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We obtain a coordinate independent algorithm to determine the class of conformal Killing vectors of a
locally conformally flat n-metric γ of signature ðr; sÞ modulo conformal transformations of γ. This is done
in terms of endomorphisms in the pseudo-orthogonal Lie algebra oðrþ 1; sþ 1Þ up to conjugation of the
group Oðrþ 1; sþ 1Þ. The explicit classification is worked out in full for the Riemannian γ case (r ¼ 0,
s ¼ n). As an application of this result, we prove that the set of five-dimensional, ðΛ > 0Þ-vacuum,
algebraically special metrics with nondegenerate optical matrix, analyzed in [G. Bernardi de Freitas et al.,
Commun. Math. Phys. 340, 291 (2015).] is in one-to-one correspondence with the metrics in the Kerr–
de Sitter-like class. This class [M. Mars et al., Classical Quantum Gravity 34, 095010 (2017).; M. Mars and
C. Peón-Nieto, Phys. Rev. D 105, 044027 (2022).] exists in all dimensions, and its defining properties
involve only properties at I . The equivalence between two seemingly unrelated classes of metrics points
towards interesting connections between the algebraically special type of the bulk spacetime and the
conformal geometry at null infinity.
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I. INTRODUCTION

Conformal invariance plays a fundamental role in many
physical theories that include critical phenomena, con-
formal field theories, or electromagnetism, among many
others. Conformal Killing vectors (CKV) in (a locally
conformally) flat space, being the infinitesimal generators
of (local) conformal transformations, are therefore also of
great importance. The conformal group induces a natural
equivalence relation between CKVs in flat space. Two such
CKVs are said to be equivalent if there is a (local)
conformal transformation that maps one to another.
Conformal invariance in a theory means that the relevant
object is the conformal class of CKVs instead of individual
CKV representatives in the class.
As summarized in more detail below [1] (also [2–4]), the

classification of conformal classes of CKVs in a flat
n-dimensional space [of signature ðr; sÞ] is equivalent to
the algebraic classification of skew-symmetric endomor-
phisms in an (nþ 2)-dimensional flat space of signature
ðrþ 1; sþ 1Þ [i.e., elements of the Lie algebra
oðrþ 1; sþ 1Þ] up to pseudo-orthogonal Oðrþ 1; sþ 1Þ
transformations. The latter classification is worked out in
detail in [4] by means of only elementary linear algebra

methods, although it is worth to remark that, in a more
algebraic language, this is a particular case of classification
of semisimple adjoint orbits, which is a well-known
problem in Lie theory for which there actually exists a
general framework (e.g., [5,6]).
For any classification result of the adjoint orbits of

oðrþ 1; sþ 1Þ to become of practical use to our case at
hand, one first needs to find a map between the algebras of
CKVs and oðrþ 1; sþ 1Þ. Such a map is easily con-
structed in Cartesian coordinates [1] (also [2–4]), but a
general coordinate independent approach appears to be
missing in the literature. This is specially relevant in
physical contexts where general covariance is a key
ingredient (e.g., general relativity), as it is often the case
that the quantities are expressed in coordinate systems that
are convenient for the problem at hand, and hence, a priori
unrelated to any Cartesian description. The main objective
of this paper is to provide a simple, algorithmic, and
coordinate independent classification scheme for con-
formal classes of CKVs in locally conformally flat mani-
folds of arbitrary signature. Our main result is given in
Theorem 2.5.
As already said, this result can be of interest in any

physical problem (in a locally conformally flat space)
where conformal invariance and diffeormorphism invari-
ance play a crucial role. An example of paramount
importance is the study of the asymptotic properties of
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spacetimes. A precise definition of the asymptotic region of
a spacetime ðM̃; g̃Þ can be given in terms of conformal
scalings, as long as the metric satisfies the property of being
conformally extendable. We say that a metric g̃ is con-
formally extendable if there exists a metric g ¼ Ω2g̃ for a
(sufficiently) smooth positive function Ω on M̃, such that g
admits a (sufficiently) smooth extension to M ≔ M̃ ∪ ∂M̃,
where ∂M̃ ¼ fΩ ¼ 0g is usually called null infinity and
denoted I . A milestone result in general relativity by H.
Friedrich [7,8] proves, using the conformal properties of
the spacetime, that there exists a well-posed Cauchy
problem with data on I for the ðΛ > 0Þ-vacuum case in
four dimensions [9]. Similar results also hold in higher
dimensions [10–13], based on a different formalism. More
details on these asymptotic Cauchy problems are given in
Sec. III. Just like in the ordinary initial value problem of the
Einstein equations [14], the presence of Killing vectors
(KV) in the spacetime constraint the initial data of the
asymptotic Cauchy problem with Λ > 0 [15,16]. For a KV
X of g̃, it is a general fact that X extends to I as a tangent
vector ξ, which is necessarily a conformal Killing vector of
the induced metric γ at I . In four spacetime dimensions, a
Killing initial data (KID) equation was obtained in [16] for
the asymptotic Cauchy problem of the ðΛ > 0Þ-vacuum
equations. This gives a necessary and sufficient condition
that ξ and the initial data must satisfy in order for the
spacetime metric to admit a KV X, which coincides with ξ
at I . The KID equation was extended to higher dimensions
in [15], where it was also proved that, when the data are
restricted to be analytic, it gives necessary and sufficient
conditions for ξ to extend to a spacetime KV.
The fact that the asymptotic Cauchy problem for the

ðΛ > 0Þ-vacuum equations is formulated in terms of
conformal metrics, leaves a conformal gauge freedom in
the initial data (cf. Sec. III). Moreover, as a covariant
theory, the data are also equivalent under diffeomorphisms
of I . This has the interesting consequence that the set of
conformal diffeomorphisms (or conformal isometries) of I
is a symmetry at I in the sense above. More specifically,
the conformal group ConfðIÞ is the set of diffeomorphisms
φ∶I → I satisfying φ⋆ðγÞ ¼ ω2γ for some smooth positive
function ω of I . We show in Sec. III that if ξ satisfies the
KID equation for certain data, then the vector fields of the
form φ⋆ðξÞ for each φ ∈ ConfðIÞ also satisfy the KID
equation and correspond to the same symmetry of g̃. Thus,
the symmetries of g̃ are in correspondence with the
conformal classes of CKVs [ξ] instead of with specific
representatives in the class. As a consequence, whenever
the geometry at I is locally conformally flat, the algo-
rithmic classification result achieved in Theorem 2.5 is of
direct applicability.
In the second part of the paper, we apply this theorem to

establish the equivalence between two a priori unrelated
families of ðΛ > 0Þ-vacuum solutions of the Einstein field
equations in five dimensions. The first class consists of the

algebraically special spacetimes with nondegenerate opti-
cal matrix, classified in [17]. The second is the class of so-
called Kerr–de Sitter-like class of metrics with conformally
flat I . This class is a natural generalization of Kerr–
de Sitter, first defined in four dimensions in [2,18] and
later generalized to arbitrary dimensions in [19] in the
locally conformally flat I case. The characterizing property
of this class is that its asymptotic data are constructed
canonically from a CKV at I . In fact, there is exactly one
Kerr–de Sitter-like metric associated to each conformal
class of CKVs of the metric at I . Therefore, the space of
conformal classes [ξ] provides a good representation of the
moduli space of metrics in the class. The explicit form of
the metrics is the Kerr–de Sitter class in all dimensions was
obtained in [19] via a rather unexpected equivalence (in all
dimensions) between this class and the family of general
ðΛ > 0Þ-vacuum spacetimes of Kerr-Schild type and sat-
isfying a natural fall-off condition at infinity. The fact that
this family (in five dimensions) is also equivalent to the
family obtained in [17] indicates that there might be
interesting and unexpected connections for ðΛ > 0Þ-
vacuum spacetimes (in arbitrary dimension higher than
four) between being algebraically special and being con-
formally extendable and having very special properties at
null infinity. We emphasize that the family studied in [17]
made no a priori assumption on the asymptotic properties
of the spacetime.
Moreover, it is worth to emphasize that the metrics in

[17] were heuristically found to be either Kerr–de Sitter or a
limit thereof. This same fact holds for the Kerr–de Sitter-
like class [19], but it can be seen as a natural consequence
of the topological structure of the space of conformal
classes of CKVs ξ, as well as the well-posedness of the
asymptotic Cauchy problem. This perspective strengthens
the uniqueness result of Kerr–de Sitter as understood in
[17], in the sense that it proves that no further limits can be
obtained from Kerr–de Sitter without, at least, substantially
modifying the asymptotic properties.
The plan of the paper is as follows. In Sec. II, we prove

our main result, Theorem 2.5, which provides a method for
a coordinate independent classification of conformal
classes of CKVs of any locally conformally flat n-manifold
ðΣ; γÞ of signature ðr; sÞ. We do this in terms of the
(simpler) algebraic classification of skew-symmetric endo-
morphisms of an (nþ 2)-dimensional flat manifold
ðRrþ1;sþ1; ηÞ up to isometries of η, where η is a flat metric
of signature ðrþ 1; sþ 1Þ. The latter amounts to the
classification of the Lie algebra oðrþ 1; sþ 1Þ up to
adjoint action of the Lie group Oðrþ 1; sþ 1Þ, i.e.,
the equivalence classes ½F� ¼ fF0 ∈ oðrþ 1; sþ 1ÞjF0 ¼
Λ ·F ·Λ−1; ∀ Λ ∈Oðrþ 1; sþ 1Þg, where the dot stands
for the usual matrix multiplication. A key result for
Theorem 2.5 is (cf. Proposition 2.1) that we find a way
to assign an element F ∈ oðrþ 1; sþ 1Þ to any CKV ξof γ
based solely on pointwise properties of ξ (and its
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derivatives). In addition, for later use, we give in Sec. II A
the explicit definition of a set of quantities which uniquely
determines a class [F] in the Riemannian γ case (i.e.,
r ¼ 0, s ¼ n).
In Sec. III, we first review (in Sec. III A) some general

facts on the asymptotic Cauchy problem of the ðΛ > 0Þ-
vacuum field equations in all dimensions. We then establish
the equivalence of a class of CKVs at I satisfying the KID
equation with a unique KV of the physical spacetime g̃.
This result had already been proven for asymptotic data in
the Kerr–de Sitter-like class in [2,15], and here we show it
holds in general. Section III is concluded with Sec. III B,
where we revisit the definition of the Kerr–de Sitter-like
class of spacetimes in all dimensions and their main
properties.
In Sec. IV, we apply Theorem 2.5 to establish the

equivalence between the set of five dimensional algebrai-
cally special spacetimes with nondegenerate optical matrix,
classified in [17], with the Kerr–de Sitter-like class of
spacetimes. We start by calculating the asymptotic initial
data of the metrics in [17]. This easily proves that such
spacetimes are contained in the Kerr–de Sitter-like class.
The nontrivial part is to verify that the metrics given in [17]
exhaust the whole space of conformal classes of locally
conformally flat four dimensional Riemannian metrics. The
proof relies strongly on the results of Sec. II, because the
coordinates in which the metrics in [17] are given are
adapted to spacetime null congruences, and have therefore
nothing to do with (conformally) Cartesian coordinates at
infinity. In fact, it is hard to find an explicitly flat
representative of the metric at I .
We finish this paper with some observations in Sec. V.

We emphasize that the application in Sec. IV goes beyond
simply providing an explicit example where our main
theorem can be applied. The application is useful to gain
insight in the classification higher dimensional algebrai-
cally special spacetimes and point out several possible
future results.

II. COVARIANT CLASSIFICATION OF CKVS OF
LOCALLY CONFORMALLY FLAT METRICS

We start with a well-known result in conformal geom-
etry, which we prove for completeness. Recall that the
Schouten tensor of a metric g of dimension n ≥ 3 is
defined as

Lg ¼
1

n − 2

�
Ricg −

Scalg
2ðn − 1Þ g

�
;

and we denote the gradient, the Hessian, and its trace (the
rough Laplacian) by gradg, Hessg, and Δg, respectively.
Scalar product with g is denoted either by gð·; ·Þ or h·; ·ig.
Lemma 2.1. Let ðM; gÞ be a semi-Riemannian manifold

of dimension n and Ω a smooth positive function in M.

Define ḡ ¼ 1
Ω2 g. Then the respective Schouten tensors are

related by

Lḡ ¼ Lg þ
1

Ω
HessgΩ −

1

2Ω2
jgradgΩj2gg: ð1Þ

Proof.—The relationship between the Ricci tensors of
g and ḡ is well-known be (e.g., [20])

Ricḡ¼Ricgþ
n−2

Ω
HessgΩþ

�
1

Ω
ΔgΩ−

n−1

Ω2
jgradgΩj2g

�
g:

Taking trace with respect to ḡ and inserting in the
expression for Lḡ the result follows at once. ▪
The following result relates the Hessians of scalar

functions with respect to g and with respect to ḡ. The
Levi-Civita covariant derivatives of g, ḡ are denoted ∇, ∇̄,
respectively. Indices in objects constructed using geometric
quantities associated to g or to ḡ and raised and lowered
with its corresponding metric. Capital latin indices take
values in 1;…; n.
Lemma 2.2. Let f be a smooth function on M and g, ḡ

and Ω as before Then,

Hessḡ

�
f
Ω

�
¼ 1

Ω

�
Hessgf þ fðLg − LḡÞ

þ
�
fjgradgΩj2g

2Ω2
−

1

Ω
hgradgf; gradgΩig

�
g

�
:

Proof.—The difference tensor ∇̄ −∇ is

SACD ¼ −δAC
∇DΩ
Ω

− δAD
∇CΩ
Ω

þ∇AΩ
Ω

gCD: ð2Þ

For a covector sA, we therefore have

∇̄AsB ¼ ∇AsB þ 1

Ω
ðsA∇BΩþ sB∇AΩ − sC∇CΩgABÞ:

Applying this to sB ¼ ∇̄BðΩ−1fÞ ¼ ∇BðΩ−1fÞ and
expanding the products in the right-hand side yields

∇̄A∇̄B

�
f
Ω

�
¼ 1

Ω

�
∇A∇Bf

þ f

�
−
1

Ω
∇A∇BΩþ 1

Ω2
∇CΩ∇CΩgAB

�

−
1

Ω
∇Cf∇CΩgAB

�
:

Replacing the Hessian of Ω with Eq. (1), the result
follows. ▪
Consider a metric gE of signature ðr; sÞ,which is locally

flat on a manifold M and let D be the corresponding Levi-
Civita derivative. Let p ∈ M and Up a neighborhood of p
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where gE is flat. Since the general solution of equation
DADBf ¼ 0, fðpÞ ¼ 0 on Up is a linear combination of
Cartesian coordinates centered at p, there exist precisely
n ≔ rþ s linearly independent functions fYCg satisfying

DADBYC ¼ 0; YAjp ¼ 0: ð3Þ

We do not restrict fYAg to be orthogonal. More specifically,
let

hAB ≔ DCYADCYB: ð4Þ

It is immediate from (3) that hAB are constant on Up. fYAg
being linearly independent and vanishing at p, it is
immediate that they define a coordinate system on Up.
It follows that hAB is invertible and has signature ðr; sÞ. We
let hAB be its inverse and introduce the functions,

Y0 ≔ 1; Ynþ1 ≔
1

2
hABYAYB: ð5Þ

The following lemma provides a number of properties of
the set fYαg ≔ fY0; YA; Ynþ1g.
Lemma 2.3. With the setup and definitions above, the

following properties hold in Up:
(i) The functions fYαg are linearly independent and

satisfy

HessgEY
α ¼ δαnþ1gE: ð6Þ

Moreover, the matrix,

Qαβ ≔ DCYαDCYβ − δαnþ1Y
β − δβnþ1Y

α;

is constant on Up, nondegenerate and of signature
ðrþ 1; sþ 1Þ.

(ii) The general solution of

HessgEf ¼ cgE; c ∈ R;

is a linear combination f ¼ cαYα with cnþ1 ¼ c and
cα for α ≠ nþ 1 arbitrary.

(iii) For each α, β, the vector field,

ζαβ ≔ YαgradgEY
β − YβgradgEY

α; α < β ð7Þ

is a conformal Killing vector of gE satisfying

£ζαβgE ¼ 2ðYαδβnþ1 − Yβδαnþ1ÞgE:

(iv) The set B ≔ fζαβ;α < βg is linearly independent
and spans the conformal Killing algebra of ðUp; gEÞ.

Proof.—Firstly, it is trivial that HessgEY
0 ¼ 0 and

HessgEY
A ¼ 0 holds. From definition (5) and since

HessgEY
A ¼ 0, we get

DCDDYnþ1 ¼ hABDCYADDYB:

Fix any point q ∈ Up and define the square matrix
AA

B ≔ DBYAjq. Using matrix notation ðAÞAB ¼ AA
B where

the upper index denotes row and the lower index column,
we may write (4) as (t is the transpose)

ðh♯Þ ¼ ðAÞtðg♯jqÞðAÞ;

where ðg♯qÞ and ðh♯Þ are the symmetric matrices with
coefficients ðg♯ÞAB ¼ gABE jq and ðh♯ÞAB ¼ hAB. Since ðh♯Þ
is invertible, so it is (A) and

ðhÞ ¼ ðAÞ−1ðgjqÞððAÞ−1Þt ⇔ ðAÞðhÞðAÞt ¼ ðgjqÞ;

where ðgjqÞ is the matrix with components ðgjqÞAB ¼
ðgEÞABjq. In index notation, hABDCYADDYB ¼ ðgEÞCD at
all points in Up. Thus, HessgEY

nþ1 ¼ gE as claimed. The
constancy of Qαβ follows from (6) because

DDQαβ ¼ðDDDCYαÞDCYβþDCYαDDDCYβ

−δαnþ1DDYβ−δβnþ1DDYα ¼ 0:

Evaluating at p and using that YAjp ¼ Ynþ1jp ¼ 0 as well
as (4) yields

Qαβ ¼
8<
:

−1 if α ¼ 0; β ¼ nþ 1

−1 if α ¼ nþ 1; β ¼ 0

hAB if α ¼ A; β ¼ B

and zero otherwise because

QAnþ1 ¼ DCYADCYnþ1 − YA

¼ DCYAðhBDYBDCYDÞ − YA

¼ hADhBDYB − YA ¼ 0;

and the cases α ¼ A, β ¼ 0 also vanish trivially. Since hAB

is of signature ðr; sÞ, it follows at once that Qαβ is of
signature ðrþ 1; sþ 1Þ (at p and hence, everywhere) and,
in particular, nondegenerate. This proves item (i).
For item (ii), let f be a function satisfying Hessgf ¼ cgE

with c a constant. Define the constant fp ≔ fðpÞ and the
function f0 ≔ f − fpY0 − cYnþ1. It is clear that f0ðpÞ ¼ 0

and HessgEf0 ¼ 0. Thus, f0 is a linear combination of
fYAg. Therefore, f ¼ cαYα with c0 ¼ fp and cnþ1 ¼ c.
Note that the constant c0 can be arbitrarily chosen since
for any constant c0 the function f þ c0 also solves
Hessgf ¼ cgE.
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For item (iii), the covector associated to ζαβ is

ζαβD ¼ YαDDYβ − YβDDYα

⇒ DCζ
αβ
D ¼ DCYαDDYβ þ Yαδβnþ1ðgEÞCD

−DCYβDDYα − Yβδαnþ1ðgEÞCD ð8Þ

so

DCζ
αβ
D þDDζ

αβ
C ¼ 2ðYαδβnþ1 − Yβδαnþ1ÞðgEÞCD

which establishes (iii).
For the last item, let Fαβ, for α < β, be any set of

constants and define Fβα ≔ −Fαβ. The most general linear
combination of elements in B is

ζ ≔
X
α<β

Fαβζ
αβ ¼ 1

2
Fαβζ

αβ ¼ FαβYαgradgEY
β:

From item (iii), this vector satisfies

£ζgE ¼ 2FαβYαδβnþ1gE

¼ 2Fαnþ1YαgE

¼ 2ðF0nþ1Y0 þ 2FAnþ1YAÞgE:

The functions fY0; YAg are linearly independent, so ζ ¼ 0
implies Fαnþ1 ¼ 0 and then ζ ¼ 0 reduces to

ζD ¼ F0BDDYB þ FABYADDYB ¼ 0:

Evaluating at p (where YA vanishes) and using that
ðAÞAD ¼ DDYAjp is invertible, we find F0B ¼ 0. Finally,
from (8)

DCζDjp ¼ FABAA
CAB

D ¼ 0

from which FAB ¼ 0 and the only vanishing linear combi-
nation in B is the zero vector. Finally, the number of
independent constants Fαβ equals to

Pnþ1
β¼1

Pβ−1
α¼0 1 ¼Pnþ1

β¼1 β ¼ ðnþ 1Þðnþ 2Þ=2, which is the dimension of
the conformal Killing algebra of locally conformally flat
n-metrics (e.g., [1]). ▪
Let now g be a locally conformally flat metric and ξ a

conformal Killing vector of g. This means that at any point
p ∈ M, there exists a neighborhood Up of p and a flat
metric gE onUp conformal to g. We restrict ourselves toUp

in everything that follows and denote the covariant deriva-
tive with respect to g as ∇ and the covariant derivative with
respect to gE as D.
Let Ω∶Up → R be the smooth positive function satisfy-

ing gE ¼ Ω−2g. By Lemma 2.1 and LgE ¼ 0, this function
satisfies the equation,

HessgΩ ¼ 1

2Ω
jgradgΩj2gg −ΩLg: ð9Þ

We next show that we may assume that the function Ω
satisfies, in addition, Ωp ¼ 1 and ∇AΩjp ¼ 0. The under-
lying reason is the freedom to conformally rescale a flat
metric in such a way that it remains flat. We seek for a
smooth function ω∶Up → R, positive near p such that
gE ¼ ω−2gE is also flat. Since the curvature of gE is zero,
the curvature of gE will be zero if and only if LgE ¼ 0

(indeed, this is immediate in dimension n ¼ 3 and as a
consequence of the conformal invariance of theWeyl tensor
in higher dimension). From Lemma 2.1, the metric ḡE has
LḡE ¼ 0 if and only if ω satisfies the partial differential
equation,

HessgEω ¼ 1

2ω
jgradgEωj2gEgE: ð10Þ

As a consequence of the flatness of gE, the divergence of
the above equation gives

DA∇ADBω ¼ DBDADAω ¼ DB

�
1

2ω
jgradgEωj2gE

�

⇒ DADAω ¼ 1

2ω
jgradgEωj2gE þ K ð11Þ

for a constant K. On the other hand, the trace of (10) is

DADAω ¼ n
2ω

jgradgEωj2gE ;

which comparing with (11) yields that ð2ωÞ−1jgradgEωj2 is
constant on Up. Denoting this constant by c, the set of
equations to be solved is

HessgEω ¼ cgE; ðjgradgEωj2gE − 2cωÞjp ¼ 0: ð12Þ

Let fYαg be defined as before, i.e., Y0 ¼ 1,

DCDDYA ¼ 0; YAjp ¼ 0; Ynþ1 ≔
1

2
hABYAYB

with hAB the inverse of hAB defined in (4). By item (ii) in
Lemma 2.3, the general solution of the first equation in (12)
is ω ¼ a0 þ aAYA þ cYnþ1 where a0; aA are arbitrary
constants. Since YAjp ¼ Ynþ1jp ¼ DAYnþ1jp ¼ 0, we get

0 ¼ ðDCωDCω − 2cωÞjp
¼ ðaAaBDCYADCYB − cÞjp
¼ aAaBhAB − 2c:

Thus, the general solution of (12) is
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ω ¼ a0Y0 þ aAYA þ 1

2
aAaBhABYnþ1:

Given any values ω0;ωA ∈ R, there exists a unique
solution ω satisfying

ωjp ¼ ω0; DCωjp ¼ ωC;

because the algebraic problem,

ωjp ¼ ða0Y0 þ aAYAÞjp ¼ a0 ¼ ω0;

DCωjp ¼ aADCYAjp ¼ aAAA
C ¼ ωC

always admits a unique solution fa0; aAg. Now, define
Ω̄ ≔ ωΩ with

ω0 ¼ ðΩjpÞ−1; ωA ¼ −
�

1

Ω2
∇AΩ

�����
p
:

It is immediate that Ω̄jp ¼ 1, ∇CΩjp ¼ 0 and that ḡE ¼
ω−2gE ¼ ω−2Ω−2g ¼ Ω̄−2g is flat (in a suitable connected
neighborhood of p where ω remains positive). Clearly Ω̄
also satisfies (9). Dropping the overlines, we have shown:
Lemma 2.4. For any locally conformally flat manifold

ðM; gÞ and point p ∈ M, there exists a unique choice of
conformal factor Ω which satisfies that gE ≔ Ω2g is a flat
metric in a neighborhood of p and

Ωjp ¼ 1; ∇AΩjp ¼ 0: ð13Þ

From now on, we make the choice of conformal factor as
in Lemma 2.4. Since gABE [the inverse of ðgEÞAB] is given by
gABE ¼ Ω2gAB, the ðnþ 1Þðnþ 2Þ=2 vector fields ζαβ intro-
duced in (7) can also be written in the form,

ζαβ ¼ Ω2ðYαgradgYβ − YβgradgYαÞ; α < β:

We have shown in Lemma 2.3 that these vector fields span
the conformal Killing algebra of gE in Up and hence, also
the conformal Killing algebra of g on the same domain. We
intend to compute coefficients of the decomposition,

ξ ¼
X
α<β

Fαβζ
αβ ¼ FαβΩ2YαgradgYβ; Fβα ¼ −Fαβ:

The strategy to do that is the well-known fact (see, e.g.,
[21]) that two local conformal Killing vectors ξ1 and ξ2 on a
semi-Riemannian manifold ðM; gÞ, i.e., vector fields
defined on a common open nonempty connected neighbor-
hood U ⊂ M and satisfying

£ξ1g ¼ 2Ψ1g; £ξ2g ¼ 2Ψ2g

are the same on U if and only if, at some point p ∈ U, it
holds

ðξ1ÞAjp ¼ ðξ2ÞAjp;
ð∇½Aðξ1ÞB�Þjp ¼ ð∇½Aðξ2ÞB�Þjp;

Ψ1jp ¼ Ψ2jp;
∇AΨ1jp ¼ ∇AΨ2jp; ð14Þ

where the indices between brackets are antisymmetrized.
Assume that we are given a conformal Killing vector ξ on
ðM; gÞ, so we can compute the function Ψξ defined by
£ξg ¼ 2Ψξg. We therefore may regard the following quan-
tities as known (p is, as before, any chosen point in M),

ξ̂A ≔ ξAjp; ω̂AB ≔ ðdξÞABjp ¼ ð∇AξB −∇BξAÞjp;
Ψ̂ ≔ Ψξjp; Ψ̂A ≔ ∇AΨξjp;

where ξ ≔ gðξ; ·Þ. Let ζF be defined by

ζF ¼ 1

2
Fαβζ

αβ ¼ FαβΩ2YαgradgYβ ¼ FαβYαgradgEY
β;

where Fαβ ¼ F½αβ� are arbitrary constants. By item (iii) in
Lemma 2.3, we have

£ζFg ¼ £ζFðΩ2gEÞÞ ¼ Ω2

�
2
ζFðΩÞ
Ω

gE þ £ζFgE

�

¼ Ω2

�
2
ζFðΩÞ
Ω

gE þ 2FαβYαδβnþ1gE

�

¼ 2

�
ζFðΩÞ
Ω

þ FαβYαδβnþ1

�
g≕ 2ΨFg; ð15Þ

with the last equality defining ΨF. Let us compute the
differential of this function,

∇CΨF¼∇C

�
1

Ω
ζDF∇DΩ

�
þFαβ∇CYαδβnþ1

¼−
1

Ω2
ζDF∇DΩ∇CΩþ 1

Ω
ζDF∇C∇DΩ

þ 1

Ω
ð∇Cζ

D
F Þ∇DΩþFαβDCYαδβnþ1

¼−
1

Ω2
ζDF∇DΩ∇CΩþζDF

�∇AΩ∇AΩ
2Ω2

gCD−ðLgÞCD
�

þ 1

Ω
ð∇Cζ

D
F Þ∇DΩþFαβDCYαδβnþ1;

where in the third equality, we inserted (9). We elaborate
the third term using the difference tensor S ¼ D −∇,
explicitly given in (2),

∇Cζ
D
F ¼ DCζ

D
F − SDACζ

A
F

¼ DCζ
D
F þ ζDF

∇CΩ
Ω

þ δDC
1

Ω
ζAF∇AΩ −

∇DΩ
Ω

gACζAF;
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and insert above to get

∇CΨF þ ζDFLgCD ¼ 1

Ω2
ζDF∇DΩ∇CΩ −

∇AΩ∇AΩ
2Ω2

ζFC

þ 1

Ω
ðDCζ

D
F Þ∇DΩþ FαβDCYαδβnþ1:

ð16Þ

We may now determine the coefficients Fαβ in terms
of (14).
Proposition 2.1. Let ðM; gÞ be a locally conformally

flat semi-Riemannian manifold of arbitrary signature ðr; sÞ
and dimension n ≥ 3. Fix any point p in M and a
sufficiently small simply connected neighborhood of p.
Define Ω in Up as the unique solution of (9) satisfying (13)
and let gE ≔ Ω−2g. This metric is flat in Up, and we may
introduce the functions fYαg and the conformal Killing
vectors ζαβ on Up as described above.
Let ξ be any conformal Killing vector on ðUp; gÞ. Define

Ψξ by £ξg ¼ 2Ψξg and introduce the quantities,

ξ̂C ≔ ξCjp; ω̂CD ≔
1

2
ðdξÞCDjp Ψ̂ ≔ Ψξjp;

ŴC ≔ ∇CΨξ þ ξDðLgÞCDjp;

where Lg is the Schouten tensor of g. Then ξ admits the
decomposition,

ξ ¼ 1

2
Fαβζ

αβ ¼ FαβΩYαgradgYβ;

with Fαβ ¼ F½αβ� given by

F0B ¼ BC
Bξ̂C; FAB ¼ ω̂CDBC

ABD
B;

FAnþ1 ¼ ŴCBC
A; F0nþ1 ¼ Ψ̂;

where BA
B is the inverse of AA

C ≔ ∇CYAjp. i.e.,

AA
CBC

B ¼ δAB:

Proof.—Since ζFA ¼ Ω2FαβYα∇AYβ, we need to impose
(recall that DCYnþ1jp ¼ DCΩjp ¼ 0)

ξ̂C ¼ ζFCjp ¼ Fαβδ
α
0DCYβjp ¼ F0BAB

C;

2ω̂CD ¼ ðdζFÞCDjp ¼ 2∇½CðΩ2FαβYα∇D�YβÞjp
¼ 2Fαβ∇½CYα∇D�Yβjp ¼ 2FαβD½CYαDD�Yβjp
¼ 2FABAB

CAB
D;

Ψ̂ ¼ ΨFjp ¼
�
1

Ω
ξFðΩÞ þ FαβYαδβnþ1

�����
p
¼ F0nþ1;

ŴC ¼ FαβDCYαδβnþ1jp ¼ FAnþ1AA
C;

where in the third equality we usedΨF as given in (15), and
in the last equality, we applied (16). The result follows at
once from these expressions. ▪
Remark 2.1. The definition of fYAg allows one to

choose any invertible matrix AA
C for its construction.

However, if one wants fYAg to define a Cartesian coor-
dinate system on Up, then AA

B must be chosen so that

gCDjpAA
CAB

D ¼ ηAB; ð17Þ

where ηAB¼diagf−1;…;−1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{r

;1;���1
zfflffl}|fflffl{s

g. Note that the left-
hand side of (17) is by definition hABjp and that hAB, which
gives the entries of gAB in coordinates fYAg [see (4)], is
constant on Up.
With this proposition at hand, we can relate the coef-

ficients Fαβ with the determination of the conformal class
to which ξ belongs. For simplicity of presentation, let us
assume that ðM; gÞ is compact and simply connected and let
ConfðM; gÞ be the conformal group, i.e., the collection of
all conformal diffeomorphism of ðM; gÞ, namely trans-
formations φ∶M → M satisfying φ⋆ðgÞ ¼ θ2g, for some
smooth positive function θ∶M → R. The vector field
φ−1⋆ ðξÞ defines a conformal Killing vector of ðM; gÞ, and
by definition, the conformal class is the collection of all
such conformal vector fields. It is known (see [1,22]) that
the conformal Killing algebra of ðM; gÞ is isomorphic (as a
vector space) to the set of skew-symmetric endomorphisms
ðV; ηÞ, where V ≃Rnþ2 and η is a metric of signature
ðrþ 1; sþ 1Þ. The map is also an anti-isomorphism of Lie
algebras. Note that the skew symmetry here is defined with
respect to the interior product h·; ·i defined by η, namely, an
endomorphism F is skew symmetric if for every pair of
vectors u; v ∈ R it satisfies hFðuÞ; vi ¼ −hu; FðvÞi.
Let us call the conformal Killing algebra of ðM; gÞ by

CKillðM; gÞ, the vector space ðV; ηÞ as Rðrþ1;sþ1Þ, the
set of skew-symmetric endomorphisms of Rðrþ1;sþ1Þ by
SkewEndðRðrþ1;sþ1ÞÞ and denote the isomorphism above by

Ψ∶ CKillðM; gÞ → SkewEndðRðrþ1;sþ1ÞÞ:

It turns out that the conformal class of ξ is

½ξ� ¼ fΨ−1ðFΛÞ for all

FΛ ¼ Λ−1ΨðξÞΛ; Λ ∈ Oðrþ 1; sþ 1Þg;

where the orthogonal group Oðrþ 1; sþ 1Þ acts on
Rðrþ1;sþ1Þ in a natural way.
The construction of the map Ψ can be done in several

ways and is a consequence of the fact that ðM; gÞ can be
isometrically embedded in the null cone of the origin in
Rrþ1;sþ1. The explicit representation ofΨ relies on a choice
of a flat representative gE in the conformal class [g] of g in a
sufficiently small neighborhood Up of p and a choice of
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Cartesian coordinates XA in Up. To gE and fXAg, one
associates an orthonormal basis B ≔ feαg of Rrþ1;sþ1 with
e0 timelike. The most general conformal Killing vector ξ ∈
CKillðM; gÞ restricted to Up can be written in terms of
constants fbA; ν; aA;ωAB ¼ ω½AB�g as

ξ¼
�
bA þ νXA þ ðaBXBÞXA −

1

2
ðXBXBÞaA −ωA

BXB

�
∂XA;

ð18Þ

where indices are raised and lowered with ηAB

(cf. remark 2.1) and its inverse. Then, the endomorphism
ΨðξÞ ∈ SkewEndðRrþ1;sþ1ÞÞ expressed in the basis B, i.e.,
ðFξÞαβeα ¼ ΨðξÞðeβÞ is given by Fξ

α
β ¼ ηαμFξμβ,

ηαμ ¼ ηαμ ¼ diagf−1; 1;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r

; 1;…; 1|fflfflffl{zfflfflffl}
s

g;

and the matrix ðFξÞμβ is given by (the first index is row and
the second column)

Fξ ¼

0
B@

0 ν at − bt=2

−ν 0 −at − bt=2

−aþ b=2 aþ b=2 −ω

1
CA;

where a; b ∈ Rn are column vectors with components aA,
bA, respectively, t denotes the transpose and ω is the n ×m
skewsymmetric matrix with components ωAB. We can now
make connection to the previous decomposition. Assume
for the moment that we take AA

B such that (17) holds. Then
fYAg defines a Cartesian coordinate system of the flat
metric gE in Up. Moreover, since Ynþ1 ¼ 1

2
ηABYAYB, it is

straightforward to check that setting XA ¼ YA, the con-
formal Killing vector (18) can also be written as

ξ ¼ FαβYαDAYβ
∂YA ¼ FαβYαgradgEY

β;

with

F0A ¼ bA; F0nþ1 ¼ ν; FAB ¼ ωAB FC;nþ1 ¼ aC:

In order to match the two constructions, we need to
introduce a vector space of dimension nþ 2 and a metric
of signature ðrþ 1; sþ 1Þ. Define V̂ ≔ spanfYαg and
endow this space with the scalar product Q defined by

QðYα; YβÞ ≔ Qαβ;

where the constants Qαβ are defined in item (i) of Lemma
2.3. This metric is well-defined (i.e., independent of the

choice of functions YA) because under a GLðnÞ trans-
formation1 M,

Y 0A ¼ MA
BYB;

we have Y 00 ¼ Y0 (obvious) and Y 0nþ1 ¼ Ynþ1 because

Y 0nþ1 ¼ 1

2
h0ABY

0AY 0B ¼ 1

2
h0ABM

A
CMB

CY
CYD

¼ 1

2
hCDYAYD ¼ Ynþ1;

and the last equality follows from definition (4) (and its
corresponding prime) together with

A0A
B ≔ DBY 0Ajp ¼ MA

CAC
B:

Hence, from the definition of Qαβ, we have

Q0αβ ¼ QμνMα
μMβ

ν;

with M0
0 ¼ Mnþ1

nþ1 ¼ 1, Mα
β ¼ MA

B for α ¼ A, β ¼ B,
and the rest are zero.
In the case that fYAg are Cartesian coordinates (i.e.,

when hAB ¼ ηAB), then we can construct an orthonormal
basis of V̂ by introducing

E0 ≔Y0þ1

2
Ynþ1; E1≔Y0−

1

2
Ynþ1; EAþ1 ≔YA:

The endomorphism of V̂ defined by

FξðYαÞ ≔ QαβFβμYμ

is identical to the endomorphismΨðξÞ if we identify V ¼ V̂
and the basis vectors eα ¼ ηαβEβ.
The classification of the endomorphism ΨðξÞ up to the

conjugacy class is obviously independent of the choice of
basis. Thus, once we have established the equivalence of
ΨðξÞ and Fξ, we may use any basis fYαg, not necessary
orthogonal. From the point of view of the original space
ðM; gÞ, a natural choice is the (nonorthogonal) basis
defined by

DAYBjp ¼ δBA:

In such a basis, the expression of Fαβ is simplest, while the
expression of Qαβ is just

1Recall that fYAg spans the solution space of (3). Thus, any
other set of linearly independent solutions fY 0Agmust necessarily
differ from fYAg by a GLðnÞ transformation.
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Q0;nþ1 ¼ Qnþ1;0 ¼ −1; QAB ¼ gABjp:

We summarize this result in the following theorem:
Theorem 2.5. Let ðM; gÞ be a locally conformally flat

semi-Riemannian space of arbitrary signature ðr; sÞ and
dimension n ≥ 3. Fix a point p ∈ M and a local conformal
Killing vector ξ defined in a sufficiently small open
neighborhood Up of p. Let Ψξ∶Up → R be defined
by £ξg ¼ 2Ψξ.
Then the conformal class of ξ is determined by the

conjugacy class under Oðrþ 1; sþ 1Þ of the skew-sym-
metric endomorphism Fξ on ðRrþ1;sþ1; QÞ defined by
FξðvαÞ ¼ QαβFβμvμ where vα is a basis of Rrþ1;sþ1 with
nonzero scalar products,

Qαβ ≔ Qðvα; vβÞ

¼
8<
:

−1 if α ¼ 0; β ¼ nþ 1 or α ¼ nþ 1; β ¼ 0

gABjp if α ¼ A;β ¼ B

0 rest of terms

;

and the coefficients Fβμ ¼ F½βμ� are given by

F0;A ¼ ξAjp; FAB ¼ ∇½AξB�jp; F0;nþ1 ¼ Ψξjp;
FA;nþ1 ¼ ð∇AΨξ þ ξBðLgÞABÞjp;

where Lg is the Schouten tensor of g and ∇ its covariant
derivative.

A. The Riemannian case (r= 0, s =n)

The method of classification of CVKs employed in
[15,19] requires to find explicitly a flat representative gE in
the class of locally conformally flat metrics and also
Cartesian coordinates for gE. However, this may be a very
hard task. Theorem 2.5 improves the classification method
in [15,19] as it allows one to obtain the conformal class of a
CKV with independence on the coordinates and the
representative of the class of conformally flat metrics.
We shall provide an interesting application of this result in
Sec. IV. For that, we now introduce the explicit classi-
fication of CKVs in conformally flat Riemannian metrics.
From the discussion above it follows that, for locally

conformally flat Riemannian n-metrics, the classification
of conformal classes of CKVs is equivalent to the classi-
fication of SkewEndðRð1;nþ1ÞÞ up to Oð1; nþ 1Þ trans-
formations. In order to uniquely characterize the conjugacy
class ½F� ¼ fFΛ ∈ SkewEndðRð1;nþ1ÞÞjFΛ ¼ ΛFΛ−1;
Λ ∈ Oð1; nþ 1Þg, one needs to find a sufficient number
of Oð1; nþ 1Þ-invariant quantities. A possibility [4] is to
give the eigenvalues2 of F2 together with the causal

character of kerF (see also [2] for an alternative classi-
fication in terms of the traces of even powers of F and its
matrix rank). Observe [4] that, as a consequence of the
skew symmetry of F, all eigenvalues of F2 are at least of
double multiplicity, and there is always a vanishing
eigenvalue if n is odd. Hence, it turns out [4] to be
sufficient to determine the roots of the following poly-
nomial:

QF2ðxÞ ≔ ðPF2ð−xÞÞ1=2 ðif n evenÞ;

QF2ðxÞ ≔
�
PF2ð−xÞ

x

�
1=2

ðif n oddÞ; ð19Þ

where PF2ð−xÞ refers to the characteristic polynomial of
−F2. Counting multiplicity,QF2ðxÞ has p roots, where p is
the natural number related to the dimension n by

p ≔
�
nþ 1

2

�
− 1;

being bxc ∈ Z the floor function for all x ∈ R, i.e., the
largest integer which is equal or less than x. Then, the
classification result of equivalence classes of F is given by
the following Proposition:
Proposition 2.2. ([4]). Let RootsðQF2Þ denote the set of

roots ofQF2ðxÞ repeated as many times as their multiplicity
and arranged as follows:
(a) If n odd, fσ; μ21;…; μ2pg ≔ RootsðQF2Þ sorted by σ ≥

μ21 ≥ � � � ≥ μ2p if kerF is timelike, where in this case,
necessarily σ > 0. Otherwise, μ21 ≥ � � � ≥ μ2p ≥ 0 ≥ σ.

(b) If n even, f−μ2t ; μ2s ; μ21;…; μ2pg ≔ RootsðQF2Þ sorted
by μ21 ≥ � � � ≥ μ2p ≥ μ2s ¼ −μ2t ¼ 0 if kerF is null.
Otherwise, μ2s ≥ μ21 ≥ � � � ≥ μ2p ≥ 0 ≥ −μ2t , where either
μ2s or μ2t are nonzero.

Then the parameters fσ; μ21;…; μ2pg for n odd and
f−μ2t ; μ2s ; μ21;…; μ2pg for n even determine uniquely the
class ofF up toOð1; nþ 1Þ transformations and hence, also
the class of ξ ≔ Ψ−1ðFÞ up to conformal transformations.
Remark 2.2. It holds in general thatQF2 has at most one

negative root [4]. When n is even and kerF is null, thenQF2

has a root at least double at zero and no negative roots [4].
These are necessary facts that follow from Proposition 2.2.
Note that endomorphisms with equal roots of QF2

(hence, equal eigenvalues with same multiplicities) can
belong to different conformal classes. The idea in [4] is to
introduce an additional invariant, namely the causal char-
acter of kerF, to remove this ambiguity by defining
RootsðQF2Þ, whose elements are sorted depending on
kerF. This gives a well-defined parametrization of the
space of conformal classes, which will be key in Sec. IV.

2It is preferable to use the eigenvalues of F2 because they
are real, and they are in one-to-one correspondence with the
(complex) eigenvalues of F.
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III. THE ASYMPTOTIC CAUCHY PROBLEM
AND THE KERR–DE SITTER-LIKE CLASS

In this section, we review the basics on the asymptotic
Cauchy problem for ðΛ > 0Þ-vacuum, (nþ 1)-dimensional
spacetimes and introduce the definition and properties of
the Kerr–de Sitter-like class of spacetimes, in four dimen-
sions [2,18] as well as its extension to higher dimensions
[15,19]. The results in this section are not new, but they will
be needed in Sec. IV. The following discussion is meant to
summarize these results in order to make the paper self-
contained.

A. Asymptotic Cauchy problem with Λ > 0

As we already mentioned in the introduction, in some
situations, (nþ 1)-dimensional, ðΛ > 0Þ-vacuum space-
times ðM̃; g̃Þ admitting a conformal extension ðM; g ≔
Ω2g̃Þ can be characterized in a neighborhood of I by
asymptotic initial data (i.e., data prescribed at I). This is
true in general for n ¼ 3 by the classical results by
Friedrich [7–9]. In higher dimensions, the asymptotic
characterization results stem from the Fefferman and
Graham formalism [23,24], and hold in general for
(nþ 1) even dimensions [10–12] or when the asymptotic
initial data are analytic [13].
In what follows, we restrict to (nþ 1)-dimensional (with

n ≥ 3), ðΛ > 0Þ-vacuum metrics, which admit a locally
conformally flat I . In this case, the asymptotic initial data
[15] are a conformally flat Riemannian n-manifold ðΣ; γÞ,
which prescribes the geometry of I via an isometric
embedding ι∶Σ ↪ I ⊂ M, together with a transverse and
traceless tensor, or TT tensor, D which prescribes the
electric part of the rescaled Weyl tensor. Namely,

D ≔ ι⋆ðjgradgΩj−2Ω2−nCðgradgΩ; ·; gradgΩ; ·ÞÞ; ð20Þ

where C is the 4-covariant Weyl tensor of ðM; gÞ.
The conformal flatness of I is not required in the
n ¼ 3 case for (20) to hold true, but it is indeed needed
for n > 3 [15]. Actually, the (smooth) extendability of
Ω2−nCðgradgΩ; ·; gradgΩ; ·Þ to I is a nontrivial result
(cf. [15,25]) for n > 3, which relies strongly on the
assumption of local conformal flatness of I . For n ¼ 3,
the extendability ofΩ−1C to a generic I is a consequence of
the Weyl tensor vanishing identically in three dimensions.
In addition, the characterization of spacetimes in terms of

asymptotic initial data is independent of the conformal
factor Ω. As a consequence the data have the following
conformal equivalence:

ðΣ; γ; DÞ ≃ ðΣ;ω2γ;ω2−nDÞ; ∀ω ∈ C∞ðΣ;RþÞ; ð21Þ

in the sense that any pair of data correspond to the same
physical spacetime ðM̃; g̃Þ if and only if they are related
by (21).

Now, let ðΣ; γ; DÞ be asymptotic data for ðM̃; g̃Þ. Then,
for a CKV ξ of γ, the following KID equation:

LξDþ n − 2

n
ðdivγξÞD ¼ 0 ð22Þ

is proven to be a necessary and sufficient condition for g̃ to
admit a KVX such that ξ ¼ XjI , in general if n ¼ 3 [16] and
assuming that ðγ; DÞ are analytic for n > 3 [15] [there is no
proof yet for the general n > 3 case, but we believe that (22)
asymptotically characterizes symmetries in general.] It is a
matter of direct computation to show that if ðΣ; γ; D; ξÞ
satisfies theKIDequation, so does ðΣ;ω2γ;ω2−nD; ξÞ. Then,
for any element φ ∈ ConfðΣ; γÞ, the following equivalences
are ready:

ðΣ; γ; D; ξÞ ≃ ðΣ;φ⋆ðγÞ;φ⋆ðDÞ;φ−1⋆ ðξÞÞ
¼ ðΣ;ω2γ;ω2−nD;φ−1⋆ ðξÞÞ
≃ ðΣ; γ; D;φ−1⋆ ðξÞÞ; ð23Þ

the first one arising from the fact that φ is a diffeomorphism
and the last one from (21). Therefore, a particular KVof the
bulk spacetime is not associated to a single CKV ξ satisfying
(22), but its whole conformal class [ξ] of CKVs satisfying
(22) [here it is crucial that each representative of [ξ] is a
solution of (22)].

B. The Kerr–de Sitter-like class

In four spacetime dimensions (i.e., n ¼ 3), the vanishing
of the Mars-Simon tensor for a particular KV [26,27]
characterizes Kerr–de Sitter and related spacetimes [28].
The class of four-dimensional spacetimes, which are
ðΛ > 0Þ-vacuum, conformally extendable and admitting
a KV X whose Mars-Simon tensor vanishes defines the so-
called Kerr–de Sitter-like class of spacetimes. In the locally
conformally flat I case3 [2], the asymptotic data character-
izing this class is a conformally flat Riemannian 3-manifold
ðΣ; γÞ and a TT tensor D of the form,

D ¼ κDξ; where Dξ ≔
1

jξj5γ

�
ξ ⊗ ξ −

jξj2γ
3

γ

�
;

κ is a real constant, ξ is a CKVof γ satisfying XjI ¼ ξ [thus
also (22)] and ξ ≔ γðξ; ·Þ. Using the results discussed above
on asymptotic characterization of (nþ 1)-dimensional
spacetimes, one can extend, by means of asymptotic data,
the definition of the Kerr–de Sitter-like class in the
conformally flat I case to all dimensions [19]. Namely:
Definition 3.1. The (nþ 1)-dimensional Kerr–de Sitter-

like class with conformally flat I is defined as the set of

3The nonconformally flat I cases were also studied in [18], but
the results are not needed for our purposes here.
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ðΛ > 0Þ-vacuum spacetimes, which admit a conformally
flat I and such that

D ¼ κDξ; where Dξ ≔
1

jξjnþ2
γ

�
ξ ⊗ ξ −

jξj2γ
n

γ

�
; ð24Þ

κ is a real constant and ξ is a CKVof the (conformally flat)
metric γ at I .
We remark that this is not an ad hoc definition, but it

naturally follows after checking [15] that the asymptotic
data of the Gibbons et al. definition of the Kerr–de Sitter
metrics [29] consist of a conformally flat manifold ðΣ; γÞ
and a tensor D of the form (24), for a particular choice
of ξ. Allowing ξ to be an arbitrary CKV keeps the
traceless and transverse property of Dξ, and thus, provides
a natural generalization of the data, which in turn general-
izes the definition of Kerr–de Sitter-like class to higher
dimensions. Moreover, in all cases, ξ satisfies the KID
equation (22).
From the data equivalence (21), it follows [19] that the

datasets in the Kerr–de Sitter-like class satisfy the following
equivalence property:

ðΣ; γ; κDξÞ ≃ ðΣ; γ; κDξ0 Þ ⇔ ξ0 ¼ φðξÞ;
for some φ ∈ ConfðΣ; γÞ: ð25Þ

This has more serious consequences than simply the fact
that the conformal class [ξ] characterizes a unique KV
[cf. (23)]. Due to the role that [ξ] plays in the construction
of the data in the Kerr–de Sitter-like class, equivalence (25)
actually means that the metrics in the Kerr–de Sitter-like
class (with conformally flat I) are in one-to-one corre-
spondence with the conformal classes of CKVs of locally
conformally flat metrics. Hence, the moduli space of
metrics in this class is represented by the space of
parameters in Proposition 2.2. Moreover, the quotient
topology naturally defined in the space of conformal
classes is inherited by the space of metrics in the Kerr–
de Sitter-like class. The main result in [19] exploits this fact
to provide an explicit reconstruction of all the metrics in the
Kerr–de Sitter-like class as limits of Kerr–de Sitter or an
analytic extension thereof. Moreover, they are proven to
exhaust the set of Kerr-Schild metrics on a locally de Sitter
background with an additional decay condition:
Theorem 3.1. [19] Let ðM̃; g̃Þ be a ðΛ > 0Þ-vacuum

(nþ 1)-dimensional spacetime, such that g̃ admits the Kerr-
Schild form on a locally de Sitter background, namely,

g̃ ¼ g̃dS þHk ⊗ k; ð26Þ

where g̃dS is locally isometric to de Sitter, H is a smooth
function on M̃ and k a null one-form (with respect to both
g̃ and g̃dS). Additionally, assume that g̃ admits a smooth
conformal extension such that Ω2Hk ⊗ k ¼ OðΩÞ. Then

and only then g̃ belongs to the Kerr–de Sitter-like class with
locally conformally flat I .

IV. AN APPLICATION: CLASSIFICATION OF
ALGEBRAICALLY SPECIAL ðΛ > 0Þ-VACUUM

SOLUTION IN FIVE DIMENSIONS

In [17], the problem of determining the most general
algebraically special spacetime in five dimensions that
solves the vacuum Einstein field equations,

Rαβ ¼ 4λgαβ; λ ∈ R;

is addressed.4 Algebraically special means that the space-
time ðM; gÞ admits a multiple Weyl aligned null direction
(WAND) l. A multiple WAND is a nonidentically vanish-
ing null vector field satisfying [31]

lbl½eCa�b½cdlf� ¼ 0;

where Cabcd is the Weyl tensor of ðM; gÞ. Multiple WANDs
are always geodesic, ∇ll ∝ l. Admitting a multiple
WAND is equivalent to the algebraic classification of the
Weyl tensor, as extended by Coley et al. at d-dimensions
[32], being of type II or more special.
The problem in [17] is solved under the additional

hypothesis that the so-called optical matrix of l is non-
degenerate.5 The optical matrix ρ encodes the kinematical
properties of the congruence of null geodesics defined by l.
Geometrically, it is a (0, 2)-tensor defined on the quotient
vector space at each point p ∈ M of equivalence classes
l⊥=∼, where two vectors X; Y ∈ TpM orthogonal to l are
related by ∼ if and only if X − Y is proportional to l. Its
definition is

ρðX̄; ȲÞ ≔ gðX;∇YlÞ; X ∈ X̄; Y ∈ Ȳ;

and one checks at once that ρ is well-defined, i.e.,
independent of the choice of representative X ∈ X̄, Y ∈ Ȳ.
Since our interest here lies in the case λ > 0, we quote

the results in [17] restricted to this situation. Specifically,
the main result in [17] states that under the above
conditions and λ > 0 the most general solution of the
Einstein field equations belongs to one of three families of
metrics, classified according to the eigenvalues of ρ.
Namely, the eigenvalues of ρ can be written in terms of
r and χ, being the former the affine parameter along the null
geodesics of l and the latter a constant function along the
same congruence of geodesics. The three cases arise
depending on whether χ is not everywhere constant or,
if constant, whether this constant is zero or not.

4In [30], Λ ¼ 4λ is used instead. We prefer λ, which matches
directly the notation used [15,19].

5The problem is also solved in the degenerate case in [30] and
references therein. We restrict to the nondegenerate case.
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Case 1 (χ ≠ 0; dχ ≠ 0). The functions fr; χg are com-
pleted to local coordinates fr; u; χ; x; yg and in terms
of real constants A0, μ0, C0, E0 such that

PðχÞ ≔ C0 −
E2
0

χ2
− 2A0χ

2 − λχ4

is positive in some interval I ⊂ Rnf0g and with χ
taking values on I the metric is

g̃1 ¼ −2σ1drþ r2 þ χ2

PðχÞ dχ2 þ hijσiσj;

where the one-forms σi are σ1 ≔ duþ χ2dy,
σ2 ≔ dx − E0

χ2
dy, σ3 ≔ dy and hij is the matrix,

hij ¼

0
B@

−2HðrÞ E0 −PðχÞ
E0 r2χ2 0

−PðχÞ 0 ðr2 þ χ2ÞPðχÞ

1
CA;

HðrÞ ≔ A0 −
λ

2
ðr2 − χ2Þ − μ0

2ðr2 þ χ2Þ :

Case 2 (χ ≠ 0; dχ ¼ 0). Here χ acts as a parameter, and
there exist local coordinates fr; u; x; θ;ϕg and real
constants E0, μ0 such that, with τ ≔ duþ 2χ

F0
cos θdϕ,

the metric reads

g̃2 ¼ −2τdr−GðrÞτ2 þ r2
�
dxþE0

χ3

�
1þ χ2

r2

�
τ

�
2

þ r2 þ χ2

F0

ðdθ2 þ sin2θdϕ2Þ;

GðrÞ≔ E2
0

χ4

�
1þ χ2

r2

�
− λðr2 þ χ2Þ− μ0

r2 þ χ2
;

F0 ≔ 4

�
λχ2 þE2

0

χ4

�
:

Case 3 (χ ¼ 0; dχ ¼ 0). The metric is

g̃3 ¼ −
�
κ −

μ0
r2

− λr2
�
du2 − 2dudrþ r2h;

where μ0 ∈ R and h is a Riemannian three-dimen-
sional metric of constant curvature κ ∈ f−1; 0; 1g.

In all cases, the metrics admit a smooth conformal
compactification. Indeed, the metric gi ¼ 1

r2 g̃i i ¼ 1, 2, 3
followed by the change of variable Ω ¼ 1=r yields a metric
that is smooth in Ω and extends as a Lorentzian metric to
I ≔ fΩ ¼ 0g. The corresponding metrics at I , denoted by
γi take the form,

γ1¼
dχ2

PðχÞþλðduþχ2dyÞ2þχ2
�
dx−

E0

χ2
dy

�
2

þPðχÞdy2;

γ2¼ λτ2þ
�
dxþE0

χ3
τ

�
2

þ 1

F0

ðdθ2þ sin2θdϕ2Þ

γ3¼ λdu2þh:

By direct computation, one can check that the Weyl tensor
of each one of these metrics is identically zero, so γi are
locally conformally flat. As discussed in Sec. III, in the
locally conformally flat I case the rescaled Weyl tensor is
smoothly extendable to I and prescribes the TT tensorD in
the asymptotic initial data [cf. (20)], after a suitable
identification via the isometric embedding ι∶ðΣ; γÞ ↪
ðM; gÞ such that ιðΣÞ ¼ I .
In the present case, I is simply fΩ ¼ 0g and the

embedding is trivial in these adapted coordinates, so it is
a matter of direct computation to determine the tensorD via
formula (20). It turns out that in all three cases, this tensor
takes the following form:

DAB ¼ 4μ0λ
2

jξj6γ

�
ξAξB −

jξj2γ
4

γAB

�

and the vector ξ are given in each case by the following
expressions:

ðCase 1Þ∶ ξ1 ¼ ∂u;

ðCase 2Þ∶ ξ2 ¼ ∂u −
E0

χ3
∂x;

ðCase 2Þ∶ ξ3 ¼ ∂u:

Moreover it is also a matter of direct computation to check
that each vector field ξi is a conformal Killing vector of the
corresponding metric γi. In other words: all the three cases
belong to the Kerr–de Sitter-like class (cf. Definition 3.1).
Now a natural question is to ask whether they are a subset
within or they span the whole Kerr–de Sitter-like class. To
address this question, we use the fact that the metrics in this
class are in one-to-one correspondence [cf. (21)] with the
conformal classes of the CKVs determining D. Hence, we
must check that all possible conformal classes f½ξi�g for the
admissible values of the parameters in g̃i cover the space of
conformal classes given in Proposition 2.2.
Observe that the parameter μ0 always appears as a

scaling constant in DAB. This means that it can be set
to6 ϵ ¼ signðμ0Þ by suitably absorbing its norm into ξ.
Namely, by defining ξ0 ≔ jμ0j−1=2ξ, it follows

DAB ¼ 4μ0λ
2

jξj6γ

�
ξAξB −

jξj2γ
4

γAB

�

¼ 4ϵλ2

jξ0j6γ

�
ξ0Aξ

0
B −

jξ0j2γ
4

γAB

�
: ð27Þ

This scale freedom will be relevant to prove that f½ξi�g
covers all possible conformal classes of four-dimensional
conformally flat metrics.

6By considering signð0Þ ¼ 0, we may include the case μ0 ¼ 0,
which corresponds to de Sitter-spacetime.
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In order to determine the conformal class of ξi, we use the results of Sec. II. One simply needs to fix any point p ∈ I ,
compute the quantities associated to ξi that appear in Theorem 2.5 and construct the endomorphism. The result, expressed in
the basis vα of Theorem 2.5 is

Case 1∶ Fξ1 ¼

0
BBBBBBBBBB@

0 0 −λðA0 þ λ
2
χ20Þ E0λ λðA0χ

2
0 − C0 þ λ

2
χ40Þ 0

0 0 0 0 λχ0Pðχ0Þ 0

−1 λχ30Pðχ0Þ−1 0 0 0 −A0 þ λ
2
χ20

0 −E0λχ
−1
0 Pðχ0Þ−1 0 0 0 0

0 −λχ0Pðχ0Þ−1 0 0 0 −λ
0 0 −λ 0 −λχ20 0

1
CCCCCCCCCCA
;

Case 2∶ Fξ2 ¼

0
BBBBBBBBBB@

0 λF0

8
λE0

χ 0 1
4
λχ cos θ0 0

−1 0 0 − 2λχ2

F0
cotanθ0 0 1

2
ðλχ2 − E2

0

χ4
Þ

E0

χ3
0 0 0 0 E0F0

8χ3

0 0 0 0 −λχ sin θ0 0

0 0 0 λχ
sin θ0

0 0

0 −λ 0 0 − 2λχ cos θ0
F0

0

1
CCCCCCCCCCA
;

Case 3∶ Fξ3 ¼

0
BBBBBBBBB@

0 − λ
2
κ 0 0 0 0

−1 0 0 0 0 − κ
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −λ 0 0 0 0

1
CCCCCCCCCA
;

where the point p has coordinates fχ0; u0; x0; y0g in case 1
and coordinates fu0; x0; θ0;ϕ0g in case 2. (It is not
necessary to give values to the coordinates of p in case
3 as they do not explicitly appear in the matrix.)
In order to simplify the notation we denote Qi ≔ QFξi

the polynomials (19) corresponding to the three cases. They
are given (up to an irrelevant global sign) by

Case 1∶ Q1 ¼ z3 þ 2A0λz2 − C0λ
3zþ E2

0λ
5;

Case 2∶ Q2 ¼
�
zþ λE2

0

χ4

�
ðz − λ2χ2Þ2;

Case 3∶ Q3 ¼ z2ðzþ κλÞ:

Observe that these polynomials are independent of the
point p. This is a necessary fact because the conformal
class of the Killing vector is independent of the point, and
hence the algebraic classification of Fξ up to conjugation
must also be independent of the point. This provides a
nontrivial test both to the validity of Theorem 2.5 and for
the calculations in this section.

We know from Proposition 2.2 (cf. [4]) that the classi-
fication of Fξi is given by the set of parameters
RootsðQiÞ ¼ f−μ2t ; μ2s ; μ2g, which are the roots of Q1

sorted in a way determined by the causal character of
kerðFξiÞ. Thus, it is necessary to establish case by case the
connection between the parameters defining the metrics g̃i
and RootsðQiÞ.
Case 1.
First, observe that

Q1ðχ̃2Þ ¼ −λ3χ̃2Pðλ−1χ̃Þ: ð28Þ

Hence, the roots of Q1 are determined by the roots of the
polynomial χ2PðχÞ. The parameters fA0; C0; E0g defining
PðχÞ are restricted by the condition of PðχÞ being positive
in some interval I ∈ Rnf0g, which is clearly equivalent to
imposing this same condition on the polynomial χ2PðχÞ.
Moreover, χ2PðχÞ is an even polynomial, which has
negative dominant term, i.e., χ2PðχÞ → ∞ as χ → �∞.
If E0 ¼ 0, then χ2PðχÞ has a root at χ ¼ 0 which is at least
double. So if χ2PðχÞ is to be positive on I, it either has one
positive root (and its corresponding negative root) if f0g is
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in the closure of I, or two positive roots (and their
corresponding negative roots) otherwise (cf. Fig. 1). If
E0 ≠ 0, then χ2PðχÞ is negative at the origin, so if χ2PðχÞ is
to be positive on I, it must have exactly two positive
different roots (and their corresponding negative roots)
(cf. Fig. 1).
All the above cases are covered by the polynomial

decomposition,

χ2PðχÞ ¼ −λðχ2 − a2Þðχ2 − b2Þðχ2 þ c2Þ;

where a2, b2, c2 are real constants satisfying

a2 þ b2 − c2 ¼ 2
A0

λ
; − a2b2 þ a2c2 þ b2c2 ¼ C0

λ
;

a2b2c2 ¼ E2
0

λ
; ð29Þ

with a2 ≠ b2 [as otherwise the positivity of χ2PðχÞ cannot
hold]. After swapping a and b if necessary we may assume
a2 > b2 ≥ 0. The argument can be read in the opposite
direction: only by choosing any constants a, b, c such that
a ≠ b and a2 > b2 ≥ 0 and defining the parameters
fA0; C0; E0g via (29), one obtains a function PðχÞ which
is positive in some interval I ∈ Rnf0g.
Therefore, by (28), the roots of Q1 are always

fλa2; λb2;−λc2g. According to Proposition 2.2, to deter-
mine their correspondence with f−μ2t ; μ2s ; μ2g, we must sort
fλa2; λb2;−λc2g depending on the causal character of
kerFξ1 . By Proposition 2.2, the sorting is such that −μ2t ¼
μ2s ¼ 0 and μ2 ¼ λa2, whenever kerðFξ1Þ is null (in which
case, by Remark 2.2, Q1 has an at least double root at zero
and no negative roots) and −μ2t ¼−λc2;μ2s¼λa2;μ2¼λb2

when kerðFξ1Þ is non-null.
If E0 ≠ 0, then zero is not a root of Q1. Being Q1 the

square root of the characteristic polynomial of F2 [see
(19)], this implies that Fξ1 has no zero eigenvalues. Thus,
kerFξ1 ¼ f0g and by Proposition 2.2, the conformal class
of ξ1 is given by
(1a) −μ2t ¼ −λc2, μ2s ¼ λa2 and μ ¼ λb2 covering the

region fμ2s > μ2 > 0 > −μ2t g.
When E0 ¼ 0 it is straightforward to compute the kernel

of Fξ1 . The result is

kerðFξ1Þ

¼ span

�
u1≔v4;u2≔v1þv2þ 1

χ0
v3−

�
A0þ

λ

2
χ20

�
v6
	
;

so the kernel is two-dimensional in this case. The pull-back
of the scalar product Q on this space is

Qðu1; u1Þ ¼ 1

χ20
; Qðu1; u2Þ ¼ 0; Qðu2; u2Þ ¼ C0

χ20
:

This is timelike if C0 < 0, null if C0 ¼ 0 and spacelike if
C0 > 0. By (29), E0 ¼ 0 requires the vanishing of b2 and/
or c2, and by Proposition 2.2, the conformal class of ξ1 is
given by
(1b) If c2¼0;b2≠0, then C0<0 and −μ2t ¼ 0, μ2s ¼ λa2,

μ ¼ λb2 cover the region fμ2s >μ2>0¼−μ2t g.
(1c) If c2 ≠ 0; b2 ¼ 0, then C0 > 0 and −μ2t ¼ −λc2,

μ2s¼λa2, μ¼0 cover the region fμ2s >μ2¼0>−μ2t g.
(1d) If c2¼0;b2¼0, then C0 ¼ 0 and −μ2t ¼ 0, μ2s ¼ 0,

μ ¼ λa2 cover the region fμ2 > 0 ¼ μ2s ¼ −μ2t g.
Case 2.
In this case, the roots of Q2 are immediately found to be

−λE2
0=χ

4 together with the double root λ2χ2. If E0 ≠ 0, it
again follows that kerFξ2 ¼ f0g; thus, the conformal class
of ξ2 is given by the parameters −μ2t ¼ −λE2

0=χ
4, μ2s ¼

μ ¼ λ2χ2 covering the region fμ2s ¼ μ2 > 0 > −μ2t g. When
E0 ¼ 0 the kernel of Fξ2 is

kerðFξ2Þ ¼ span

�
u1 ≔ v3; u2 ≔ v1 þ λχ2

2
v6
	
;

so the kernel is again two dimensional and Q restricted to
this space is

Qðu1; u1Þ ¼ 1; Qðu1; u2Þ ¼ 0; Qðu2; u2Þ ¼ −
4

λχ2
:

Thus, kerðFξ2Þ is timelike, and the conformal class of ξ2 is
given by
(2) −μ2t ¼ 0, μ2s ¼ μ ¼ λ2χ2 covering the region

fμ2s ¼ μ2 > 0 ¼ −μ2t g.
Case 3.
In this case, the roots of Q3 are also trivial. There is a

double root at zero and another one at −λκ. Note that from
the scaling freedom of ξ [cf. (27)], Fξ3 is also defined up to

FIG. 1. Possible profiles of the polynomial χ2PðχÞ: ðiÞ E0 ¼ 0 with one real positive root, ðiiÞ E0 ¼ 0 with two real positive roots,
ðiiiÞ E0 ≠ 0.
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a scaling factor jμ0j1=2 and F2
ξ3
up to jμ0j. Then the root −λκ

can be scaled by a nonzero positive factor −λjμ0jκ, which
will be relevant to cover the maximal space of parameters in
the space of conformal classes. Observe that (in any of the
three cases) there is no restriction on the value of μ0.
The kernel of the endomorphism is

kerðFξ3Þ¼ span

�
u1≔v1−

κ

2
v6;u2≔v3;u3≔v4;u4≔v5

	
;

hence, four dimensional and Q restricted to this space is

Qðu1; u1Þ ¼ κ; Qðu2; u2Þ ¼ 1;

Qðu3; u3Þ ¼ 1

Σ2jp
; Qðu4; u4Þ ¼ 1

ðΣ2sin2θÞjp
;

and the rest zero, and where we have written the constant
curvature metric as

h ¼ dψ2 þ Σ2ðψÞðdθ2 þ sin2 θdϕ2Þ:

The kernel is now spacelike if κ > 0, degenerate if κ ¼ 0
and timelike if κ < 0. Thus, for each case, the conformal
class of ξ3 is
(3a) For κ ¼ 1, −μ2t ¼ −λjμ0j, μ2s ¼ μ ¼ 0 covering the

region fμ2s ¼ μ2 ¼ 0 > −μ2t g.
(3b) For κ ¼ 0, −μ2t ¼ μ2s ¼ μ ¼ 0 covering a single

point.
(3c) For κ ¼ −1, μ2s ¼ λjμ0j, −μ2t ¼ μ ¼ 0 covering the

region fμ2s > μ2 ¼ 0 ¼ −μ2t g.
Summarizing, the cases 1,2 and 3 correspond to CKVs

ξ1, ξ2 and ξ3 whose respective conformal classes cover the
space of parameters,

A¼fð−μ2t ;μ2s ;μ2Þ∈R3jμ2s ≥μ2≥0≥−μ2t ; withμ2t or μ2s ≠0g
∪fð−μ2t ;μ2s ;μ2Þ∈R3jμ2≥0¼μ2s ¼−μ2t g:

By Proposition (2.2), A corresponds to the entire space
parameterizing the conformal classes of CKVs of con-
formally flat 4-metrics. Thus, we have proven that these
metrics correspond exactly to all metrics in the five-
dimensional Kerr–de Sitter-like class. This, combined with
Theorem 3.1, yields the following result:
Theorem 4.1. In five spacetime dimensions, the follow-

ing classes of ðΛ > 0Þ-vacuum metrics are equivalent:
(1) The Kerr–de Sitter-like class (cf. Definition 3.1).
(2) The Kerr-Schild type metrics on a locally de Sitter

background [cf. (26)] admitting a smooth conformal
extension such that Ω2Hk ⊗ k ¼ OðΩÞ.

(3) The algebraically special metrics with nondegener-
ate optical matrix.

V. DISCUSSION

We have obtained a method to determine the conformal
class of an arbitrary CKV ξ of a locally conformally
flat metric γ of any dimension and signature. Such
method is based on pointwise properties of the CKVs,
and it is independent on the coordinates and the repre-
sentative of the class of metrics conformal to γ. This
improves previously existing results (cf. [15,19]), which
require to find an explicitly flat representative in Cartesian
coordinates.
Our result is stated as a computationally neat algorithm

in Theorem 2.5, which allows for a straightforward
application in Sec. IV. Namely, we classify the asymptotic
data of all five-dimensional, algebraically special, ðΛ > 0Þ-
vacuum spacetimes, whose optical matrix is nondegenerate
(cf. [17]). Such asymptotic data are determined by the
conformal class of a CKV of a conformally flat I .
Furthermore, we prove equivalence of this collection of
spacetimes with the Kerr–de Sitter-like class as well as with
the ðΛ > 0Þ-vacuum Kerr-Schild spacetimes satisfying a
natural asymptotic condition (cf. Theorem 3.1).
It is worth commenting that the results of Sec. IV, besides

providing an application of Theorem 2.5, outline the way
for potential future results. As pointed out in [17], in
dimensions higher than four, there exist several results
(cf. [33,34]) supporting the idea that the class of algebrai-
cally special solutions is more rigid than in four dimen-
sions. One then wonders whether Theorem 3.1 also holds in
any dimension higher than five. Surprisingly, the results in
[17] do not rely on any asymptotic property of the
spacetime, while in [19] it is central. Yet, the class of
spacetimes studied [17] and in [19] (in five spacetime
dimensions) happen to be equivalent, as we have shown in
this paper. This hints a possible connection between
asymptotic properties of spacetimes and the algebraic
classification of the Weyl tensor. More precisely, the
algebraically special condition with non-degenerate optical
matrix implies conformal extendability with locally con-
formally flat I . A better understanding of this aspect would
be of substantial intrinsic interest and key for extending
Theorem 3.1 to arbitrary dimensions.
It is also interesting to observe that the Weyl tensor C of

the spacetime determines, in any dimension, the Weyl
tensor7 c of the metric γ induced at I . Indeed, an
asymptotic expansion of C, shows that its components
fully tangent to I coincide with c to the leading order.
The Weyl tensor contains a lot of information about the
conformal class of metrics of dimension equal or
higher than four,8 so it would not be surprising that the

7Note that c and D as defined in (20), are indeed independent
objects at I , however both obtainable from the spacetime Weyl
tensor C at I .

8The conformal class determines the Weyl tensor, but the
opposite is not always true, cf. [35].

COVARIANT CLASSIFICATION OF CONFORMAL KILLING … PHYS. REV. D 106, 084045 (2022)

084045-15



algebraically special condition on C imposes strong con-
ditions on the conformal class of (four or higher dimen-
sional) γ. However, in four spacetime dimensions, γ is three
dimensional and thus, c vanishes identically, so it is not
clear in this case how the algebraic type of C affects the
conformal class of γ. The difference between the four and
higher dimensional cases may be responsible for the lack of
rigidity of algebraically special metrics in four dimensions,
because recall (cf. Sec. III) that the conformal class of γ is
one of the freely speciable data in the asymptotic
Cauchy problem. This, however, does not rule out other
possible relations between the algebraic type of the four-
dimensional spacetime metrics and their asymptotic proper-
ties. One connection may arise from the fact that the other
component of the asymptotic data is, in four dimensions,
the electric part of the rescaled Weyl tensor (cf. Sec. III).

In addition, constraints on the conformal class of γ may also
appear as a consequence of the relation between C and
Cotton tensor of γ, which plays a similar role than the Weyl
tensor for three-dimensional metrics. These potential con-
nections are worth to investigate in the future.
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(2005).

[11] M. T. Anderson and P. T. Chruściel, Asymptotically simple
solutions of the vacuum Einstein equations in even dimen-
sions, Commun. Math. Phys. 260, 557 (2005).

[12] W. Kamiński, Well-posedness of the ambient metric equa-
tions and stability of even dimensional asymptotically
de Sitter spacetimes, arXiv:2108.08085.

[13] S. Kichenassamy, On a conjecture of Fefferman and
Graham, Adv. Math. 184, 268 (2004).

[14] R. Beig and P. T. Chruściel, Killing initial data, Classical
Quantum Gravity 14, A83 (1997).

[15] M. Mars and C. Peón-Nieto, Free data at spacelike I and
characterization of Kerr-de Sitter in all dimensions, Eur.
Phys. J. C 81, 914 (2021).

[16] T. T. Paetz, Killing Initial Data on spacelike conformal
boundaries, J. Geom. Phys. 106, 51 (2016).

[17] G. Bernardi de Freitas, M. Godazgar, and H. S. Reall,
Uniqueness of the Kerr-de Sitter spacetime as an algebrai-
cally special solution in five dimensions, Commun. Math.
Phys. 340, 291 (2015).

[18] M. Mars, T. T. Paetz, J. M.M. Senovilla, and W. Simon,
Characterization of (asymptotically) Kerr-de Sitter-like
spacetimes at null infinity, Classical Quantum Gravity 33,
155001 (2016).

[19] M. Mars and C. Peón-Nieto, Classification of Kerr-de Sitter-
like spacetimes with conformally flat I in all dimensions,
Phys. Rev. D 105, 044027 (2022).

[20] J. A. Valiente-Kroon, Conformal Methods in General
Relativity (Cambridge University Press, Cambridge, 2016).

[21] A. Derdzinski, Two-jets of conformal fields along their zero
sets, Cent. Eur. J. Math. 10, 1698 (2012).

[22] D. E. Blair, Inversion Theory and Conformal Mapping,
Student Mathematical Library (American Mathematical
Society, Providence, Rhode Island, 2000).

[23] C. Fefferman and C. R. Graham, Conformal invariants., Élie
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(Société mathématique de France, France, 1985).

[24] C. Fefferman and C. R. Graham, The Ambient Metric,
Annals of Mathematics Studies (Princeton University Press,
Princeton, NJ, 2012).

MARC MARS and CARLOS PEÓN-NIETO PHYS. REV. D 106, 084045 (2022)

084045-16

https://doi.org/10.1088/1361-6382/aa5dc2
https://doi.org/10.1088/1361-6382/abc18a
https://doi.org/10.1088/1361-6382/abc18a
https://doi.org/10.1088/1361-6382/abf413
https://doi.org/10.1088/1361-6382/abf413
https://doi.org/10.1098/rspa.1981.0045
https://doi.org/10.1098/rspa.1981.0159
https://doi.org/10.1007/BF01205488
https://doi.org/10.1007/BF01205488
https://doi.org/10.1007/s00023-005-0224-x
https://doi.org/10.1007/s00023-005-0224-x
https://doi.org/10.1007/s00023-005-0224-x
https://doi.org/10.1007/s00220-005-1424-4
https://arXiv.org/abs/2108.08085
https://doi.org/10.1016/S0001-8708(03)00145-2
https://doi.org/10.1088/0264-9381/14/1A/007
https://doi.org/10.1088/0264-9381/14/1A/007
https://doi.org/10.1140/epjc/s10052-021-09704-6
https://doi.org/10.1140/epjc/s10052-021-09704-6
https://doi.org/10.1016/j.geomphys.2016.03.005
https://doi.org/10.1007/s00220-015-2447-0
https://doi.org/10.1007/s00220-015-2447-0
https://doi.org/10.1088/0264-9381/33/15/155001
https://doi.org/10.1088/0264-9381/33/15/155001
https://doi.org/10.1103/PhysRevD.105.044027
https://doi.org/10.2478/s11533-012-0049-z


[25] S. Hollands, A. Ishibashi, and D. Marolf, Comparison
between various notions of conserved charges in asymp-
totically AdS spacetimes, Classical Quantum Gravity 22,
2881 (2005).

[26] M. Mars, A spacetime characterization of the Kerr metric,
Classical Quantum Gravity 16, 2507 (1999).

[27] W. Simon, Characterizations of the Kerr metric, Gen.
Relativ. Gravit. 16, 465 (1984).

[28] M. Mars and J. M. M. Senovilla, A spacetime characteri-
zation of the Kerr-NUT-(A)de Sitter and related metrics,
Ann. Henri Poincaré 16, 1509 (2015).
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