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Null and timelike geodesics in the Kerr-Newman black hole exterior
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We study the null and timelike geodesics of light and the neutral particles, respectively, in the exterior
of Kerr-Newman black holes. The geodesic equations are known to be written as a set of first-order
differential equations in Mino time from which the angular and radial potentials can be defined. We
classify the roots for both potentials, and mainly focus on those of the radial potential with an emphasis
on the effect from the charge of the black holes. We then obtain the solutions of the trajectories in terms of
the elliptical integrals and the Jacobian elliptic functions for both null and timelike geodesics, which are
manifestly real functions of the Mino time that the initial conditions can be explicitly specified. We also
describe the details of how to reduce those solutions into the cases of the spherical orbits. The effect of
the black hole’s charge decreases the radii of the spherical motion of the light and the particle for both
direct and retrograde motions. In particular, we focus on the light/particle boomerang of the spherical
orbits due to the frame dragging from the back hole’s spin with the effect from the charge of the black
hole. To sustain the change of the azimuthal angle of the light rays, say for example A¢ = z during the
whole trip, the presence of the black hole’s charge decreases the radius of the orbit and consequently
reduces the needed values of the black hole’s spin. As for the particle boomerang, the particle’s inertia
renders smaller change of the angle A¢ as compared with the light boomerang. Moreover, the black
hole’s charge also results in the smaller angle change A¢ of the particle than that in the Kerr case. The

implications of the obtained results to observations are discussed.
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I. INTRODUCTION

Einstein’s general relativity (GR), since its birth, has
shown multiple profound theoretical predictions [1-3].
Recently, successive observations of gravitational waves
emitted by the merging of binary systems provide one of
the long-awaited confirmations of GR [4-6]. The capture
of the spectacular images of the supermassive black holes
MS87* at the center of M87 galaxy [7] and Sgr A* at the
center of our galaxy [8] is also a great achievement that
provides direct evidence of the existence of the black holes,
the solutions of FEinstein’s field equations. Thus, the
horizon-scale observations of black holes with the strong
gravitational fields trigger new impetus to the study of null
and timelike geodesics around black holes.

The start of the extensive study of the null and timelike
geodesics near the black holes dates back to a remarkable
discovery from Carter of the so-called Carter constant
C [9]. In particular, in the family of the Kerr black holes
apart from the conservation of the energy E and the
azimuthal angular momentum L of the particle or the light,
the existence of this third conserved quantity renders the
geodesic equations being written as a set of first-order
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differential equations. Later, the introduction of the Mino
time [10] further fully decouples the geodesics equations
with the solutions expressed in terms of the elliptical
functions. A review of the known analytical solutions of
the geodesics in the family of the Kerr black holes is given
in [11] and in the reference therein. Here, we would like to
particularly focus on the geodesic dynamics in the case of
Kerr-Newman black holes. The Kerr-Newman metric of the
solution of the Einstein-Maxwell equations represents a
generalization of the Kerr metric, and describes spacetime
in the exterior of a rotating charged black hole where, in
addition to gravitation fields, both electric and magnetic
fields exist intrinsically from the black holes. Although
one might not expect that astrophysical black holes have a
large residue electric charge, some accretion scenarios were
proposed to investigate the possibility of the spinning
charged back holes [12]. Moreover, theoretical consider-
ations, together with recent observations of structures near
Sgr A* by the GRAVITY experiment [13], indicate possible
presence of a small electric charge of central supermassive
black hole [14,15]. Thus, it is still of great interest to
explore the geodesic dynamics in the Kerr-Newman black
hole. In this work, we plan to work on the null geodesics of
light and the timelike geodesics of the neutral particle in
particular in general nonequatorial plane of the Kerr-
Newman exterior. Many aspects of the geodesic motion
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on the equatorial plane were studied for the neutral particle
[16-18] and for light [19,20] in the Kerr-Newman black
hole, as well as its extension involving the situations of
nonzero cosmological constant [21-23], to cite a few.
Complete description of light orbits in the Kerr-Newman
black holes was studied in [24]. Characterization of the
orbits was also analyzed in [25]. The study extended to the
nonequatorial plane was to show the apparent shapes
of various Kerr-Newman spacetimes due to the light
orbits [26]. As for the timelike geodesics in the Kerr-
Newman spacetime, in [27] the motion of the charged
particle was studied where the types of the different
trajectories were characterized and the analytical solutions
in terms of the elliptical functions were provided.

In the present work, we will study the light trajectories
near the Kerr-Newman black holes in the general non-
equatorial plane by extending the work of [28] where the
Kerr spacetime was considered. However, we only focus on
the motion in the Kerr-Newman exterior and provide the
comprehensive analysis of the roots of the radial and the
angular potentials, which are defined from the geodesic
equations of a set of the first-order differential equations.
The potentials are characterized in terms of the parameters
of the light, namely the Carter constant C/E*> =5 and
the azimuthal angular momentum L/E = A, which permit
solutions in a form of the elliptical integrals and Jacobian
elliptic functions. The relevant trajectories in the black hole
exterior correspond to the unbound motion where the light
rays start from the asymptotic region, moving toward the
black hole, and then meet the turning point outside the
horizon, returning to space infinity. The illustration of
the trajectory will be drawn using the resulting analytical
formulas. We also examine the solutions to the case of the
spherical orbits with the radius of the double root of the
radial potential, which are unstable. This result of the radius
of the circular motion together with the values of A can be
translated into the observation of the shape of shadow,
which can be ideally visualized using celestial coordinates
[29], an area of great interest and debate. Here, we focus on
the so-called light boomerang, which was investigated
recently in the Kerr black hole [30]. Black hole can bend
escaping light like a boomerang that the light rays from the
inner disk around the black hole are bent by the strong
gravity of the black hole and reflected off the disk surface,
shown in the new reveal of x-ray images [31]. The solutions
of the spherical orbits allow us to analytically study how the
effect from the charge of the black hole affects this
spectacular phenomenon.

As a comparison, we will also study the timelike
trajectories of the neutral particles with mass m in the
similar way as in the study of the null geodesics of the light
with the approach of paper [28]. Classifications of the
various types of motion in the angular and radial parts of
the timelike geodesics in the Kerr-Newman black holes
have been studied comprehensively with the solutions

involving the Weierstrass elliptic functions in [27], which
are slightly less explicit as compared with those in [28], in
the sense of the nontrivial imposition of the initial con-
ditions and the needs of the gluing solutions at some
turning points as emphasized in the work. The solutions we
obtain are also expressed in terms of the elliptical integrals
and the Jacobian elliptic functions, the same types of
functions as in the solutions of the null geodesics, which
are of the manifestly real functions of the Mino time that the
initial conditions are explicitly present. Moreover, the
solutions will be expressed in a way that can reduce to
the motion of its counterpart in the light rays by taking the
limit of m — 0. In this case of the massive particle, apart
from two constants C,, and L,,, the additional parameter
E,, joins in to characterize the types of the trajectories, and
all three constants are properly normalized by the mass
of the particle m, namely C,,/m*> =n,,, L,,/m = 4,,, and
E,/m=vy,. In addition to the unbound motion for
E,, > m, which bears the similarity to that of light rays,
there exists also the bound motion for E£,, < m, where both
of their respective solutions are obtained. We exemplify the
solution of the bound motion with E,, < m to show the
near-homoclinic trajectory where the particle starts off from
the position of the largest root of the radial potential and
spends tremendous time moving toward the position of
almost the double root of the radial potential of the unstable
point, and then returning to the starting position. A
homoclinic orbit is separatrix between bound and plunging
geodesics and an orbit that asymptotes to an energetically
bound, unstable spherical orbit [32]. The solutions then are
restricted to the case of the spherical orbits of the particle
using a method in [33] on the parameter space given by the
radius of the spherical orbit r and the Carter constant #,,. It
turns out that the radius of the unstable spherical orbits of
the light 7 discussed in the section of the null geodesics
becomes crucial to set the boundaries of the radius of the
spherical orbits of the particle with different constraint of
n,, for a given energy y,,. In the case of the bound motion,
there exist two types of the double roots of the radial
potential, which correspond to the stable and unstable
motions, respectively. As two types of the double root
coincide through decreasing the energy y,,, the triple root of
the radial potential appears with the associated radius of the
trajectory of the so-called innermost stable spherical orbit
(ISSO) presumably to be measurable [2] by detecting x-ray
emission around the ISSO and within the plunging region
of the black holes in [34] (and references therein).
Classification of the different types of motion are carried
out to find the associated parameter regions of #,, and y,,.
Finally, we apply the solutions to study the particle
boomerang in the unbound motion to analytically see
how the finite mass of the particle affects boomerang
phenomenon.

In Sec. II, we give a brief review of the null geodesic
equations from which to define the radial and the angular
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potentials in terms of the parameters of the Carter constant
C and the azimuthal angular momentum L of the light
normalized by the energy E. In Secs. Il A and II B, we,
respectively, analyze the roots of the angular and the radial
potentials to determine the boundaries of the parameter
space of the different types of motion, and then find the
associate solutions. Section II C reduces the solutions to the
cases of spherical orbits, focusing on the light boomerang.
In Sec. III, we turn to the case of timelike geodesics of the
neutral particle where the equations now have the addi-
tional parameter E,, of the particle, apart from the other two
constants C,, and L,, in unit of the particle mass m. The
parameter space is analyzed giving different types of the
solution in Sec. III A for the angular part and in Sec. III B
for the radial part where the solutions are obtained also
in the Appendixes A and B. Section III C is again for
discussing the potential boomerang of the particle to make
a comparison with the light boomerang. All results will be
summarized in the closing section.

II. NULL GEODESICS

We start from a brief review of the dynamics of the light
rays in the Kerr-Newman spacetime. The exterior of the
Kerr-Newman black hole with the gravitational mass M,
angular momentum J, and angular momentum per unit
mass a = J/M can be described by the metric in the Boyer-
Lindquist coordinates as

ds? — _g(d; — asin®0d¢)?
+“§9mz+fym—amF+idﬂ+zaﬂ (1)
where
¥ = r? + a?cos?0, (2)
A=7r?=-2Mr+ a* + Q% (3)

The outer/inner event horizons r,/r_ can be found by
solving A(r) = 0, giving

ro =M=+ \/M*—(a*+ Q?), (4)

which requires M? > a®> + Q?. The Lagrangian of a
particle is

1
L= zgﬂ,,u/‘u” (5)
with the 4-velocity u = dx*/do defined in terms of
an affine parameter o. Due to the fact that the metric of
Kerr-Newman black hole is independent of ¢ and ¢, the

associated Killing vectors 5’(;) and 5’(‘ ) are given, respec-
tively, by

go=8. &=4, (6)
Then, the conserved quantities, namely energy E and
azimuthal angular momentum L, along a geodesic, can
be constructed from the above Killing vectors:

L=¢& u, (7)

E ==&, )

There exists another conserved quantity, namely the Carter
constant explicitly given by

C = 22(u%)? — a’E*cos?0 + L*cot?6. (8)

Together with the null world lines of the light rays,
following u*u, = 0, one gets the equations of motion:

dr

E%*ir R(r), 9)

> do

S = £)/000). (10)
Z@_a A

—(rP+a*-al)+

Edo A @ (11)

sin%6

Sdt rr+a?
Edec A

(r* + a* — al) + a(4 — asin?0).  (12)

In these equations we have introduced the dimensionless
azimuthal angular momentum A and Carter constant #
normalized by the energy E:

C

(13)

L
E’ n
Also, the symbols =+, = sign(u") and +, = sign(u’) are
defined by 4-velocity of photon. Moreover, the functions
R(r) in (9) and ©(0) in (10) are, respectively, the radial and
the angular potentials:

R(r)=(rP+ad*—al)’ - Aln+ (A—a)?, (14)
0(0) = n + a*cos*d — A>cot®6. (15)

So, one can determine the conserved quantities correspond-
ing to energy and the azimuthal angular momentum and
the Carter constant from the initial conditions of u#
from (9), (10), (11), and (12) evaluated at the initial time.

The work of [28] provided an extensive study of the null
geodesics of the Kerr exterior. In addition, the spherical
photon orbits around a Kerr black hole have been analyzed
in [35], and the light boomerang in a nearly extreme
Kerr metric was also explored recently in the paper [30].
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The present work will focus on the light rays whose journey
stays in the Kerr-Newman black hole exterior. As in [28],
we parametrize the trajectories in terms of the Mino time 7
defined as

(16)

with which all the equations are decoupled. For the source
point x; and observer point x*, the integral forms of the
equations now become

t—1;,=1,= Gy, (17)
=i =15+ Gy, (18)
t—t;=1,+ a’G,, (19)
where
I/rldG/eldG(ZO)
y= | ———=dr, = | ————db,
n /R0 "7 Jo, £91/0(0)
ra(2Mr — ad — Q?
I¢E/a( r—al Q)dr,
T :ErA R(I")
0 csc?o
G, z/ _SCT e, 21
" Jo £01/000) 2
/rr2A+(2Mr—Q2)(r2+a2—ai)
I, = dr,
ri i,A\/R(r)
0 29
G,E/ %7 . (22)
0, £0/0(0)

All of the above integrals depend on the angular and radial
potentials, ®(0) and R(r), whose properties will be fully
analyzed next in terms of two parameters A and 7.
Nonetheless, since the angular potential ®(0) in the Kerr-
Newman black holes is exactly the same as in the Kerr black
holes, we just give a brief review on the solutions in [28],
focusing only on the parameter regimes that can give the
whole journey of the light rays in the black hole exterior.
On the contrary, since the radial potential R(r) bears the
dependence of the charge of the black holes, we will
examine in detail how the charge affects the parameter
regimes of our interest in the Kerr-Newman black holes.

A. Analysis of the angular potential ©

Although the angular potential has no dependence of the
charge of the black hole where the conclusion below is the
same as the case of Kerr black hole [28], we give here a
short review for the sake of completeness of the paper. We
begin by rewriting © potential in terms of u = cos’ 0 as

(1-=u)®(u) = —a*u®> + (a* —n—=2)u+n. (23)
At this point, we focus on 0 < @ < & for 1 # 0 since the
angular potential ®(6) will meet the singularity at u = 1
when 1 # 0. Later, by explicitly carrying out the integrals
we will show that the solutions of the light trajectories can
also cover the situation of § = 0,z when letting 1 = 0.
Notice that from the expressions of the integrals, the
existence of the solutions requires the angular potential
being positive. To see the ranges of the parameters of # and
A given by the positivity of @(0) > 0, we first find the roots
of ®(0) =0, which are

Ag £ \/AS+ da’y

Uy = 5 , Ay = a®>—n—2%.

(24)

There are several lines in the parameter space that set the
boundaries among the different types of the solutions of u,.
One of them, the orange line in the inset of Fig. 1, is the
line of the double roots determined by the condition
n = —(|4] — @)? with 2> < @ that distinguishes the param-
eter regions of two real roots and a pair of the complex
conjugate roots. In addition, there exist the lines of either
u, =0 given by n =0, 2> > a* (blue lines in the inset)

0.8

0.6

0.4

0.2F

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The graphics of the angular potential ®(u) for a few
representative plots classified by the locations of its roots. The
red, dark cyan, magenta, purple, and green plots with the
parameters shown in the upper inset correspond to the cases
ofu_<Oandu, >0,u_ <Oandu, >0,u_=0and u, >0,
u_<0and u, =0, and u_ > 0 and u, > 0, respectively. The
inset shows the boundaries and the positions of these points in the
parameter space of 1 and 5. See the text for more details.
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or u_ =0 by =0, 22 <a® (black line in the inset).
In particular, the line u_ = 0 separates the positive root
from the negative one. Notice that when 4 = 0, u reaches
its maximum value, which is unity. Apparently, for > 0
and nonzero A, 1 > u, > 0 is the only positive root that
in turn gives two roots at 6, =cos™'(—/u;), 6_ =
cos™!(,/uz) shown in Fig. 1. The light rays can travel
between the southern and northern hemispheres crossing
the equator at @ = 7. In the case of n = 0, there exist one
non-negative root of u, =0 when 4> > a*> and two non-
negative roots of u_ =0 and 1 >u, =1- i—i > 0 when
A* < a?. The u, = 0 is a relevant root, giving # = Z when
the light rays lie on the equatorial plane for the cases
A? > a*. Moreover, u, = 0 is also the necessary condition,
with which the double roots of the radial potential exist in
spherical orbits. The connection will be discussed in the
next subsection [20]. On the other hand, for 0 > 5 >
—(]A| = @)* with 2> < @?, both u, are relevant, leading
to four real roots of 6, where two of them are less than 7
restricting the light rays traveling in the northern atmos-
phere, and the other two are greater than 7 giving light rays
in the southern atmosphere. These types of motion are out
of scope of this study here, since the light rays of the whole
journey traveling outside the horizons requires positive

Gy(r) = —

2u
gt- — 7+2E/

" \/—u_a

where the incomplete elliptic integrals of the second kind
E(¢|k) and third kinds I1(n; ¢|k) are also involved [36]. We
need also the formula of the derivative,

E(plk) — F(g|k)

E'(plk) = oE(plk) = ——F———  (32)

In the parameter regime of # > 0 and A> > a2, since k =

uyfu_ <0y >20,u_<0)and0 <n=u, <1, F(plk),
I(n; ¢|k), E(pl|k), and am(¢p|k) are all real-valued func-
tions. For = 0, substituting u, = 0 into (27) gives 6 = 5
as anticipated and the motion of photon is confined on the
equatorial plane.

1
72H<u+;am(\/—u_a2(r +v9,Go,)
_a

1 0;
; 7H<u+; sin~! (&>
—u_a* Vi

2
G,(zr) = —\/%E’ <am<\/—u_az(1 +19,Gp,)

Carter constant # > 0. Their connection will be explained
later in the analysis of the radial potential R(r).

For a given trajectory, we get the Mino time during
which the trajectory along the @ direction travels from
0; to 0,

1=Gy=p(Go, —Go.) +vo[(=1)"Gy =Gy,  (25)

where the trajectory passes through the turning-point p
times and v, = sign(%). The function G, can be obtained

through the incomplete elliptic integral of the first kind
F(plk) as [36]

1 < . <cos 9>
Gy=——————F|(sin![ —
—u_a* Vg

The inversion of (17) gives 0(z) as [28]

0(t) = cos™! (-1/9,- “+Sn<\/ —u_a*(r + ve,9,)

”—*). (26)

u_

o))

(27)

involving the Jacobi elliptic sine function sn(¢@|k). Here, we
have set 7; = 0. The other relevant integrals are given by

Uy
u_

“). (29)

u
i) — Vg, g¢i ’ (28)

u_
“|%) -G, (30)
<sin_1 <COS 9i> u+>’ (31)
\/ﬂ u_

In this paper, we particularly apply the obtained evolu-
tion functions to the so-called photon boomerang where the
photon of the spherical orbits starts from the north pole with
zero azimuthal angular momentum (4 = 0), reaches the
south pole, and returns to the north pole in the opposite
direction to its start, giving the change of ¢ solely due to the
frame-dragging effects from the black hole spin. One might
use (25) to figure out the duration of the whole trip in terms
of the Mino time 7, with which to compute the ¢ change
using (18) given by the integrals G, above and 1 in the
next subsection. To sort out the other integrals, the radial
potential R(r) will be analyzed next.
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B. Analysis of the radial potential R(r)

The radial potential has the dependence of the charge O
of the black holes. In order to find the relevant range of the
constraint of (4,7) from the positivity of R(r) and for
the light rays of our interest, we first solve for the roots of
the radial potential, where R(r) can be rewritten as a quartic
function:

R(r)=r*+Urr+Vr+Ww, (33)

with the coefficient functions given by

U=a>-n-2% (34)
V=2M[n+ (A-a)?]. (35)
W =-a*n—QIn+ (A-a)’]. (36)

There are four roots, namely R(r) = (r —ry)(r —ry)(r —
r3)(r —ry) with the property r; + r, +r3 +ry =0, and
can be written as

ry=-z- —E—Zz +4Z’ (37)
ry=—z+ —g—zz+4—VZ, (38)
ry =tz - —%—zz—z‘;, (39)
ry =+z+ _%_22_4_‘;_ (40)

U? Ul /U\2 V2

One can check easily that the roots share the same formulas
as in the Kerr case by taking Q — 0 [28]. Also, in the limit
of n > 0 of the case of the equatorial motion these
solutions can reduce to an alternative expression in
terms of trigonometric function [20]. Since R(r.) > 0
and R(r — o0) > 0 the number of the roots larger than
ry is even. Here, we focus on the roots of ry > r; > r, >
r_ > r, > r; where the whole journey of the light rays are

40

20+

-0.5

0.5 1.0 1.5 2.0 2.5 3.0

40 0 r. 2 4 6 8
-

FIG. 2. The graphics of the radial potential R(r) for the three
special categories classified by the properties of roots of
equation R(r) = 0. The upper inset shows the boundaries in
the A and 7 space. The red curve, with 4 and 7 localized in the
regime (A), represents a generic point in the light green region
that has four distinguished real roots, being r; < r, <r_ <
r, < r3y <ry. The blue curve, with 4 and 7 localized in the
regime (B), corresponds to the merging of 3 and r4 to a double-
root solution, which also satisfies the conditions of the spherical
orbit. The solutions of R(r) = R'(r) =0 are shown by the
orange line in the upper inset. For the orange region of the
parameter space r3 and r, are complex, r; = rj. The lower inset
shows the details of the roots of the main figure. See the text for
more discussion.

outside the horizon with the values of A and 7 in the
region (A) and the line of the double-root (B) in Fig. 2. In
the parameters of the region (A), the light rays under
consideration travel from spatial infinity, reach the turning
point r4, and then fly back to the spatial infinity. However,
there exists some other motion traveling between r; outside
the horizon and r, inside the horizon that we will not
consider here. The spherical orbits with a fixed ri can be
examined with the parameters on the line (B) [35]. The
corresponding values of (1,4) can be found on the
boundary determined by the double root of the radial
potential, namely R(ry) = R'(rs) = 0. The subscript “ss”
above stands for the spherical motion for s = + to be
explained later. Similarly to the Kerr case [28], the line
(B) is located on the region # > 0. The conditions of the
double root are found to be

lss:a+5|:rss_M:|,
a

4
M (43)
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(a)
a/M=0.7 — QM=0.1
— Q/M=0.4
— Q/M=0.7

~10 5 0 5 10

FIG. 3. The boundary in the (4,#) parameter space determined
by the double roots of the R(r) potential. For comparison, the
plots show various combinations of Kerr-Newman parameters
a/M and Q/M.

r2 4(Mrss_Q2)A(rss) 2

== = = 2. 44
Mss a2 (rss — M)2 Tss ( )

As for the parameters lying in the region (C), these
correspond to the motion starting from the spatial infinity
and meet the point r, within the horizon, which are not
considered in this paper either.

When the light rays travel in the spherical orbits with
a fixed rg, the double roots r; =rs; on the line
(B) correspond to the radius of the spherical motion. It
is useful to rewrite (44) as follows:

re(20% + 1A —=3Mry) + asv/'D = 0, (45)
where
D= 4r§s(Mrss - QZ) - (M - rss)zrlss’ (46)

with s = + (—). Notice that the sign of + (=) does not
necessarily mean to the direct (retrograde) orbit determined
by the sign of the corresponding Ay. So, for a given 5, > 0
and black hole parameters, there are in principle two
corresponding radii, namely r,, and r_,, solutions from
(45), with which one can calculate the corresponding A.
The resulting Fig. 3 illustrates the behavior of line (B) for
varying the black hole parameters a and Q. Thus, the
double-root line in Fig. 3 starts from the solution of the
+ sign with the value 1 ; that decreases with the increase of

ns of the direct orbits. The line then crosses the value of
|

@ o )

a/M=0.7 -~ (QIM,9)=(0.1,-) I QM=0.7 -- (a/M,$)=(0.1,-)
- (@IM,9=(0.4,-) - (@/M,9)=(0.4,-)
! S QM=0.7,) i < (@M.9)=(0.7,-)

— (Q/M.5)=(0.1,4) : }

1 — (a/M,5)=(0.1,+)
— (Q/M,$)=(0.4,+) — (a/M,8)=(0.4,+)
— (QIM,8)=(0.7,+) — (a/M,s)=(0.7,+)

FIG. 4. The radius of the spherical orbits as a function of
normalized Carter constant # for various combinations of Kerr-
Newman parameters a/M and Q/M.

Ass = 0 with the sign change of 1, and it becomes the
retrograde orbits. The value of || then increases with the
increase of 7. Finally, the value of |A_| increases with
the decrease of 7. The maximum value of 5y to be
achieved can be found by solving D = 0 in (46). For a fixed
nss» the charge of the black hole decreases the value of
the radius of r., as well as |A.| for both direct and
retrograde orbits.

In Fig. 4, the radius of the spherical motion is plotted as
a function of 5. The radius r_g of the retrograde orbit
decreases with 7. However, the radius 7, of the direct
orbit increases with 7y starting from 5y = 0. As 7
increases to the value when the line of the double root
in Fig. 3 crosses the value of A, = 0, the associated A, then
changes the sign and the radius r,g corresponds to the
retrograde orbits and still increases with 7. This result
together with the values of Ay can be translated into the
observation of the shape of shadow, which can be ideally
visualized using celestial coordinates [29], a topic of
intense research activities.

In the special case of 77, = 0 when the light rays travel in
the circular orbits with a fixed r,, on the equatorial plane,
Eq. (45) reduces to the known one in [20],

207 +rk = 3Mrg + 2asm =0. (47)

When Q — 0, the above equation simplifies to the Kerr
case giving the known solutions in [3]. The solution of (47)
has been obtained in [20],

3M 1 P. K
Fe =7 +—=/IM*-80*+ U, +—-—-—=
2 23 ¢ U:. 23

where

P,
18M? —160Q? — <UC +F) +

24+/3Ma>

(48)
\/9M2 ~802+ U, + 2=
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P. = (9M* — 80?)? — 24a>(3M? — 20?), (49)

U, = {(9M2 - 80%)3 —36a*(9M?* — 8Q?)(3M? — 20?) + 216M*a*

1

+ 24\/§a2\/ (M? — a® — 0?)[0*(9IM? —8Q%)* — 27M4a2]}

The advantage of the above expression is that for the
Reissner-Nordstrom black holes, a — 0, it is straightfor-
ward to find

P, = U2 = (9M> —80%)?, (51)
with
M 80?

as anticipated in [3]. In addition, by combining (43)
and (45) one can derive the following useful relation:

27”25 B (rss - M)r]ss
2\/r52's(Mrss - Qz) - (#)znss

A =a+s (53)

When 7, = 0, it also reduces to the known formula of the
light rays on the equatorial plane,

2
s (54)

where b, is the impact parameter.
Plugging in the values of parameters, it is found that
the circular orbits exist for smaller value of the radius rg

Ae =b.=a+s

2

X(z) = Vs =n)r = r2)T+l/r[F<Sin_1 (\/(ri —r4)(rs = rl))

o (r3 - 72)(74 - Vl)
S P e

3

(50)

with smaller impact parameter |b,.| as compared with the
Kerr case for the same a [20]. Also, the radius of the
circular motion of light rays with the associated impact
parameter decreases as charge Q of the black hole
increases for both direct and retrograde motions. This
is due to the fact that charge of black holes gives repulsive
effects to the light rays that prevent them from collapsing
into the black hole given by its effective potential [20].
The same feature appears when 7 # 0, for a fixed value of
75> the charge of the black hole decreases |A| in Fig. 3 as
well as the corresponding radius r in Fig. 4 for both
direct and retrograde orbits. This result provides an
important insight on the study of the light boomerang
of the spherical orbits in the next subsection. From
Eq. (54) one finds |b,.| > a. Together with the root of
the angular potential it shows that for # = 0, the motion of
the whole journey outside the horizon with || > |b.|, is
all on the equatorial plane.

The time evolution of r(z) component can follow the
same procedure as in 6(z). The inversion of (17) yields
r(z) [28],

ra(rs —ry) —r3(ry — 71)5n2(x(7)|kL)
(r3=r) = (ra—r)sn*(X(z)|k")

r(r) = (55)

where

H)

(ri=r3)(ry = r1)

(56)

withy, = sign(%) and sn is the Jacobi elliptic sine function. The other integrals, I, and /, in (21) and (22), are obtained as

1,(2) 2Ma
— r, —
A rL—r_ + 2M

0= 8) (-

al+ Q?

al+ Q?

)i (- - ) (57)

o (-85

+@M)I(7) + I(7) + [(2M)* - @%z.

(58)
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where

2 X(7)

I3 — Iy

I.(7) =

I(7) = 2

- \/(r3 —r)(ry = 12)

(r3 =re)(ry —rs)

V(rs=r)(ra—r) r3—ri+

H(ai;Tr|kL) —Ii,» (59)

(13X (7) + (ry = r3)M(a; T, [KM)] = 7, (60)

12(T> =V

V(r(@) = r)(r(2) = 1) (r(2) = r3) (r(x) = ra) _ ri(ra—r3) = rs(ra +r3)

r(t) —r3

—r3)(ry+ry 3ty

X(z)

\/(”3 — 1) (ry = 12)

=/ (r3 = r1)(rs = 1) E(Y|kE) + (rs

The parameters of elliptical integrals given above follow as

T, = am(X(2)k") = v, sin” <\/§"<T> —ra)(rs - >>

r(z) = r3)(ra—ry)

(62)

v, =sign dr(z) o :(r3_r:t)<r4_r1) a4
' ’ - (r4_ri><r3_r1)’ ry—ry

(63)

Notice that 7, , 7,,, Z,, are obtained by evaluating 7 ,
Z,.,ZI,, at r=r;of the initial condition. The evolution of
the angle ¢ (the time ¢) as a function of the Mino time
in (18) and (19) can be achieved with the integrals 7/, and
G, (I, and G,) in (57) and (28) [in (58) and (30)]. The
above expressions depend explicitly on the charge of the
black hole and also depend implicitly on it through
the roots of the radial potential, which generalize the
results of paper [28] and can reduce to them in the limit
of Q0 — 0.

The light rays that travel toward the black hole in the
parameter regime of (A) will meet the turning point r,4, and
return to the spatial infinity at some particular Mino time 7,
(see Fig. 5). In this case 7 >0, the range of kX is
0<kl <1, but @a>1 (ry >r3) in (56) and (63). All
functions are finite and real valued except for the elliptic
function of the third kind I1(a; T,|k%), which may diverge
as T, - arcsin\/%; in the integrals I,(7) and I,(z), giving
t — oo through (19), in particular, when 7 = 7;. In addi-
tion, since the Jacobi amplitude am(g@l|k) is the inverse
of the elliptic integral of the first kind F(¢|k), namely,
F(am(g|k)|k) =@, T, = arcsin\/ia in (62) can lead to
X(zs) :F(arcsin\/%—l|k) and sn’X(7;) =1, giving r(z;) — o0
through the definition of « in (62) as anticipated. In the next
section, we will more focus on the solutions along € and ¢

\/(”3 —r)(ry = 12)

T(a; T,kE) = T, . (61)

directions by considering the spherical orbits of the
light rays.

C. Spherical orbits: Light boomerang

Now, we consider the spherical orbits of the light rays.
In this case, the coordinate r is a constant with a value of
the double root of the radial potential R(r), namely r; =
ry = rg for general nonzero 7. Then, the evolution of the
motion along the r direction in (55) reduces to a fixed value
r = rg, the radius of the spherical orbit. The corresponding
values of the Carter constant and azimuthal angular
momentum obey the constraints in Egs. (43) and (44) with
the values of 5y and Ag. The evolution of ¢ as a function
of the Mino time 7 in (18) can be summarized with the
integrals G, and I, in (28) and (57), respectively. In this
case with a fixed r =r; =ry =r,, we have oL = a =
kX =1, T, = v, % Although X(7) involves F(%[1) — oo,
that divergence can be exactly canceled with Z, by
substituting X(z) into the expressions of I, (7). Again,
in the limits of r3 =r, for the double root of the
radial potential where the elliptic function of the third
kind TI(1;5|1) is not involved, I, (z) reduces then to
I.(r) = . Likewise, the divergences F(3[1), E(5|1),

T

FIG. 5. A simple orbit of light that has 4 and 7 of type A in the
parameter space in Fig. 2: the light ray meets the turning point ry,
and then returns to spatial infinite. The plot has employed the
analytical formulas discussed at length in this section. We have
used a/M = 0.7, Q/M = 0.7; A = —10, n = 20, giving ry/M =
9.6 in this case.
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and TI(1;5(1) are also canceled in /,(z) and I,(z); we

find I,(r) = rqt and I,(7) = rit using the relation
ry + r, = —2ry. Finally, the change of ¢ as a function
of the Mino time obeys

A = ¢(7) - ¢;

2Ma alg + Q? T
= r —_
ry—r_ M 2M Tss — Ty
alg + 0° T
- - Ass Gy (7). 64
e P R )

The time for the whole journey can be estimated for the
observer in the asymptotic region by

At=1(1) —t;

_ (2M)2 ’ _Q_2 r _a/lss_FQ2 T
ry—r_ YoM + 2M Tes — Ty

0’ als + Q%) 7
_<r__m><r__ M )rss_r—:|

+ M)yt + riz + (4M? — Q)7 + a*G, (7).

(65)

Apparently, the change of ¢ angle during the journey
of the light ray can be presumably due to the light ray’s
azimuthal angular momentum as well as the black hole’s
spin a arising from the frame-dragging effects. However,
for a # 0, in the presence of the black hole’s charge, the
charge Q can also make contributions to A¢ explicitly seen
in the above expression and implicitly through the horizons
ry and rg. Here, we consider the light rays with A, = 0;
thus, the change of ¢ is solely due to the black hole spin and
also contribution from the black hole charge. The effect that
the black hole bends escaping light like a boomerang has
been observed in [31]. Here, we extend the work of [30] to
consider the light boomerang in the Kerr-Newman black
holes. We then solve Ay, = 0 from (43) and obtain this cubic
equation of 7.

ro —=3Mry+ (a®> 4+ 20%)ro +a*?M =0.  (66)

The relevant root is thus the radius of the spherical orbit,

1
rO—M+2\/M2—§(a2+2Q2)

oo [}

Plugging r, into (44) gives the corresponding 7.

(VO—M)2 ) (68)

Mo = —>
a2

i [4(Mro - 0%)A(ry) 2]

Considering A, = 0, (64) then reduces to

2
2 = i) - s == E ),

(69)
The Mino time 7, is the time spent for the whole trip
starting from @ = 0, traveling to the south pole at 6 = 7,
and returning to the north pole 8 = 0 with the turning
points at @ =0,z in the € direction due to u (4 — 0) = 1.
From (25) and (26) together with u_(d, — 0) = —Z—‘z’,

we have
) ()
—— ) =—K|-—],
Mo \/% Mo

(70)

To = 2(99+ - ge_) =

4 <75
-l
Vo \2

involving the complete elliptic integral of the first kind K.

The corresponding values of a and Q by requiring
A¢ = & are shown in Fig. 6. It seems that the finite value
of the charge of the black hole can help to sustain A¢p = =
due to the frame-dragging effect from the rotation of the
black hole with the relatively smaller value of the angular
momentum of the black hole, as compared with the one of
the neutral black hole in [30]. In Fig. 7, we plot the radius of
the spherical orbits of the light with the values of a and Q
using (67). It is found that the effect of the nonzero charge
Q decreases the radius of the spherical orbit, gaining more
relativity effects from the black hole spin. From the study of
the effective potential of the light in the background of the
spinning-charge black hole in [20], the presence of the
charge of the black holes gives additional repulsive forces
to prevent the light collapsing into the horizon and therefore
the radius of the spherical orbits can be relatively smaller
than that in the neutral black holes. In addition, the result of
the shorter radius of the spherical orbits due to the finite-
charge Q also decreases the travel time 7 using (65) to reach
A¢ = n, while 7 just slightly changes as a function of Q.
Then, the needed angular momentum of the charge black

1.000

A GO = = = Exact

~——— Approximate

Y T 01z 5 o0 N oz 020
0 0.10 0.15 0.2( 0.30

QA

FIG. 6. Solution of what we called the light boomerang with
A¢(a/M,Q/M) = =. See Fig. 8 also for an example of the
boomerang orbit. Plots show the exact numerical and approxi-
mate analytical solutions, which are nearly identical.
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(@) (b)
2.430 T 30.10

2425 ] 30.05 \

30.00F

ro 2.415F At
29.95
2.410

29.9
2.405 0

2.400 29.85

0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30
QM QM

FIG.7. The values of the radius r( and time of the journey At as
functions of charge Q/M for boomerang photons, where Q/M
satisfies the equation A¢(a/M,Q/M) = n. The variation is
around 1%.

hole that has enough frame-dragging effect to sustain
A¢ = & can be smaller than that of the neutral black hole.
On the other hand, due to the requirement of €=

1- (A‘;—ZZ + A%—zz) <1, there must exist the maximum value
of Q for the lowest possible value of a to sustain the light
boomerang that can be estimated from the analytical
approach. Given Fig. 6, the required values of € and Q
are small, so that one is invited to do the series expansion in
terms of € and Q. We can first expand 7, in (68) in the small
€ and then substitute its expansion to (70). Collecting all

|

expansions into (69) and a further expansion in Q
result in

Ap(zg) = o + 1€ + O(e?), (71)
where
2 4
$ho = boo + Poo % +0 (%) (72)
2 4
h1 =P+ ¢1Q% + 0(%) (73)
with
oo — 41/ 22 IK(“ _7M), (74)
_ 11-8v2Y\ _ 11-8v2
poo— BVDKURE) — @ IDEERD)

7(5 +4v2)

(10 +7V2)K(M2) 4 (17 + 12V2) E(U)

¢1O = )
V379 + 2682

(76)

10 — ™

Ignoring O(e?) and 0(1%) we obtain the approximate
relation by requiring A¢ = 7,

a 7= 0*

— oy = 1-—=, 78

M \/ 2 78)
which perfectly coincides with the numerical result. Fur-

thermore, for Q = 0, =~ /=52 4 1 ~0.994384 con-

sistent with the numerical values in Kerr black hole [30].
Taking the further requirement ¢ = 1 into (78), we obtain
the maximum value of Q and the associated minimum
value of a:

Qmax T = ¢00
~ , 79
i oo (79)
Gmin 1— 7 = oo (80)
M ¢0Q

(46068 + 32575v/2) K (U=8v2) 4 2(3602 4 2547+/2) E(1=8Y2)
4(379 + 268v/2) '

(77)

with the numerical values QA")I““ ~(.224864 and the corre-
sponding “n ~ 0.974390.

III. TIMELIKE GEODESICS

Starting from this section, we move our study to the
timelike geodesics of a particle with mass m. The equations
of motion of the geodesics using the mass m as the
normalization parameter are given by

Zdr_

= £ R0 (81)

Eﬁ =4y V G)m(g)v (82)

mdo

dp a.,, 1 =
m do - A[<r +a )7m alm] Sinze(aym sin” ¢ /1111),

(83)
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v

FIG. 8. TIllustration of a light boomerang orbit. A spherical
motion of light departs from the north pole, arrives at the south
pole, and returns to the north pole in the exactly opposite
direction. The insets show the top view and the side view.

Tdt P 4d?
_d— - : Za [(}’2 + az)ym - aﬂm] - a(aym sin 6 — Am)’
mdo
(84)
where
E L C
=" P )vm =" s m = _m’ 85
Ym P m n B ( )

The corresponding Carter constant is explicitly given by

C,, = 2*(u?)? — a®>E2 cos® 0 + L2, cot? 0 + a*m? cos? 6.
(86)

As before, the symbols +, = sign(u") and +, = sign(u?)

are defined by 4-velocity of the particle. Moreover, the

radial and angular potentials R,,(r) and ©,,(0) for the
particle, are, respectively obtained as

Rm(r> = [(’2 +a2)7m _a/lm]z _A[”m + (aym _lm)z + r2]’
(87)
0,,(0) = n,, + a*y% cos?> @ — A2, cot> @ — a®> cos* 0. (88)

Again, we have parametrized the trajectories in terms of the
Mino time 7,,,

—_—=— (89)

Comparing (16) and (89), we have that the Mino time
between the null and timelike geodesics is given by the
relation

Tm = > (90)

where one can restore the solutions of the timelike geo-
desics to those of the null geodesics with the above relation.

A. Analysis of the angular potential ©,,(0)

Likewise, the angular potential for the particle ©,, shown
in Fig. 9 can be written in terms of u = cos® @ as

(1= u)®,,(u) = —a*(y;, — Du?
+ [a*(ya, = 1) = (M + 23)]u + 1, (91)

The roots of ©,,(u) = 0 are

4 2
Ao v /83 + 8% B
Ut = a2 . App=a —7/2—_1,
m
(92)
1.0
7m
0.8 . .

1.0

FIG.9. The graphics of the angular potential ®,,(u) for a few
representative plots. The upper inset shows the locations of
corresponding parameters of the lines (a)—(e) in the (4,,, 7,,)
plane. The (a) and (b) curves have one nonzero real root in
1> u,, >0 and the particles travel between the north and
south hemisphere crossing the equator. The (c¢) and (d) curves
have 7,, = 0 with u,, =0 for 6 =% and their motions are
necessarily confined in the equatorial plane. The lower inset
shows the (e) curve, ©,,(u) < 0in 1 > u > 0, where the square
root in the equation of motion (82) in 1 > u,,, > O rules out the

cases for 7,, <O.
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where v,, = sign(y2, — 1) and as in the null geodesics, we
consider the non-negative #,,. For y2, > 1, namely E > m,
of the case of unbound trajectories, the roots of the angular
potential are pretty much similar to those of the null
geodesics. For i, > 0, only one positive root in the interval
1 > u,,, > 0 exists, where the trajectories of the particle
travel between 0, = cos™' (—,/i,+) in the southern
sphere and 6,,_ = cos™'(,/i,,;) in the northern sphere
crossing the equator. Again, for 7,, = 0, together with the
analysis of the radial potential where the undergone
trajectories all lie outside the horizon with the constraint
of A2, > a*(y%, — 1), the relevant root is given by u,,, =0
so the trajectories are on the equatorial plane. As for y2, < 1
(E < m) of the bound motion, and for #,, > 0, the root
1 > u,,, > 0 is the only relevant root (u,,_ > 1) as in the
case of £ > m. However, for 5,, = 0, the root of u,,, =0
is a relevant root in the parameter regime not only for
22, > a*(y2, — 1) but also 12, < a®(y2, — 1).

The analytical solutions along the € direction can also be
written as in the null geodesics with the following replace-
ments. The Mino time 7 in terms of the elliptic function of
the first kind and the evolution of 8 for a given z,, can be
obtained in (25) and (27) by letting 7 — 7,,1/72 — 1 with
the function G, in (26), where the roots are u, (92)
instead. One can then absorb the factor \/y2, — 1 into the
function G, to define a new function G, in (A2) due to the
fact that —u,,_(y2, — 1) > 0 for the unbound (u,,_ < 0) and
bound (u,_ > 1) motion. The resulting formulas can be
applied to both cases. Other relevant solutions to the angular
variable € can be written down from (28) and (30) by

replacing Gy = G,4\/75, — 1 and G, > G,,\/73, — 1 and
T — 7,,\/75, — 1 with the same G,, G4, and G, defined in
(26), (29), and (31), respectively. Again, the factor y/y2, — 1
can be absorbed into the functions G, g¢, and G, to define a
new set of the functions G,9, G,p, and G,,,. The detailed
solutions can be seen in the Appendixes. The results reduce
to those of the null geodesics by equating 7,, = f in (90) in

the limit of y,, = oo. Notice that since Z—f < 0 for the
unbound motion and 0 < Z% < 1 for the bound motion, the
involved elliptic functions are all real valued and finite.

B. Analysis of the radial potential R, (r)

As for the radial potential, we first solve for the roots of
the radial potential R,,(r) to sort out the possible regimes
of physical interest in the parameters space. The radial
potential is the form of a quartic polynomial:

R, (r)=8S,r*+T,rP+U,r*+V,r+W,, (93)
with the coefficient functions given by

Sm = }/%1 -1, (94)

T, — oM, (95)
U, :az(y%n_ 1) _Qz_r/m_/lgn’ (96)
Vm = ZMKCl]/m - /lm)2 + nm]’ (97)

Wm = _aznm - Qz[((l}/m - /1m)2 + ’/Im]' (98)

There are then four roots, namely R, (r)=
(rim = 1) (r = 1 )(r = 12) (r = 1y3)(r = 1,04), given by
M X 5, Yy
=== — . (99
'm1 2(7/%1 — 1) Zm \/ D) T 4Zm ( )
M n X n Y, (100)
r —- =5 - - ’
T T T2 T g,
M X Y
- — =222 " (101
T \/ > T g, 10D
M Xn 5, Yy
=—— - —Zh - 102
T'ma 2(}/3” — 1) +Zm + \/ D) Zm 4Zm ( )

We have parametrized the roots above as follows:

o \/Qm+ + Qm— _XTm
Z;n i k)

x w, \3 %, \ 2
Q =, | =" _m -m 1
s () () o
X X [ Xn))? 7 Yo
@ =" = om I =7 (T m T
(104)
8U,,S,, — 3T
— m~m l‘f’l’ 105
e T (105)
T3 —4U,T,S, +8V,S>
Ym — m m m3m+ m m’ (106)
853,
, —3T}, +256W,,S3, — 64V, T,,S% + 16U, T%S,,

25654
(107)

the sum of the roots satisfies the relation r,; + r,, +
Fm3 + Tma = _y?nﬂfl'

The parameter ranges having different types of spherical
trajectories in the case of the timelike geodesics are
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separated with the boundaries from solving the double-root equations R,, (s ) = R}, (rmss) = 01in (93). After some lengthy

but straightforward algebra we find

o [rmss(Mrmss B Qz) B a2M]7m B A(rmss)\/rrznss(ygn - 1) + Mrmss

Amss = 108
e a(rmss _M) ( )
T'mss
Mmss = m {rmss(Mrmss - Q2><a2 + Q2 - Mrmss)ygz + 2(Adrrnss - QZ)A(rmss)ym \/rlznss(ygn - 1) + Mrmss
mss
+ [az(Mrmss - QZ) - (A(rmss) - a2)2] [rmss(ygn - 1) + M]} (109)

In the limit of y,, — oo, the expressions of A, and 7
reduce t0 Amgs/7m = Ass AN e /¥ = 15 in (43) and (44),
respectively. Alternatively, we can rewrite (109) as

(Q2 = 2M r s + rrznss)\/rrznss(Y% - 1) + M1
_rmss(Mrmss_Q2)71n+asva:O’ (110)

where

Dm = rmss(Mrmss - QZ) |:27/m (\/rrznss(y% - 1) + Mrmss

+}'mrmss) +M - rmss} - (M_ rmss)znmssv (111)

which is the counterpart of Eq. (45) for the case of the null
geodesics.

The boundaries determined from the double roots of the
radial potential in the parameter space 4,, and 7,, can be
plotted, where an exemplary case is shown in Fig. 10. We
plot also in Fig. 11 the double-root solutions with various
combinations of Kerr-Newman parameters a and Q. For the
unbound motion in the case of #,, > 0 with y,, > 1, as in
Fig. 2 of the null geodesics, the parameter regimes of our
interest lie on the region (A) as well as the line (B)
determined by the double root with four real-valued roots
satisfying r,,4 = r,,3 > r,» > ry > r,,. The trajectories
can either start from the spatial infinity, move toward the
black hole, meet the turning point 7,,, and return to the
spatial infinity or can be the spherical motion when
'3 = I'ma With the parameters 7, and A, on the line (B).
Again for 7, = 0, the root of the angular potential is solely
given by u,,, = 0 when [4,,| > |bpe| > a\/72 — 1; then,
all the trajectories mentioned above are restricted in the
equatorial plane. In the bound motion, the above two
equations (108) and (109) give two lines (B) and (D) in
Fig. 10. The motion with the parameters on the line (B),
given by the double root of r,,; = r,,4, corresponds to the
stable spherical motion, whereas that on the line (D), given
by the double root of r,, = r,;s, is also the spherical
motion but unstable.

The interesting trajectories with the parameters on the
line (B) are the homoclinic motion where the particle starts
from the point 7,4, moves toward the black hole, and
spends infinite amount of time to reach the point of double
roots r,,, = ry,3. In addition, r,, = r,3 approaches r,,

80

0’\

T, 10

40 50

FIG. 10. The graphics of the radial potential R,,(r) for the
categories classified by the properties of roots of the equation
R,,(r) = 0. The upper inset shows the boundaries between the
different domains in the 4,, and 7,, space. The red, green, blue,
purple, and dark cyan plots with the parameters (A)—(E) in the
upper inset correspond, respectively, to the cases: (A) two real
roots r,,; < r,,» and one complex pair r,3 = r; 4, (B) four real
TOOts 7,1 < ¥y < T3 = Fa, (C) four distinguished real roots
Tl < P < Tz < T'a, (D) four real roots r,; < r,, = 1,3 <
7'ma, and (E) two real roots r,; < r,s and one complex pair
rma = rh3. The radial potential R,,(r) hosts two sets of spherical
orbits, a stable and an unstable one exemplified by the cyan and
magenta plots, respectively. The lower inset shows the details of
the roots of the main figure. In this example we have used the
parameter of energy per mass y,, = 0.98. See the text for more
discussion.
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@ ) b

a/M=0.7 — @M=0.1 Q/M=0.7 — aM=0.1
g5l m=0.98 — QM=04 g5 Im=0.98 — a/M=0.4
— QIM=0.7 — a/M=0.7 |
20 20
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0 0
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, L
FIG. 11. The boundary in the (4,,,7,,) parameter space deter-

mined by the double roots of the R,,(r) potential. For compari-
son, the plots show various combinations of Kerr-Newman
parameters a/M and Q/M. For each case the inner and outer
double-root lines correspond to the unstable and stable orbits,
respectively. See Fig. 10 for more details.

when y,, decreases, and we end up with a triple root
[17,18,37]. It will be seen that for a given 7,,, the radius of
the innermost stable spherical orbit will decrease toward
the value of the triple root. So, let us call it ri, given by
Nisso 138]. In the limit of #;,, — 0 on the equatorial plane,
the radius of the circular motion corresponds to the one
denoted by 7, in literature [17,18,32]. In the case of
Q/M = a/M = 0.7 in Fig. 10, when y,, decreases to, say
Ym =~ 0.954, the triple root appears while two lines (B)
and (D) start to merge at #;,, = 0, giving b, ~ —3.84
with the corresponding riy., ~ 7.48. Further decreasing of
7., causes the triple root to shift, giving #;,, > 0, and the
parameter region (C) shrinks [37]. Finally, when vy,
reaches, say y,, =~ 0.790, the triple root moves to the point
of 750 = 0 again, with b, ~ 1.77 and r;, ~ 1.64 giving
the vanishing parameter region (C). Further details of the
triple root will be discussed later.

The parameters in the region (C) give the motion along
the radial direction between r,,3 and r,,4. In the following,
we will thus provide the analytical expression of the
trajectories for bound orbits. It is worthwhile to mention
here that there exist some other trajectories of particles in
which the motion involves the turning point r,,; inside the
horizon, but will not be considered in this paper. The
analytical solutions of the unbound orbit for (y2, > 1 and
r; > r,4) can be achieved from adapting the solutions
of the null geodesics and the details are presented in
the Appendixes. The bound solutions, although they
themselves show some similarities with the unbound cases,
deserve to discuss the case here since the initial position
lies between r,; and r,,, differently from that in the
unbound orbits.

So, the analytical solutions of the bound orbits (y2, < 1
and r,,;3 < r; < r,y4) are given by

80

60

40

FIG. 12. The graphics of the radial potential R,,(r) for the
categories classified by the properties of roots of the equation
R,,(r) = 0. The upper inset shows the boundaries between the
different domains in the 4,, and #,, space. In addition to the plots
with the parameters (A)—(E) in the upper inset shown in the
previous plot, the triple root of the radial potential with the
parameter located at the (F) gives r,,, = r,,3 = r,,4 and one real
root r,,;; the lower inset shows the details of the roots of the main
figure. In this example we have used the parameter of energy per
mass y,, = 0.95. See the text for more discussion.

rm3(rm4 - rm2) - rm2(rm4 - rm3)sn2(XB(Tm)|kB)
(rm4 - rmZ) - (rm4 - rm3)sn2(XB(Tm>|kB)

(112)

r(tn) =

)

where

X?(z,) = \/(1 Sl _zrml)(rm4 ) T

+v F(sin‘1 <\/(ri — 73) (P — sz)>
! (ri

KB |,
_rmZ)(rm4_rm3) )
(113)
kB: (rmz_rml)(rm4_rm3)

(rm3_rml>(rm4_rm2)’

(114)

where v, = sign(;‘;i) and sn denotes the Jacobi elliptic sine

function. The other integrals relevant to the equations of
motion 5 (z,,) and I7(z,,) are expressed as
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B  Ym 2Ma B (}/m) +0° B B B (ym) + 0? B
I(/’<Tm) = \/1_—7/%”1"4_ —r |:<r+ M 15 (1) r- M 12(z,) |, (115)
s\ Tm (2M)? * La(m)+ @
It (Tm)_m{r+_r_ ry — 2M oM I+(Tm)
—|r o r_ —M 1B(z,) | +2MI8(z,) + 15(z,,) ¢ + (4M?* = Q?)y,,7 (116)
- 2M 2M —\*m 1 m 2 m ym m»
where
2 XB(T ) (rmZ - rm3)H(:B:BL; YE ’kB):|
1 (z,) = n+ " ~ 18, 117
i(T ) \/(rmS_rml)(rm4_rm2) |:r'"2_ri (rm2_ri)(rm3_ri) *i ( )
2
B _ XB — KB =78, 118
1(Tm) \/(7"m3 — rml)(rm4 — rmz) [rmZ (Tm) + (rm3 rm2) ( r,,,| )] 1; ( )
B _ \/(r(fm) - rml)(r<rm) - rm2)(r(7m) - rm3)(rm4 - r(Tm)>
(z,)=v
2 ! r(Tm) —Tm2
rm4(rm3_rmZ)_rmZ(rm3+rm2 B B
- X + “I'm Tma — Ty E T‘r
\/(rm3_rm1)(rm4_rm2) ( \/ " ’ 1 * ' 2) ( " )
(rm3_rm2)(rm1+rm2+rm3+rm4) B B |1,B B
+ T(AB; T8 |kB) — T, 119
\/(rm3_rml)(rm4_rm2) ( m| ) . ( )
|
and Fig. 13. In the double root of either r,,; = r,,4 along the

Y7, = am(X%(z,)[k")
=v sin‘1 (r(Tm) - rm3)(rm4 - rmz)
- (\/ (o) = 1)t = >> 120

e (dr(T) s _ (T = ra)(rwa = Ta)
s

I'm3 — r:l:)(rm4 - rm2) ’

(121)

ﬂB:rm4_rm3
Tma — I'm2

Notice again that 7% , 77, Z5 are obtained by evaluating
Ii, Iﬁ , Igi at r=r; of the initial condition; that
is, 18(0) = 13(0) = 15(0) = 0.

In the case #,, > 0, the ranges of the parameters are
0< kB <1,and 2 <1 (r,3 > r,p) so that the functions
F(oplk), E(p|k), TI(n; ¢|k), and am(p|k) are the finite and
real-valued functions. Here, we provide the graph of the
trajectory using the bound solutions above in the case of
T3 2 T With the parameters in the region (C). In this
case, the particle starts from the turning point r,,4, moves
toward the black hole, spends long time in reaching out the
turning point r,,3, and then returns to r,,4. This is a nearly
homoclinic solution by setting two turning points r,,; and
o as close as possible. We illustrate this type of orbit in

line (B) or r,,, = r,3 along the line (D), the solution (112)
leads to a fixed value of r(z,,) = r,3 = ru4 or r(z,) =
rmo = 'z on the double root, which fails to produce the
homoclinic trajectory. The solution of the homoclinic
solution in the general nonequatorial situations will be
given elsewhere. In the next subsection, we will focus on
the spherical orbits for both bound and unbound orbits.

FIG. 13. Illustration of an almost homoclinic solution. A
particle with the parameters near the inner double-root line
(D line in the inset of Fig. 10) departs from a point r; = r,4
and approaches the black hole. The journey takes a tremendous
amount of time to arrive at the turning point r,,3 2 r,,,. After
many revolutions around r,,; the particle finally escapes from the
trap and returns to the turning point 7.
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C. Spherical orbits: Particle boomerang

Let us start from considering the spherical orbits with the parameters of the double roots of the radial potential for
the Kerr-Newman spacetime [33]. Further revision of (108) and (109) into the expressions of 1,,,, and y,,,¢s for the direct and

retrograde orbits with a fixed value of #,,, becomes

rrznss{rmss(rmss —2M) + QZ] —a(anmss — svVTn)

Ymss = , (122)
" rrznss \/rrznss[rmss(rmss - 3M) + 2Q2] - 2a(a’7mss — Sy 1—‘m)

2 _ rrznssa(zMrmss - Qz) + (r%nss + az)(aﬂmss - Fm) (123)

mss — ’

rrznss\/rrznss[rmss(rmss - 3M) + 2Q2] - 2a(m7mss — SV Fm)
|

where Aisso < O of the retrograde orbits. As y,, keeps lowering, the
. 5 . radius r;, decreases with higher values of #;.,, and smaller
Lo = Finss (MTings = Q%) = fmss [Fimgs (Fmss =3M) + 207 rmss values of |Aig, as shown in Fig. 14. As for s = +, the
+ a2 (124) radius r;., with the solution of (127) then increases as 7,

Here, we derive the more general expression of azimuthal
angular momentum and energy of the particle required to
have spherical orbits for a #,,,, 7 0 on the general non-
equatorial trajectories. In the limit of Q — 0 or 7, = O,
they reduce to the expressions in [33] or [18]. The existence
of the spherical particle orbits requires the following
quantities to satisfy the two conditions:

Fm = rﬁms(Mrmss - Qz) - nmss[rmss(rmss - 3M) + 2Q2]r12nss

+ @ 1gs 2 0 (125)
and
Ams = rrznss[rmss(rmss - 3M) + 2Q2]
—2a(anmss — S/ L) > 0. (126)

The constraints in the parameter space will be discussed
later. Plugging (122) and (123) into R}, (ris,) = 0 in (93)
provides the equation of the triple root ryy, for a fixed #;,,

Mrijsso(6Mrisso - rizsso - 9Q2 + 3a2)

+ 4rﬁ§so[Q2(Q2 - aZ) - azrlisso]
+ 4a2’7isso (SMriiso - 4Q2 rizsso + 2a2’7isso)

- Sas[}"%sso (Mrisso - QZ) + azﬂisso} Fm =0. (127)

Again, taking the limit of Q — 0 reduces it to the
expression in [33]. In addition, in the limit of #;,, — 0
on the equatorial plane, the radius of the circular motion
corresponds to the one denoted by r;,., with the formula in
terms of the black hole parameters a and Q, consistent with
the expression in [18].

The radius of the innermost spherical motion for a fixed
Nisso 18 plotted in Fig. 14. Together with Fig. 12, one notices
that when decreasing the energy of the particle y,,, the
triple root of the radius r;y, with the solution of Fig. 14 for
s = — starts to appear from #;,, = O with the associated

increases starting from 7;,, = 0 with the deceases of | ;s |-
After the value of 4y, crosses 4,, = 0, and changes its sign,
the motion becomes the retrograde orbits, and the value of
Iisso K€eps increasing as 7., increases with the increases
of |Aisso|- After 7,4, reaches the value determined by (127)
and I, =0, the solutions then become the cases of
s = — described above. The radius of ry,, presumably
can be measurable [2] by detecting x-ray emission around
that radius and within the plunging region of the black
holes in [34].

The allowed values of 7, and 7, giving the double
root can be found with the boundary determined by I',,, = 0
giving the values of 7, as

2

~ I'mss 2 =
Mms = 242 rmss(rmss_3M> +20° = sVE, |, (128)
where
= 4 3 2 2\,2
':'m*rmss_6Mrmss+(9M +4Q )rmss
—4M(a® 4+ 30%)rms +40%(a® + 0%).  (129)
" ‘ (a) ‘ 0 (b)
a/M=0.7 - (QM$)=(0.1,5) | | QM=0.7 == (a/M,$)=(0.1,-)
-~ (Q/M.9)=(0.4,-) - (@/M.9)=(0.4,-)
BRIz (Q/IM,5)=(0.7,-) s (a/M,$)=(0.7,-)
R
o — QM. 9)=(0.1,9) o — (a/M,5)=(0.1,4)
r — (@M 9)=(0.4,%) g — @M9=0.4,%)
— (QIM,$)=(0.7,4) | — (a/M,s)=(0.7,+)

2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
7 7

FIG. 14. The radius of the spherical orbits r;, as a function of
normalized Carter constant 7;, for various sets of Kerr-Newman
parameters.
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The graphics of the double-root solutions R, (F ) = Riy(rmss) = 0 in the representation of parameter space (Fps, fimss )- BY

combining the left (right) magenta (cyan) curves of (a) and (b) one recovers the inner/unstable (outer/stable) double root solutions in the
(Ams ) representation shown in Fig. 10. The curves of 7., Apis =0, Vs = 1, Rj(risso) =0, and r.. are also shown for
completeness of the presentation [33]. The insets show the different boundaries and the range of the parameters for the solution of the
type s = + in (a) and s = — in (b). See the text for more discussion.

Note that the equation of Z,, = 0 is just the same as (47) in
the case of the null geodesics with two roots of (129),
ry. (r_. > r,.) in (48), which are outside the horizon.
This can be understood by the fact that substituting the
expression of 7, in (128) with 5, = 0 together with
I, =0 back to A,,; in (126) leads to A, =0, giving
infinite y,, that correspond to the limit of m — 0 in the case
of the null geodesics. As in the Kerr case in [33], the
allowed values of 7, and 7, giving ', > 0and A, > 0
are given below. For 7 < 7. (rye > F_c), the allowed
values of n, are restricted to #,es > 77,,— and 766 < 7,
where 7,,, <, <0 (#,— > 71,4 > 0). All positive val-
ues of n, are allowed within r, . < rp < r_.. We also
find that for rpe < r . and rpe > 7_., A+ > 0 when
Nmss < Tme and A, <0 when #, > 17,,_. Also, in
Fie < Fmgs < T_ey Nyy >0 but A,,_ < 0. Thus, we sum-
marize that the allowed values are restricted to the regions
where for s =+, r, . < rpe < r_. for 0 < < 0 and
Tiss > Foe for 0 <mpes <,y and for s = —, 1 > 7,
for 0 < #yss < 7y shown in Fig. 15.

Notice that the values of ¥, and 4, are the solutions
of (122) and (123) with s = +£. In both Figs. 15 and 16 the
line of the triple root is plotted to show the boundary of the
parameter regions for the stable/unstable motions. Apart
from that, in the case of s = + in Fig. 15(a), the lines
of y,.s=1 and 4,,, =0 are also drawn to give the
boundary between the bound/unbound motion and direct/
retrograde orbits, respectively. However, in the case of
s = — in Fig. 15(b), all the motions are for retrograde

orbits and can be bound or unbound in the parameter
regions with the boundary along the line of y,,_; = 1. Let
us first explain the line of the triple root, which occurs
only in the case of the bound motion seen from Fig. 12.
For a given a and Q of the black hole parameters, the line
of the triple root starts from 7, = 0 shown in Fig. 15(b),
with which to find r;, from (127) and also give the
negative value of 4., using (123) with s = —. Along the
line of the triple root, as n;, increases, riy, decreases.
When 7y, meets 7j,,, giving I',, =0, in Fig. 15(a) 15,
then decreases as i, decreases where the corresponding
Aisso 18 obtained from (123) with s = + instead. Finally,
Nisso T€aches 1, = 0 again with the positive value of 4,
and the corresponding r;, on the equatorial plane. Along
the line described above, the region C in Fig. 12 even-
tually shrinks to zero.

To interpret the line of the double root in Figs. 10 and 12
for a fixed value y,, of the bound motion, the line of the
constant y,, given by its respective value as in Figs. 10
and 12 is plotted in Figs. 15 and 16. In Figs. 15(a)
and 15(b), there exist two types of the double root for
stable and unstable spherical orbits also shown in Fig. 10.
In Fig. 15(b), they both start from 7, = 0 and increase
when the value of 7, = 7, with the negative value of
Amss fOr retrograde orbits and the corresponding radius
shown in Fig. 15(b). Along the lines of the constant y,,,
in Fig. 15(a) for the unstable spherical motion, 7, keeps
increasing and starts decreasing toward the vanishing
value during which crossing the line of 4,,.; = 0 changes
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FIG. 16. The graphics of the double-root solutions R,,, ()

10

Tmss

= R}, (rmss) = 0 in the representation of parameter space (7 s, fmss)- BY

combining the left (right) magenta (cyan) curves of (a) and (b), one recovers the inner/unstable (outer/stable) double-root solutions in the
(Ams 1) representation shown in Fig. 12. Notice that in (b) the magenta and cyan double roots merges with a triple root of R,,(r). This
special trajectory is known as innermost stable spherical orbit (isso) [38] or innermost stable circular orbit (isco) for the case of
equatorial motion [18]. The curves of 7, , Auis =0, Vimas = 1, Ry(risco) =0, and ry. are also shown for completeness of the
presentation [33]. The insets show the different boundaries and the range of the parameters for the solution of type s = + in (a) and
s = — in (b). See the text for more discussion.

the retrograde to direct orbits with the value of riy, also
seen in Fig. 15. For the stable spherical motion, 7.,
decreases to zero for direct orbits with the value of r;, as
shown in Fig. 15(a). When decreasing the value of y to

the double root goes also like that of the unstable orbits in
Fig. 16 with different 7, and the radius 7.

To compare with the light boomerang, here we consider
the particle boomerang of the spherical orbits of the

the value determined by (122) with 7, for 7, = 0 and
s = — from (127), as in Fig. 12 in the bound motion, the
triple root starts to exist. In this case, the lines of the double

unbound motion due to the double root of the radial
potential when r,,3 = r,,4. The evolution of the coordinate
¢ and the time spent ¢ for the trip as a function of the

roots start from the triple root seen in Fig. 16 for a constant

Ymss instead. As for unbound motion of y2, > 1, the line of
|

Mino time 7,, bear similarity with those in the light case as
in (64) and (65). We find

Ams 2 Ammss 2
2May a(®=)+Q T a(™) +Q T
ApU = A (D m__ (D m oG (zn)s (130
and
o JOMF [ OV 0 W 0\ aoh
- re—— ) (r. - ro——|(r.-
Im ro—r_ |[\UT 2mM)\UT 2M Fimss — T+ 2M 2M Fimss — T

where G, (t,,) and G,,(z,,) are defined in (A5) and (A7). Here, we consider the particles with A, = 0 so the change
of ¢ is solely due to the black hole spin, giving the boomerang orbit, and also with the effects from the black hole charge.
Now, we solve A, = 0 from (108) and obtain the equation of r,,.

Mrmo

7= =0, (132)
Vm

21
o (M0 — QZ) —azM—A(rmo)\/”io(y /2 > +
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FIG. 17. Plots of A¢Y, r,o, AtV as a function of y,, with the
value of Q and a to sustain the boomerang.

which, in the limit of y,, — oo reduces to (67) in the null-
geodesics case. Although we cannot find the exact solution
of r,,, its approximate one in the limit of y,, — oo can be
obtained later. Plugging r,, into (109) gives the corre-
sponding #,,o. The Mino time z,,, is the time spent for the
whole trip starting from 6 = 0, traveling to the south pole
at 6 = &, and returning to the north pole 6 = 0 with the
turning points at € =0,z in the @ direction due to
Upy (Amss = 0) = 1. From (25) and (26) together with

Up—(Amss = 0) = — (?i”y%"  we have

4 <7I
F —
Mmo 2

Tm0¥m = 2(g9 - g9 )},m =

m+ m—

a*(1 _y%n)>‘

Mmo

(133)

Finally,

_ a(zMrmO - QZ)

YmTmo- ( 1 34)

In Fig. 17 the radius r,,, and the time-spent AtV for the
whole trip of the spherical orbit are shown with the values
of O and «a to sustain the boomerang of the particle as
function of y,,, the normalized energy of the particle by its
mass. As y,, increases, 7,0 and AtV decrease as anticipated.
In Fig. 17(a), the change of ¢ is plotted as a function of y,,,,
which shows that y,, — oo gives A¢ = x as in the case
of the null geodesics. For a finite but large value of y,, with
the small number § = 1/y,,, the solution of r,,, can be
approximated as

P =T +716%, T (ro = M)A(ro)
0O TR A (rg) + 12 —2Mrg — ¥’

(135)

where r( is the known result in (67) in the null-geodesics
case. As compared with the light boomerang, we choose
the value of Q together with the associated value of a of the
black hole spin to sustain A¢ = x in the case of the light. It
is found that the radius of the spherical orbits of the particle
decreases as 6 gets smaller (y,, becomes larger). Likewise,
in the limit of 6 — 0 to compare with the time spent in the
null geodesics, we have

~ V)
Tm0¥m = 70 + T16 )

w <o) ()
7 =——|K|—-—— El——])|. (136
LU [ < Mo Mo (136)
involving the complete elliptic integrals of the first kind K

and the second kind E. The quantity 7, is related with 7,
by the mean of the approximation

Mo+
170+a2

o)

—= g + 71167, (137)
Vm
-0.670 T .
~0.671F
4, —0.672}
-0.673]
-0.674! : ' : ‘
0.05 0.10 0.15 0.20 0.25
Q/M
FIG. 18. The correction of A¢Y due to y,, with the values of Q

and a to sustain the boomerang.
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where
1
h=——-3 {4r07’1(r(2) —3Mry + ZQZ)[rO(r% —3Mry+ 3M?) — M(a*> + Q?)]
a*(M = ry)
= ro(ro = M)2[rg(rg = SMro + 6M* + 30%) — Mry(2a® +70%) +20%(a* + Q%)]}. (138)
Plugging all the approximate solutions into (130) leads to
APV = Ad(zo) + 15,

~ a - ~
h = Alro)? 2(a*M — ro(Mro — Q*))F170 + A(rg) (2Mrg — Q%)7], (139)

where A¢(zy) is the result in the null geodesics in (69). In
particular, the nonzero value of Q renders the radius r,,
smaller than that from the Q = 0 case. The finite Q
slightly increases 7,,; as compared with that of the null
geodesics. For a fixed small value of § (or large value
of y,,), it is of interest to show that the smaller radius of
the spherical orbit due to the finite charge of Q gives
relatively large negative value from the &° term and thus
induces the smaller A¢Y as compared with the Q =0
case. In Fig. 18 we plot ¢, with the values of Q and a that
sustain the boomerang.

IV. SUMMARY AND OUTLOOK

We study the null and timelike geodesics of light and the
neutral particles, respectively, in Kerr-Newman black holes,
and extend the works of [28,33,35] on Kerr black holes.
However, we only focus on the trajectories lying on the
exterior of the black holes. The geodesic equations are
known to be written as a set of decoupled first-order
differential equations in Mino time from which the angular
and radial potentials can be defined. We classify the roots
for both potentials, and mainly focus on those of the radial
potential with an emphasis on the effect from the charge
of the black holes. The parameter space spanned by the
conserved quantities, C/E*> =#, L/E =/ in the null
geodesics and C,,/m*> =1,,, L,,/m = A,,, and the addi-
tional parameter E,,/m = y,, in the timelike geodesics, is
then analyzed in determining the boundaries of the various
types of the trajectories. We then obtain the solutions of the
trajectories in terms of the elliptical integrals and the Jacobi
elliptic functions for both the null and timelike geodesics,
which are of the manifestly real functions of the Mino time
and, in addition, the initial conditions are explicitly given in
the result. In particular, the solutions we presented for the
timelike geodesics can be taken to those of its counterpart
for the null geodesics by taking the limit of y,, - co. We
also give the details of how to reduce those solutions into
the cases of the spherical orbits of the boomerang types for
the light and the particle where they help provide the
analytical analysis.

In the cases of the roots of the radial potential for the null
geodesics, due to the fact that the presence of the charge of
black hole induces the additional repulsive effects to the
light rays that prevent them from collapsing into the black
hole, it is found that the circular orbits on the equatorial
plane for 7 = 0 exist for a smaller value of the radius r,
with the smaller impact parameter |by| given by the
azimuthal angular momentum, namely by, = Ay, as com-
pared with the Kerr case for the same a. Also, the radius of
the circular motion of light rays with the associated impact
parameter decreases as charge Q of the black hole increases
for both direct and retrograde motions. The same feature
appears on the boundary when 7 # 0; for a fixed value
of the 7, of the light ray, || and ry become smaller than
that of the Kerr cases for a fixed a of the black hole
while increasing with Q of black holes. This provides an
important insight on the effect of the charge Q to the light
boomerang. Moreover, in Fig. 4 together with Fig. 2 for
fixed Q and a of the black hole, the radius of the spherical
motion r ; (1,,) increases (decreases) with ny but r_g
(|A—s|) decreases (increases) with 7, and both of them
become the same value when 5 reaches its maximum to be
determined by D = 0 in (46). Whether the motion is the
direct or retrograde orbit can be read off from Fig. 2 with
the sign of the corresponding 4. This will be a crucial piece
of information in determining the black hole shadow to
be studied by further following the work of [29]. The
successful reduction of the solutions to the cases of the
spherical orbits allows to study the light boomerang of
much relevance to the observations in [31]. It is evident
from the expression of the solutions in the angle change
of ¢ that the causes can come from the initial azimuthal
angular momentum of the light as well as the spin of the
black hole through the frame-dragging effect. Here, we
consider the boomerang solely due to the black hole’s
spin with 4 = 0. Now, in the Kerr-Newman black hole, the
frame-dragging effect has the dependence of the charge of
the black hole as well. Let us consider the most visible case
of the boomerang that the change of ¢ is A¢ = z. This
happens in the case of the extreme black hole that permits
us to explore this phenomenon using the obtained solutions
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not only numerically but also analytically. It turns out that
the presence of the charge renders the shorter pathway of
the whole trip with the smaller radius of the spherical orbits
and thus the shorter time lapse as compared with the Kerr
cases. As such, the nonzero charge will decrease the needed
value of the black hole’s spin to sustain A¢ = z. For
0 =0, %20.994384, that can be brought down to its
minimum value of “~0.974390 with the maximum
value of Qﬁ ~(.224864 to provide the sufficient enough
frame-dragging effect to sustain A¢ =z in the light
boomerang.

In the case of the timelike geodesics of the neutral
particle, the unbound motion for y2, > 1 bears the similarity
with the motion of its counterpart of the light, whereas the
bound motion for y2, < 1 reveals very different features to
be summarized below. It is perhaps worth mentioning that
the solutions of the bound motion are parametrized in the
Mino time in a way that they are finite so that only when
7,, — 00, the coordinate time ¢ goes to infinity and the
coordinate r bounces between two turning points. This is
contrary to the unbound motion that the solutions are finite
except for the case when 7, reaches some finite value 7,
where the elliptic function of the third kind TI(5Y; TY |kY)
diverges, giving t — oo and also r — oo to reach the
asymptotic region for the unbound motion. For the bound
motion, there are types of the double roots of the radial
potential for the stable and unstable spherical orbits. The
charge of the black holes shifts the associated radius of the
orbits toward the smaller value for both the stable/unstable
motion and also for direct/retrograde motion by fixing the
value of the Carter constant 7,,,,c. When two double roots
collapse to the one value, becoming the triplet root by
lowering the value of the energy y,, but keeping the Carter
constant 7, fixed, this triple root we obtain corresponds
to the smallest radius of the innermost spherical orbits r;.,
for a finite 7, that potentially can be measured from the
observations [34]. In Fig. 14 together with Fig. 12, the
triple root of the radius r;, given by (127) starts to appear
from 7;s, = 0 with 4;, < 0 of the retrograde orbits and y,,
of the energy determined by the results of the double root
in (123) and (122), respectively. The radius r;, decreases
with the increase of 7, giving the smaller value of ||
of the retrograde orbits. After #;, reaches the value
determined by (127) and I',, = 0 above, the radius riy,
starts to decrease as 7., deceases, giving the smaller value
of |Aisso| Of retrograde orbits. The value of Ay, will cross
An = 0, and change its sign as decreasing y,,, where the
motion becomes the direct orbits the radius 7, decreases
as 1), deceases, giving the larger value of A, > 0 of
direct orbits. Again, the charge of the black hole will
decrease the ry, for a fixed 7, for both direct and
retrograde motions. Lastly, we consider the particle boo-
merang to compare with the light boomerang using the
obtained solution of the unbound motion both numerically
and analytically. It is expected that as y,, goes to infinity by

sending the mass of the particle to zero, the change of the
angle A¢Y will reduce to that of the light. For a finite value
of y,,, the particle inertia causes less angle change as
compared with the light. For a fixed small value of y,, of the
energy of the particle, it is of interest to show numerically
and analytically that the smaller radius of the spherical orbit
of the particle due to the finite charge of Q induces the
smaller A¢Y as compared with the Q = 0 case.

Finally, we comment that the figures and analytic results
presented in this work have direct applications in astrophys-
ics. For example, the obtained solutions of the null geodesics
can be readily extended to the studies of the lensing in the
Kerr-Newman spacetime visualized using celestial coordi-
nates, a direct generalization of paper [29]. We expect to
investigate the effects of charge from the black holes. As for
the timelike geodesics, bound solutions discussed in Sec. 111
invite a careful examination of the homoclinic trajectories
and find their solutions on the general nonequatorial plane.
In this connection, the solution in the Kerr case in the
equatorial plane was found in paper [32]. The homoclinic
trajectories are separatrix between bound and plunging
geodesics of much relevance to the observations. Further
details on these points are given elsewhere.
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APPENDIX A: ANALYTICAL SOLUTION OF
TIMELIKE ANGULAR FUNCTION

This appendix summarizes the analytical solution for the
time evolution of 6(z,,), for the completeness of the paper.
In fact, it is a straightforward extension of Sec. Il A. We
begin with the timelike version of (25):

T = Gpg = p(gm&r - gmﬁ,) + Vg, [(_l)pgmé' - gm@;]’
(A1)

where p denotes the number times the particle passes
through the turning point and vy = sign(%). Similar

um+>
Uy,

(A2)

derivation shows that

gmt‘) = -

1 < — ( cos@ )
F( sin e
—um_az(y%l - 1) \% U+

Notice that this differs from Eq. (26) by the factor /72, — 1
as we have stated previously in Sec. III A. Inversion gives
0(z,,) as
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Q(Tm) = cos™! <_V9i\/ ”m+sn<\/ _um—az(ygn - l)(fm + V@,-gmé,-) Zm_+> > ’ (A3)

involving again the Jacobi elliptic sine function. Finally, the other integrals relevant to the solutions of the trajectories are

1 u u
G = II : —u._d>(»2 -1 m+ m+\ 7 Ad
m(/)(Tm) _um_a2 (}’%n — 1) <um+ am( Upy_a (ym )(Tm + Ut‘),-gﬁi) Mm—) ", Dé‘igmtiJi ( )

1 0.
g(/,,_ = - I1 Uyt Sin_l & u'ﬁ , (AS)
_Mm—a2 (}’31 - 1) v Um+ Upy—

2u u u
G (t,) =— mt F <am< —ty_a (72— 1)z, + vy Go. —m+> "H) — V9 Gor. A6
Pl (o= Do +20Gn) | 25)| 225) =0y G, (26)

2 0.
G, = - F <sin—1 <—C°S ) ”_+>. (A7)
—u-a (ym - 1) VUt u_

APPENDIX B: ANALYTICAL SOLUTION OF UNBOUND ORBIT (72, > 1 and r; > r,,4)

This appendix summarizes the solutions of (z,,) component for the cases for unbound trajectories. The solution of r(z,,)
is the same as (55) and (56) by replacing the roots of the radial potential with r,,, 7,2, 7,3, and r,,4 for the timelike

geodesics and 7 — 7,,1/y2, — 1. The derivation follow the steps of calculation of photon orbits. The analogous equation
of (55) is

rm4(rm3 - rml) — rm3(rm4 - rml)snz(XU(Tm)|kU)

r(z,) = , B1
) = ) = (s = P2 (X (5, A7) .
where
\/}’2 _1\/(rm3_rml)(rm4_rm2) (r~—r 4)(’” 3= Tmi1)
XY(z,,) = -2 YmTm + 1/,_F<sin‘l < L B P ) kU>, (B2)
Ym 2 ' (ri_rm.’a)(rmél_rml)
o= (rm3 - rmZ)(rm4 - rml) (B3)
(rm3 - rml)(rm4 - rmZ)’
with v, = sign(g%). The other integrals relevant for the description of radial motion are summarized below:
A 2 A 2
2M a(z®) +Q a(z®) +Q
1j(em) = e 2HE | (1, - A R (A AL 1 () (B4)
VryE =1y =7 2M 2M

e =L (B0 - ) (- S e

(- ZQ_M> (- (_z)if) (o) | MY (50) 15 0) |+ (M7 = Qs (B5)

where

U T — 2
Ii( m) \/(”m3 _ ”ml)(rm4 — rmz) |:

XU(Tm) (rm3 - rm4)H( g:]’Til',]n|kU)

m3 — T+ (rz = 1) (s — 7+)

] -7V, (B6)
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2 F(TU|KV -
Igi _ ( ,_| ) _rm3 rm4_ H(ﬁg,TiﬂkU) ’ (B7)
\/(rm3_rm1)(rm4_rm2) F'm3 ry (rmB r:t><rm4 ri)
2
I?(Tm) = \/(l’ ; )(r ; ) [rm3XU(Tm) + (rm4 - rm3>H(ﬁU;T‘£jﬂ, kU)] _Igji’ (B8)
m3 — 'ml m4 — I'm2
2
T = e s s PO R ra— ra RS TR (89
m3 — 'ml m4 — 'm2
IU(T ) =y \/(r(Tm) B rml)(r(rm) - rm2)(r(7'-m) B rmS)(r(Tm) - rm4)
S ' r(Tm) — T'm3
Tmt\Tma — Tm3) = T'm3\I'm +rm
ot = o) P s ) 0 )G )~ P ECTE )
m3 — 'ml m4 — I'm2
Tmg = Tp3)\Fipt + Fp + Ty +rm
- \/(:)( 1r )(r2 r3 ) : (% e, k) =15, (B10)
m3 — I'ml m4 — 'm2
Ié] =, \/(ri - rml)(ri B rmZ)(ri - rm3)(ri - rm4> _ rml(rm4 - rm3) - rm3(rm4 + rmS)F(TgﬂkU)
x Fi=Tm3 \/(rm3 - rml)(rm4 - rmZ)
_\/(rm3_rml)(rm4_rmz)E(T£{|kU)+(rm4_l"m3)(rml ‘|’7"m2‘|’7"m3“‘I"m4)I—I(ﬁU;ﬂr’[‘{‘kU)7 (Bll)
\/(”m3 = 1) (Fma = T2)
and
TU:I/ SiIl_l (ri_rm4)<rm3_rm1)
" " (ri_rm3)<rm4_rm1)
TU — am(XV (2, )|kV) = b, sin" [ /L) = Tma) (s = 7o)} (B12)
" ' (r(Tm)_rm?a)(rm4_rml)
. dr<Tm>> U (rm'i_r:t)(rm4_rml) U Tm4 — I'mi
v, = sign (L8} = Im? : — [ma = Tl B13
£ ( dTm ﬂi (rm4_ri)(rm3_rm1) ﬂ T'm3 = I'mi ( )

where 1Y(z,,), 1Y(z,,), and 1¥(z,,) have the same form as in (59), (60), and (61) with the appropriate replacements
mentioned above. Note that A¢Y(z,,) and AzY(z,,) are given by

A¢U(Tm) = Ig(fm) + /Ime(/)(Tm)’

AtY(t,)

Ily(Tm) + a2ymel(Tm)'

(B14)
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