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Continuous gravitational waves from spinning deformed neutron stars have not been detected yet and are
one of the most promising signals for future detection. All-sky searches for continuous gravitational waves
from unknown neutron stars in binary systems are the most computationally challenging search type.
Consequently, very few search algorithms and implementations exist for these sources, and only a handful
of such searches have been performed so far. In this paper, we present a new all-sky binary search method,
BinarySkyHouZ, which extends and improves upon the earlier BinarySkyHough method and which was
the basis for a recent search [Covas et al., Astrophys. J. Lett. 929, .19 (2022)]. We compare the sensitivity
and computational cost to the previous method, showing that it is both more sensitive and computationally
efficient, which allows for broader and more sensitive searches.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are long-lasting
and nearly monochromatic gravitational waves, expected to
be emitted by deformed spinning neutron stars (NSs) due to
their time-varying quadrupole moment (e.g., [1]). Although
many CW searches have been performed to date, using data
from the LIGO (H1 and L1) and Virgo (V1) detectors, no
detection has been achieved yet (see Ref. [2] for a recent
review). The expected CW amplitudes are several orders of
magnitude smaller than the compact-binary-coalescence
signals currently being routinely detected. Therefore, the
combined analysis of months to years worth of data is
required to accumulate enough signal-to-noise ratio.

When searching for CWs from known pulsars, all the
phase-evolution parameters are known from electromag-
netic observations, which allows one to perform sta-
tistically optimal searches by coherent matched filtering
with very little required computing power. All-sky CW
searches for unknown neutron stars represent the opposite
extreme, where no prior information about the signals is
available, requiring an expensive explicit search over the
phase-evolution parameters.
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Furthermore, because the required parameter-space res-
olution increases rapidly with longer coherent integration
time, the resulting computing cost explodes and makes it
impossible to analyze longer stretches of data by coherent
matched filtering. This computing-cost problem is pushed
to the extreme when searching for unknown neutron stars
in binary systems, as now we also need to search over the
unknown binary orbital parameters [3]. Therefore, all-sky
searches for unknown neutron stars in binary systems are
the most computationally challenging type of searches.

The primary strategy followed by computationally lim-
ited CW searches is to break up the data into shorter
segments that can be coherently analyzed individually and
then combine these coherent results across segments. These
are the so-called semicoherent methods (see Ref. [4] for a
recent review of search methods). The resulting coarser
parameter-space resolution entails a reduced computational
cost, which allows for analyzing larger datasets and thereby
regaining sensitivity. As a result, semicoherent methods are
typically more sensitive than fully coherent matched filter-
ing at a fixed computational budget [5,6].

The most commonly used coherent detection statistics
are the F-statistic and the Fourier power (for sufficiently
short segments, where a simple sinusoid can approximate
the signal). The F-statistic is obtained by analytically
maximizing the likelihood ratio over the four unknown
amplitude parameters of a CW signal [7,8]. Although this
statistic was initially thought to be optimal, its implicit
amplitude priors have been shown to be unphysical [9].
Using better physical priors results in a more sensitive
Bayes factor, albeit (currently) at increased computational
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cost, which is why this is not yet a viable alternative to the
F-statistic for wide parameter-space searches. However,
for short segments compared to a day, a new detection
statistic has recently been found [10] that is more sensitive
than F at no extra computing cost, termed the dominant-
response statistic F 5p.

Using Fourier power over short segments directly as a
coherent detection statistic is computationally cheaper,
given that no phase demodulation or other additional
calculations are needed. However, one limitation of this
statistic is the constrained maximum coherent length
(about T'ge <30 min at around 500 Hz), resulting from
the approximation of the signal as a simple sinusoid.
Typically, this is expressed as the criterion that the signal
power remains in a single frequency bin (of size 1/7,).
Furthermore, while demodulated statistics (such as F and
F ap) can naturally combine data from several detectors
coherently [8,10], this is not straightforward to achieve
for short Fourier transforms [11,12] and is not commonly
used in the first stage of hierarchical searches. Therefore,
constructing semicoherent statistics on demodulated coher-
ent statistics is generally more sensitive and flexible than
using Fourier power.

Only two previous all-sky binary pipelines have been
used in searches before BinarySkyHouZ [13], namely,
TwoSpect [14] and BinarySkyHough [15]. TwoSpect was
the first pipeline for all-sky CW searches of unknown NSs
in binary systems [16]. BinarySkyHough is an extension of
SkyHough [17] (an all-sky pipeline for isolated systems)
to searches for NSs in binary systems, which yields higher
sensitivity compared to TwoSpect thanks to its more
sensitive detection statistic and usage of GPU paralleliza-
tion. Two recent all-sky binary searches deployed
BinarySkyHough on data from Advanced LIGO’s O2
and O3 observing runs [18,19], although over a reduced
parameter space in frequency and binary parameters
compared to the TwoSpect search.

BinarySkyHough uses short-segment Fourier power as its
coherent detection statistic, limiting its attainable sensitivity
(as discussed above). Here we present BinarySkyHouF,
an extension of BinarySkyHough, which features several
improvements compared to the previous pipeline:

(i) use of demodulated coherent statistics (such as F- or

F ap-statistic) instead of short-segment Fourier
power;

(ii) directly summing coherent detection statistics (the
typical StackSlide approach [5,20]) instead of
(thresholded) 1s and Os as in the classical Hough
algorithm [17];

(iii) various code-implementation improvements (such
as GPU coalesced memory access) and optimiza-
tions, increasing computational efficiency.

As will be shown in this paper, the new search pipeline is
both more sensitive and more computationally efficient than
BinarySkyHough; i.e., for the same coherent segment length

T, and mismatch distribution, it achieves higher sensitivity
at lower computational cost.

A key ingredient of the new pipeline is the use of (low-
order) Taylor-expanded phase parameters to describe the
binary motion over the (short) coherent segments instead
of the physical binary orbital parameters. These Taylor
coordinates allow for a substantial dimensional reduction
and solve the problem of covering the highly degenerate
per-segment coherent parameter space with an efficient
template bank. However, this approach limits the sensitivity
to signals from binary systems with orbital periods sub-
stantially longer than the segment length 7T'g,.

The development of more sensitive all-sky binary search
methods is of utmost importance, since more than half of
all known millisecond pulsars are part of a binary system
[21,22]. Furthermore, accretion from a companion gives a
plausible mechanism to generate an asymmetry or excite an
r-mode with a detectable amplitude in the current generation
of gravitational-wave detectors, as recently discussed in [13].

This paper is organized as follows: In Sec. II, we introduce
the approximate signal model used to compute the J -statistic;
in Sec. III, we present the new BinarySkyHouF pipeline
and we compare it to its predecessor; in Sec. IV, we show
sensitivity comparisons of different detection statistics; in
Sec. V, we summarize the main results of this paper and lay
out some ideas for future work.

II. SIGNAL PHASE MODEL
A. Physical phase model

Assuming a slowly varying NS spin frequency, the phase
of a CW signal in the source frame can be expressed in
terms of the Taylor expansion around a reference time 7y,
namely,

(T_Tref)k+lv (1)

N fk
¢(t) = g + 27
(7) = do ;(Hl)!

where 7 denotes the time in the source frame and s is the
order of spin-down parameters f;, needed to accurately
describe the intrinsic frequency evolution. The evolution
of frequency f(z) and higher-order spin-downs f®)'(z) is
given by

_ 1 dg(z)
T 21 dr

and fW'(z7) = d];];(kr)

f(@) . (2

and the frequency and spin-down parameters f; in
the phase model of Eq. (1) are defined at the reference
time 7., 1.€.,

fk = f(k)/(r = 7:ref)' (3)

In order to obtain the phase of the signal in the frame of a
detector, we need to transform it from the source frame by
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taking into account the movement of the NS and the
movement of the detector with respect to the solar system
barycenter (SSB). We absorb the unknown relative distance
of the source with respect to the SSB into the reference time
Trof» and here we neglect relativistic effects such as Shapiro
and Einstein delays1 and the transverse proper motion of
the source. We can obtain the timing relation in two steps,
first linking the wave-front-emission time 7 in the source
frame to its arrival time #ggg in the SSB frame, namely,

(tssg) = tssg — R(7), (4)

where R(7) is the radial distance (in light-travel time) of the
source to the binary barycenter (BB) [3], with R > 0 when
the source is further away from us than the BB. In the
second step, we can relate the SSB time to the arrival time ¢
at detector X by the Rgmer-delay expression:

tisp(t) =t +7(1) - A, (5)

where 7% (¢) is the position vector (in light-travel time) of
detector X with respect to the SSB and 7 is the sky-position
unit vector pointing from the SSB to the BB. The radial
distance R of the source to the BB can be expressed [3] as
R(t)=a

sinw(cos E — e) +coswsin EV 1 —¢?,  (6)

ol
in terms of the eccentric anomaly E, given by Kepler’s
equation

E=Q(t—1,) +esinE, (7)

where a, is the projected semimajor axis of the orbital
ellipse (in light-travel time), Q = 2z/Py, is the (average)
orbital angular velocity (corresponding to the period Py,),
e is the orbital eccentricity, 7, is the time of periapse
passage, and @ is the (angular) argument of periapse.

For small-eccentricity orbits, this can be approximated
by the (linear in e¢) ELL1 model [3,23,24], namely,

R(7) = a, sin‘I‘+§sin2‘P—gcos2‘P +0(e2) (8)

(dropping a constant term —3apn/2) with the Laplace-

Lagrange parameters defined as x =ecosw and n=

esinw and the orbital phase
LP(T) = Q(T - tasc)’ (9)

using the time of ascending node 7, instead of the time of
periapse passage f,,, which (to lowest order in ) are related

"The numerically implemented phase model includes these
effects for the solar system but not for the binary system.

by t, = 1, — @/Q. Expressions for R up to any order in e
are found in Appendix C in Ref. [25].

B. Short-segment SSB Taylor coordinates {u; }

Given all-sky binary CW searches need to cover a huge
signal parameter space with finite computing resources, the
longest coherent segment lengths 7'y, that can be used are
typically very short (i.e., much shorter than a day). If we
further assume the orbital periods to be much longer than
the short segments, i.e., Ty < Py, then in this short-
segment regime we can resort to Taylor expanding the
phase (in the SSB) around each segment midtime ¢,
(translated to the SSB), similar to what was done in
Refs. [3,24], namely,

kmax

P(tssp) = o + 2”2%(%53 — )", (10)
=1

which defines the (SSB) Taylor coordinates {Mk}]/:L as

1 d ¢
2w dt’§SB

(11)

Uy

Im

Note that, for segments short compared to a day, one could
also define Taylor coordinates in the detector frame instead
of in the SSB, but this would result in detector-dependent
coordinates that are not suitable for our present search
method. The resulting expressions are given in the
Appendix for reference.

Inserting the physical phase model of Eq. (1) in the form
P(tssp) = Pp(z(tssp)), we obtain the phase derivatives”

up = [f(2)7)],,,
uy = [f'(2)2* + f(2)il,,,
us = [f"(0)0 + 3f (v)t 1 +f(2) 7]

Im?

(12)

where the derivatives 7¥) = d*z/dtks of the source-to-
SSB timing relation 7(ggg) can be further expanded using
Eq. (4), involving derivatives R¥) = d*R(z)/dtksy of the
binary radial distance R(z) of Eq. (6), which can be
expanded in the same form as

The general form of these successive chain- and product-
rule expansions is governed by the so-called Faa di Bruno
formula [26].
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R=R1,
R=R'?* + R%,
R=R"#+3R":t+R'7,

(13)
in terms of the source-frame time derivatives R =
d*R(7)/dz*. This analysis is complicated by the fact that
the binary radial distance R(z) of Eq. (6) is a function of
source-frame (emission) time 7, not the SSB (arrival) time
tssp of a wave front. In Refs. [3,24], this difficulty could be
neglected for the purposes of computing the parameter-
space metric, where a slow-orbit approximation, i.e.,
R(7) ® R(tssp), is sufficient. However, in the present
application we want to preserve higher accuracy for the
purpose of using these coordinates for coherent matched
filtering.

Substituting into the timing derivatives of Eq. (4), we can
now obtain the expressions

t=[14+R]",
t=[1+ R (-R"?),
7 =[1+R]"(-R"#> = 3R"% 1),

(14)

which are explicit because of the iterative backward
dependency of the 7Y} on only lower-order derivatives,
ie., 10 =70 (7,7, .. .k D),

From these expressions we can obtain the explicit Taylor
coordinates u; via Eq. (12) as

/
U =1+“}e;n, (15)
SRl T
— , 16
STy N Ty

where for the present application (such as Ref. [13]) at most
first- or second-order u; will be needed in practice, as
discussed in Sec. III C 1. Here, we defined

mef(tm):f0+fl(tm_fref)+"'a
;nEf/(tm):f1+f2<tm_7ref)+”" (17)

and

Ry, = a,Qcos Wy, + kcos 2%, + n7sin 2%, ],
R = —a,Q[sin Wy, + 2k sin2¥,, — 2ncos2%,],  (18)

where Ry = RW (1) and

\Pm = Q(tm - tasc)’ (19)
assuming the small-eccentricity approximation of Eq. (8)
and (here) neglecting the NS-BB time delay of Eq. (4) as a
higher-order correction, i.e., 7(fy) & .

These u; and u, coordinates have units of Hz and Hz?,
respectively, and depend on the physical parameters
{{fx}s ap. Q. 1. e, w}. Using these coordinates assumes
that we have performed the standard SSB demodulation of
the signal for any given sky position 7, which is typically
expressed in terms of the right ascension a and declination
0 in equatorial coordinates.

The resulting (constant) parameter-space metric for the
Taylor coordinates {u;} [valid for any signal phase of the
form Eq. (10)] is found in Eq. (57) in Ref. [3].

III. BINARYSKYHOUF

In this section, we present a summary of the new
BinarySkyHouF pipeline and its main advantages over
the previous BinarySkyHough.

A. Summary of the previous and new pipeline

The predecessor SkyHough and BinarySkyHough
algorithms are described in more detail in Refs. [15,17];
here, we provide only a short overview summary. Both of
these analyze the frequency-time matrix of short-Fourier-
transform (SFT) power, by searching for “tracks” (corre-
sponding to different source parameters) that are above the
statistical expectation for noise.

SkyHough is limited to searches for signals from isolated
systems, while BinarySkyHough is an extension designed
for all-sky searches for unknown neutron stars in binary
systems. Both are extremely fast model-based pipelines
due to the highly efficient algorithms used to analyze the
sky maps and their effective use of look-up tables (see
Refs. [15,17] for details). Furthermore, BinarySkyHough
leverages the computational advantages provided by GPUs
by parallelizing the most expensive steps in the algorithm
and, thus, further massively reducing the run-time of a
search.

A BinarySkyHough search is divided in two consecutive
stages, using different detection statistics. In the first stage,
a “Hough” weighted sum of 1s and Os (depending on
whether the SFT power crossed a threshold or not) is
calculated, and all of the templates are sorted by the
resulting significance [a normalized Hough number count
with normal distribution; see Eq. (25) in Ref. [15]]. The
frequency-time pattern used for the tracks in the first
stage is an approximation to the exact one, due to the
usage of look-up tables (explained in Sec. IVB in
Ref. [15]). In the second stage, the refinement stage, a
fraction of the best-ranked templates is analyzed again, this
time using a StackSlide weighted sum of SFT power, which
has a higher sensitivity than summing weighted 1s and Os
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(e.g., see Ref. [20]), and using a more accurate expression
for the frequency-time pattern.

The central new feature of the BinarySkyHouF pipeline
is to use a demodulated coherent detection statistic for
the segments,3 such as the F- [7,8] or JF zp-statistic [10],
instead of the number count or SFT power, but otherwise
still benefit from the highly efficient GPU-based
BinarySkyHough-type algorithm to combine the coherent
results to a semicoherent statistic. Three main benefits arise
from using a demodulated coherent statistic:

(1) Demodulation removes one important constraint,
as the signal is no longer approximated as a pure
sinusoid. This allows the algorithm to turn increases
in computing power into better sensitivity (shown in
Sec. IV Q).

(2) The per-detector data are combined coherently,
which reduces the number of coherent segments
needed to combine in the semicoherent stage,
improving sensitivity (shown in Sec. IVA) and
reducing computational cost (shown in Sec. III D).

(3) The parameter-space resolution and resulting mis-
match can be controlled as a free parameter (rather
than the fixed 1/7, Fourier resolution of SFTs),
which will be discussed in Sec. III C 1.

When combining coherent results to calculate a semi-
coherent detection statistic, it has been shown that applying
per-segment weights can improve the sensitivity [28].
While there is currently no analytic argument for using a
weighted sum of F- or Fzp -statistics,” empirically we find
(shown in Sec. IV A) that using weights also improves the
sensitivity for these detection statistics. The weight w, at
segment ¢ is given by

A B
Kf+ ‘.

wp = with (20)
Sn;f
Ap= % S B, = Ni:ms“f b2, (21)
[ S Ay £ — S ar
a—1 Pma a—=1 °ma

where K is a normalization factor defined such that
quv . 13 .
Y i W = Ngegs Sy is the noise power spectral density
of SFT a, S, is the noise power spectral density of
segment ¢ (defined as the harmonic mean over the {S,.,}),
and a, and b, are the antenna patterns of a detector
(evaluated at the midtime of every SFT a) given by

The F-statistic has been used before in combination with the
Hough algorithm, in Ref. [27], an all-sky search for isolated
systems using day-long coherent segments, where the (single-
stage) pipeline summed weighted 1s and Os computed from
thresholded F-statistic values.

This is left for future work but intuitively can be understood
from the per-segment change in signal power, which can vary by
around one order of magnitude between segments for such short
coherent times.

Egs. (12) and (13) in Ref. [7], where the sum goes over
all the SFTs in segment . When the segment just has one
SFT, we recover the weights given by Eq. (22) in Ref. [15].
For the dominant-response statistic, we use the following
weights:

2

C
Aptzt .
S _:f if Af > Bf,
Wy = K n'/Cz (22)
Bo+5- .
S—j” otherwise,

where C, = S s ;:’ agby,.

As discussed in Sec. II B, for computing-cost reasons,
the coherent segments for all-sky binary searches need to
be very short, which allows us to use a small number
(currently one or two) of Taylor coordinates u;, to represent
the spin-down and binary orbital motion in the coherent
segments. Using physical parameters, we would need to
build a (at least) six-dimensional parameter space grid’ over
{a, 8, fo, a,, Q, 1, }» while using the Taylor coordinates we
effectively need to use only three (or four) parameter-space
dimensions for the short segments currently considered,
namely, {a,d,u;(,u,)}. This reduces complexity (the
parameter-space metric in physical parameters would be
hugely degenerate for short segments; cf. [3,24]) and
lowers the resulting computational cost.

The u; template bank is constructed as a hypercubic
lattice in coordinate space. The code processes the sky in
patches defined by an isotropic grid with cells of fixed solid
angle, using partial Hough map derivatives [15] to process
the semicoherent sky mapping. Coherent per-segment
statistics are computed only for the center of each sky
patch using the corresponding antenna pattern modulations
and weights.

B. Semicoherent interpolation

In the previous section, we obtained the Taylor coor-
dinates u;, which together with the sky position coordinates
will be used in the coherent stage in order to calculate
the F-statistic values over coordinates {a, 8, {u; }}. In the
semicoherent stage, on the other hand, we are using
physical coordinates to combine the per-segment statistics,
namely, {a, 5, {f}, Ay, Q, tyses €, w}. For every semicoher-
ent template, we therefore need to calculate the appropriate
mapping to the corresponding Taylor coordinates {u; } and
coherent sky position.

*In comparison to BinarySkyHough, the new code is able to
also search over spin-downs and eccentricity in the semicoherent
stage.

6Using a Taylor phase approximation to lower the computa-
tional cost of an all-sky binary search has been first explored by
the Polynomial pipeline [29], which did not use physical
parameters for the semicoherent summation, however, resulting
in reduced sensitivity.
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In addition to using different signal parameters, the
semicoherent template grids also generally need to be finer
than the coherent per-segment grids, which results in the
need to interpolate the coherent results when combining
them semicoherently (typically using nearest-neighbor
interpolation). This is a generic feature of the semicoherent
approach (cf. [6,30]) and in SkyHough-derived pipelines
takes the form of the so-called master equation [15,17],
linking sky offsets to resulting effective frequency shifts of
the signal.

The SkyHough-type sky interpolation works by breaking
the sky into several sky patches, as mentioned above, where
the center of each patch is used as the coherent sky template
for every semicoherent sky template in the same sky patch.
The resulting offset in sky position between the semi-
coherent and coherent template results in compensating
offsets in the {u;} coordinates, generalizing the Hough
master equation.

A simple way to derive the shift in #; coordinates due to
an offset o7 in sky position is to use the full detector-frame
Taylor coordinates uj for each detector X, given in the
Appendix in Eq. (AS5). Using this, we can express the
induced shifts suf as

ouf = u,v¥ - on,

ou¥ mualk - on + 20X - sa(—u Ry + fl),  (23)

in terms of detector velocity 7X and acceleration aX at the
segment midtime ¢,, translated to the SSB.’ To remove the
detector dependency, we average over detectors, which will
be a good approximation for éu; (when using a grid with an
~1/T, resolution), given the detector velocity is dominated
by the (detector-independent) orbital motion of Earth.
On the other hand, the detector acceleration @, in Suj is
dominated by Earth’s rotation, so averaging over detectors
might be a less reliable approximation but should still
work well as long as the detectors are not too far separated,
such as for LIGO H1 and L1. Therefore, we arrive at the
following generalized master equations:

up & up (1 + vy, - 61), (24)
Up ~ Uy + Mlam - on + 25;11 : é‘ﬁ(_ulej + f;n)’ (25)

with detector-averaged velocity Ny, ¥ = >, 7% and accel-
eration Nyyd = >y aX. Equation (24) agrees with the
previous Hough-on-F-statistic master equation found in
Refs. [17,27] (with implicit detector averaging).

The u;; master equation is illustrated in Fig. 1, where the
u; values with the highest signal power are plotted as a

7Stn'ctly speaking, here it should be the segment midtime in the
detector frame, but the maximal shift of ~500 s can be neglected
for detector velocity and acceleration.

1x102

0.002

0.001

¥
= 0.000
3
-0.001
Maximum
—0.0021 —— Predicted
1.230 1.235 1.240 1.245 1250 1255 1.260
Time [GPS] 1x10°
FIG. 1. Comparison between the uy; coordinate per segment

given by Eq. (24) (green line) and the u; values per segment that
maximize the signal power (orange points). The sky position is
offset by 0.3 rad in both a and 6 from the signal. This example
assumes a single detector (H1) and one year of data, with
segments of length T, = 900 s, and a constant-frequency signal
of f, = 100 Hz without binary modulation.

function of segment midtime ¢, for an offset 6n = i1 — iy
between the signal sky position 7 and the coherent
demodulation point 714. In addition, we plot the predicted
track of shifted uy; given by Eq. (24). These uy; values
closely follow the path that minimizes the mismatch. The
mismatch in Fig. 1 between the path followed by u;; and
the maximum path is around 0.1%, whereas the mismatch
between the nonshifted #; and the maximum path would be
around 80%.

The parameter-space bounds for each of the Taylor
coordinates are found using Eqgs. (24) and (25), by
calculating the maximum possible values over the given
physical parameter space.

For computational efficiency reasons (namely, the look-
up table approach used here; see Ref. [17]), the first-
stage “Hough” semicoherent summation actually uses the
following approximate expressions instead of Eqs. (24)
and (25), namely,

1 = (1 = Riy) + futn - 60, (26)
Uiy = Uz, (27)
with the “middle” frequency fy given by

Sfu=fou + fiu(tmia = Trer) + - (28)

where the f;; denote the midpoints in frequency and spin-
down ranges currently being searched over and ¢, is the
midtime of the full dataset.

084035-6



IMPROVED ALL-SKY SEARCH METHOD FOR CONTINUOUS ...

PHYS. REV. D 106, 084035 (2022)

C. Mismatch

In this subsection, we describe and characterize different
sources of mismatch for the BinarySkyHouF pipeline. The
mismatch is defined as the relative loss of signal power,
namely,

p=1==, (29)

where p? is the full signal power (given by Eq. (20) in
Ref. [10]) and p? is the signal power recovered by the
search.

The total mismatch of the BinarySkyHouF pipeline has
several contributions, which can be separated in coherent
and semicoherent mismatches. The main contributions to
the coherent mismatch are offsets between signal and the
closest template in the coherent template grid and the usage
of the (truncated) Taylor coordinates u;, while the semi-
coherent mismatch is produced by signal-template offsets
in the semicoherent grid and approximations in the inter-
polation mapping (discussed in the previous section).

1. Mismatch due to Taylor-coordinate truncation

The usage of a limited number of Taylor coordinates u;
incurs an intrinsic mismatch due to the corresponding
approximation of the signal waveform. In practice, we
currently envisage using only u; or at most up to the order
of u,, which turns out to be sufficient for currently
considered practical all-sky binary searches (similar to
the recent search [13] using only u;) due to computational
constraints. Therefore, we quantify the mismatch and
corresponding constraints on the maximum coherent seg-
ment length 7', due to truncation to the order of u; or u,.

The mismatch g, due to omission of the order of u; (and
higher) can be estimated as y,, ~ gkku% using the metric g,
in u;, space, which is given in Egs. (56) and (57) in Ref. [3].
Using this, we can express the mismatch due to truncation
of uysy or uys3 as

24
T,
Hu, f’*gzz”% = 18;)eg M%,
276
T,
i = 30

Using a time average (.) over segments together with
Eq. (16) for u, we obtain (u3) ~ § f5azQ* + f1 (neglecting
smaller corrections), and for u; we can use Eq (58)
in Ref. [3] as an estimate, which yields (13) ~1 f3a2QS,
and so we obtain the (segment-averaged) mismatch esti-
mates as

7T

) Mo G H2R). (D)

2 WS

Tieg oo 2 Qf,
8064 foa (32)

(M) ™

which illustrate the fact that the segments must be short
compared to the orbital period, i.e., Ty,€2 < 1, in order for
the Taylor coordinates u; to be a good approximation, as
discussed in Ref. [3].

We can rearrange these equations to obtain a constraint
on the maximum coherent time 7', allowed for a given
acceptable mismatch (u,) from Taylor truncation; namely,
when using only u;, we find

360 (k) i
Tseg,ul < < 2(£2 ZQ4 2 2 ’ (33)
7 (fap Q" +2f7)
and similarly for truncation after #, we obtain the constraint
8064 (u,) \ /¢
TSCg’uz S <”2f(2)a§g26 . (34)

These expressions for the maximum coherent time are
illustrated in Fig. 2 as a function of frequency for different
choices of binary orbital parameters. It can be seen that
when u, is also used the maximum coherent time increases
by a certain factor.

Figure 3 shows a test of the mismatch predicted by
Eq. (31), by generating 1000 different signals with a
constant frequency of 300 Hz and random orbital param-
eters log-uniformly distributed, with P,y € [0.1, 1] day
and a, € [0.01,1] Is. For each signal we measure the
perfectly matched signal power when using physical
coordinates and compare it to the signal power obtained
with Taylor coordinates up to the order of u;. The
corresponding measured mismatch is then compared to
the model prediction of Eq. (31). The figure shows that
these equations correctly predict the measured mismatch, in
the range where the metric approximation is expected to be
accurate (i.e., below mismatches of ~0.3).

2. Total mismatch

In the previous subsection, we discussed the mismatch
contribution due to using a limited set of Taylor coordi-
nates. Additionally, there will be template-bank mis-
matches incurred from the coherent and semicoherent
template grids. If we count the Taylor-truncation mismatch
u, as part of the coherent mismatch y., then the total
average (over the template bank) mismatch (i) will be
given approximately [6] by the sum of the mean coherent
(ue) and mean semicoherent mismatch (), namely,

(u) = (ue) + (us). (35)

From this expression, it can be seen that if the mean
coherent mismatch is reduced while the semicoherent
mismatch is equal, the total mismatch would decrease.

084035-7



P.B. COVAS and R. PRIX

PHYS. REV. D 106, 084035 (2022)

—— ap=10([s], P=45 [days]
ap =40 [s], P=15 [days]

— Sco X-1

—— a,=0.05[s], P=0.1 [days]

104

103

Maximum coherent time using only u; [s]

0 200 400 600 800 1000 1200 1400
Frequency [Hz]

=
o
S

Maximum coherent time using us, u; [s]

=
o
w

0 200 400 600 800 1000 1200 1400
Frequency [Hz]

FIG. 2. The left plot shows the maximum coherent time 7', that can be used in a given region of the binary parameter space with a
certain mismatch due to the Taylor truncation (assuming zero spin-down f| = 0). The left plot shows the results for (u,) = 0.1 (solid
lines) and (u,,) = 0.4 (dashed lines) in Eq. (33), using only the u; Taylor coordinate. The right plot shows the same when using both u,

and u, Taylor coordinates.
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FIG. 3. Measured mismatch (y, ) (blue points) from Taylor
truncation (averaged over segments) against the predicted mis-
match (solid line) given by Eq. (31), using 1000 injections and
assuming one year of data from the H1 detector with coherent
segments of T, = 900 s. The injections have a constant fre-

quency of 300 Hz and random orbital parameters log-uniformly
distributed, with P4, € [0.1,1] day and a, € [0.01, 1] Is.

This is shown in Fig. 4, where the total measured
mismatch can be seen for two different cases, which have
different u; coherent grids but the same semicoherent grid
(the coherent sky position is the same for both cases, and
it is shifted from the signal value). A decrease in the total
mismatch can be seen for the case where the coherent u,
grid is finer, as predicted by the previous equation. This
represents an improvement over the previous pipeline,
where the coherent frequency grid was fixed to be equal
to the Fourier transform spacing.

By, =0.25: (u) =0.46
By, =1.00: () =0.50

Count

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mismatch

FIG. 4. Mismatch histograms for 1000 injections with a constant
frequency of 100 Hz and random orbital parameters log-uniformly
distributed, with P € [15,45] day and a, € [10,40] 1s, assum-
ing one year of data from both H1 and L1 detectors and coherent
segments of 7', = 900 s. The olive (right) histogram corresponds
to a grid resolution of 6u; = 1/T,, while the red (left) histogram
uses a finer resolution of du; = 0.25/T,, with the u,, factor in
the legend indicating this. Only #; and a single sky position are
searched in the coherent stage. The semicoherent grids are equal
for both cases.

3. Maximum spin-down and eccentricity

Although BinarySkyHouF is able to search the f; spin-
down and eccentricity e parameters in the semicoherent
summation, all-sky searches for neutron stars in binary
systems are so computationally expensive that one would
usually not explicitly search over these parameters at first.
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For this reason, we want to estimate the value ranges in
these omitted parameters to which the pipeline is still
sensitive, which will depend on the particular setup (such as
the amount of data and the coherent time).

The maximum covered spin-down value || is important
for interpreting astrophysical upper limits, since this limits
the maximum “mountain height” (NS deformation) or
r-mode amplitude that the search can find. The reason
for this is that larger deformation (or mode amplitude)
would produce a larger spin-down |f/| due to the emission
of gravitational waves, which would potentially become
undetectable by such a search if it was too large.

The semicoherent grid is constructed by requiring a
maximum mismatch p;. We can estimate the maximum
allowed values by calculating the required resolution for
these parameters:

_ 45pm
gflfl N iy, T2 T2 ’

seg” obs

_ /ﬂM Opm
€max = oe = 2T2 %QZ 2’ (36)

seg.

|fl;max| = 5f| =

where gy ¢ is obtained from Ref. [31] assuming that the
refinement factor is equal to Ny, (i.e., there are no gaps)
and g,, is found in Ref. [3].

It can be seen that for spin-down f| the maximum value
depends on only the segment length T, and total amount
of data, while the maximum eccentricity e depends on the
frequency f,, and orbital parameters a,, and €. To obtain a
limit, one can take the parameters that produce the most
conservative eccentricity or calculate a mean value over the
parameter-space boundaries. The eccentricity equation has
the exact same functional form as Eq. (43) in Ref. [15],
while here we make explicit the dependence on the desired
maximum mismatch.

The previous equations quantify the additional mismatch
produced by a signal with nonzero spin-down f; and
eccentricity e. However, another potential side effect would
be a shift in the remaining estimated parameters due to
correlations between the parameters. However, values
exceeding the limits above would not automatically mean
such signals are undetectable, only that the resulting
mismatch would be larger, thus decreasing the sensitivity
of the search.

We can compare the mismatch distribution obtained with
the same grid, for four different cases: signals with f; =0
and e = 0; signals with the maximum values; signals with
values in between (with log-uniform distributions up to the
maximum value); and signals with double the maximum
value. This is shown in Fig. 5, where it can be seen that
signals with parameters at the maximum value (the eccen-
tricity maximum has been calculated using the binary
parameters that give the largest eccentricity) increase the

Count

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mismatch

FIG. 5. Measured mismatch for 1000 injections with random
parameters, assuming one year of data from the H1 detector and
segments of T, = 900 s. From left to right, the blue (A) histo-
gram corresponds to signals with zero spin-down, f; = 0, and
eccentricity e = 0; the red (B) histogram uses signals log-
uniformly distributed in f, €[-4.7x1074,-4.7x 10~'1] Hz/s
and e € [0.2 x 1074,0.2 x 107']; the black (C) histogram uses
signals with f| and e at their maximum values given by Eq. (36);
the yellow (D) histogram is for signals with f| and e given by
twice the maximum values.

mean mismatch by ~0.08, which would reduce the sensi-
tivity of a search by ~5%.

D. Computational model

In this section, we explain how the computational cost
and random access memory (RAM) of our pipeline scale
with different setup variables, updating and expanding
Sec. VF in Ref. [15].

1. Coherent computational cost

Because of the calculation of the F-statistic values, the
coherent stage will have an additional computational cost,
besides loading the input data and calculating the partial
Hough map derivatives. In order to estimate this cost, we
summarize the content of Ref. [32]. The cost of calculating
the JF-statistic or its related quantities in segment £ at a
single sky-patch scales with®

Tre — NT;f(NuthermsTcore + Tbuffer) > (37)

$This assumes the so-called demod F-statistic implementation,
which is computationally favored for this type of search, but
the pipeline can just as easily use the resampling implemen-
tation [32].
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Nde(
NT;zf’ = E
X=1

Nseryex (38)

where 7., and 7y, are fundamental timing constants that
depend on only the hardware and optimization settings
(usually, Ty 18 approximately one order of magnitude
bigger), 2N gierms + 1 are the number of frequency bins that
are used for the calculation of the Dirichlet kernel, N, is the
number of coherent u; templates, and Nr., is the total
number of SFTs in segment 7.

The total coherent computational cost of a single sky
patch scales with the number of segments:

Nseg

Z Try = NSFT (NuthermsTcore + Tbuffer)' (39)
=1

Tr =

Since the calculations for each segment are independent
from the others, these steps can be easily parallelized. We
use an OpenMP loop to take advantage of multicore CPUs,
which can speed up the calculation by approximately the
number of used cores.

The total coherent computational cost will scale linearly
with the number of sky patches.

2. Semicoherent computational cost

In the semicoherent stage, the coherent detection sta-
tistics are combined for every template that is searched.
The cost of the first stage 7.; over a sky patch j scales as

7'-H;j = Nfstegb(Nbinary)gj(Nﬁv Na’ 5u, ) dr)h(r)Tl’ (40)

where Ny, is the number of semicoherent frequency and
spin-down templates, b() is a function containing the
nonlinear dependency on the number of binary templates
Nyinary- 9;() is a function describing the effective number of
semicoherent sky points needed (due to the SkyHough
algorithm), N, and N are the number of right ascension
and declination points, respectively, in each sky patch, J; is
the semicoherent sky grid resolution, /() is a function that
depends on the threshold r set at the coherent stage, and 7,
is a fundamental timing constant. The total semicoherent
cost will scale with the number of sky patches. In the
previous paper [15]. it was assumed that b = Ny, and
gj = NsN,, which left some details out.

The function b() depends on the GPU architecture. If we
use a CPU, it would simply be equal to Ny;p,ry, but if we use
a GPU, it depends nonlinearly on parameters such as the
occupation of the GPU cores and the usage of shared
memory. This can be seen in Fig. 7, where the nonlinear
scaling with Ny is clear.

The function g;() is equal to or less than NsN,,, and it
encodes the SkyHough-type sky interpolation mechanism,
which depends on the relation between the size of the

annulus produced by the Doppler modulations and the size
of the semicoherent sky grid, as explained in Sec. IV B in
Ref. [17]. At a given time stamp, the sky patches with 71
more parallel to ¥ have wider annulus, which may contain
several semicoherent sky pixels, thus lowering the number
of sky points that need to be taken into account in the
semicoherent loop. This effect will be different at each time
stamp, and over a long observing run this will produce an
average value between one and N;N,, for the function g; ().
This effect gives the SkyHough algorithm a computational
advantage.

The function i is different from one for a nonzero
threshold r, which substitutes coherent values to O when
below the threshold, thus reducing the computational cost.
This function is given by h = e, where (r) is the
expected value of the coherent detection statistic.

We define the average cost (zy) of the first stage over
different sky patches j:

<TH> = Nfstegb(Nbinary) <gj(N5’ Naa 5u1 ’ 5s)>h(r>71 . (41)
The cost 7R of the second (i.e., “refinement”) stage scales as
R = Nsegb(Ncand)NaT% (42)

where N, 1S the number of candidates that are passed to
the second stage, N, is the number of additional points
around each candidate that are searched (when using a finer
grid), b() is the same function as before, and 7, is a
fundamental timing constant.

The total semicoherent computational cost is the sum of
the first and second stages.

3. Total computational cost

In order to estimate the total computational cost of a
search, we add the coherent and semicoherent costs
(neglecting other costs such as loading the data and writing
output to files, since in a realistic scenario they are
negligible):

Ng

T= Nep,(tr + (tu); + TR)- (43)
=1

where N is the number of frequency bands needed to cover
a certain frequency range and Ngp, is the number of sky
patches at frequency band [. The values for (zy); and 7g,
depend on the frequency band, since Nyjnyry, N, N, and
Neana scale with frequency.

Figure 6 shows a comparison of the coherent and
semicoherent costs as a function of the number of binary
templates. It can be seen that the coherent cost stays
constant, but the semicoherent cost increases, as expected.
Past searches using BinarySkyHough and BinarySkyHouF
have used Nyjpyy larger than 10°, so in such typical
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FIG. 6. Timing for a single sky patch of a 0.1 Hz frequency
band as a function of the number of binary templates. The orange
points show the computing time of the semicoherent stage,
while the blue points are for the coherent stage (including the
JF-statistic computation and generation of partial Hough map
derivatives). These timings are obtained on an NVIDIA Tesla
V100 and a single core of an Intel(R) Xeon(R) Silver 4215 CPU
2.50 GHz.

scenarios the coherent cost will be a small fraction of the
total cost. If the number of binary templates is small, the
coherent computational cost will have a non-negligible
impact on the total cost. This also happens for isolated
searches, where the search over binary parameters is sub-
stituted with a search over f; values, which usually is much
less than 10°. In these two cases, calculating the F-statistic
might lower the sensitivity or the span of a search.

When comparing the computational cost to the previous
pipeline, it is important to notice that, when using the
JF-statistic as the coherent detection statistic, the total
computational cost is reduced compared to using SFT power
for multidetector searches. This is because the semicoherent
summing of the power is done over ~N ., Ny values, while
the F-statistic generates just N, coherent detection sta-
tistics. For this reason, in the semicoherent stage the
combination of powers will take roughly N4, times longer
than the combination of F-statistic values. If the template
grids are the same in both cases, the computational cost of
a semicoherently dominated search using the JF-statistic
will therefore be reduced. This improvement can be seen in
Fig. 7, where the green points show the lowering of the
computational cost compared to the orange points.

Furthermore, the computational efficiency of the code has
been improved, mainly by better usage of CUDA’s
(Compute Unified Device Architecture) coalesced global
memory access. This can be seen in Fig. 7, comparing the
performance of the previous to the new code for the same
setup as a function of the number of binary templates
(increasing the RAM memory needs). The increased

e BinarySkyHough Power L
BinarySkyHouF Power
*  BinarySkyHouF F-statistic

®

Time [s]
=
o
~

*

104 10°
Binary templates

FIG. 7. Timing for a single sky patch of a 0.1 Hz frequency
band as a function of the number of binary templates. The blue
points show the cost of the search for the BinarySkyHough
pipeline using SFT power as the coherent detection statistic, the
orange points show the cost for the new BinarySkyHouZF
pipeline using the power statistic, while the green points refer
to using the F-statistic. All three searches use the same number of
templates and the same amount of data (Gaussian noise with
equal amounts of data from detectors H1 and L.1). These timings
are obtained on an NVIDIA Tesla V100 and a single core of an
Intel(R) Xeon(R) Silver 4215 CPU 2.50 GHz.

efficiency of the new code corresponds to a lowering of
the timing coefficient 7; in Eq. (40), manifesting as a weaker
scaling with the number of binary templates.

4. RAM

In order to estimate the RAM required by
BinarySkyHouF, we find the scaling of the data structures
in the code as a function of input parameters such as the
maximum mismatch, the coherent time, and the amount of
data used.

The biggest data structures in the code are

(1) the partial Hough map derivatives, which hold the

results from the coherent stage:

Sp = 6NsegNuNskyv (44)

where N, is the total number of Taylor u-coordinate
templates and Ny, = NsN, is the number of sky
templates;

(i1) the per-frequency bin semicoherent results:

Sg = 8NbinaryNsky‘ (45)
These structures are orders of magnitude larger than the rest

and are, therefore, enough to give a good estimate of the
required RAM.
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The main differences with the previous pipeline are as
follows.

(i) The number of frequency bins needed in the partial
Hough map derivatives slightly decreases due to the
coherent sky demodulation.

(i1) The effective number of “segments” is reduced by
the coherent multidetector combination.

(iii) If more than one Taylor coordinate needs to be used
to maintain the mismatch at a certain level, the RAM
increases in order to hold the coherent results. This
will limit the number of Taylor coordinates that can
be used at a certain coherent time.

Another RAM limitation of the code is due to the usage of
CUDA’s shared memory in the GPU kernel functions. This
limits the size of the sky patches, which is dependent on the
GPU architecture. The shared memory size is given by

SS - 4TNSky7 (46)
where T is the number of threads per block in the GPU
kernel launch.

IV. SENSITIVITY AND PARAMETER
ESTIMATION

In this section, we will estimate the sensitivity of the new
pipeline and compare it to the previous one. In order to do
this, we will compare the different detection statistics being
used, showing the improvements in sensitivity that are
possible due to the usage of demodulated statistics. We are
not attempting to estimate a realistic sensitivity that these
pipelines would achieve in an actual search, since this
also depends on other postprocessing procedures, such as
clustering or follow-up, which are beyond the scope of the
present study.
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FIG. 8.

To estimate the sensitivity, we will follow the same
common procedure used in Ref. [15]. Namely, for different
setups (encompassing the amount of data, detectors and
their relative noise levels, maximum mismatch parameters,
and coherent time) and detection statistics, we generate
Gaussian noise and perform a search to obtain the threshold
at a certain false-alarm probability (in the results shown,
we use the top template as the threshold). Next, we add six
groups (each with a different gravitational-wave amplitude)
of 1000 randomly distributed signals to the previously
generated Gaussian noise and perform a separate search for
each signal. The resulting statistic values are compared to
the threshold, and the detection probability is estimated by
the fraction of signals detected (i.e., crossing that threshold)
out of the total number of signals. This procedure is
performed for every different detection statistic.

The injected signals have a random isotropic (NS spin)
orientation, a random isotropic sky position, a random
frequency f, between [100, 100.1] Hz, and a random period
Py, € [15,60] day and semimajor axis a, € [10,40] Is.

The detection statistics that we compare are the original
Hough number count (given by Eq. (25) in Ref. [15]), the
SFT power (given by Eq. (26) in Ref. [15] ), the J -statistic
(given by Eq. (23) in Ref. [10] ), and the dominant-response
statistic (given by Eq. (34) in Ref. [10] ). For each of these
statistics, we also compare their weighted versions dis-
cussed in Sec. IIT A. Here, we show the results for a single
setup as an illustration, but we have tested various setups
with different amounts of data and mismatch distributions
and have obtained similar results.

A. Comparison of detection statistics

The left plot in Fig. 8 shows the sensitivity of two
unweighted (F and F ) and three weighted detection
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Detection probability as a function of sensitivity depth +/S,, /g for different detection statistics in Gaussian noise. The left plot

shows the results for the HI and L1 detectors, while the right plot additionally includes the V1 detector. The error bars denote the 95%
binomial confidence interval. We assume one year of data at the same noise floor from each of the detectors and a coherent segment
length of T, = 900 s. (The points have been slightly displaced along the x axis to ease visibility.).
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FIG. 9. Parameter estimation accuracy for different weighted
detection statistics. We plot the cumulative distribution of
parameter-space offsets between estimate and injected signal,
over the six parameter-space dimensions searched. The plot uses
1000 injected signals assuming one year of data (with equal
Gaussian noise floor) from both the H1 and L1 detectors and a
coherent segment length of T, = 900 s.

statistics (SFT power, F and F 5p) for two detectors (H1
and L1), while the right plot shows the same comparison
for three detectors (using V1 in addition). In both plots, we
see that the most sensitive statistic is the weighted dom-
inant-response statistic F 5. For the two-detector case, the
sensitivities of the SFT power and JF-statistic are within
the statistical errors of each other, but the right plot shows
that for more than two detectors the F-statistic is more
sensitive. This is expected from the reduced number of
effective segments (as discussed earlier), resulting in
reduced y? degrees of freedom for the background dis-
tribution (e.g., see Ref. [10]). We further see that the
sensitivity of all statistics improves (on these short seg-
ments) when using weights. Overall, these results illustrate
the sensitivity advantage of the demodulated (F- or F zp-)
statistics over using SFT power.

Next, we compare the parameter estimation accuracy of
the different weighted detection statistics. To do this, we
select the template with the highest detection statistic and
compare its parameters with the parameters of the injected
signal, if it was detected. The distance between injected
signal and recovered “loudest” template is measured in
terms of the number of grid bins along all six parameter-
space dimensions. The results are shown in Fig. 9. It can be
seen that the different detection statistics show a very
similar behavior and that for all of them more than 90% of
the signals are recovered within one bin.

B. Refinement stage

As discussed in Sec. III A, the new BinarySkyHouF
pipeline (like the previous BinarySkyHough) consists of
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FIG. 10. Detection probability as a function of sensitivity depth
/8, /hy for different detection statistics in Gaussian noise. The
plot shows the results for the H1 and L1 detectors, assuming one
year of data at the same noise floor from each of the detectors and
a coherent segment length of T, = 900 s. The error bars denote
the 95% binomial confidence interval. (The points have been
slightly displaced along the x axis to ease visibility.).

two main stages: After the initial search stage, a percentage
of templates with the highest detection statistic are rean-
alyzed with more accurate uy, interpolation expressions
(see Sec. Il B) and possibly with a finer mismatch. The
previous BinarySkyHough pipeline also used a more
sensitive detection statistic in the second stage, using the
weighted power instead of the weighted Hough number
count, while now we always use the most sensitive statistic
(i.e., weighted F »p) in all stages.

The sensitivity of this refinement procedure depends on
the percentage of templates that is passed to the second
stage. If it is large enough, at a realistically low false-alarm
probability the sensitivity of the search would be deter-
mined by the statistic used in the second stage, thus
improving the overall sensitivity. In order to simulate
realistic search conditions, for a candidate to count as
detected in the second stage, we also require its first-stage
detection statistic to be higher than the weakest candidate
that was passed to the second stage.

Figure 10 shows the comparison of the weighted number
count without a second stage with the result when the
highest 1% of the candidates are passed to the second stage.
We see that the sensitivity of the weighted number count
(with the optimal threshold of® 3.2) is within the uncertainty
errors of the weighted power. This shows that the previous
pipeline sensitivity was effectively determined by the
second-stage weighted power statistic.

°Here the expectation value of the power statistic is 2, while in
Ref. [17] it was 1, which explains the factor of 2 difference.
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We further see that the sensitivity of the weighted
dominant-response F sp-statistic is slightly improved in
the refinement stage, due to the usage of the more accurate
uy, master equations (24) and (25). For more than two
detectors, the sensitivities of the demodulated statistics are
expected to be even better, similar to what we saw in the
right plot in Fig. 8.

C. Increasing the coherent time

One of the advantages of the new pipeline is the ability
to extend the coherent segment time 7', while maintaining
the same mismatch. Using a longer coherent time increases
the computational cost while also increasing the sensitivity
of the search. For a large number of segments, the sensitivity
of a StackSlide search scales as Ns_e}g/ 4 (e.g., [6]), so at fixed
false-alarm probability and amount of data, the coherent
time would need to be increased by a factor of 16 in order to
double the sensitivity of the search.

Here, we compare the difference in sensitivity between
using a coherent time of 7', =900 s and T, = 3600 s,
with fixed maximum mismatch parameters.

For this comparison, we add random signals from the
binary parameter space region of Py € [0.785,0.8] day
and a, € [0.5,0.6] Is. In this region of the parameter
space, several u, templates are needed in order to maintain
the same coherent mismatch for the coherent time of
Tee = 3600 s, while the searches with T, = 900 s need
only templates in u;.

Figure 11 shows the results by comparing the dominant-
response J 5p-statistic using these two coherent times. The
improvement in sensitivity by using a longer coherent time
is clear, for both the weighted and unweighted cases. For
the unweighted detection statistics, the maximal expected
improvement due to the 4-times increase in T, is around
~1.41, which agrees approximately with what is seen in the
figure.

An interesting point to observe here is that the relative
improvement due to weighting of the statistics decreases
for longer segment length T, (at constant Gaussian noise
floors). This can be understood from the reduced
differences in antenna-pattern responses between segments
which therefore contribute more similar signal power.

We also show in Fig. 11 a search using the longer 7', =
3600 s coherent segments, but without including u, tem-
plates. We see that this decreases its sensitivity, illustrating
the need to include u, templates for this setup, as was
expected from the mismatch estimates in Sec. III C 1.

seg

V. CONCLUSIONS

In this paper, we have presented a new pipeline,
BinarySkyHouF, to search for continuous gravitational
waves from unknown neutron stars in binary systems.
This new pipeline is a descendant of the previous
BinarySkyHough pipeline, improving several different

1.04 = i hd ]
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3 0.8
©
Q
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3
g o Fapl%Refined 900 s +
0.6 = WeightedFasl%Refined 900 s *
+  Fagl%Refined 3600 s
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0.5 Fasl%Refined 3600 s (only u;) *
v WeightedFss1%Refined 3600 s (only u;)

15 20 25 30 35 40
Sensitivity depth [1/vV Hz]

FIG. 11. Detection probability as a function of sensitivity depth
/S, / hy for different detection statistics in Gaussian noise, using
two different coherent segment lengths, namely, T, = 900 s
and T, = 3600 s. The plot shows the results for the HI and L1
detectors, assuming one year of data at the same noise floor from
each of the detectors. The error bars denote the 95% binomial
confidence interval. (The points have been slightly displaced
along the x axis to ease visibility.).

aspects. It can cover the same parameter space at a reduced
computational cost, and the usage of demodulated (F- and
F ap-) statistics allows one to use longer coherent seg-
ments, which increases sensitivity and gives more flexi-
bility to the pipeline. Furthermore, the per-detector data are
combined coherently, thereby reducing the computational
cost (by a factor of ~N,,) and further improving sensitivity
for searches with more than two detectors.

The new pipeline gives explicit control over the mis-
match in the coherent stage, allowing one to perform lower-
mismatch searches than before, for example, when following
up an interesting candidate or targeting a particularly
interesting smaller region of parameter space. One can
now explicitly search over binary orbital parameters such as
the eccentricity and argument of periapse or higher-order
frequency derivatives. Therefore, this pipeline can be used
to follow up candidates from different other searches, such
as from an all-sky isolated search that gives only constraints
on the ranges of possible binary parameters to follow up.

BinarySkyHouF also has some limitations. The Taylor
coordinates used in the coherent stage allow searching only
for orbital periods substantially longer than the coherent
segment length, as discussed in Sec. III C 1. This limits the
possibilities to search over the shortest orbital periods with
longer coherent times. The corresponding RAM require-
ments limit the number of Taylor coordinates that can be
used, which also limits the maximum coherent time that can
be used in certain regions of the parameter space.

However, a number of future improvements to this
pipeline can be envisaged, for example, the usage of a
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nonzero threshold on the coherent statistics before sum-
ming or including only a subset of segments in the first
stage depending on their sensitivity. Further enhancements
could be achieved by reducing the second-stage mismatch
by refining the search grid. It would also be interesting to
develop an explicit optimization algorithm for the optimal
search setup parameters given a certain amount of data and
computational budget, similar to what was done in
Refs. [6,33]. We also plan to explore the usage of further
demodulated detection statistics, in particular, the line-
robust statistics in Ref. [34], which should help mitigate
against non-Gaussian artifacts in the data.
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APPENDIX: DETECTOR-FRAME
TAYLOR COORDINATES

In Sec. II, we introduced short-segment SSB Taylor
coordinates {u;}, defined by the Taylor expansion of the
signal phase in the SSB frame around each segment
midpoint. Here, we show how similar detector-frame
Taylor coordinates {uy } can be expressed for the phase
evolution in the frame of detector X, which additionally
includes the phase modulation due to the detector motion.

In complete analogy to Eq. (10), we can write the Taylor
expansion in detector arrival time ¢ around a midtime

max X
k

& ( 0+znzk— (A1)

with the detector-frame Taylor coordinates {uX};™
defined as

kX
ux_1d¢
K70 dik

(A2)

In

in terms of the timing relation between source-frame
(emission) time 7 and detector-frame (arrival) time f,
obtained by combining Eqgs. (4) and (5):

(1) = o(t5sp (1)) = £ +7(2) - o = R(z%).

The expressions Eq. (12) are formally identical, with the
SSB derivatives =¥ replaced by detector-time derivatives
k) = d*tX /dr*, which are found as

(A3)

F=[1+RT(1+7 7,
> fl—R”’i’XZ)

- R””i’XS _ 3R//;Z:X,i.X),

which generalizes Eq. (14).
We can write the first two orders explicitly as
fm  L+R,

X\ 2 X\ 2
o (Ba-m (L)) () e

with the definitions of Egs. (17) and (18) (for small

eccentncr[y and a single spin-down) and 7} = ?X(t )

and aX = 7(1,,) the detector velocity and acceleration
at the segment midtime ¢, respectively. Again, these
coordinates have units of Hz and Hz?, respectively, but
now also depend on the detector X and on the sky position
i of the signal.

Assuming no spin-down (f; =0), a circular orbit
(e = 0), and a nonrelativistic orbital velocity (a,Q < 1),
Eq. (A5) yields an approximate equation for the frequency-
time pattern, namely,

ul 14050

uf & fo(1+ 0% - 1) (1 — a,Qcos¥y,)
R fo+ foUk - i — foa,Qcos ¥y, (A6)

which is the same as Eq. (15) in Ref. [15], evaluated at
segment midtime z,,,.
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