational constraints [27] for the scalar-mode

amplitude As are

2 ≤ ln 1010As ≤ 4: ð3:35Þ

Inserting Eq. (3.28) into Eq. (3.35), for each bound we
solve for the corresponding bounds on nJ. These bounds
are shown in Fig. 4 as a function of the solution of f� versus
n̂nλ that was extracted from Figs. 1 and 2 for N ¼ 60

e-folds. In Fig. 4 we see that nJ ∼ 1010 leads to the vast
majority of the range of initial conditions f� consistent with
the observational inflationary data plotted in Fig. 3.
An nJ ∼ 1010 points to an angular momentum scale

J0 ¼ nJℏ that is much less than angular momentum on
cosmic scales such as the observable Universe. The
constant J0 would be on the order of the angular
momentum of a few billion fundamental particles in
the standard model with their spins aligned: roughly
the number of electrons, protons, and neutrons in a
SARS-CoV-2 virion [33].

FIG. 3. The tensor-to-scalar ratio r and spectral index ns of the TW gravity slow-roll inflation model are plotted over the
valid range of f� in Eq. (3.34). The three arrows on each line are located at f� ¼ 1.30, 2.00, and 6.00 to show the direction of
increasing f� values.

TABLE I. Parameters yielding values of r and ns at the 95%
and 68% confidence level boundaries. Note that for N ¼ 70 there
is no 68% confidence level data as shown in Fig. 3.

95% C.L. boundary 68% C.L. boundary

N f � f end n̂nλ f � f end n̂nλ

50 1.13 1.01 30300 1.62 1.05 1150
60 1.70 1.05 1060 9.84 1.44 0.896
70 11.1 1.45 0.625
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3. Cosmological constant considerations

In [15] it was shown how TW gravity (in the nκ → ∞
limit of this paper) could give rise to corrections to the
cosmological constant on the order of today’s measured
value, Λ ∼ 10−120M2

p, if nJ ∼ 10120, corresponding to
approximately the angular momentum scale for the observ-
able universe. In the general nκ case in Eq. (3.20), setting
the canonical scalar field h ¼ constant leads to contribu-
tions to the cosmological constant Λ of the form

Λ ¼ M−2
p Ṽ: ð3:36Þ

The potential Ṽ is plotted in Fig. 5 for the case that fits
the 68% confidence level boundary for N ¼ 60 e-folds as
shown in Fig. 3.
The value nJ ¼ 1.74 × 1010 has been chosen to lie

within the range of values in Fig. 4. Note that changing

the value of nJ merely scales the vertical axis of Fig. 5
according to the inverse relationship in Eqs. (3.16). The
range of the potential at the start, end, and throughout the
entire epoch of inflation for N ¼ 60 which produces
slow-roll parameters that fit entirely within the 95% con-
fidence interval is

8.52 × 10−12M4
p ≲ Ṽ ≲ 2.14 × 10−9M4

p starting range;

ð3:37aÞ

4.59 × 10−12M4
p ≲ Ṽ ≲ 2.91 × 10−10M4

p ending range;

ð3:37bÞ

4.59× 10−12M4
p ≲ Ṽ ≲ 2.14× 10−9M4

p range throughout;

ð3:37cÞ

where all lower bounds correspond to fend ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
≈ 1.47ðf� ¼ 12.9Þ, nJ ¼ 4.37 × 1010 and

all upper bounds correspond to fend ¼ 1.05ðf� ¼ 1.70Þ,
nJ ¼ 1.15 × 108 to three significant figures.
In Fig. 5, we have Ṽ ∼ 10−11M4

p at the end of inflation,
thus predicting that Λ ∼ 10−11M2

p according to Eq. (3.36).
This would be the case if the inflaton field is completely
frozen at the end of inflation. The steepness of the
slope at the end of inflation in Fig. 5 suggests the
possibility that h is not completely frozen at the end of
inflation and that Ṽ might yet decrease substantially
for a small change in h. Thus perhaps the prediction of
Λ ∼ 10−11M2

p at the end of inflation is not the end of the
story for TW-gravity born inflatons, but Λ is actually
much smaller.

4. Validating the slow-roll approximation
and LHC considerations

Assuming inflation occurs at timescale of 10−36 s, we
can approximate the time derivative squared of the canoni-
cal scalar field h as _h2 ≈ ððhend − h�Þ=10−36 sÞ2, with hend
and h� calculated from Eq. (3.21) evaluated at fend and f�,
respectively. In this approximation, the following 3D plots
are of _h2=2 versus nλ and nκ for the upper and lower bounds
of nJ associated with the As constraint Eq. (3.35) at N ¼ 60

e-folds. The potential ṼðϕendÞ ¼ constant for given nJ, as
calculated from Eq. (3.16), is used to demonstrate the
validity of the slow-roll approximation as it is the lowest
value of the potential over the slow-roll inflationary epoch.
These plots clearly show that the slow-roll approximation is
valid for N ¼ 60 as the solution nλ ¼ nλðnκÞ for fixed nJ,
marked by the red line, is clearly in the range where
Ṽ ≫ _h2=2. Figure 6 uses the maximum values f� ¼ 12.9

and fend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
for N ¼ 60 e-folds as described

in Sec. III C 1.

FIG. 5. The potential in Eq. (3.16) is plotted with respect to
fðϕÞ for nJ ¼ 1.74 × 1010. Vertical lines indicate beginning and
ending points of slow-roll inflation that fit the 68% confidence
level boundary for N ¼ 60 e-folds shown in Fig. 3. The potential

Ṽ is graphed in units of Mpc2

ð ffiffiffiffi
8π

p
lpÞ3, which is equivalent to M4

p in

natural units.

FIG. 4. The lower and upper limits of nJ are plotted versus f�
and n̂nλ for N ¼ 60 e-folds. The corresponding confidence
interval is also shown, using the boundary value of f� from
Table I. As f� decreases the range of nJ decreases but does not
vanish. For N ¼ 60 e-folds, the range of values that fits
completely within the 95% confidence interval (including that
part that is also within the 68% confidence interval) is to three
significant figures 1.15 × 108 ≲ nJ ≲ 4.37 × 1010.
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Figures 7 and 8 use the values for f� and fend at the 65%
and 95% confidence level boundaries given in Table I,
respectively. Plots for N ¼ 50 and N ¼ 70 similarly
indicate the validity of the slow-roll approximation for
those values of e-folds.
Changing the scale of Fig. 8(a) as in Fig. 9 allows

for some analysis of LHC measurable effects. Figure 9
demonstrates that nκ ∼ 1020 for an nλ ∼ 1016 that is

associated with projective length scale effects that
hypothetically could be probed at the LHC. As seen
in Eq. (3.8), in the Jordan frame the gravitational
coupling constant is proportional to nκ=ðM2

pfðϕÞÞ.
As fðϕÞ ∼ 1 over the range of solutions, this indicates
that LHC measurable effects point to a very
large gravitational coupling as viewed in the
Jordan frame.

FIG. 7. Kinetic energy 1
2
_h2 and constant potential ṼðϕendÞ versus nλ and nκ for f� ¼ 9.84 and fend ¼ 1.44 for (a) upper bound on nJ

and (b) lower bound on nJ . The red line marks the solution nλ ¼ nλðnκÞ for fixed nJ.

FIG. 6. Kinetic energy 1
2
_h2 and constant potential ṼðϕendÞ versus nλ and nκ for maximum f� ¼ 12.9 and fend ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
for

(a) upper bound on nJ and (b) lower bound on nJ. The red line marks the solution nλ ¼ nλðnκÞ for fixed nJ .
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IV. CONCLUSION

We have shown that TW gravity provides a raison d’etre
for inflation, the underlying foundational principle being
projective symmetry. This symmetry itself arises from the
dynamical extension of a coadjoint element of the Virasoro
algebra to higher dimensions. By decomposing the tensor
field arising from TW gravity into trace and traceless

degrees of freedom and setting the traceless components to
zero, we have found that the resulting action reproduces
that of (generalized) non-minimally coupled inflation with
a novel inflaton potential. After performing a conformal
transformation to Einstein frame, we recover the canonical
scalar field inflaton action, where the free parameters
of TW gravity nJ, nκ, and nλ (TW parameters) become

FIG. 9. Kinetic energy 1
2
_h2 and constant potential ṼðϕendÞ versus nλ and nκ for f� ¼ 1.70, fend ¼ 1.05, and nJ ¼ 8.47 × 108. The red

line marks the solution nλ ¼ nλðnκÞ for fixed nJ . This solution has precisely nκ ¼ 1.10 × 1020 for nλ ¼ 1016. This is the smallest value of
nκ that corresponds to an LHC-scale nλ ¼ 1016, for all values of f� within the 95% confidence level for N ¼ 60. This plot is the same as
Fig. 8(a) with a modified nκ and nλ range that is within scales that can be probed at the LHC.

FIG. 8. Kinetic energy 1
2
_h2 and constant potential ṼðϕendÞ versus nλ and nκ for f� ¼ 1.70 and fend ¼ 1.05 for (a) upper bound on nJ

and (b) lower bound on nJ . The red line marks the solution nλ ¼ nλðnκÞ for fixed nJ.
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embedded in the canonical field h and its potential Ṽ.
Calculating the slow-roll parameters and applying condi-
tions about the end of inflation allowed us to constrain
relationships to the TW parameters. Finally, using recent
observational data for the scalar-mode spectral index,
scalar-mode amplitude, and tensor-to-scalar amplitude
ratio, we determined the ranges for the TW parameters
that fit recent data for N ¼ 50, 60, and 70 e-foldings. For
N ¼ 70, however, the model does not fit within the most
constraining confidence interval of the Planckþ
BICEP2=Keck Array data. Generally, a lower number of
e-foldings paired with a larger value for the inflaton field at
the start of inflation better matches the data. Furthermore,
we confirmed that the range of TW parameters that fits the
data is consistent with the slow-roll approximation of a
potential dominated expansion. The range of parameters
that fits within the 95% confidence level is 1.15 × 108 ≲
nJ ≲ 4.37 × 1010 and 0 < n2λ=ðnJnκÞ≲ 1030 for N ¼ 60.
The TW parameter nJ corresponds to an angular

momentum scale for TW gravity, associated with the
TW coupling constant J0 ¼ nJℏ. We find nJ ∼ 1010 fits
the slow-roll cosmological data and leads to a cosmological
constant contribution Λ ≲ 10−11M2

p from the scalar field
settling down at the end of inflation. This correction is still
much larger than the measured result Λ ∼ 10−120M2

p,
however, the shape of the TW potential Ṽ at the end of
inflation indicates the possibility that Λ could continue to
decrease lower than 10−11M2

p after inflation was over. We
would like to return to this in future works.
The inflationary solutions of TW gravity presented

include a regime where a large Jordan frame gravitational
coupling constant might lead to LHC sensitive TW effects.
Such effects may arise as dark matter portals through the
spin connection of the higher-dimensional projective
space [14–16]. Specifically, the spin connection gives rise

to an axial coupling between the trace of Pab, that is the
scalar field inflaton described here, and fermions [15,16].
The inflationary solutions of TW gravity indicate that if such
a dark matter portal exists at LHC scales, it could shed light
on inflationary cosmology as well. Furthermore, TW gravity
will contribute to the reheating process after inflation,
through direct decay of TW inflatons and possibly through
facilitating decays as portals. Investigations in these direc-
tions will be pursued in the future.
In this paper, we assumed the connection was Levi-Civita.

An interesting future work would be to relax this constraint
and consider the Palatini approach of [16] that leads to a
model with more tensorial degrees of freedom along with
more equations of motion associated with the connection.
We also plan to investigate how adding the traceless
component of the tensor field Pab in Eq. (3.3) will affect
the analysis. Due to the addition of the Lagrangian Eq. (3.5),
we will need to solve the field equations directly and make
an Ansatz for the form of the components ofWab. This could
possibly provide a theoretical origin to the anisotropic seeds
needed for galaxy formation in the early universe.
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APPENDIX A: UNITS AND CONVENTIONS

The units of the various constants used throughout this
paper for d ¼ 4 are

½ϕ� ¼ ½h� ¼ L−1; ½Pab� ¼ ½Wab� ¼ ½Λ0� ¼ ½Rab� ¼ L−2; ½J0� ¼
ML2

T
;

½λ0� ¼ L; ½l� ¼ ½w0� ¼ dimensionless; ½κ0� ¼
T2

ML
; ½ddx� ¼ TLd−1: ðA1Þ

We may at times set c ¼ 1 but expose factors of c when
calculating numerical values. Latin indices take values
a; b;… ¼ 0; 1; 2;…; d − 1 and Greek indices take values
μ; ν;… ¼ 0; 1; 2;…; d, with the exception of the Greek
letter λ, which refers to the projective coordinate
xd ¼ λ ¼ λ0l. The covariant derivative acts on contra-
variant and covariant vectors as

∇aVb ¼ ∂aVb þ Γb
acVc; ∇aVb ¼ ∂aVb − Γc

abVc:

ðA2Þ

A rank m-contravariant, n-covariant tensor, which we refer
to as an ðm; nÞ tensor, will have m terms involving the
connection Γa

bc as for contravariant vectors and n-terms
involving the connection as for covariant vectors. The
dþ 1-dimensional covariant derivative is defined analo-
gously with Γ̃α

μν.
At places in this paper where we have assumed compat-

ibility between Γa
bc and the metric gab we have

Γm
ab ¼

1

2
gmnðgnða;bÞ − gab;nÞ; ðA3Þ
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but as Gμν is never compatible with Γ̃α
μν, the analogous definition for Γ̃α

μν is not correct. Instead, Γ̃a
mn is defined in

Eq. (2.6). The commutator of covariant derivatives on an arbitrary rank m-covariant, rank n-contravariant tensor is
equivalent to the following action of Ra

bcd:

½∇a;∇b�Tc1…cm
d1…dn ¼ −Re

c1abTec2…cm
d1d2…dn − � � � − Re

cmabTc1c2…e
d1d2…dn

þ Rd1
eabTc1…cm

e…dn þ � � � þ Rdm
eabTc1…cm

d1…e: ðA4Þ

Throughout the paper we adopt the convention that
symmetric and antisymmetric permutations of indices do
not have numerical factors, i.e.,

T ½ab� ¼ Tab − Tba; ðA5Þ

TðabÞ ¼ Tab þ Tba: ðA6Þ

APPENDIX B: REDUCING THE
DIFFEOMORPHISM FIELD TRANSFORMATION

LAW TO ONE DIMENSION

In this Appendix, we demonstrate a detailed proof of the
transformation law for the diffeomorphism field D in one
dimension. As described in Sec. II A, under a coordinate
transformation from xa to x0a in d dimensions, the diffeo-
morphism field Dab transforms as

D0
ab ¼

∂xm

∂x0a
∂xn

∂x0b
½Dmn − ∂mjn − jmjn þ jcΠc

mn�; ðB1Þ

jm ≡ ∂m log

���� ∂xb
∂x0c

����
1

dþ1

: ðB2Þ

In d ¼ 1 dimensions, we have a single field DðxÞ and the
single connection coefficient Π ¼ 0 because of its traceless
construction as seen in Eq. (2.7). The transformation law in
d ¼ 1 dimensions is

D0ðx0Þ ¼
�
dx
dx0

�
2
�
DðxÞ − d2

dx2
log

�
dx
dx0

�
1=2

−
�
d
dx

log

�
dx
dx0

�
1=2

�
2
�
: ðB3Þ

Considering an infinitesimal coordinate transformation

x0 ¼ x − ξðxÞ; ðB4Þ

the diffeomorphism field’s transformation law in d ¼ 1
dimensions becomes

D0ðx0Þ ¼ DðxÞ þ 2
dξðxÞ
dx

DðxÞ − 1

2

d3ξðxÞ
dx3

þOðξ2Þ: ðB5Þ

The last step is to write D0ðx0Þ in terms of x via a Taylor
series

D0ðx0Þ ¼
X∞
n¼0

dnD0ðx0Þ
dx0

����
x0¼x

ðx0 − xÞn
n!

ðB6Þ

¼ D0ðxÞ − ξðxÞ dD
0ðxÞ
dx

þOðξ2Þ: ðB7Þ

Plugging this back into the transformation Eq. (B5) and
rearranging we have

D0ðxÞ ¼ DðxÞ þ 2
dξðxÞ
dx

DðxÞ

þ ξðxÞ dD
0ðxÞ
dx

−
1

2

d3ξðxÞ
dx3

þOðξ2Þ: ðB8Þ

SinceD0ðxÞ ¼ DðxÞ þOðξÞ, we can simply drop the prime
in the third term on the right-hand side, leaving us with

D0ðxÞ ¼ DðxÞ þ 2
dξðxÞ
dx

DðxÞ þ ξðxÞ dDðxÞ
dx

−
1

2

d3ξðxÞ
dx3

þOðξ2Þ: ðB9Þ

To first order in ξ, this is the same as Eq. (2.11).

APPENDIX C: CONFORMAL
TRANSFORMATIONS OF
CURVATURE TENSORS

Here we follow closely [31,32] to demonstrate how the
Riemann tensor, Ricci tensor, and Ricci scalar transform
under a conformal transformation in d dimensions:

gab ¼ e−2ωg̃ab: ðC1Þ

This transforms the square root of the determinate as

ffiffiffiffiffi
jgj

p
¼ e−dω

ffiffiffiffiffi
jg̃j

p
: ðC2Þ

The connection Γ̃c
ab for the metric gab and Γc

ab for the
metric gab differ by a tensor Ccab that has the same form for
both metrics

Γc
ab ¼ Γ̃c

ab − Ccab ðC3Þ
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Ccab ¼ C̃cab ¼ δðac∇bÞω − gab∇cω

¼ δðac∇̃bÞω − g̃ab∇̃cω: ðC4Þ

Here ∇a is the covariant derivative associated with the
connection Γc

ab and ∇̃a is the covariant derivative asso-
ciated with the connection Γ̃c

ab. Indices for the covariant
derivatives are raised and lowered with their associated
metrics:

∇a ¼ gab∇b; ∇̃a ¼ g̃ab∇̃b: ðC5Þ

The relationship between the Riemann curvature tensors
Rc

adb constructed from Γc
ab and R̃c

adb constructed from
Γ̃c

ab is

Rc
adb ¼ R̃c

adb − ∇̃½dC̃cb�a − C̃ea½dC̃cb�e: ðC6Þ

Contracting first and third indices gives the relationship
between the Ricci tensors

Rab ¼ Rc
acb ¼ R̃ab − ∇̃½cC̃

c
b�a − C̃ea½cC̃

c
b�e: ðC7Þ

Contracting with the metric and simplifying gives the
relationship between the Ricci scalars

e−2ωR¼ R̃þ2ðd−1Þ□̃ω−ðd−1Þðd−2Þ∇̃aω∇̃aω: ðC8Þ

Here the Ricci scalars are defined as the Ricci tensor
contracted with the associated metric and the Laplacian is
defined as contracted with the associated metric

R ¼ gabRab; R̃ ¼ g̃abR̃ab ¼ g̃abR̃c
acb ðC9Þ

□ω ¼ ∇a∇aω; □̃ω ¼ ∇̃a∇̃aω: ðC10Þ

In proving the above, the following calculations are
useful:

g̃abC̃c
ab ¼ −ðd − 2Þ∇̃cω; ðC11Þ

C̃ccb ¼ d∇̃bω; ðC12Þ

g̃adC̃cabC̃
b
dc ¼ −ðd − 2Þ∇̃aω∇̃aω: ðC13Þ

For a Lagrangian in d dimensions of the form
n−1κ

ffiffiffiffiffijgjp
fðϕÞR to transform to the Einstein frame

n−1κ
ffiffiffiffiffi
jgj

p
fðϕÞR ¼ n−1κ

ffiffiffiffiffi
jg̃j

p
fðϕÞeð2−dÞωðR̃þ 2ðd − 1Þ□̃ω − ðd − 1Þðd − 2Þ∇̃aω∇̃aωÞ

¼
ffiffiffiffiffi
jg̃j

p
ðR̃þ 2ðd − 1Þ□̃ω − ðd − 1Þðd − 2Þ∇̃aω∇̃aωÞ ðC14Þ

we must have fðϕÞeð2−dÞω ¼ nκ, the solution for which is

ω ¼ 1

d − 2
ln
fðϕÞ
nκ

; d ≠ 2: ðC15Þ

This results in the following for the Laplacian and square of the divergence of ω

□̃ω ¼ 1

d − 2

�
f0

f
□̃ϕþ

�
f00

f
−
ðf0Þ2
f2

�
∇̃aϕ∇̃aϕ

�
; ðC16Þ

∇̃aω∇̃aω ¼ 1

ðd − 2Þ2
ðf0Þ2
f2

∇̃aϕ∇̃aϕ; ðC17Þ

where f0 ¼ df=dϕ and f00 ¼ d2f=dϕ2. Substituting these results into Eq. (C14) while multiplying the entire equation by
−M2

p=2 gives in terms of ϕ now

−
M2

p

2nκ

ffiffiffiffiffi
jgj

p
fðϕÞR ¼ −

M2
p

2

ffiffiffiffiffi
jg̃j

p �
R̃þ 2

d − 1

d − 2

f0

f
□̃ϕþ d − 1

d − 2

�
2
f00

f
− 3

ðf0Þ2
f2

�
∇̃aϕ∇̃aϕ

�
: ðC18Þ

Under this same conformal transformation, a scalar field Lagrangian transforms as follows

ffiffiffiffiffi
jgj

p �
1

2
∇aϕ∇aϕ − VðϕÞ

�
¼

ffiffiffiffiffi
jg̃j

p �
1

2

nκ
fðϕÞ ∇̃

aϕ∇̃aϕ −
�

nκ
fðϕÞ

� d
d−2
VðϕÞ

�
: ðC19Þ
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