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This work is motivated by the existence of mapping the extended theory of gravity with a standard
energy-momentum tensor to general relativity with a modified energy-momentum tensor. We construct a
modified anisotropic energy-momentum tensor from a standard isotropic energy-momentum tensor by
adding a “geometrical correction” to precisely reproduce the Tolman-Oppenheimer-Volkoff equations
predicted by the generalized Tolman-Oppenheimer-Volkoff (GTOV) model. This construction aims to
calculate the moment of inertia (I) and tidal deformability (Λ) of neutron stars (NSs) within the GTOV
model. Therefore, we can comprehensively investigate the role of each free parameter of the GTOV model
in NS properties. Furthermore, through this construction we can also utilize physically acceptable stability
conditions for anisotropic stars to constrain the physical range of each parameter value and investigate the
existence of a correlation among the parameters of the GTOV model. Except for α, we find that the values
of the GTOV free parameters can be limited to acceptable ranges. We also find that the parameters θ, χ, and
β are correlated, and the parameter Γ → 0. With these free parameter ranges in hand, we study the role of
each parameter of the GTOV model in NS properties, including I and Λ. We also revisit the hyperon puzzle
in NSs within the GTOV model. We find that the θ parameter plays a crucial role in controlling the NS
maximum mass value. We also find that the threshold k2 peak for NS is k2 ≈ 0.167. Furthermore, if we use
parameter sets with θ ¼ −1, the mass-radius predictions are compatible with recent NICER data on PSR
J0030þ 0451 and PSR J0740þ 6620.
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I. INTRODUCTION

Neutron stars (NSs) have a relatively large compactness
(i.e., C≲ 1

3
) and high densities (i.e., around several times

the nuclear saturation density ρ ≈ 3 × 104 g
cm3). Therefore,

observational data of neutron star’s properties are crucial to
investigate the equation of state (EOS) of nuclear matter at
high densities and to probe the impact of gravity within
both general relativity (GR) [1–3] and extended theories of
gravity (ETGs) [4–6]. We can extract the NS mass (M),
radius (R), inertia moment (I), and tidal deformability (Λ)
from astronomical observations. For example, observations
by the Neutron Star Interior Composition Explorer
(NICER) can simultaneously constrain the M, R, and I
of PSR J0030þ 0451 [7,8] and PSR J0740þ 6620 [9,10].
We can also obtain information on the merger of binary
NSs from gravitational waves (GWs). The GW events
GW170817 [11–13] and GW190425 [14] and their electro-
magnetic counterparts [15,16] can provide relatively accu-
rate Λ andM values, as well as other properties of NSs. We
need to note that sets of observational results from different
systems can also be used to constrain a shared underlying
NS property through a hierarchical inference scheme.

For a recent report on this scheme, please see Ref. [17]
and references therein. Furthermore, testing gravity using
NSs is challenging since the EOS and the gravity theory to
describe NSs are uncertain. One possible way to overcome
this issue is by employing the EOS-independent (universal)
relation between I, L, and Q, where L is the tidal Love
number and Q is the quadrupole moment of NSs. See
Ref. [6] for a recent report on scalar-Gauss-Bonnet gravity
theory, and the references therein for the GR and other ETG
cases. Information onM, R, I,Λ or L, andQ are essential to
understanding the EOS and composition of NSs.
References [18–21] reported that one can map the

Einstein field equations of ETGs using a standard isotropic
energy-momentum tensor for describing matter into the one
of Einstein field equation of GR theory but by using the
apparent or modified energy-momentum tensor; see the
detailed discussions in Refs. [18–21] and references therein.
Wojnar and Velten [19] also demonstrated that the modified
Einstein field equations of a large class of ETGs can be
written generally into GR Einstein’s field equations with an
effective energy-momentum tensor. The energy-momentum
tensor consists of energy-momentum tensor of actual EOS
of matter and energy-momentum tensor from geometrical
source. The explicit form of this energy-momentum tensor
correction depends on the specific ETG used, and the*anto.sulaksono@sci.ui.ac.id
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pressure of NSs might be anisotropic due to this term [19]
[e.g., the Eddington-inspired Born-Infeld (EiBI) case]. In
the EiBI case, the pressure in the apparent EOS becomes
anisotropic even though the pressure in the actual EOS of the
matter is isotropic [18].
A few years ago, Mota et al. [22] introduced a free ad hoc

parametrization of the Tolman-Oppenheimer-Volkoff (TOV)
model to overcome the hyperon puzzle in NSs. The model is
known as the generalized TOV (GTOV) model. From a
phenomenological point of view, this model is attractive
because adding more free parameters to every term of the
TOVequations makes the model more flexible if we compare
this model’s predictions forM andRwith observational data.
This model extends the previous proposal known as the free
parametrized TOV (PTOV) model [23]. The PTOV model
aims to investigate the correspondence between each TOV
termwith possible terms in ETG and to distinguish the role of
ETG term using NS properties. However, we have difficulty
calculating other observable properties of NSs—I, Λ or L,
and Q—and examining the stability of stars in the relative
extreme values of the free parameter due to this model does
not provide TOV equations from Einstein’s field equations.
Inspired by the possibility of mapping ETGwith standard

matter into GR with modified matter, we construct a
modified anisotropic energy-momentum tensor to obtain
the TOV equations of GTOV or PTOV models. Using the
Einstein field equationswith both a standard, slowly rotating
metric and a tidal deformationmetric, the I andΛ of NSs can
be calculated. Furthermore, we employ physically accept-
able stability conditions for an anisotropic object [24–26] to
constrain the GTOV model’s parameters and study the
correlations among the parameters. We hope that we can
reduce the number of free parameters into physically
parameters. With these free-parameter ranges in hand, we
revisit the hyperon puzzle in NSs to test whether the GTOV
model can resolve this issue.
The paper is organized as follows. In Sec. II we briefly

discuss the anisotropic energy-momentum tensor correc-
tion in GR that can reproduce the TOV equations of the
GTOV model. We also show the explicit expressions to
calculate the mass-radius relation, moment of inertia, and
tidal deformability for the GTOV model. In Sec. III we use
stability conditions for anisotropic objects to reduce the
number of free parameters of the GTOV model. In Sec. IV
we discuss the structure of EOSs and the composition of
NSs by taking into account hyperons in EOSs. In Sec. V we
discuss the numerical results. Finally, we give our con-
clusions in Sec. VI.

II. GENERALIZED TOV EQUATIONS AND
EFFECTIVE ENERGY-MOMENTUM TENSOR

In this section we construct an effective energy-
momentum tensor with an effective energy density and
anisotropic pressure. If we define the specific form of the
effective energy density and the difference between radial

and tangential pressure forms, the corresponding TOV
equations of this model can be recast exactly into the
TOV equations of the GTOV model. In this way, we can
calculate all NS properties, including I and Λ. The effective
energy-momentum tensor is defined as [1]

T̄μν ≡ ϵ̄uμuν þ Pkμkν þQ½gμν þ uμuν − kμkν�; ð1Þ

where ϵ̄ is the effective energy density which consists of the
actual energy density of matter and the correction term
from the geometry. P is the radial pressure, Q is the
tangential pressure, uμ is the fluid 4-velocity, kμ is the unit
radial vector orthogonal to uμ, and gμν is the spacetime
metric. The spacetime metric is given by

gμν ¼ diag½eν;−eλ;−r2;−r2 sin2 θ�; ð2Þ

where ν ¼ νðrÞ and λ ¼ λðrÞ. From the Einstein field
equations, we obtain the following three relations:

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ 8πGϵ̄; ð3Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ 8πGP; ð4Þ

e−λ
�
ν00

2
þ ðν0Þ2

4
−
ν0λ0

4
þ ν0

2r
−

λ0

2r

�
¼ 8πGQ: ð5Þ

By manipulating Eqs. (3), (4), and (5), we obtain the
following TOV equations:

dP
dr

¼ −
Gðϵ̄þ PÞðM þ 4πr3PÞ

rðr − 2GMÞ −
2σ

r
; ð6Þ

and

dM
dr

¼ 4πϵ̄r2; ð7Þ

where σ ≡ P −Q [1].
We define the particular form of ϵ̄ and σ in Eqs. (6) and

(7) as

ϵ̄≡ ϵ̃þ Γ̄; ð8Þ

and

σ ≡ r
2
Γ̃þGðϵ̃þ PÞðM þ 4πr3PÞ

2ðr − 2GMÞ Δ: ð9Þ

Note that in Eqs. (8) and (9), ϵ̃, Γ̄, Γ̃, and Δ are defined as

ϵ̃≡ ϵþ θP; ð10Þ
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Γ̄≡ Γ
ffiffiffi
ϵ

p
M

4πr2
; ð11Þ

Γ̃≡ −
GΓ̄ðM þ 4πr3PÞ
rðr − 2GMÞ ; ð12Þ

and

Δ≡ ᾱð1þ β̄Þð1þ χ̄Þ − 1: ð13Þ

As we can see in Eq. (13), the Δ term depends on three
functions, i.e., ᾱ, β̄, and χ̄, which depend on the GTOV
parameters. The explicit forms of these functions are

ᾱ ¼ αþ 1; ð14Þ

β̄ ¼ Pðβ − θ − 1Þ
ϵ̃þ P

; ð15Þ

and

χ̄ ¼ 4πr3Pðχ − 1Þ
M þ 4πr3P

: ð16Þ

If we substitute all of these terms into standard the TOV
equations with an anisotropic pressure [i.e., Eqs. (6) and
(7)], after a little bit of algebra we can obtain exactly the
GTOV equations [22], i.e.,

dP
dr

¼ −
Gð1þ αÞðϵþ βPÞðM þ 4χπr3PÞ

rðr − 2GMÞ ; ð17Þ

and

dM
dr

¼ 4πr2ðϵþ θPÞ þ Γ
ffiffiffi
ϵ

p
M; ð18Þ

where α, β, χ, θ, and Γ are free parameters of the GTOV
model. This means that Eqs. (8) and (9) play a role in
mapping from anisotropic GR to the GTOV model.
Furthermore, we can calculate an NS’s tidal deformability
and moment of inertia using this GR framework.
Except for Γ, the physical meaning of these parameters

was discussed in Ref. [23]. Then, Ref. [22] introduced the Γ
parameter because the author wanted to analyze the
possible new effects that might arise from dM=dr equation.
It is worth noting that α parametrizes the deviation of the
gravitational coupling value, i.e., Geff ¼ Gð1þ αÞ, where
G is the gravitational coupling [22,23]. Some modified
gravity theories predict α whose form can be seen clearly in
their nonrelativistic limit expression. For instance, fðRÞ
theory in Refs. [22,23,27]. Note that β, χ, and θ affect the
pressure contribution of the TOVequations, i.e., they relate
inertial pressure, self-gravity, and gravitational mass of
stellar dense objects, respectively. Furthermore, the term
relates to χ is genuine GR [22,23]. In a recent report, the NS

mass was shown to be relatively sensitive to variations in
the value of χ [28]. On the contrary, the radius is not too
sensitive to variations in the value of χ. In GR, the value of
each parameter is α ¼ 0, β ¼ 1, χ ¼ 1, θ ¼ 0, and Γ ¼ 0.
The deviation from these GR values indicates the existence
of modified gravity. As far as we know, the reported
observational constraints are only for α and χ [29,30].
The best-fit range for α extracted from observations is
0.04≲ α≲ 0.15 [29]. However, the big bang nucleosyn-
thesis (BBN) fitting results for χ are χ ¼ 1.0� 0.14 and
χ ¼ 0.84� 0.25, and the data are strongly incompatible
with χ ¼ 0. The corresponding fitting results only slightly
depend on the details of the observable involved. This
means that BBN data is consistent with the value predicted
by GR; see Ref. [30] and references therein for a detailed
discussion of the χ constraint from BBN. It is also worth
noting that one of the ETGs, i.e., energy-momentum
squared gravity (T-squared gravity) theory, has a relatively
similar TOV equation structure as those of the GTOV
model; see Ref. [31] and references therein for detailed
applications of the T-squared gravity model. The TOV
equations of this model with the coupling of energy-
momentum squared gravity κ are [31]

dP
dr

¼ −
G½1þ αðϵ;PÞ�ðϵþ βPÞ½Mþ χðϵ;PÞ4πr3P�

rðr− 2GMÞ ; ð19Þ

with

χðϵ; PÞ ¼ 1þ κ
ϵ2

P

�
1þ 3P2

ϵ2

�
;

αðϵ; PÞ ¼ 2κϵ

�
1 −

∂ϵ

∂P

�
;

and

dM
dr

¼ 4πr2½ϵþ θðϵ; PÞPþ κϵ2�; ð20Þ

where θ ¼ κð8ϵþ 3PÞ. The fact that α, χ, and θ in T-squared
gravity theory depend on the free parameters κ, P, and ϵ, the
main difference appears in the term couple by Γ in GTOV
model is

ffiffiffi
ϵ

p
M while the κ-term of T-squared gravity theory

is in the form of ϵ2. We will discuss the role of these
parameters in more detail for a stellar configuration later.
The dimensionless tidal deformability can be expressed

as [32]

Λ ¼ 2k2
3C5

; ð21Þ

where k2 and C are the electric-tidal Love number and NS
compactness, respectively. The NS compactness can be
expressed as
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C ¼ 2GM
R

; ð22Þ

where M and R are the NS mass and radius, respectively.
We have to solve a first-order differential equation to obtain
k2 [1],

r
dy
dr

þ y2 þ B1yþ B2r2 ¼ 0; ð23Þ

where

B1 ¼
r − 4πr3ðϵ̄ − PÞ

r − 2GM
; ð24Þ

B2 ¼
4πr

 
4ϵþ 8Pþ

ðϵ̄þPÞ
�
1þdϵ̄

dP

�
1−dσ

dP
þ 4σ

!

r − 2M

− 4

0
B@M þ 4πr3P

r2
�
1 − 2GM

r

�
1
CA

2

: ð25Þ

More details about obtaining Eq. (23) can be found in
Ref. [1]. Here, we set the initial value of y, i.e., yð0Þ ¼ 2, to
solve Eq. (23). Moreover, we solve it simultaneously with
the anisotropic TOV equations. After solving it, we can
compute the k2 value,

k2 ¼
B3

B4

; ð26Þ

where

B3 ¼
8

5
ð1 − 2CÞ2C5ð2CðY − 1Þ − Y þ 2Þ; ð27Þ

B4 ¼ 2Cð4ðY þ 1ÞC4 þ ð6Y − 4ÞC3Þ
þ 2Cðð26 − 22YÞC2 þ 3ð5Y − 8ÞC − 3Y þ 6Þ

− 3ð1 − 2CÞ2ð2CðY − 1Þ − Y þ 2Þ ln
�

1

1 − 2C

�
;

ð28Þ

where Y ¼ yðRÞ. Therefore, we can compute the dimen-
sionless tidal deformability after we obtain k2 and C.
To obtain the moment of inertia, we have to solve two

first-order differential equations,

dω̃
dr

¼ 6

r4
eν
�
1 −

2GM
r

�
−1=2

κ̃

dκ̃
dr

¼ 8π

3

r4e−νðϵ̄þ PÞ�
1 − 2GM

r

�
1=2

�
1þ σ

ϵ̄þ P

�
ω̃: ð29Þ

More details about obtaining Eq. (29) can be found in
Ref. [1]. Here, we use the slowly rotating approximation.
We solve two first-order differential equations using the
Runge-Kutta methods with boundary conditions:

ω̃ðRÞ ¼ 1 −
2I
R3

;

κ̃ðRÞ ¼ I; ð30Þ

where I is the moment of inertia of NSs.

III. ANALYSIS OF GENERALIZED TOV MODEL
FREE PARAMETERS

In this section we study the behavior of each free
parameter of this model on the boundaries of NSs
(r → 0 and r → R). Requirements of physically acceptable
interior solution for anisotropic static fluid sphares in GR
[24–26] can constrain these parameters. This analysis aims
to obtain the ranges of the free parameters in the GTOV
model since the information from existing observations is
insufficient. Furthermore, we should be careful when
comparing the GTOV model with ETGs as the TOV
equations of each model might not always be the same.
Five conditions should be met if we want the interior

solution of fluid spheres to be able accepted physically
[24–26]:
(1) Inside the star, ϵ ≥ 0 and P ≥ 0.
(2) dϵ

dr ≤ 0, dP
dr ≤ 0, and dQ

dr ≤ 0.
(3) The speed of sound should be less than the speed of

light inside the star.
(4) The component of the energy-momentum tensor has

to obey ϵþ Pþ 2Q ≥ 0 and ϵ ≥ Pþ 2Q.
(5) P ¼ Q at the center of the star, but P ≠ Q at the

surface since P ¼ 0 but Q may not vanish.
Note that P and Q are the radial and tangential pressure,
respectively.
In a realistic and physical description of the interior of

stable stars, it is assumed that the spacetime does not
possess a singularity. Therefore, the pressure and energy
density in the center should be positive and definite. The
energy density and pressure should decrease monotonically
up to the surface, and become zero at the surface of the
stars. Conditions 1 and 2 represent these requirements. If
these conditions are satisfied, then the null energy con-
dition, weak energy condition, and strong energy condition
(SEC) are also satisfied. Note that the energy conditions are
the criteria for a physically admissible energy-momentum
tensor in GR. Therefore, the energy conditions are used to
rule out nonphysical solutions of the Einstein field equa-
tions. The energy density should have a positive value and
gravity should encode attractively in these requirements
[33]. Condition 3 is the causality condition, i.e., the speed
of sound should be subluminal. Condition 4 is an SEC and
a trace energy condition (TEC). The TEC is stronger than
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the dominant energy condition, i.e., ϵ ≥ P and ϵ ≥ Q. Note
that if the TEC holds, anisotropic stars have a larger redshift
bound than that of isotropic stars [34]. Condition 5 is
related to the behavior of the anisotropic factor at bounda-
ries. In the center, the pressures are at a maximum and tend
to be isotropic due to stability reasons, where P ¼ Q at the
center. Meanwhile, the consequences of P ¼ 0 and Q ≠ 0
at the surface are the stars (i) more stable [35], (ii) have a
relatively massive configuration [35], and (iii) have hard
outer mantles [36].
Before we analyze hte energy conditions at the

center and surface of a NS, we determine the range of σ
from condition 4. Note that σ ≡ P −Q so that condition
4 yields two inequalities, i.e., ϵ − 3Pþ 2σ ≥ 0 and
ϵþ 3P − 2σ ≥ 0. Therefore, we conclude that the range
of σ can be expressed as

−
1

2
ðϵ − 3PÞ ≤ σ ≤

1

2
ðϵþ 3PÞ: ð31Þ

Equation (31) is the constraint of σ that obtain from energy
conditions. Moreover, this constraint is valid for every
model with an effective anisotropic pressure and energy
density.
First, we analyze the implications of the energy con-

ditions for the region near the NS center rc. The energy
density, radial pressure, tangential pressure, anisotropic
factor, and NS mass near the NS center are written as
ϵc ¼ ϵðrcÞ, Pc ¼ PðrcÞ, Qc ¼ QðrcÞ, σc ¼ σðrcÞ, and
Mc ¼ MðrcÞ, respectively. Note that rc → 0 and
Mc → 0. Based on condition 3, ðϵcPc

Þ
max

¼ 1. Based on
condition 4, ðϵcPc

Þmin ¼ 3. Note that σc → 0. Therefore, we
obtain a range for the ratio of the energy density and radial
pressure,

1

3
≤ ϒc ≤ 1; ð32Þ

where ϒc ¼ Pc
ϵc
. Note that ϒc is insensitive to the details

of the NS EOS [37]. Saes and Mendes [37] obtained
ϒmin ≈ 0.300 using the universal relation between ϒmin

and the compactness C. In addition, they obtained ϒmin ¼
0.200þ0.05

−0.05 from GW170817 which is from the median of
90% credible interval ϒ probability distribution function
for primary component and obtained from combination
data of NICER and XMM Newton [37]. Therefore, the
ϒmin ¼ 1=3 that we obtained from the energy conditions is
compatible with those obtained in Ref. [37]. Next, we apply
the energy conditions for the anisotropic TOVequations for
our case where ϵ → ϵ̄. The energy density for the aniso-
tropic TOV equations in our case can be expressed as

ϵ̄ ¼ ϵþ θPþ Γ
ffiffiffi
ϵ

p
M

4πr2
: ð33Þ

Equation (33) is a combination of Eqs. (8) and (10). At the
NS center, the third term vanishes since Mc ≈ 4

3
πr3cϵc and

rc → 0. By applying condition 4, we obtain ϒc ≤ 1
3−θ. As a

consequence of Eq. (32), we obtain a physically acceptable
range for the θ parameter, i.e., 0 ≤ θ ≤ 2. We need to note
that we obtain θ equal to zero as the minimum range result
since we use ϒmin ¼ 1=3. Therefore, the range of θ is
uncertain because of the dependency on the uncertainty of
ϒmin. For instance, if we assume that ϒmin < 1=3, then we
obtain a negative value for θmin, and if we takeϒmin ≡ 0.25,
then we obtain θmin ¼ −1.
Next, we rewrite Eq. (9) in a different form, i.e.,

σ ¼ σ1 þ σ2Δ; ð34Þ

σ1 ¼ −
GΓ

ffiffiffi
ϵ

p
MðM þ 4πr3PÞ

8πr2ðr − 2GMÞ ; ð35Þ

σ2 ¼
Gðϵ̃þ PÞðM þ 4πr3PÞ

2ðr − 2GMÞ : ð36Þ

As a consequence of rc → 0, σc → 0, and σ1 → 0 at the NS
center, Δ has to be zero since σ2 is positive. From Δ ¼ 0,
we obtain

ᾱ

�
1

3
þ
�
χ þ β

3

�
ϒc þ βχϒ2

c

�
¼ 1

3
þ
�
1þ θ̄

3

�
ϒc þ θ̄ϒ2

c :

ð37Þ
Note that θ̄ ¼ θ þ 1. From Eq. (37), we obtain three
equations,

ᾱ ¼ 1; ð38Þ

χ þ β

3
¼ 1þ θ̄

3
; ð39Þ

βχ ¼ θ̄: ð40Þ

From Eq. (38), we obtain α ¼ 0. From Eq. (39), we obtain
the explicit form of χ, i.e.,

χ ¼ 1

3
ð4þ θ − βÞ: ð41Þ

By inserting Eq. (41) into Eq. (40), we obtain the quadratic
form of β,

β2 − ð4þ θÞβ þ 3ð1þ θÞ ¼ 0: ð42Þ

If θ ¼ 0, we obtain two values for χ and β: χ ¼ 1 with
β ¼ 1, and χ ¼ 1

3
with β ¼ 3. If θ ¼ 1, we obtain two

values for χ and β: χ ¼ 1with β ¼ 2, and χ ¼ 2
3
with β ¼ 3.

If θ ¼ 1, we obtain one value for χ and β: χ ¼ 1with β ¼ 3.
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Based on the analysis of energy conditions near the NS
center, we obtain the correlated free parameter values of θ,
χ, and β. Next, we use the energy conditions at the NS
surface to obtain estimates of the value of Γ. Before we
analyze the energy conditions, we note the following
notation for the energy density, radial pressure, tangential
pressure, anisotropic factor, and NS mass at the surface
(r ¼ R): ϵR ¼ ϵðRÞ, PR ¼ PðRÞ, QR ¼ QðRÞ, σR ¼ σðRÞ,
and MR ¼ MðRÞ, respectively. From Eq. (18), ϵR → 0
since it has to fit the exterior solution with ϵ ¼ 0 so that
ϵ̄ ≈ 0 in Eq. (7). From ϵ̄ ≈ 0, we obtain the explicit form of
Γ,

Γ ≈
4πR2

MR

ffiffiffiffiffi
ϵR

p
: ð43Þ

Note that Γ has dimensions ðfm=MeVÞ12. Γ → 0 is due to
the fact that ϵR → 0. Another argument Γ → 0 can find
from the requirement dM=dr ≥ 0 which satisfies evaluat-
ing on the surface. To this end, the energy conditions alone
can constrain the range of almost all of the GTOV model’s
free parameters, except for α. In brief, α seems to be an
independent free parameter in the GTOV model. In the
following, we compare the weak-field (nonrelativistic) limit
of the GTOV model with some modified gravity theories.
We hope that we have insight from other theories about the
Γ term and what the range of the α parameter should be.
The nonrelativistic limit of the GTOV model can be
expressed as

dP
dr

¼ −
GMϵ

r
ð1þ αÞ; ð44Þ

dM
dr

¼ 4πr2ϵ

�
1þ Γ

ffiffiffi
ϵ

p
M

4πr2

�
: ð45Þ

First, we compare Eqs. (44) and (45) with the general post-
Newtonian approach for modified gravity from Ref. [38].
Its equations can be expressed as

dP
dr

≃ −
GMϵ

r
−
κg
4
ϵ
dϵ
dr

; ð46Þ

dM
dr

¼ 4πr2ϵ; ð47Þ

where κg is a free parameter. Note that Eq. (46) neglects
terms that violate the equivalence principle in the spherical
case [38]. Note that Eqs. (46) and (47) are the same as those
predicted by the EiBI theory; see, for example,
Refs. [39,40] which discuss EiBI theory in the weak-field
limit. Note that the constraint for κg depends on the
compactness of the objects [4,38–41]. The tightest con-
strain is NS compactness. This parameter plays a signifi-
cant role in explaining the hyperon puzzle in NSs; see, for
example, the corresponding discussions in Refs. [4,41]. We

can see that α → 0 by comparing Eqs. (44) and (46), where
κg term only appears in EiBI theory and post-Newtonian
approach. Therefore, it seems that the role of the α term in
the GTOV model is effectively replaced by the κg term in
these models. Moreover, we can identify that the Γ term
does not appear in the post-Newtonian approach or EiBI
theory by comparing Eqs. (45) and (47). Next, we discuss
the weak-field limit of the fðRÞ-theory-derived result
in Ref. [40]. The result is based on the Taylor expansion
of fðRÞ concerning the Ricci scalar R, i.e.,
fðRÞ ≈ C1Rþ C2R2 þ…. Note that C1 ≡ 1þ δ and δ is
an independent parameter describing the deviation from the
GR value of C1 that may acquire nontrivial values on
astronomical scales [40]. For the case of C1 ¼ 1þ δ and
ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1=ð6C2Þ
p

, the authors of Ref. [40] obtained the
gravitation potential Φ as

ΦðrÞ ¼ −
G

1þ δ

Z
ρðr0Þ
jr − r0j d

3r0

−
G

3ð1þ δÞ
Z

ρðr0Þ
jr − r0j e

−ζjr−r0jd3r0: ð48Þ

If we take the long-range limit ζ → ∞ in the second term in
Eq. (48), we obtain

dP
dr

≈ −
GMϵ

r
ð1þ αÞ; ð49Þ

dM
dr

¼ 4πr2ϵ; ð50Þ

with α ≈ 1=3–4=3δ. Note that if δ≡ 0, α ¼ 1=3 [22,23,27]
and fitting the masses and radii prediction of the model into
white-dwarfs data provides the range −0.155 < δ < 0.593
[40]. In short, α is not zero, and fðRÞ theory does not
predict the Γ term. To this end, as shown in Eq. (20), there
are indeed ETG models that yield corrections in dM=dr,
e.g., T-squared gravity [31]. However, the corresponding
function is different or does not coincide in the weak-field
limit with that of Γ term in the GTOV model. Therefore, it
is clear from the discussion that α generally should not
equal zero, and extending the PTOV model by adding the Γ
term to the GTOV model does not seem too natural.
To this end, we conclude that the value of the GTOV free

parameters can be restricted to specific ranges, except for α.
We have found a correlation among θ, χ, and β. Moreover,
we obtain the parameter Γ → 0 or the demanding value
should be tiny if it is not zero. Besides, α should not be zero
based on the weak-field in some ETGs arguments and
observation results.

IV. NEUTRON STAR EQUATION OF STATE

In this section we briefly review the NS EOS. We use the
usual NS EOS structure, which consists of a crust and a
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core. For the NS crust, we use the EOS proposed
by Miyatsu et al. [42]. For the NS core, we use the
relativistic mean field (RMF) model for baryons by
including hyperons that can be expressed as [43,44]

L ¼ LB þ LM þ LL; ð51Þ

whereLB,LM, andLL describebaryons,mesons, and leptons,
respectively. LB defines as summing of Lagrangian density
free baryons and Lagrangian density interaction between
through mesons [44], i.e.,

LB ¼
X
B

Ψ̄B

�
iγμ∂μ − ðmB − gσBσÞ

−
�
gωBγμωμ þ

1

2
gρBγμτB · ρμ þ gϕHγμϕμ

��
Ψ; ð52Þ

where mB is the baryon mass. Note that the baryon particles
described in Eq. (51) are N, Λ, Σ, and Ξ. The coupling
constants between σ,ω, and ρ through baryons are denoted by
gσB, gωB, and gρB, respectively. gϕH is the coupling constant
between a hidden-strangeness meson and hyperons
(H ¼ Λ;Σ, and Ξ). Note that high-density nuclear matter
is a thermodynamic limit of finite nuclei. In this limit,B → ∞
and volume → ∞, but the densities are finite. Therefore, in
this limit, we have

P
B →

R
d3k.

LM is the sum of the Lagrangian densities for the σ, ω, ρ,
σ�, and ϕ mesons and the Lagrangian densities describe
cross interactions among σ, ω, and ρmesons, which we can
write as

LM ¼ Lσ þ Lω þ Lρ þ Lσ� þ Lϕ þ Lσωρ; ð53Þ

where

Lσ ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ − κ3gσNm2

σ

6mN
σ3 −

κ4g2σNm
2
σ

24m2
N

σ4;

ð54Þ

Lω ¼ −
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ þ ζ0g2ωN

24
ðωμω

μÞ2; ð55Þ

Lρ ¼ −
1

4
ρμνρ

μν þ 1

2
m2

ρρμρ
μ; ð56Þ

Lσ� ¼
1

2
ð∂μσ�∂μσ� −m2

σ�σ
�2Þ; ð57Þ

Lϕ ¼ −
1

4
ϕμνϕ

μν þ 1

2
m2

ϕϕμϕ
μ; ð58Þ

and

Lσωρ ¼
η1gσNm2

ω

2mN
σωμω

μ þ η2g2σNm
2
ω

4m2
N

σ2ωμω
μ þ ηρgσNm2

ρ

2mN
σρμ · ρμ þ

η1ρg2σNm
2
ρ

4m2
N

σ2ρμ · ρμ þ
η2ρg2ωNm

2
ρ

4m2
N

ωμω
μρμ · ρμ: ð59Þ

ωμν in Eq. (55) and ρμν in Eq. (56) are ω and ρ meson field
tensors, respectively.ωμν and ρμν can be expressed asωμν ¼
∂
μων − ∂

μων and ρμν ¼ ∂
μρν − ∂

νρμ, respectively. The last
term in Eq. (51) describes free leptons (electron and muon)
and can be written as

LL ¼
X
L

ψ̄Lðiγμ∂μ −mLÞψL; ð60Þ

where mL is the lepton mass. In the present work, we use
the BSP parameter set of the RMF model proposed in
Ref. [43]. Note that for the nucleon sector, the values of the
nucleon coupling constants and nonlinear parameters of
the BSP set are tightly constrained by the bulk properties of
the finite nuclei and nuclear matter; see Ref. [43] for a
detailed optimization procedure to obtain the BSP coupling
constants and parameters in the nucleon sectors. Refer-
ence [43] also discussed the quality of BSP predictions in
finite nuclei and nuclear matter by comparing them with
other models and available experimental data. On the
contrary, because the hypernuclei are primarily unstable,
the coupling constants of hyperons could not be precisely

constrained. From experimental measurement results, we
have only the values of hyperons potential depths at
saturation density. Therefore, it is common to use “pre-
scriptions” to determine the hyperon vector coupling
constant and employ the potential depths at the nuclear
matter saturation density to determine the hyperon scalar
coupling constant. The most conservative prescription to
determine the hyperon vector coupling constants involves
using the SU(6) symmetry of the quark model [45]. Note
also that the EOS of NS matter tends to soften when
including hyperons. In the case of RMF parameters that are
compatible with all terrestrial experimental data like the
BSP parameter set, the maximum mass of the NS is less
than the NS maximum mass constraint, i.e., ≈2.1 M⊙. This
fact is known as the hyperon puzzle. The possible ways to
overcome this issue are as follows. First, one can introduce
a phenomenological prescription or use other symmetries
like SU(3) to determine the hyperon coupling constants
(see Ref. [44] and references therein for details.). Second,
one can introduce the possibility that the pressure in NSs
can be anisotropic (see Ref. [1] for details related to the
interaction between hyperon contributions and anisotropic
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contributions confronted with current observational NS
data).
Here we use the SU(6) prescription, which is expressed

as [45]

giN∶giΛ∶giΣ∶giΞ ¼ 3∶2∶2∶1;

gjN∶gjΛ∶gjΣ∶gjΞ ¼ 1∶0∶2∶1;

giN∶gkΛ∶gkΣ∶gkΞ ¼ 3∶
ffiffiffi
2

p
∶
ffiffiffi
2

p
∶2

ffiffiffi
2

p
; gkN ¼ 0: ð61Þ

The potential depth of hyperons can be expressed as [46]

UðNÞ
H ðρ0Þ ¼ giHiðρ0Þ − gσHσðρ0Þ: ð62Þ

In Eqs. (61) and (62), i, j, and k denote the ω, ρ, and ϕ
meson, respectively. The experimental values of the poten-
tial depth of hyperons at saturation density are given
by [45]

UðNÞ
Λ ¼ −28 MeV; UðNÞ

Σ ¼ þ30 MeV; and

UðNÞ
Ξ ¼ −18 MeV: ð63Þ

The values in Eq. (63) are used to determine the scalar
hyperon coupling constants in the current work. We use an
EOS based on this model as input to numerically solve all
equations related to NS properties. The results are dis-
cussed in the next section.

V. NUMERICAL RESULTS

By obtaining the parameter value range of GTOV from
analysis in Sec. III, we make several parameter sets shown
in Tables I and II. Those are use to study the physical
impact on NS properties. In Table I we provide parameter
sets to check the role of each parameter. In this work we set
Γ ¼ 0, and we use α ¼ 0.04 in Set 1, α ¼ 0.095 in Set 2,
and α ¼ 0.15 in Set 3 to predict the impact of α on NS
properties. α values are the lowest, middle, and highest
values taken from observational cosmology [29]. To predict
NS properties, we provide θ variation in Sets 4–9.
However, we use θ ¼ −1 (Sets 8 and 9) as a representative

TABLE II. Parameter sets of the GTOV model to match with
the NS mass-radius from NICER. The set numbers denote that,
e.g., in Set 14 the α value is taken from Set 1 and the other
parameters are taken from Set 4 in Table I.

Parameter TOV Set 14 Set 15 Set 16 Set 17 Set 18 Set 19

α 0 0.04 0.04 0.04 0.04 0.04 0.04
θ 0 0 1 1 2 −1 −1
β 1 3 2 3 3 0 3
χ 1 1=3 1 2=3 1 1 0

Parameter TOV Set 18 Set 28 Set 38 Set 19 Set 29 Set 39

α 0 0.04 0.095 0.15 0.04 0.095 0.15
θ 0 −1 −1 −1 −1 −1 −1
β 1 0 0 0 3 3 3
χ 1 1 1 1 0 0 0
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FIG. 1. Impact of α on NS properties. The gold circle indicates
the maximum NS mass.

TABLE I. Parameter sets of the GTOV model to predict NS
properties. We vary α in Sets 1–3. 0 ≤ θ ≤ 2 appear in Sets 4–7.
θ ¼ −1 appear in Set 8 and Set 9.

Parameter TOV Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

α 0 0.04 0.095 0.15 0 0 0 0 0 0
θ 0 0 0 0 0 1 1 2 −1 −1
β 1 1 1 1 3 2 3 3 0 3
χ 1 1 1 1 1=3 1 2=3 1 1 0
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negative value of θ since this value cannot be obtained
using ϒmin ¼ 0.25 instead of the ϒmin ¼ 1=3 constraint. In
Table II we provide combinations of parameter sets from
Table I. For example, Set 14 is generated using the α value
taken from Set 1 and the other parameters taken from Set 4
in Table I. We hope that we can gain intriguing impacts on
NS properties from parameter value combinations. Note
that the moment of inertia provides the information that can
connects the mass and radius simultaneously. At the same
time, the tidal deformation gives information that cannot be
obtained only from the mass-radius relation. Furthermore,
in this paper we use mass and radii values from observa-
tions of PSR J0030þ 0451 by NICER in 2019 [7,8] and
PSR J0740þ 6620 by NICER in 2021 [9,10] as constraints
to study whether the GTOV model can solve the hyperon
puzzle in NSs. In addition, we also include an EOS without
a hyperon—denoted by “TOV-” in all figures—as a
comparison with those with hyperons.
The impact of α on the NS mass-radius relation, moment

of inertia, and tidal deformation for Sets 1, 2, and 3 (shown
in Table I) is shown in Fig. 1. In the upper and lower panels
the α gives different effect in the maximum mass and the
maximum moment of inertia of NS. Increasing α can
decrease the NS maximum mass and increase the NS
moment of inertia. Moreover, increasing α decreases the k2

peak shown in Figs. 2(a) and 2(b). As a consequence, for
the same Λ value, the corresponding mass of NS becomes
smaller as shown in the middle panel of Fig. 1. In addition,
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FIG. 2. Impact of α on k2 as a function of (a) Y and (b) the NS compactness and on Λ as a function of (c) k2 and (d) the NS
compactness.

TABLE III. Additional information about NS masses around
the NS maximum mass calculated using the parameter sets in
Table I. Note that ðRmax þ δ2Þ is R of the NS at Pmax

c þ
10 MeV=fm3 and ðRmax − δ1) is R of the NS at
Pmax
c − 10 MeV=fm3. Pmax

c is the central pressure for an NS
with maximum mass. If MðRmax − δ1Þ −Mmax or MðRmax þ
δ2Þ −Mmax equal negative, then the maximum masses denoted in
figures with gold dot are maximum.

Set MðRmax − δ1Þ −Mmax MðRmax þ δ2Þ −Mmax

TOV −0.0000747604440421 M⊙ −0.0000597884926483 M⊙
TOV- −0.0000672213564741 M⊙ −0.0000551032519338 M⊙
1 −0.0000533302831444 M⊙ −0.0000604642910033 M⊙
2 −0.0000439587583361 M⊙ −0.0000495651891945 M⊙
3 −0.0000425436319525 M⊙ −0.0000349895611307 M⊙
4 −0.0000908223788454 M⊙ −0.0000857824257028 M⊙
5 −0.0001122472364268 M⊙ −0.0000991124073156 M⊙
6 −0.0001279402468302 M⊙ −0.0001189420703389 M⊙
7 −0.0001443066432006 M⊙ −0.0001431342905434 M⊙
8 −0.0001977167698524 M⊙ −0.0002659681841313 M⊙
9 −0.0001083279003677 M⊙ −0.0001508951420308 M⊙
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for the same Λ value, k2 and compactness significantly
increase as shown in Figs. 2(c) and 2(d). Note that to
determine the maximum mass denoted by gold dots in all
figures, we simply calculate the masses at Rmax � δ, where
δ is a positive small number with units of meters. If both
masses are smaller than the corresponding maximum mass
value, then we have the maximum mass value. The results
are shown in Table III.
In Fig. 3 we show the impact of the correlated parameters

in the GTOV model, i.e., θ, β, and χ on NS properties. As
shown in the top panel of Fig. 3, we find that the θ value
significantly influences the value of NS mass or plays
significant role for the maximum mass of NS prediction or

plays the dominant role in predictions of the NS maximum
mass. At the same time, β and χ can affect predictions of the
NS radius and slightly influence the NS mass. These
parameters’ roles were discussed in Refs. [23,28]. From
the NS moment inertia plots in lower panel of Fig. 3, we
can check that the β or χ parameters impact on NS radius. It
is evident from the bottom panel of Fig. 3 that the moment
of inertia is quite sensitive to the χ value. We can observe
that for an NS massM ≳M⊙, χ is inversely proportional to
the moment of inertia of the NS. Furthermore, from the
middle panel of Fig. 3 it is evident that by decreasing the θ
value, for the same predicted Λ value, the NS mass
becomes smaller. However, the pattern of θ variation in
this plot is not the same as that in the mass-radius relation,
shown in the upper panel. The reason of this difference is
because β and χ parameters also play a role in Λ prediction.
The letter can be understood by comparing the Λ results
obtained by using Sets 5 and 6. These parameter sets have a
similar trend for Λ. However, if we compared the results
obtained by using Sets 8 and 9 or the ones obtained by
using TOV and Set 4, the Λ results do not show similar
behavior. The large difference in Λ results obtained by Sets
8 and 9 or TOVand Set 4 are due to the difference value of β
and χ parameters. To see the roles of β and χ in Λ in more
detail, we show the relation of Λ with k2 and the compact-
ness in Fig. 4. It is evident from Figs. 4(c) and 4(d) thatΛ as
a function of either k2 or C is shifted to the right as χ
decreases. χ also influences the k2 peak shown in Figs. 4(a)
and 4(b). A smaller χ predicts a higher k2 peak. In Fig. 2(a)
we can see that Set 9 with χ ¼ 0 and Set 4 with χ ¼ 1=3
have a k2 peak with a negative Y value, while the rest of the
parameter sets (Sets 5–8 and TOV) have a k2 peak with a
positive Y value. The k2 peak with a negative Y value is
evidence for an unphysical NS since the χ value of Sets 9
and 4 is incompatible with BBN data fitting results [30]. In
Fig. 4(a) the highest k2 value for Set 4 near Y ¼ 0 is k2 ≈
0.166 (Y ≈ 0.004). Thus, we use k2 ≈ 0.167 [shown as the
magenta line in Fig. 4(b)]. This k2 value could be
considered as the threshold value in order the NS tidal is
still physical. Aside from that, we cannot observe a regular
trend for the variation of β in Λ. Therefore, we conclude
that χ plays a more crucial role than β in the tidal
deformability predictions of the GTOV model.
After discussing each parameter’s impact on NS proper-

ties shown in Figs. 1 and 3, we now investigate the impact
of the parameter sets collected in Table II on NS properties.
The aim is to test whether the GTOV model can solve the
hyperon puzzle in NSs. Here we compare the predictions of
the corresponding parameter sets with the most recent
masses and radii from NS observations. We compare the
masses and radii predictions of the parameter sets in
Table II with those from observations of PSR J0030þ
0451 by NICER in 2019 [7,8] and PSR J0740þ 6620 by
NICER in 2021 [8,10]. It can be seen clearly from Fig. 5
that comparing to the values of α, β, and χ parameters, the

0

2

4

6

I
(1
04
5
g
cm

2 )

0.0 0.5 1.0 1.5 2.0 2.5

M (M )

TOV
TOV-
SET 4
SET 5
SET 6
SET 7
SET 8
SET 9

0

400

800

1200

1600

0.25.10.1

M (M )

0.5

1.0

1.5

2.0

2.5

M
(M

)

10 11 12 13

R (km)

FIG. 3. Impact of the variation of θ on NS properties. The gold
circle indicates the NS maximum mass.
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value of θ plays more dominant role for controlling
maximum mass prediction. In short, θ determines the
compatibility with the mass and radius observational data
of NICER shown in Fig. 5. It can be observed in Fig. 5(a)
that the parameter sets with −1 ≤ θ ≤ 0 can satisfy con-
straints from PSR J0030þ 0451 [7,8] and the canonical
mass constraint from PSR J0740þ 6620 [9]. Meanwhile,
in Fig. 5(b) we can see that all parameter sets can satisfy
both constraints, i.e., from both PSR J0030þ 0451 [7,8]
and PSR J0740þ 6620 [9]. However, the compatibility of
the calculational result with observations can accomplish
by using θ ¼ −1 in these parameter sets. This θ value was
obtained by using the ϒmin ¼ 0.25 constraint.
To this end, we need to highlight our findings in this

study related to the physical meaning of each parameter in
the GTOV model.
(1) α, which parametrizes the effective gravitational

coupling, has a constraint from cosmology [29].
Some modified gravity theories also predict this
correction. The simple form of the correction could
be seen easily in the corresponding nonrelativistic
limit. The results from modified gravity theories
seem to produce mainly a density-dependent form
for α, even in the nonrelativistic limit. The properties
of NSs are sensitive to the value of this parameter.

For example, by increasing α, the mass and radius
decrease, the moment of inertia increases, and the
tidal deformation decreases.

(2) χ is the self-gravity parameter. This parameter is
crucial in cosmology and BBN [28,30]. Recently it
is reported in Ref. [28] that the NS mass-radius
relation cannot be used as a test bed for examining
the self-gravity of pressure through χ parameter
variation from 0 to 1 [28]. Λ and I are sensitive
to variations in χ.

(3) β (inertial pressure parameter) and θ (gravitational
mass parameter) are not independent parameters, as
their values are correlated with each other and with χ
through physically acceptable conditions of the
interior solution of fluid spheres. Furthermore, these
conditions demand that Γ be zero.

(4) θ plays the most significant role in reproducing the
pulsar mass-radius constraints from NICER [7–10].

(5) It is also evident that the moment of inertia is quite
sensitive to β.

The GTOV model has many relative parameters. It is
also evident that we have only a few constraints. Therefore,
for a quantitative study, a Bayesian statistical analysis to
determine the parameter values is admittedly crucial.
However, these computations could be rather complex
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NS compactness.

GENERALIZED TOLMAN-OPPENHEIMER-VOLKOFF MODEL AND … PHYS. REV. D 106, 084042 (2022)

084042-11



and are already beyond the scope of the present work, so we
leave this investigation for our next project.

VI. CONCLUSIONS

In this work we constructed a modified anisotropic
energy-momentum tensor as a standard isotropic energy-
momentum tensor by adding a “geometrical correction” to
precisely reproduce the TOVequations predicted by GTOV

or PTOV models. The motivation for performing this
construction is that we can solve the Einstein field
equations using this modified anisotropic energy-momen-
tum tensor to calculate I and Λ. By obtaining I and Λ, we
were able to explore the role of all free parameters of the
GTOV model since we could not obtain sufficient infor-
mation by only exploring the NS mass-radius relation. For
example, χ in the GTOV model is a self-gravity of pressure
term. The χ term is crucial for specific cases, such as
cosmology and BBN [28,30]. The authors of Ref. [28]
reported that the NS mass-radius relation is not a helpful
test bed for examining the self-gravity of pressure through χ
parameter variation from 0 to 1 [28]. Here we found that Λ
is sensitive to variations in χ. We also found that the
threshold k2 peak for NSs is k2 ≈ 0.167. Furthermore, we
employed physically acceptable stability conditions for
anisotropic objects [24–26] to constrain the GTOV model
in the physical range of each parameter value and to
investigate the existence of a correlation among the
parameters. We found that the value of the GTOV model’s
free parameters can be limited to specific physically
acceptable ranges except for α, and it is evident that not
all parameters are independent. We found correlations
between θ, χ, and β. We also found from energy conditions
that Γ should be zero, while from the weak field of some
selected ETG cases and observational results it is clear that
α should not be zero. With these free parameter ranges in
hand, we studied the role of each parameter of the GTOV
model in NS properties, including I and Λ. We also
revisited the hyperon puzzle in NSs to test whether the
GTOV model with free parameters restriction by energy
conditions could resolved this problem. We found that the
crucial role of θ is to control the NS maximum mass. If we
use parameter sets with θ ¼ −1, the mass-radius predic-
tions are compatible with recent NICER data [7–10] on
PSR J0030þ 0451 and PSR J0740þ 6620. However, this
θ value does not satisfy the strict ϒmin ¼ 1=3 constraint.
Note that the existence of similar form to the θ term of
GTOV model also predicts by T-squared gravity theory
[31]. It is also worth noting that a similar mapping occurs in
the case of Rastall-rainbow gravity theory with anisotropic
matter, i.e., we can map this gravity theory into GR with a
modified anisotropic energy-momentum tensor [47].
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FIG. 5. Impact of the GTOV model parameter sets in Table II
on the NS mass-radius relation. Panel (a) shows θ varying with α
fixed, i.e., α ¼ 0.04. Panel (b) shows α varying with θ fixed, i.e.,
θ ¼ −1. The gold circle indicates the NS maximum mass. We
include constraints from PSR J0030þ 0451 [7,8] and PSR
J0740þ 6620 [9,10].
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