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Chen et al. argued recently that, in Bondi-Sachs spacetimes, the angular momentum at scri (null infinity)
should vary continuously with the position of the cut (but not depend sensitively on its derivatives); they
showed that this property was enjoyed by some definitions but not others. I show here that the twistor
definition has this continuity. The argument is rather different from the one of Chen et al., with the invariant
geometry of scri at the forefront. The flux, in the sense of the angular momentum emitted between two
infinitesimally separated cuts, is calculated; this flux can be interpreted as the first variation of the angular
momentum with respect to the cut. Examining the second variation, one finds that the twistor definition,
unlike most others, responds to correlations in radiation between different asymptotic directions. The
twistor angular momentum is thus sensitive to a qualitatively different structure in the asymptotic field than
are the currently more used ones.

DOI: 10.1103/PhysRevD.106.084044

I. INTRODUCTION

The problems of elucidating both the physical content
and the mathematical characterization of gravitational
radiation occupied relativists for a good fraction of the
past century. A burst of progress occurred around
1957–1962, with the “sticky bead” argument convincing
holdouts that the waves had physical significance, and then
the papers of Bondi, Sachs, and coworkers [1–3] consid-
erably clarifying the mathematical structure involved.1 This
was based on insights which allowed the systematic and
careful control of the gauge freedom appropriate to isolated
systems.
One of their first and most powerful results was the

identification of the energy-momentumof such a system, not
just in its totality, but as a function of anyBondi retarded time
parameter, what we now call a cut of Penrose’s future null
infinity Iþ (scri plus). It was hoped one could get a parallel
definition of angularmomentum, but it became clear that that
problem would require further conceptual advances.
Although Bondi, Metzner, and Sachs (BMS) found what
was naturally interpretable as a four-dimensional family of
asymptotic translations at Iþ, there was no preferred
extension to an asymptotic Poincaré group. The usual
foundations for the treatment of angular momentum were
absent: something new would have to be done.
There have since been many proposed approaches to this

problem, and there is at present no consensus even on the

general form of the solution (see Refs. [6–8] for a review,
some further recent references, and some comments).
Recently, Chen et al. [7] have argued that, whatever
definition is adopted, it should not depend sensitively on
the differential structure of the cut z at which it is evaluated.
More precisely, the angular momentum should vary con-
tinuously with uniform (C0) changes in the location of the
cut; one should not also have to control the derivatives of z.
This may be called sup-norm continuity.2

Although usually in physics the degree of differenti-
ability of a quantity is not very significant, there are strong
arguments for taking seriously the criterion of Chen et al. It
would give angular momentum a kind of stability against
perturbations which do not change the position of the cut
much but make it crinkly, and it can be regarded as the
“next best thing” to the existence of a flux; these are both
highly desirable properties. Chen et al. have shown that
some proposed definitions (the Dray-Streubel BMS
charges [9,10], and the Chen-Wang-Wang-Yau (CWWY)
spatial angular momentum [11]) are sup-norm continuous,
but some others (most of those included in the Compère-
Nichols family [12]) are not.
I will show here that the twistor definition of angular

momentum [8,13] is sup-norm continuous. This definition
has a number of attractive features, particularly in providing
physical interpretations of the quantities involved, being
manifestly free of supertranslation ambiguities, and having
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1It is not possible, in this space, to give credit to all those who

made important contributions; see Refs. [4,5] for many details.

2So we are considering a map from the space of cuts to some
sort of space of values of angular momentum, and we are asking
if this is continuous when a relatively coarse topology is chosen
for the source space.
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an intuitively satisfying notion of center of mass. It perhaps
would readily be expected to be sup-norm continuous,
because it is built around Penrose’s quasilocal twistor
equations, which form an elliptic system and so have
stability properties, but establishing the results is nonethe-
less technical.
Chen et al. bootstrapped their analysis by considering

how definitions differed from the Dray-Streubel one (for
which the result follows from the existence of a flux
density3), reducing the problem to ad hoc questions about
the differences. However, the twistor approach is more
delocalized than any of those and cannot be usefully
regarded as a perturbation of them. A direct analysis based
on the twistor ideas is best, and this brings the invariant
geometry of scri in the spin-coefficient formalism to
the fore.
Along the way, explicit formulas for the twistor quan-

tities at cuts supertranslated relative to a given Bondi
system are derived; these will be more broadly useful. It
will follow from these that the twistorial definition extends
sup-norm continuously to C0 cuts. The flux is easily
computed. It is natural to ask at this point whether the
flux arises from a flux density. It does not, and the argument
gives us an important physical insight.
I note that, for a flux density of, in general, some quantity

A computed at cuts of Iþ to exist, the second variation of
the quantity with respect to the cut δ2A=δzðγ1Þδzðγ2Þ
(where γ1 and γ2 are elements of the sphere of generators
of Iþ) cannot have off-diagonal contributions (that is,
nonzero values for γ1 ≠ γ2). For the twistor angular
momentum, we do find such off-diagonal contributions,
and so no flux density can exist.
But it is really the existence of the off-diagonal terms

which is physically more important, for they signify that the
twistor angular momentum responds to correlations
between the gravitational radiation present in separate
asymptotic directions. Conversely, the existence of a flux
density for (for example) the Dray-Streubel definition
means it cannot involve such correlations. There is a
substantial qualitative difference in the structures of the
radiation field detected by the twistor and Dray-Streubel
definitions.
Finally, the work here clarifies the differing roles of the

regularity properties of “active” and “passive” cuts.
To explain this more fully, some discussion of the

significance of this regularity condition, the difficulties
facing proposals, and the twistor definition is in order.

A. Angular momentum and regularity of cuts

Chen et al. argue, in effect, that the angular momentum
at a cut should not depend very strongly on any slight
crinkliness of the cut—the location of the cut should enter,
but its derivatives should not. I largely share this view.
Certainly, any definition which is claimed to be funda-
mental must either satisfy it or somehow provide a con-
vincing explanation for not doing so. It is worth noting,
though, that this continuity depends on knowing the topology
of the space in which the angular momentum takes values,
andmost of the proposals require infinite-dimensional spaces
whose topologies are usually not discussed.4

Sup-norm continuity is a highly desirable property,
which can be interpreted as being the “next best thing”
to the existence of a flux for an angular momentum
proposal. (A proposal which does arise from a flux will
automatically be sup-norm continuous.) Moreover, sup-
norm continuity of a quantity suggests it may extend
continuously to cuts which are only C0. While this would
not seem to be relevant for most physical modeling, it is of
interest from the point of view of causal structure, where
sets of low regularity naturally occur. This is currently a
particularly active area; see e.g., Ref. [14].
But it might at first seem surprising that any of the

proposed definitions are not sup-norm continuous. Most
angular momentum proposals are framed in terms of
integrals of spin-coefficients, spinor and tensor fields over
the cuts—how can such expressions be directly sensitive to
the cuts’ derivatives? The contributions from invariantly
defined tensor or spinor fields in the integrand, indeed,
cause no difficulties. But the derivatives of the cut itself can
enter in two ways: in defining the area element to be
integrated, and in the computations of the shear (which
actually depends on the second derivatives of the cut). The
area element contributes only one derivative, and that at
first order, and if this were the only one, it likely could be
finessed by an integration by parts. The more significant
issues come from the shear.
The shear plays a key role in all definitions, and it would

seem from the comments just made that in general we
should expect angular momentum to be sensitive even to
the C2 structure. However, the derivatives entering in the
shear are in some sense gauge degrees of freedom, directly
tied to the “supertranslation” problems. From this point of
view, sup-norm continuity of a definition is again desirable,
as an indication that at least some gauge issues are being
compensated.

3Unfortunately, there is no standardized terminology for the
different flux concepts. By a flux, I will mean the energy-
momentum emitted in a strip between two infinitesimally
separated cuts (possibly relatively supertranslated); a flux density
will be a flux arising by integrating a three-form on Iþ over
the strip.

4The particular cases of angular momentum considered by
Chen et al. are indexed by a choice of BMS vector field; in other
words, their angular momentum takes values in the dual to the
BMS algebra. They analyze sup-norm continuity “in the weak
sense,” that is, holding the BMS field constant. This shows that
the Dray-Streubel and CWWY definitions are sup-norm con-
tinuous in some reasonable topologies, but most of the Compère-
Nichols ones cannot be.
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B. Origins and angular momentum

In special relativity, we are used to representing angular
momentum as a tensor fieldMabðxÞ onMinkowski space. If
we try to construct a similar object in the asymptotic
regimes of Bondi-Sachs spacetimes, we run into the
difficulty that there is in general no preferred model
Minkowski space to serve as a set of origins. Indeed,
the existence of supertranslation mismatches between
different regimes at Iþ can be viewed as a no-go theorem
to this effect.
It is worthwhile spelling this out for a simple but

important class of cases. By a regime R at Iþ I will
mean a set between two nonintersecting cuts (or to the
future or past of a single cut, or all of Iþ). If the Bondi
shear in a regime is purely electric and u-independent
(where u is the Bondi parameter), I will call the regime
Minkowskian. Then there is a Minkowski space MðRÞ
whose points are the good (shear-free) cuts associated
with the regime.5 Equivalently, one could remove the
shear in R by supertranslating, and for this reason such
regimes are sometimes called pure gauge (as far as
shear goes).
In a Minkowskian regime, there is a definition of angular

momentum on MðRÞ which virtually all workers accept.
That is, there is a well-defined tensor field MR

abðxÞ on
MðRÞ, with the origin dependence of the correct form and
the energy-momentum that of Bondi and Sachs. (It is
important to appreciate that this origin dependence does not
mean that the physical angular momentum varies in the
sense of failing to be conserved. It is just the fact that even a
conserved angular momentum is conventionally repre-
sented by a tensor field.) Definitions may provide infor-
mation beyond this, but they should at least produce
this much.
Problems occur when there are several Minkowskian

regimes Rj whose good cuts are relatively supertranslated.

Then each has an angular momentum M
Rj

ab ðxÞ, which is a
tensor field onMðRjÞ, but the supertranslation mismatches
mean that there are no natural Poincaré motions identifying
these different Minkowski spaces. The most direct state-
ment of the supertranslation problem is to find a convincing

way of relating or comparing the angular momentaM
Rj

ab ðxÞ
in spite of this.
Proposals to treat angular momentum at Iþ must

somehow deal with this. The most common approaches
vastly expand the set of origins, taking them to be all the
(sufficiently smooth) cuts of Iþ. The angular momentum
is then a function Mabðzact; zpasÞ of two cuts, an active
one zact (at which we want to know the energy-momen-
tum and angular momentum), and a passive one zpas (the

choice of origin).6 In the notation of the previous paragraph,
wewant to compare angularmomenta at different active cuts
zj; since one cannot choose zpas to lie simultaneously in the
different spacesMðRjÞ, the idea is that one should allow, at
least in principle, for zpas to be arbitrary.
One can indeed do this with proposals such as the

Dray-Streubel one. The issue is that none of the infinite-
dimensional family of possible choices for zpas is strongly
singled out. And as (for each active cut) we vary zpas, an
infinite-dimensional family of cut-specific radiative data
mixes in to Mabðzact; zpasÞ. The proposal, built around the
idea of using the BMS group as a formal parallel to the
Poincaré group, succeeds so well in enforcing BMS
homogeneity that it does not reduce the infinite-dimen-
sional freedom. Even for a fixed zact, the angular momen-
tum has an infinite-dimensional character.
Another concern is that, while the group-theoretic formal

structure is parallel to that of special relativity, that formal
parallel does not seem to lead to a physically satisfactory
understanding of center of mass [15]. This point will be
discussed in more detail in the next subsection.
All of these difficulties grow out of the idea of generalizing

aMinkowski space of origins to theBondi-Sachs context. But
there is another way of looking at special-relativistic angular
momentum, a mathematically equivalent but quite different
formalism, given by twistor theory. And that formalism
generalizes in a natural way to the Bondi-Sachs case.

C. Twistors and angular momentum

In Minkowski space, a real twistor can be thought of as a
pairZ ¼ ðγ; πA0 Þ of a null geodesic γ and a spinor πA0 tangent
to that geodesic. This turns out to be intimately bound with
angular momentum, for if we write that in spinor form

MAA0BB0 ðxÞ ¼ μABðxÞϵA0B0 þ μA0B0 ðxÞϵAB; ð1Þ
where μAB and its complex-conjugate μA0B0 are the angular
momentum spinors, then the change-of-origin rule implies

μA
0B0
πA0πB0 is constant along γ: ð2Þ

Thismeans that the angularmomentum can be regarded as a
scalar-valued function

AðZÞ ¼ 2iμA
0B0
πA0πB0 ð3Þ

on twistor space. (The factor 2i is conventional, as is
the choice of the primed over the unprimed angular momen-
tum spinor.) The twistor Z codes both some origin informa-
tion (γ) and some choice of components (πA0). Allowing the
twistors to vary, one can recover the field μA

0B0
, but there has

been a basic shift in viewpoint: It is the null geodesics, rather

5As a mathematical fiction, one extends the shear in the regime
to all of Iþ, by keeping its u-independence, to get the full
Minkowski space of cuts.

6This terminology is due to Szabados. For a conventional
conserved angular momentum in special relativity, the depend-
ence is purely passive. (Any active dependence would imply
nonconservation.)
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than the events, which are taken to be the origins for angular
momentum.
Now let us turn to general relativity. We may define a real

twistor at I as a null geodesic meeting I , together with a
parallel-transported tangent spinor. We thus have a space of
(real) twistors, which is manifestly BMS invariant. (Notice,
though, that it has aweaker structure than forMinkowski space,
because of the supertranslational freedom to slide generators of
Iþ relative to one another.) It also turns out that we can use
Penrose’s quasilocal kinematic construction to define an
angular momentum twistor AzðZÞ at any cut. The twistor Z
is arbitrary; it need not be specially related to the cut z.
There is nodifficulty at all in comparing the twistor angular

momenta at different cuts, since they are functions on the
samespace: one can formAz1ðZÞ − Az2ðZÞ. (This iswhere the
supertranslation problem would arise in conventional treat-
ments.) Also there are physically attractive twistor-derived
definitions of spin and center ofmass. It turns out that twistors
automatically compensate for any purely gauge effects
(supertranslations). All of this (we will see) depends only
on the C0 structure of the cut and is sup-norm continuous.
How, though, are we to think of the twistor results? How

do we connect the function AzðZÞ with more conventional
treatments? This requires a little discussion:
(a) The purely twistorial formulation of the angular

momentum itself is the function AzðZÞ, which will
be shown to be sup-norm continuous. Mathematically,
this is because the twistor construction naturally
involves an angular potential λ for the shear, this
potential being sup-norm continuous.

(b) In special relativity, the center of mass is defined by
the vanishing of the time-space components of the
relativistic angular momentum (in a frame determined
by the energy-momentum)—a spatial vector, the mass
moment divided by the mass. This is not a satisfactory
view in general relativity. For instance, in a Minkow-
skian regimeR, we do have such a description relative
to the Minkowski space MðRÞ, but if zact is a bad cut
in R, the center of mass, which will be a good cut,
cannot simply be represented by a translation relative
to zact. In a general circumstance we must expect the
center of mass to be supertranslated relative to zact, and
therefore not represented simply by a three-vector.7

The twistor construction does exactly this. The
center of mass recovered from natural twistor formulas
is in general supertranslated from zact by ℜλ, and
automatically factors out any gauge issues. In fact,
what falls out of the twistor construction is that any
electric shear which may be present at zact is treated
being due to a bad choice of cut. In the case of a
Minkowskian regime, even if zact is bad, the center of
mass is given as a good cut.
The twistor center of mass is sup-norm continuous.

(c) Twistor theory treats the spin in formal parallel to the
center of mass. The result fits with an old observation
of Newman and Winicour [16], which is that spin can
be interpreted as a displacement of the center of mass
into the complex. Twistor theory assigns a three-vector
(j ¼ 1) contribution to the spin, but it also interprets
Mℑλ as j ≥ 2 components.8

The twistor spin is also sup-norm continuous.
(d) To look for an interpretation of AzðZÞ parallel to the

conventional field μA
0B0
, note that in Minkowski space,

for any point p, we would choose the twistors cor-
responding to null geodesics through p to recover
μA

0B0 ðpÞ; these geodesics would be those forming the
good cut of Iþ defined by p—they would meet that
cut orthogonally. In the Bondi-Sachs case, we no
longer have compelling candidates for the Minkowski-
space origins p, however. What we may do is, as in the
more conventional approaches, to fix a passive cut zpas
and look at the twistors Z whose geodesics meet zpas
orthogonally. That is, we consider AzactðZÞ for Z
meeting zpas orthogonally. I will call this a quasicon-
ventional representation of the twistor angular mo-
mentum; it is a generalization of 2iμA

0B0
πA0πB0 , with the

spinor πA0 now corresponding to the different possible
generators of Iþ at which the twistors meet zpas.
This quantity is a function on the sphere, which has

not just j ¼ 1 terms but also j ≥ 2 terms, essentially
coding the same sorts of information as showed up in
(b) and (c) above. Notice that in choosing the null
geodesics orthogonal to zpas we have an explicit
reference to the C1 geometry of the passive cut,
however; no additional properties of the active cut
have been invoked. The argument of Chen et al. applies
only to motions of the active cut, and we will accord-
ingly see that the quasiconventional representation of
the angular momentum is sup-norm continuous. Addi-
tionally, we will see the distinctions here between zact
and zpas bring out a fuller understanding of their
significance.
We can therefore think of the general-relativistic

angular momentum as comprising two sorts of con-
tributions: a familiar, special-relativistic, j ¼ 1 term;

7This point seems not to be considered in most discussions, and
in conventional approaches it ismost common to see papers assume
zpas ¼ zact and also apparently accept the three-vector of time-
space components as the center of mass. To try to deal with the
issue, and keep the formal correspondence between the BMS and
Poincaré groups, it would be natural to consider allowing zpas to
vary to eliminate the time-space components. But that would be
expected to lead to severe ambiguities, since it amounts to con-
straining the infinite-dimensional freedom in zpas by the vanishing
of three real numbers; this expectation has been verified in the case
of the Dray-Streubel definition [15]. If one knows one has good
cuts, one can “by hand” restrict to these, but in the generic situation
no resolution to this difficulty has, to my knowledge, been offered.

8I will use j (rather than l) for the multipole index, since some
of the quantities will be spin weighted.
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and general-relativistic corrections Mλ, which are
j ≥ 2.

What these results mean is that the twistor definitions of
angular momentum, center of mass, spin, and quasiconven-
tional representation are robust and extend in a sup-norm
continuous way even to C0 active cuts.

D. Outline and background

The next section gives the basic definitions which will
be used.
Section III gives the details of the sup-norm continuity

argument. An important step is to work out the twistor
fields at cuts arbitrarily supertranslated with respect to the
Bondi system, Eqs. (51) and (52); these results will be
useful beyond this paper. The next main step is to show the
twistor fields are sup-norm continuous; it is at this stage
that the hard-analysis technicalities come in. The argument,
though, just uses general results about elliptic operators;
one does not need the sorts of ad hoc inequalities of
Chen et al.
To finish the main continuity argument, we first identify

the function space Az lies in (it is naturally constructed from
certain line bundles over the sphere of generators of Iþ).
Then its sup-norm continuity is established by a series of
parts integrations to eliminate its apparent dependence on
derivatives of z.
With these preparations, most of the remaining

results can be established almost by inspection.
Section IV shows the twistor of spin and center of
mass are sup-norm continuous, and Sec. V that the
quasiconventional representation is. The first part of
Sec. VI works out the flux; the second gives the results
on flux density. It is shown that because the twistorial
angular momentum detects correlations in the gravita-
tional radiation emitted in different asymptotic direc-
tions, it cannot admit a flux density. The final section is
given to discussion.
Background and notation. This paper does not assume

prior knowledge of twistor theory, but it also does not
pretend to give a full account of the twistorial angular
momentum; for that see Refs. [8,13].
The paper does assume a familiarity with two-compo-

nent spinors and the spin-coefficient formalism at Iþ. The
divergence is taken to vanish, that is, ρ0 ¼ 0.
After some motivational discussion of twistors in

Minkowski space, all computations are done at Iþ in
the spin-coefficient formalism, except that occasionally
concepts are motivated by explicit references to the special-
relativistic case.
The notation and conventions are as in Penrose and

Rindler [17,18]. The usual smoothness assumptions at
Iþ (the manifold with boundary, and the conformal
factor, being C4, and the rescaled metric C3) are
adequate. The speed of light is unity, and Newton’s
constant is G.

I have indicated some important steps of the technical
arguments in italics, so the reader can easily find them.

II. DEFINITIONS AND SETUP

I first sketch the twistor treatment of angular momentum
in special relativity, and then explain how this can be
adapted to Bondi-Sachs spacetimes.

A. Twistors and angular momentum
in Minkowski space

Special-relativistic twistors are the spinors of the con-
formal group of Minkowski space. This group is 4 − 1

covered by SUð2; 2Þ, and twistor space T ≃ C4 is the
defining representation of the latter. Each twistor can be
viewed as a spinor field, and also as a geometric structure,
and this dual nature will be central.
As a spinor field ωA, it is a solution to the twistor

equation

∇A0ðAωBÞ ¼ 0: ð4Þ
Each solution has the form

ωAðxÞ ¼ ωA
0 − ixAA

0
πA0 ð5Þ

for two constant spinors ωA
0 ¼ ωAð0Þ, πA0 . These are called

the coordinates of the twistor and are jointly denoted
Zα ¼ ðωA

0 ; πA0 Þ.
The norm on twistor space is

ΦðZÞ ¼ ωAðxÞπ̄A þ conjugate ð6Þ

¼ ωA
0 π̄A þ conjugate ð7Þ

(it is independent of position). A twistor with ΦðZÞ ¼ 0 is
called real or null. Such a twistor vanishes on a unique null
geodesic

γAA
0 ðsÞ ¼ ωA

0ω0
A0

iω0
B0
πB0

þ sπ̄AπA
0 ð8Þ

[which is real by virtue of the vanishing ΦðZÞ]; conversely,
a null geodesic γ and a (parallel-transported) tangent spinor
πA0 determine a real twistor, and we may write Zðγ; πA0 Þ for
this. Non-null twistors also have geometric interpretations,
but we will not need these. Also, twistors with πA0 ¼ 0
represent null geodesics at infinity, but we will not need to
discuss these and will take πA0 ≠ 0.
In Bondi-Sachs spacetimes, the difficulties with treating

angular momentum are associated with its position depend-
ence, and it is in this way that twistors offer an essentially
new perspective.
In special relativity, the angular momentum is a tensor

field Mab, changing as
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Mabðyþ xÞ ¼ MabðyÞ þ Paxb − xaPb: ð9Þ

Write

MAA0BB0 ¼ μABϵA0B0 þ μA0B0ϵAB ð10Þ

for the spinor decomposition, with complex-conjugate
angular momentum spinors μAB ¼ μðABÞ, μA0B0 ¼ μðA0B0Þ.
Then the component

μA
0B0
πA0πB0 ð11Þ

turns out to be independent of the position along a null
geodesic γ with tangent spinor πA0. This means that the
angular momentum may be regarded as a scalar-valued
function on twistor space:

AðZÞ ¼ Aðγ; πA0 Þ ¼ 2iμA
0B0
πA0πB0 : ð12Þ

(The factor 2i is conventional.) As the twistor varies, the
different components of the angular momentum at the
different points of spacetime are determined, and indeed the
energy-momentum is determined as well.
This is the twistor description of angular momentum. It

is, in special relativity, mathematically equivalent to the
standard one, but it codes the information rather differently.
Each twistor Zðγ; πA0 Þ contains both some location infor-
mation (the geodesic γ) and some directional (or compo-
nent) information (the spinor πA0 ). The angular momentum
is a function, and simply a scalar-valued function AðZÞ, on
the space of twistors.
Note especially that the origin dependence of the angular

momentum is coded very differently in the twistor formu-
lation than in the conventional one. This is what will
resolve the difficulties in treating angular momentum in
Bondi-Sachs spacetimes.

B. Twistors for Bondi-Sachs spacetimes

How can we carry over the twistorial treatment of
angular momentum to Iþ for Bondi-Sachs spacetimes?
There is an obvious candidate for the space of null

twistors: we take the pairs Z ¼ ðγ; πA0 Þ, where γ is a null
geodesic meeting Iþ and πA0 is a parallel-transported
tangent spinor. This space is manifestly BMS invariant.
If we could define the angular momentum twistor (and a
few extra structures), we should have a definition.
Penrose’s quasilocal twistor construction [18] suggests

an approach. It assigns to each cut z a four-dimensional
complex vector space TðzÞ of twistors, given as spinor
fields Z ¼ ωA on z, and also a candidate angular momen-
tum twistor AzðZÞ. However, there are two difficulties with
using just this information. The first is that one does not
have a clear way of determining which of these fields
should count as real twistors, and knowing this is essential
for extracting the angular momentum. The second is that, in

the presence of gravitational radiation, the spinor fields on
the cuts do not “integrate up” to give well-defined fields on
Iþ. That means that there is no clear way of comparing the
angular momenta at different cuts. One has an infinite-
dimensional family of twistor spaces TðzÞ.
We can resolve these issues by exploiting the geometry

of Iþ to select certain preferred components of the twistor
equation (4) to enforce, and carrying over interpretive
principles from Minkowski space. What we will find is
that the twistors exist invariantly, not as fields over all of
Iþ, but as certain data on distinguished generators, which
then give rise to quasilocal twistors when cuts are specified.

1. Null infinity and the spinor dyad

We recall that Bondi coordinates at Iþ comprise a Bondi
retarded time parameter u as well as suitable angular
coordinates on the sphere of generators. We will not need to
actually pick coordinates on the sphere, and it will be
shorter and conceptually better just to use a symbol γ ∈ S2

to stand for such a generator.
Associated with a Bondi system is a null tetrad.9 The

vector na is null and future directed, points along
the generators of Iþ, and is normalized to na∇au ¼ 1.
The vector la is null, future directed, and tangent to the
u ¼ const null hypersurfaces, normalized to lana ¼ 1. The
vector ma is complex, null, tangent to the u ¼ const cuts,
antiholomorphic on S2, orthogonal to la and na, and
normalized to mama ¼ −1. There is a freedom to alter
the phase of ma, which is naturally handled by working
with the calculus of spin-weighted quantities. The spin-
weighted derivatives in the la,ma,ma, and na directions are
Þ, ð, ð0, and Þ0, respectively.
This basis determines, uniquely up to an overall sign,

a spinor dyad oA, ιA with lAA
0 ¼ oAoA

0
, nAA

0 ¼ ιAιA
0
,

mAA0 ¼ oAιA
0
, and oAιA ¼ 1.

It is important to note that the direction of ιA is
determined invariantly (along the generators of Iþ), but
oA is sensitive to the choice of cuts. If we supertranslate to a
system with cuts u ¼ zþ const, where z is a function of
angle only, then we will have

oAz ¼ oA þ ððzÞιA; ð13Þ

where the postscript z indicates a quantity (in this case, one
of the basis spinors) adapted to the supertranslated system
of cuts.
Finally, let me note the spinor conventions for compo-

nents. These are set by

ωA ¼ ω0oA þ ω1ιA: ð14Þ

9From now on, all quantities refer to the conformally rescaled
metric, except when explicitly identified as special relativistic.
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I will shortly introduce a downstairs spinor field π̃A0 .
One has

π̃A0 ¼ π̃10oA0 − π̃00 ιA0 ; ð15Þ
owing to the lowering convention π̃A0 ¼ π̃B

0
ϵB0A0 . Note that

the transformation rule (13) implies

ω0
z ¼ ω0; ð16Þ

ω1
z ¼ ω1 − ððzÞω0; ð17Þ

π̃z
00 ¼ π̃00 þ ðð0zÞπ̃10 ; ð18Þ

π̃z
10 ¼ π̃10 ; ð19Þ

where

ωA ¼ ω0
zoAz þ ω1

z ι
A
z ; ð20Þ

π̃A0 ¼ π̃z
10o

z
A0 − π̃z

00 ι
z
A0 ð21Þ

are the decompositions relative to u ¼ zþ const cuts.

2. Twistor data

We have seen that in Minkowski space, twistors can
be viewed as spinor fields ωA satisfying the twistor
equation (4), and each is determined by data ωA

0 ¼
ωAð0Þ (the value of the field at the origin) and πA0 , where
∇AA0ωB ¼ −iϵABπA0 [from Eqs. (4), (5)]. Certain geomet-
rically distinguished components of these relations will be
carried over to Iþ to determine the twistors there.
Let me start though with some relations which do not

reflect this distinction very strongly. The first pair are the
quasilocal twistor equations

ð0ω0 ¼ 0; ð22Þ

ðω1 ¼ σBω
0; ð23Þ

where σB is the Bondi shear. (These are the two com-
ponents of the twistor equation only involving deriva-
tives tangential to the cut.) The second pair define π̃A0

(the conformally extended counterpart of the Minkowskian
πA0 )10 via

π̃00 ¼ iðð0ω1 − ρω0Þ; ð24Þ

π̃10 ¼ iðω0: ð25Þ

(Here ρ is one of the spin coefficients, the convergence
of la; recall that ρ0, the convergence of na, is taken

to vanish.) The quasilocal twistor equations (22) and
(23) form an elliptic system on any cut, with a
four-complex-dimensional set of solutions. These may
be specified by the values ðω0;ω1; π̃00 ; π̃10 Þ at any point
of the cut. It is such data, carefully chosen, which will form
our twistor space.
Now let us bring in the distinctions made by the

geometric structure more strongly. Note that the component
ω0¼−ωAιA is BMS-invariantly defined (as a spin-weighted
quantity). We also see that Eq. (22) is independent of ω1,
and indeed it turns out that the pair of equations

ð0ω0 ¼ 0; ð26Þ

Þ0ω0 ¼ 0 ð27Þ

is BMS invariant, has a C2 of solutions (valid over all Iþ,
not just one generator), and fields satisfying these are the
accepted definition of asymptotically constant spinors [18].
We now enforce Eqs. (26) and (27).
Each nonzero such field ω0 will vanish precisely

along one generator γðω0Þ of Iþ, and so determines an
asymptotic direction. In fact, one should think of ω0 as
conveying the information of the πA0 coordinates of the
twistor in Minkowski space—the tangent spinor. (The
mixing of finite spacetime πA0 coordinates and asymp-
totic ω0 field is due to the conformal rescaling made in
passing to Iþ.) The twistors with ω0 vanishing iden-
tically are a thin set “at infinity in twistor space,” and
we will not need to consider them; we assume ω0 does
not vanish identically.
The remaining data for the twistor will be specified on

the generator γðω0Þ. To do this, we must know how to
transport ω1 and π̃00 along the generator. This is done via
twistor transport (deducible from the twistor equation)
[13,18], which gives us

Þ0ω1 ¼ −iπ̃10 ð28Þ

¼ ðω0; ð29Þ

Þ0π̃00 ¼ 0: ð30Þ

In sum, then, we specify a twistor by giving a nonzero ω0

field satisfying Eqs. (26) and (27), and then data ω1, π̃00
satisfying Eqs. (29) and (30) along γðω0Þ. A twistor is real
if ω1 vanishes somewhere along γðω0Þ.11 Such a twistor is
identifiable as a null geodesic meeting Iþ at this point; see
Ref. [8] for explicit formulas.

10In some papers, especially those working exclusively at Iþ,
this field is simply written πA0 .

11Assuming the generator is infinitely long. If not, Eq. (29)
implies the complex-valued field ω1 is an affine function of the
real parameter u, and we formally extend this function to all real
values of u to see whether it vanishes.
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The result of this is an eight-real-dimensional twistor
space T which has an invariant existence as a manifold
equipped with certain other structures (as we will see, it
follows from the above that it is a bundle of affine C2’s over
the space of ω0 fields). That structure is weaker than what
we would have for special relativity.
On any cut, wemay use the twistor data12 ðωA; π̃A0 Þjz∩γðω0Þ

at the point where the cut intersects γðω0Þ to solve the
quasilocal twistor equations, and that solution space is
naturally a C4. This means that each cut gives us a chart
mapping T to TðzÞ ≃ C4, but the patching functions
C4 → C4 relating the charts for different cuts are not
complex-linear maps. The twistor space T has an inva-
riant existence, but as a manifold, not as a complex
vector space.
In special relativity, it is well-understood how to translate

twistor structures to spacetime ones. Because in the Bondi-
Sachs case the twistor structure is weaker than the
Minkowskian one, this process must be revisited in order
to understand what the details of the interpretation of the
angular momentum, the spin, and the center of mass are.
This is done in the references; in what follows I will just
explain the ideas behind the computations and give the
results.

3. Angular momentum

Penrose’s quasilocal formula for the angular momentum
is given at Iþ by

AzðZÞ ¼
1

8πG

I
z
ψABCDω

AωBϵC0D0dxCC
0 ∧ dxDD0

; ð31Þ

where ψABCD is the rescaled Weyl spinor [18] and ωA is the
spinor field for Z as a quasilocal twistor at z. This, then, is
interpreted as the angular momentum evaluated at the cut z.
When the twistor is real, it is thought of as before as
determining a null geodesic and a tangent spinor, and AzðZÞ
codes the angular momentum with origin that null geodesic
and component determined by ω0. The twistor Z is not
restricted to meet the cut z.
The most important point is that the same twistor space

T is used no matter what cut is chosen. Thus angular
momenta at different cuts can be directly compared.

III. SUP-NORM CONTINUITY OF AzðSÞ
The angular momentum at any cut is given by Eq. (31).

To understand how this varies with z, we must know the
behaviors of ψABCD, ωA, and the tangent vectors of z which
will weight the two-form. Of these, the spinor field ψABCD
is certainly a sup-norm continuous function of z, and the

behavior of the tangents is elementary. It is the twistor field
which requires a substantial computation.
In what follows, I will work in an arbitrary but fixed

Bondi frame, keeping standard notation.13 I will also have
to consider quantities associated with the supertranslated
cut u ¼ z; I will generally indicate these by postscripts. For
instance, the shear at z would be σz ¼ σBðzÞ − ð2z. (Note
that in the expression just given, the operator ð is
unambiguous, because z is a function of angle only, but
in general we must bear in mind a distinction between ð
and ðz.)

A. The tangents and differential on z

The antiholomorphic tangent for z will be

ma
z ¼ ma þ ððzÞna; ð32Þ

and the omicron spinor will be

oAz ¼ oA þ ððzÞιA: ð33Þ

The differential

ðdxc ∧ dxdÞz ¼ ð2iÞm½c
z m̄

d�
z dS ð34Þ

¼ 2iðm½cm̄d�þððzÞn½cm̄d� þ ðð0zÞm½cnd�ÞdS;
ð35Þ

where dS is the standard area measure on the sphere. Then
the quantity entering in the expression (31) for the angular
momentum will be

ϵC0D0 ðdxCC0 ∧ dxDD0 Þz ¼ −2iðoðCιDÞ þ ððzÞιCιDÞdS: ð36Þ

One notes the potentially problematic derivative ðz.

B. The twistors

We recall that the twistor field components ω0 are well-
defined on Iþ, but the ω1 parts are cut dependent.
It is known [8,13] that, on the u ¼ const cuts of our

Bondi slicing, we have

ω1 ¼ ω0ðλ − λðω0 þ αðω0 þ βω0; ð37Þ

where λ is any function satisfying ð2λ ¼ σB, and we have
the evolution equations

αðuÞ − αðu0Þ ¼ u − u0 þ λðu; γÞ − λðu0; γÞ; ð38Þ

βðuÞ − βðu0Þ ¼
�
ðω0

ðω0
ðð0λðuÞ − ð0λðu0ÞÞ

�����
γ

; ð39Þ

12In the following expression, I abuse notation slightly by
using z to stand for the cut as a point set, and not just a function.

13So I will be coordinatizing the twistor space T by the chart
determined by a cut u ¼ u0 in that frame.
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where γ ¼ γðω0Þ is the generator on which ω0 vanishes.
The quantity λ is an angular potential for the shear and
plays a central role in the treatment of angular momentum.
There is freedom to adjust the j ¼ 0 and j ¼ 1 parts of λ
arbitrarily, but the same effects can be achieved by changing
α and β. It will be convenient to take λ ¼ ð−2σB, where ð−2

is the Green’s operator producing zero j ¼ 0 and j ¼ 1
contributions.
To work out the corresponding field ω1

z on the cut
u ¼ z, we first wish to find a corresponding angular
potential λz, so

ð2zλz ¼ σz

¼ σBðzÞ − ð2z: ð40Þ

Here we understand σBðzÞ ¼ σBðzðγÞ; γÞ, where γ denotes a
point on the sphere of generators of Iþ and σBðu; γÞ is the
Bondi shear. The right-hand side of Eq. (40) is only a
function of angle, so we may take

λz ¼ ð−2σBðzÞ − z: ð41Þ

The first term on they right of Eq. (41) is complicated,
owing to the composition of σB and the cut function z, but
the operator ð−2 tends to increase differentiability. We will
see shortly that λz is sup-norm continuous in z.
At this point, we know that on u ¼ z the twistor field

ω1
z ¼ ω0ðλz − λzðω0 þ αzðω0 þ βzω

0; ð42Þ

for some constants αz and βz. (In principle, all of the ð
operators in Eq. (42) are really ðz, but as the act on
u-independent quantities there is no ambiguity.) To work
out the constants, we enforce equality of the data ωA

z ¼ ωA,
π̃zA0 ¼ π̃A0 at the point z ∩ γðω0Þ.
We see from Eq. (17) that the equality ωA

z ¼ ωA at γ is
equivalent to requiring ω1

z ¼ ω1 there. We have

ω1
z jγ ¼ ðαz − λzðγÞÞðω0jγ; ð43Þ

and the corresponding equation without the z subscripts.
Equating these and using Eq. (41) gives us

αz ¼ ð−2σBðzÞjγ − u0 þ αðu0Þ − λðu0; γÞ: ð44Þ

Similarly, we have from Eq. (18) that

π̃z
00 ¼ π̃00 þ ðð0zÞπ̃10 ð45Þ

¼ π̃00 þ iðð0zÞðω0 ð46Þ

at z ∩ γ. Using

π̃z
00 ¼ ið0ω1

z jγ ð47Þ

¼ if−ðð0λzÞððω0Þ þ βzðω0gjγ ð48Þ

and

π̃00 ¼ if−ðð0λÞððω0Þ þ βðzÞðω0gjγ þ iðð0zÞðω0jγ ð49Þ

in Eq. (46), we find

βz ¼ βðu0Þ þ
�
ðω0

ðω0
ð−ð0λju0 þ ð0ð−2σBðzÞÞ

�����
γ

: ð50Þ

Putting the results (13), (16), (41), (42), (44), and (50)
into Eq. (20), we have the explicit formula

ωA
z ¼ ω0oA þ ω̂1ιA; ð51Þ

where

ω̂1 ¼ ω0ðð−2σBðzÞ þ ½ðð−2σBðzÞjγÞ − u0 þ αðu0Þ
− λðu0; γÞ − ð−2σBðzÞ þ z�ðω0

þ
�
βðu0Þ þ

ðω0

ðω0
ð−ð0λðu0Þ þ ð0ð−2σBðzÞÞ

�����
γ

ω0:

ð52Þ

We note for later use that

ðω̂1 ¼ ω0σBðzÞ þ ððzÞðω0; ð53Þ

in consequence of the relation ð2ω0 ¼ 0 (holding for any
spin-weight −1=2 field ω0 satisfying ð0ω0 ¼ 0).

C. Bundle structure

Although any fixed cut z gives twistor space T a vector-
space structure TðzÞ, its invariant structure is weaker. This
means that, while the angular momentum Az is a quadratic
function relative to the structure TðzÞ, it will have a more
complicated functional form relative to TðźÞ. So, from an
invariant point of view, the function Az on T must be
regarded as lying in some function space.
While we have more work to do before taking up the

function Az itself, this is a natural point to clarify the
invariant structure of T , which will be important in
specifying the class of functions to be used.
We have been working in a chart derived from the cut

u ¼ u0, in which the twistors are coordinatized by
ðαðu0Þ; βðu0ÞÞ ∈ C2 and the spinor field ω0; recall the
allowable spinor fields from a two-complex-dimensional
vector space, but we exclude zero. With this under-
standing, I will write ω0 ∈ C2 − f0g. These spinor fields
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are invariantly defined, and so T is invariantly a bundle
over them, that is, over C2 − f0g.
In fact, this is a bundle of affine C2’s. This follows from

Eqs. (44) and (50), which show that ðαðu0Þ; βðu0ÞÞ changes
by an ω0-dependent translation in passing to the chart
derived from the cut u ¼ z.
We will see below that Az can be regarded as a

polynomial in ðαðu0Þ; βðu0ÞÞ, whose coefficients are sec-
tions of certain line bundles over the sphere of generators of
Iþ, the sphere being the space C2 − f0g taken projectively.
While the particular polynomials depend on the chart, the
class of them (of given degrees) does not.

D. Sup-norm continuity of the twistor fields

Now let us consider the regularity of the quantities
ð−2σBðzÞ, ðð−2σBðzÞ, ð0ð−2σBðzÞ figuring in the for-
mula (52) for the twistors. They will be shown to be
jointly continuous in the cut in sup norm and the point at
which they are evaluated. The argument is based on the
ellipticity of ð, ð0. (For analytic background used in the
following, see the appendix of Besse [19].)
We will be considering whether σBðzÞ and related

quantities lie in Lp spaces on the sphere. Now, the
Bondi shear σB is a spin-weight two quantity, and so it
takes values in a certain line bundle over the sphere. There
is an inner product on the fibers, so there is a well-defined
Lp norm. (The norm depends on the Bondi frame, but the
resulting topology does not.) We will not need to write this
norm explicitly, though, and in the following the notation
j � � � j stands for the ordinary modulus of a complex quantity
(or of an element of a line bundle with Hermitian inner
product).
We first note that σBðzÞ is a continuous function on the

sphere, and hence an element of each Lp space for p > 1.
The map z ↦ σBðzÞ (as an element of the Lp space) is also
sup-norm continuous. To see this, note that since σB is C1,
for z uniformly close enough to z0, we will have

jσBðzÞ − σBðz0Þj ≤ Mjz − z0j ð54Þ

pointwise on S2, where M is a bound on j _σj in the
corresponding neighborhood of the image of
z0∶S2 → Iþ. But then the Lp norm of σBðzÞ − σBðz0Þ is
bounded by M times the sup norm of z − z0 in this
neighborhood of z0, and so the map z ↦ σBðzÞ is sup-
norm continuous to Lp.
By elliptic regularity, the quantity ð−2σBðzÞ will exist as

an element of the Sobolev space Wp
2 and vary sup-norm

continuously with z. By the embedding theorems, it will
exist as an element in a Hölder space (with, in fact, some
positive exponent), again varying sup-norm continuously
with z. Considering now the composition (with C the space
of cuts in sup norm)

S2 × C → S2 × C0ðS2;CÞ → C;

ðγ; zÞ ↦ ðγ; ð−2σBðzÞÞ ↦ ð−2σBðzÞjγ;
ð55Þ

where the last step is the (jointly continuous) evaluation
map S2 × C0ðS2;CÞ → C, we see ð−2σBðzÞ is jointly
continuous; in the point γ ∈ S2 it is evaluated at and in
z in sup-norm.
Since λz ¼ ð−2σBðzÞ − z, this result implies λz is jointly

continuous.
The only difference in the argument for ðð−2σBðzÞ,

ð0ð−2σBðzÞ is that the extra ð, ð0 derivatives lead to the
replacement of the Sobolev space with Wp

1 . This is still
sufficient for the embedding theorems.
These results imply the twistor fields, Eqs. (51) and (52),

are sup-norm continuous.

E. Sup-norm continuity of the
angular momentum

With the regularity of the twistor fields established, we
will see it is a routine matter to substitute the expression
(36) for the area element and the formula (52) for the
twistors into Penrose’s angular momentum (31), and
rewrite it by repeated integrations by parts to verify its
sup-norm continuity.
First, though, we make precise the topology in which the

function Az on T is considered, and then we organize the
problem so the essential issue is apparent.

1. Nature of the continuity

The defining formula (31) for the angular momentum,
together with the expressions (51) and (52) for the twistors,
show that Az is a polynomial in αðu0Þ and βðu0Þ, with
coefficients which are functions of ω0. (Here, as before, we
are thinking of the field ω0 ∈ C2 − f0g.)
The coefficient functions are homogeneous in ω0

(changing under rescalings ω0 ↦ kω0 by factors
knk̄2−n for n ¼ 0, 1, 2), so they can be regarded as
functions on the sphere taking values in certain line
bundles. As is standard, to deal with the homogeneity, we
will divide by a Hermitian norm kω0k2 on the space of
allowable spinor fields. Then the normalized modulus
jAzðZÞj=kω0k2 is independent of the scale of ω0, and
each coefficient function, divided by kω0k2, will have a
well-defined sup norm over the sphere, which we use to
topologize the function space. (The topology is indepen-
dent of the Hermitian norm kω0k.) So the angular
momentum map z ↦ Az, from cuts to our functions
on the sphere, will be analyzed with sup-norm topology
on both source and target.
As noted above, although the particular coefficient

functions will change as the chart changes, the class of
line bundles which arises is invariant.
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2. Criterion for reducing the problem

The essential step will be to show that each of these
normalized coefficient functions can be reduced to a sum of
integrals of the formI

fðz; ð−2σBðzÞ; ðð−2σBðzÞ; ð0ð−2σBðzÞ;ω0; ðω0; γÞdS;

ð56Þ
where no derivative of z appears in the list of arguments.
The function f is continuous and changes under rescalings
of ω0 by at most a phase.
Writing now briefly Iðz;ω0Þ for the expression (56) (the

integral, not the integrand), the quantity

jIðz;ω0Þ − Iðź;ω0Þj ð57Þ
will be a function on the sphere, whose supremum can be
made as small as desired by requiring ź be close to z in sup
norm, because the function f in Eq. (56) is continuous and
the modulus (57) depends only projectively on ω0 (that is,
depends only on γ ∈ S2). This will establish the required
continuity. So the key thing will be to rewrite the integrands
so they do not depend on derivatives of z.

3. Final step

We will now show that by repeated integrations by parts
we can write the twistor angular momentum AzðZÞ as a sum
of explicitly sup-norm continuous terms. These parts inte-
grations are over the cut z, and are in terms of the eth
operator ðz tangent to that cut. This is related to the operator
ð of the Bondi system by ðz ¼ ðþ ððzÞÞ0, where Þ0 is the
derivative in the u direction. We must take this into account.
The quantities which will enter are the curvature spinor

ψABCD, the spinor dyad, and the twistor fields ωA
z . Of these,

there is no real issue of distinction as far as the operators’
actions on the dyad and the twistor fields go, since the dyad
spinors are parallel-transported along the generators of Iþ
and the twistor fields were defined as functions of angle
only. The curvature spinor, however, is certainly not
parallel-transported along the generators, and we must
distinguish between ð and ðz acting on it.
Write the angular momentum as a sum of two terms:

AzðZÞ ¼ A1 þ A2; ð58Þ
with14

A1 ¼
−i
4πG

I
z
ψABCDω

A
zω

B
z oCιDdS; ð59Þ

A2 ¼
−i
4πG

I
z
ψABCDω

A
zω

B
z ι

CιDðz dS: ð60Þ

The term A1 is evidently sup-norm continuous in z. The
term A2 is not obviously so. However, we may regard the
integrand in Eq. (60) as

ððz − ðÞψ ð−1Þ
ABCDω

A
zω

B
z ι

CιD; ð61Þ

where ψ ð−nÞ
ABCD is an nth u-antiderivative of ψABCD. On

integrating, the total ðz derivative will vanish, and we are
left with

A2 ¼ A21 þ A22; ð62Þ

where

A21 ¼
þi
4πG

I
z
ððψ ð−1Þ

ABCDÞωA
zω

B
z ι

CιDdS; ð63Þ

A22 ¼
þ2i
4πG

I
z
ψ ð−1Þ
ABCDω

A
z ððω0ÞðoB þ ððzÞιBÞιCιDdS: ð64Þ

Here A21 is manifestly sup-norm continuous.
We now iterate this procedure. We have

A22 ¼ A221 þ A222; ð65Þ

where

A221 ¼
þ2i
4πG

I
z
ψ ð−1Þ
ABCDω

A
z ððω0ÞoBιCιDdS; ð66Þ

A222 ¼
þ2i
4πG

I
z
ψ ð−1Þ
ABCDω

A
z ððω0ÞððzÞιBιCιDdS: ð67Þ

Here A221 is manifestly sup-norm continuous, and we may
rewrite

A222 ¼
þ2i
4πG

I
z
ððz − ðÞðψ ð−2Þ

ABCDω
A
z ððω0ÞιBιCιDÞdS

¼ A2221 þ A2222; ð68Þ

with

A2221 ¼
−2i
4πG

I
z
ððψ ð−2Þ

ABCDÞωA
z ððω0ÞιBιCιDdS; ð69Þ

14For the reader examining the details of these formulas in
terms of the expressions (51) and (52), for the twistor fields, it is
perhaps helpful to emphasize that AzðZÞ is a function of the
choice of field ω0 ∈ C2 − f0g, αðu0Þ, βðu0Þ. Inside the integrals,
the form of ω0 as a function of the point of integration on the
sphere enters. In the formula (52) for ω̂1, some quantities are
evaluated at γ; recall that this is the generator at which ω0

vanishes, so γ does not vary with the point of integration.
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A2222 ¼
−2i
4πG

I
z
ψ ð−2Þ
ABCDðoA þ ððzÞιAÞððω0Þ2ιBιCιDdS:

ð70Þ

Again, the first term A2221 is sup-norm continuous, and the
second can be written as a sum

A2222 ¼ A22221 þ A22222; ð71Þ

where

A22221 ¼
−2i
4πG

I
z
ψ ð−2Þ
ABCDo

Aððω0Þ2ιBιCιDdS; ð72Þ

A22222 ¼
−2i
4πG

I
z
ψ ð−2Þ
ABCDððzÞιAððω0Þ2ιBιCιDdS: ð73Þ

Again, the first is sup-norm continuous, and we can apply
the trick again to the second, getting

A22222 ¼
−2i
4πG

I
z
ððz − ðÞðψ ð−3Þ

ABCDι
Aððω0Þ2ιBιCιDÞdS

¼ þ2i
4πG

I
z
ððψ ð−3Þ

ABCDÞιAððω0Þ2ιBιCιDdS; ð74Þ

which is manifestly sup-norm continuous.
This concludes the proof that the twistor angular

momentum AzðZÞ is sup-norm continuous.

IV. SPIN AND CENTER OF MASS

As noted in the Introduction, when we use a natural
general-relativistic extension of the twistor formulas for
spin and center of mass, we find that these are not simply
the two j ¼ 1 parts of some spinor or tensor field, but
contain higher-j contributions, which have important geo-
metric interpretations. In the case of the center of mass, they
account for possible deformations of the active cut z from a
physically sensible center of mass; for spin, an analogous
result holds, with the Newman-Winicour interpretation of
spin as a displacement of the center of mass into the
complex.
To write these formulas in an accessible fashion, I will

represent asymptotically constant spinors by boldface
symbols such as πA0 (rather than fields such as ω0—see
Ref. [8] for an explicit dictionary, and for derivations of the
following formulas). The quantity

2iμA
0B0
πA0πB0 ¼ AzðZÞ; ð75Þ

where Z is a twistor with αz ¼ βz ¼ 0 and ω0 corresponds
to πA0 . Then the spin is

JðγÞ ¼ ℑð−2μA0C0
tAC0 −MλzðγÞtAA0 Þπ̄AπA0 ; ð76Þ

where ta is a unit vector along the direction of the Bondi-
Sachs energy-momentum andM is the mass. Here we think
of the null vector π̄AπA0 ↔ γ as determining a direction on
the sphere, so J is a function of this direction. The first term
on the right of Eq. (76) (after distributing over the
subtraction) is the j ¼ 1 contribution familiar from special
relativity, and the second, involving ℑλz, has the j ≥ 2

general-relativistic corrections.
The center of mass is given by the cut

zcm ¼ zþℜλz þ 2
ℜμA

0B0
tAC0 π̄AπA0

MtAA
0
π̄AπA0

þ const: ð77Þ

Here the last term (before “þconst”) has the same form as for
Minkowski space and is the j ¼ 1 contribution, and theℜλz
is a correction term which removes any possible gauge
effects. The freedom to add a constant is expected: in special
relativity, the center of mass is a world line. If desired, the
constant here could be adjusted so that zcm − z is minimal in
L2 (with respect to the frame determined by ta); this would in
a natural sense be the center of mass closest to z.
Our results above show these expressions are sup-norm

continuous: formulas (44) and (50) show that the con-
ditions αz ¼ 0 and βz ¼ 0 lead to sup-norm continuous
values of αðu0Þ and βðu0Þ, and so 2iμA

0B0
is sup-norm

continuous; we have seen λz is sup-norm continuous.
(Since the Bondi-Sachs energy-momentum admits a flux
density, we have M and ta sup-norm continuous.)

V. QUASICONVENTIONAL REPRESENTATION

Twistor theory defines angular momentum as a function
on twistor space, not a field on spacetime (or on some
model spacetime), and it also leads to geometric definitions
of the center of mass and spin. We have seen that all of
these things are sup-norm continuous.
It is possible—and, in my view, the successes of the

twistor program make it likely—that we will come to
regard this twistor perspective as the best way of thinking
of angular momentum for Bondi-Sachs spacetimes. On the
other hand, it is unconventional, and so one does want to
connect it more explicitly to conventional treatments. I
explain here how this may be done and what continuity
properties it has.
In Minkowski space, to recover from twistors the angular

momentum as a spinor or tensor field, one simply restricts
the twistor Z in AðZÞ to be a null geodesic through
the spacetime point of interest. In the Bondi-Sachs context,
however, there is no compelling structure at Iþ replacing
the Minkowski spacetime points. We may, however,
do something like what is done in more conventional
approaches: select a cut zpas, and then choose the twistors to
range over the null geodesics meeting zpas orthogonally.
This would reduce to the standard result for zpas a good cut
in a Minkoskian regime (and zact any cut in that regime).
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I will call the resulting representation of the angular
momentum quasiconventional.
While the quasiconventional representation is evidently

in a general sense related to conventional approaches, there
are significant differences both in the quantities and in their
interpretational frameworks.
A few points are worth making:

(a) The condition that Z meet zpas orthogonally will bring
in the C1 structure of zpas, but not zact. The cut-
continuity criterion proposed by Chen et al. would
apply to deformations of the active cut zact, holding the
passive cut fixed. This is because the question to be
addressed is how the angular momentum varies with
the choice of active cut.
Chen et al. consider angular momenta indexed by

elements of the BMS algebra, and do so “weakly,” that
is, holding the BMS algebra element fixed but
allowing the cut to vary. The passive cut in this case
is the origin of the Poincaré subgroup the BMS
element generates, and this cut must be at least C1

if the BMS vector field is to be C0. Thus the BMS-
based approaches, at least in their most straightforward
interpretations, require at least as much regularity as
the twistor one. (In fact, one would most naturally
require the BMS generators to preserve whatever
regularity structure is assumed for Iþ, and this would
mean more regular passive cuts.)

(b) We expect the quasiconventional angular momentum
to be interpretable as a mild deformation of a special-
relativistic construction only to the degree which zpas
is in some suitable sense close to a good cut. For other
choices, the construction is more formal and its
interpretation is less clear. Although this is a negative
statement, it can be regarded as clarifying the function
of the passive cut and the transition from weakly to
strongly general-relativistic circumstances. (It is worth
thinking about parallel implications for conventional
treatments; I will discuss this below.)

(c) As the twistor Z varies over the null geodesics meeting
zpas orthogonally, we get a (spin-weight −1) function
on the sphere of generators. In the special-relativistic
limit, with zpas a good cut, this would simply be the
complex j ¼ 1 representation of the angular momen-
tum, that is, the representation of μA

0B0
as the function

2iμA
0B0
πA0πB0 for πA0 in the spin bundle over the sphere.

In the general-relativistic case, however, there will
usually be j ≥ 2 contributions as well. These are
related to the contributions of λ to the center of mass
and spin. (But to extract the center of mass and spin,
the twistor approach [Sec. IV] is more direct.)

I now verify that the quasiconventional representation of
the angular momentum is, for any fixed C1 passive cut zpas,
sup-norm continuous in the active cut zact. This quantity is

AzactðZÞ; ð78Þ

where Z varies over the twistors meeting zpas orthogonally.
Since we already know Azact is sup-norm continuous in zact,
we must show that the restriction of the twistors Z
introduces no difficulties.
However, this restriction is entirely independent of zact.

The conditions for a twistor Z to meet a cut zpas orthogo-
nally are [8]

αðzpasðγÞÞ ¼ λðzpasðγÞ; γÞ; ð79Þ

βðzpasðγÞÞ ¼ −
�
ðω0

ðω0
ð0ðzpas − λÞ

�����
γ

: ð80Þ

These imply

αðu0Þ ¼ −zpasðγÞ þ u0 þ λðu0; γÞ; ð81Þ

βðu0Þ ¼ −
�
ðω0

ðω0
½ð0zpas − ð0λðu0; γÞ�

�����
γ

: ð82Þ

We see explicitly that these conditions do not bring in zact
at all.

VI. FLUX AND FLUX DENSITY

There is no standard terminology for the various flux
quantities of interest. The mathematically strongest concept
I will call flux density, a preferred three-form on Iþ, whose
integral between two cuts would be the emitted angular
momentum. Next, a flux is the angular momentum emitted
between two infinitesimally separated cuts. Still weaker
would be a flux with respect to the Bondi parameter, the
angular momentum emitted between two infinitesimally
separated u ¼ const cuts of the same Bondi system.
The flux of the twistor angular momentum with respect

to the Bondi parameter was derived in Ref. [13]. We can
derive an expression for the flux itself by functionally
differentiating the formulas of Sec. IIIE for AzðZÞ with
respect to z, and also do a related calculation to show that
no flux density can exist.

A. Flux

In the generality of Sec. IIIE, which considers a cut z
arbitrarily supertranslated with respect to the Bondi coor-
dinates, the expression for the flux is very long. However,
we should not usually need this generality. It is more
natural for most purposes to ask for the flux between a
u ¼ u0 ¼ const cut of the Bondi system and an infinitesi-
mally separated cut u ¼ u0 þ δz. Then we have consid-
erable simplifications. Using formulas (59) and (60), the
flux of angular momentum emitted over δz is (minus)

δAzðZÞ ¼
−i
4πG

I
f½ðδzÞ0ψABCDÞωA

u0ω
B
u0

þ 2ψABCDω
A
u0δω

1ιBgoCιD�
− δzððψABCDω

A
u0ω

B
u0ÞιCιDgdS; ð83Þ
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where

δω1 ¼ ω0ðð−2ð _σBδzÞ þ ½ð−2ð _σBδzÞjγ − ð−2ð _σBδzÞ

þ δz�ðω0 þ
�
ðω0

ðω0
ð0ð−2ð _σBδzÞ

�����
γ

ω0: ð84Þ

B. Flux density

One can also show that a flux density cannot exist. The
computation is long and the specifics of the results, while
having interesting structure, are too long and technical to be
worth discussing in detail here. I will just explain the idea,
and it will be seen that the result is expected from the
mathematical structure. It will turn out to have an important
physical interpretation.
For a flux density to exist, for any open subset R1 of a cut

z and any first-order perturbation δ1z of z supported on R1,
one should be able to assign a flux Φðδ1zÞ, which is linear
in δ1z, and unaffected by changes in z whose supports are
disjoint from R1. In particular, then, if we contemplate
another perturbation δ2z supported within an open set R2

disjoint from R1, we should have

δ2

δ1zδ2z
AzðZÞ ¼ 0; ð85Þ

where the left-hand side is the functional derivative.
Equivalently, the kernel

δ2

δzðγ1Þδzðγ2Þ
AzðZÞ ð86Þ

should have support (in the distributional sense) only on the
diagonal γ1 ¼ γ2. (This argument, connecting flux densities
to diagonal support of second variations, would apply to
any kinematic quantity defined on cuts of Iþ.)
However, the quantity (86) can be computed explicitly (it

is easiest again to work around a u ¼ const cut), and, if
gravitational radiation _σB ≠ 0 is present at z, generically
has off-diagonal contributions. These come, for instance,
from terms which are products of ð−2ð _σBδ1zÞjγ with
integrals involving curvature terms and δ2z, and vice versa.
The first factor involves the Green’s function ð−2, so such a
term is a product of integrals over the cut, not a single
integral of a product: they are highly nondiagonal. In a
nonradiating regime, the angular momentum is strictly
independent of the cut; contrapositively, the terms here
which are sensitive to the off-diagonal contributions also
involve quantities related to the news _σB.
The nondiagonal contributions to the change in angular

momentum (86) have a direct and important physical
interpretation. They mean that the total angular momentum
depends on correlations of gravitational radiation from
separated asymptotic directions (separated generators of

Iþ). So the twistor definition conveys very different
information, in the radiative case, from one admitting a
flux density (such as that of Dray and Streubel).

VII. DISCUSSION

Chen et al. proposed that any definition of angular
momentum for Bondi-Sachs spacetimes should be sup-
norm continuous. I have shown that this property holds for
the twistorial angular momentum, spin, center of mass, and
quasiconventional representation. The arguments turned on
the ellipticity of the Newman-Penrose operator ð. This is
also at the heart of the Bondi-Sachs schema, for this
operator codes the complex structure of the sphere of
generators which is used essentially in defining the Bondi
frame, the shear, and the news.
Along the way, and consequently, a number of related

results were found. The formulas (51) and (52) for the
twistors at cuts arbitrarily supertranslated with respect to
the working Bondi system are basic structural results for the
theory. Another is the flux law, Eqs. (83) and (84), giving
the angular momentum emitted between two infinitesimally
(but perhaps also supertranslationally) separated cuts.
Beyond these, there are two points worth discussing in a

bit more detail. One is the lack of existence of a flux
density, and the cause of that in the twistor angular
momentum’s dependence on correlations between the
gravitational radiation in different asymptotic directions.
The other is the relation between the twistor definition and
BMS-algebra based ones.

A. Flux density versus correlations

I distinguished in Sec. VI between the existence of a flux,
the angular momentum emitted between two infinitesi-
mally separated cuts, and a flux density, a three-form whose
integral over the infinitesimal strip separating such cuts
would give a flux. For the twistor angular momentum, a
flux exists, essentially in consequence of the sup-norm
continuity of the definition, but a flux density does not.
The argument for this uncovered an important point. A

flux density cannot exist if the second variation (86) of the
angular momentum with respect to the active cut has any
support off the diagonal. This off-diagonal support in turn
means that there are contributions to the emitted angular
momentum which arise from correlations of radiative data
in different asymptotic directions. It is ultimately due to the
occurrence of the potential λ ¼ ð−2σB, which σB influences
nonlocally, in the twistor formulas. Most suggested defi-
nitions, cast as integrals over the cut involving σB only
locally, will not have this property.15

15The CWWY proposal also involves (the real part of) λ, and in
fact the CWWY “correction term” with λ is one of the terms
occurring in the twistor expression.
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This shows that the twistor angular momentum measures
physical effects qualitatively beyond those which can
be detected by approaches (such as that of Dray and
Streubel) which do admit flux densities. It suggests a
way of comparing the physical utility of the approaches, by
looking at systems (possibly composed of subsystems)
which emit radiation in separated directions. One would
look for cases in which one could on clear physical grounds
identify the angular momentum emitted, and see whether
such correlations were needed to explain it.
It is worthwhile comparing this with the situation for the

Bondi-Sachs energy-momentum.
While the energy-momentum flux density does indeed

represent a sort of local structure, there is an important sense
in which this locality is relative: the flux density depends on
the news, and the news is not a locally determined quantity—
one gets it from the curvature by doing a nonlocal angular
integral (or a retarded-time integral relative to some initial
data). In other words, once the whole structure of Iþ is
known, then the flux density has awell-defined existence: but
if only a portion of Iþ limited in angle (and retarded time) is
known, one cannot get the flux density.
The Bondi-Sachs energy-momentum is an element in the

space of asymptotically constant covectors, and to define it
we need first to understand the asymptotically constant
vectors. They are constructed, like the twistors, by the use
of elliptic systems of equations, which rely on nonlocal
structure for their solution [20]. Unlike the twistors,
though, the asymptotically constant vector fields, once
obtained, are well-defined over all of Iþ. It is this which is
responsible for the existence of a flux density for the
energy-momentum [18].
Finally, it should be emphasized that these have been

questions of nonlocality at scri. Nonlocality in this sense is
far more severe than in the ordinary one. For instance, the
nonlocalities for binding energies are set by the separation
between the systems contributing, but for the geometry of
Iþ one it is the distance to the radiation zone.

B. The interpretation of passive cuts

To make a link between the twistor approach and others,
I introduced the quasiconventional representation, which
gave the angular momentum at any (C1) passive cut. Yet
this resulted in properties different from other approaches:
the twistorial angular momentum had j ≥ 2 contributions.

What underlies these differences between the twistor and
the BMS-algebra-based approaches?
It comes down to the question of what is taken to code

the sense of “origins” associated with angular momentum.
In approaches such as the Dray-Streubel one, it is simply
the passive cuts. For twistors, though, the origin informa-
tion is ultimately in the twistors, and so it is not just the
location of a passive cut which matters, but the null
geodesics extending orthogonally inwards from it.
In the twistor approach, it is clear that the passive cut is

not a compelling or fundamental structure. It is just a
convenience, to try to express the results in a form which
can be viewed as a deformation of the special-relativistic
structure, and that deformation becomes more severe with
the badness of the cut. If, in some regime, cuts which are
not too bad exist, one can think of the quasiconventional
j ¼ 1 part of the angular momentum as a familiar extension
of the special-relativistic concept, and the j ≥ 2 parts as
extra, general-relativistic portions, with respect to these
cuts. But if all cuts in the regime are pretty bad, then the
twistorial interpretation would be that the system is
sufficiently general relativistic that its energy-momentum
and angular momentum cannot be well modeled there by
something close to a Poincaré structure. The quasiconven-
tional representation then has a largely formal role, and to
extract information of clear significance one cannot avoid
the twistorial definition itself.
By contrast, in the BMS-based approaches, the passive

cuts have, on their own, essentially no geometric signifi-
cance. What is important about them are their relations to
the active cuts under consideration—which active cuts they
are supertranslated relative to, and by how much.
Although the BMS-based formalism works perfectly

mathematically for arbitrary active and passive cuts, the
difficulties with center of mass show that even in a
Minkowskian regime a bad active cut is hard to interpret
without bringing in “by hand” the regime’s good cuts. In
generic circumstances, we have, so far, essentially no
guidance in going beyond the formalism to interpretation.
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