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We consider the problem of matching two spacetimes, the previous and present aeons, in the conformal
cyclic cosmology model. The common boundary between them inherits two sets of constraints—one for
each solution of the Einstein field equations extended to the conformal boundaries. The previous aeon is
assumed to be an asymptotically de Sitter spacetime, so the standard conformal formulation of the Einstein
field equations suffice to derive the constraints on the future null infinity. For the future aeon, which is
supposed to evolve from an initial singularity, they are obtained with the use of the Bach-type equation.
This equation is regular at the past conformal infinity for conformally flat and conformally Einstein
spacetimes, so we will mostly focus on them here. An example of the electrovacuum spacetime which does
not fall into this class and has a regular conformal Bach tensor will be discussed in the Appendix.
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I. INTRODUCTION

The conformal cyclic cosmology (CCC) is an alternative
cosmological model, introduced by Penrose [1]. It is based
on the common agreement that our Universe evolves from
an initial singularity, and that this evolution is influenced by
the presence of a positive cosmological constant. Hence, its
end state is assumed to approach an asymptotically de Sitter
spacetime. This solution of the Einstein field equation has
the remarkable property that its future conformal boundary
is a spacelike hypersurface, which allows one to perform
matching with the spacelike past conformal boundary of
the other spacetime. Such gluing procedure can be viewed
as a transition between two distinct solutions of the Einstein
field equations. This is the bedrock of the CCC model:
postulating that the history of our Universe consists of such
building blocks, aeons, which are joined together by their
spacelike conformal boundaries to form an infinite cycle.
Because the aeons evolve from the big bang singularity into
asymptotically de Sitter spacetimes, the CCC provides a
natural explanation for the Weyl curvature hypothesis [2].
One of the other physical implications of this model is the
postulated existence of the ringlike structures in the cosmic
microwave background [3–5].

There have been many approaches to the construction of
a viable model of the transition between two aeons in the
CCC—see e.g., [6–9]. However, all of them assume that
the conformal metric is given either in an exact form or in
terms of a power series. The present article serves as a step
toward the general case. In order to carry out our analysis,
we make use of the conformal Einstein field equations
and the Bach-type equation to study the constraints on the
common boundary between aeons. The assumption that the
conformal version of the latter is regular on the conformal
boundary is a very restrictive condition. As will be seen, a
natural way to satisfy it is to consider conformally Einstein
spacetimes. This will be the main focus of this work.
However, a class of electrovacuum spacetimes that are not
conformally flat and have a regular Bach equation will also
be discussed in the Appendix as an example of a more
general scenario.
The structure of this article is as follows. In the next

section, we will discuss the details of the transition between
the two aeons of the CCC model. Section III provides a
discussion of the constraints induced on the conformal
boundary of the previous aeon by Friedrich’s conformal
Einstein field equations [10,11]. After that, in Sec. IV, the
Anderson-Fefferman-Graham equation [12,13] (which in
the current case reduces to the equation with Bach tensor)
and a nonlinear wave equation for the conformal factor
will be used to describe the constraints on the past null
infinity of the present aeon. The analysis of the big bang
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singularities that uses the Bach equation is viable only for a
certain class of spacetimes—most notably the conformally
flat ones. However, based on an example of the electro-
vacuum solution of the Einstein field equations discussed in
the Appendix, we will make the assumption that the Bach
equation is regular everywhere to analyze the present aeon.
Lastly, in Sec. V the two sets of constraints obtained in
Secs. III and IV will be evaluated on the common boundary
between the aeons to obtain certain simplifications.
This article relies on the conformal formulation of the

Einstein field equation, where asymptotically de Sitter
spacetime ðM̂; ĝabÞ is assumed to have a conformal
extension ðM; gabÞ in the form of compact manifold M
with the boundary ∂M and the metric gab ¼ Ω2ĝab. The
function Ω is positive in the interior of M and vanishes on
∂M. In the analysis of the conformal field equations it is
convenient to introduce the rescaled Weyl and Cotton
tensors of ĝab in the following way:

dabcd ≔
1

Ω
Ca

bcd; Qabc ≔
1

Ω
Âabc: ð1:1Þ

The spacetime with the initial (big bang) singularity will be
assumed to satisfy the following regular Bach equation:

B̄ab ¼ Sab; ð1:2Þ

where B̄ab is the Bach tensor of the conformal metric and
Sab is the source term. With this preparation, we can
formulate the main theorem of this article.
Theorem.—Let ðM̂; ĝabÞ be an asymptotically de Sitter

spacetime with the cosmological constant Λ̂ and the future
conformal boundary Iþ where the Cotton tensor vanishes.
Assume that ðM̌; ǧabÞ is a spacetime with the big bang
singularity located on the past conformal boundary I−,
which is a solution of the regular conformal Bach equation.
Then, if ðM̂; ĝabÞ and ðM̌; ǧabÞ are subsequent aeons in the
conformal cyclic cosmology scenario the constraints

Dbeab ≐ −Q⊤⊥⊥a ≐
ffiffiffiffi
3

Λ̂

r
S⊤a⊥̄; Q⊤⊥bc ≐ 0;

bbca ≐
ffiffiffiffi
3

Λ̂

r
Að3Þ
abc; S⊥⊥ ≐ 0 ð1:3Þ

have to be satisfied on the common conformal boundary
between them. The quantities eab and babc correspond to
the electric and magnetic part of the rescaled Weyl tensor

dabcd and Að3Þ
abc is the Cotton tensor of the conformal

boundary.
As an application of the main theorem we derive

constraints relating the initial values of the matter fields
in the present aeon with the same fields from the previous
aeon if both spacetimes are assumed to be electrovacuum.
This provides a partial answer to one of the questions posed
by Tod in [14].

A. Notation and conventions

We will work with the four-dimensional spacetimes and
use abstract index notation throughout the paper. The
signature of the spacetime metrics will be ð−;þ;þ;þÞ.
The convention for the Riemann tensor Rabcd is as follows:

∇a∇bvc −∇b∇avc ¼ Rabcdvd: ð1:4Þ

It can be decomposed into the Weyl tensor Cabcd and the
Schouten tensor in the following way:

Rabcd ¼ Cabcd þ 2ðgc½aPb�d þ gd½bPa�cÞ; ð1:5Þ

where

Pab ≔
1

2
Rab −

R
12

gab; J ≔ Pa
a ¼ R

6
ð1:6Þ

is the trace-corrected Ricci tensor—also called the
Schouten tensor. The (anti)symmetrization brackets are
defined as

TðabÞ ¼
1

2
ðTab þ TbaÞ; T ½ab� ¼

1

2
ðTab − TbaÞ ð1:7Þ

with the obvious generalizations to more indices.
Let S be a codimension-one spacelike hypersurface with

the induced metric hab and the unit normal vector na. The
projection to hypersurface tensors will be denoted by a
superscript ⊤, whereas contraction with na by ⊥, e.g.,

T⊤
a⊥ ¼ habTbcnc: ð1:8Þ

The Weyl tensor can be decomposed into its electric and
magnetic part with respect to an unit vector ua as follows:

Eab ≔ ucudCacbd; Hab ≔
1

2
ucudηacklCkl

bd; ð1:9Þ

where ηabcd is the covariant Levi-Civita tensor. Lastly, the
Cotton and Bach tensors are defined as

Aabc ≔ 2∇½bPc�a;

Bab ≔ −∇cAabc þ PdcCdacb: ð1:10Þ

Moreover, the Bianchi identity implies

Aabc ¼ ∇dCdabc: ð1:11Þ

II. CONFORMAL CYCLIC COSMOLOGIES

In the following, let ðM̂; ĝabÞ and ðM̌; ǧabÞ denote two
solutions of the Einstein field equations to be called,
respectively, the previous and present aeons. One has that
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R̂ab −
1

2
R̂ĝab þ Λ̂ĝab ¼ T̂ab;

Řab −
1

2
Řǧab þ Λ̌ǧab ¼ Ťab; ð2:1Þ

where Λ̂ (respectively Λ̌) are the positive cosmological
constants and T̂ab (respectively Ťab) are the energy-
momentum tensors describing the matter content of the
corresponding aeon. We will assume that ðM̂; ĝabÞ is an
asymptotically de Sitter spacetime and that ðM̌; ǧabÞ
evolves from an initial singularity. Those statements can
be made precise with the assumption that both spacetimes
admit a conformal compactification. Hence, in the sequel
we will use the notion of conformal extensions of both
aeons, ðM; gabÞ and ðM̄; ḡabÞ, such that:

(i) M (respectively M̄) are compact manifolds with the
boundaries ∂M (respectively ∂M̄) such that

M ¼ M̂ ∪ ∂M; M̄ ¼ M̌ ∪ ∂M̄: ð2:2Þ

(ii) The metrics gab (respectively ḡab) are regular every-
where and there exist positive functions Ω and ω
such that

gab ¼ Ω2ĝab; ḡab ¼
1

ω2
ǧab: ð2:3Þ

That is, the zero locus ZðΩÞ corresponds to the
future null infinity (future conformal boundary) Iþ

of ðM̂; ĝabÞ andZðωÞ to the past conformal boundary
I− of ðM̌; ǧabÞ.

It is important to note here that we are not assuming that
both spacetimes have the same conformal extension. If that
were the case, then the reciprocal hypothesis could be used
to determine the metric from the present aeon out of the
metric from the past one, given that the conformal factor
could be prescribed uniquely, or vice versa [1,7]. Instead,
we will work with the two solutions of the Einstein field
equations which independently satisfy the required con-
formal properties and study the matching conditions along
their conformal boundary afterwards.

III. THE ASYMPTOTICALLY DE SITTER AEON:
FRIEDRICH’S CONFORMAL FIELD EQUATIONS

AND CONSTRAINTS

The objective of this section is to consider asymptoti-
cally de Sitter-like spacetimes ðM̂; ĝabÞ which admit
conformal extensions ðM; gabÞ with

gab ¼ Ω2ĝab ð3:1Þ

and derive the constraints on the future conformal boundary
Iþ (ZðΩÞ). This is a standard setting for Friedrich’s
conformal Einstein field equations [10,11] and we will

briefly describe this approach with nonvanishing energy-
momentum tensor—see [15] and the references therein for
the discussion of trace-free matter models.

A. Conformal Einstein field equations

By the conformal Einstein field equations it is under-
stood a conformal representation of the Einstein field
equations—that is, they provide a set of equations which
are formally regular at the conformal boundary (where the
conformal factor Ω vanishes) of an asymptotically de Sitter
spacetime, which imply, away from the conformal boun-
dary, a solution to the Einstein field equations. There exist
in the literature several candidates for suitable conformal
field equations—see e.g., [15]. In this article we focus on
Friedrich’s conformal Einstein field equations [16]. These
equations, which in the following we just simply call the
conformal Einstein equations, have been instrumental in
the study of the nonlinear stability of de Sitter-like and
Minkowski-like spacetimes [17]. Although the conformal
Einstein equations have mostly been considered in the
vacuum setting, the formalism can be extended to the
nonvacuum case. Indeed, these equations have been used to
study the stability of a number of cosmological models
(e.g., scalar field, dust, radiation) [18–20]. As it will be seen
in the following, these equations allow the formulation of a
regular asymptotic initial value problem at the conformal
boundary.
As mentioned above, the strategy behind the conformal

Einstein field equations is to find a system that is regular at
the conformal boundary Iþ and is equivalent to the usual
Einstein field equation under suitable conditions. Let

s ≔
1

24
RΩþ 1

4
□Ω ð3:2Þ

where the curvature quantities and derivative operator is
associated with the conformal metric gab. It is also useful to
define the rescaled version of the tensors corresponding to
the de Sitter-like (physical) metric ĝab,

dabcd ≔
1

Ω
Ca

bcd; Qabc ≔
1

Ω
Âabc: ð3:3Þ

The conformal Einstein field equations are given by the
following system:

∇a∇bΩ ¼ −ΩPab þ sgab þ
Ω
2
T
∘
ab; ð3:4aÞ

∇as ¼ −Pa
b∇bΩþ 1

6
∇cðT∘ acΩÞ; ð3:4bÞ

∇dddabc ¼ Qabc; ð3:4cÞ

2∇½bPc�a ¼ ddabc∇dΩþ ΩQabc; ð3:4dÞ
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Λ̂ ¼ 6Ωs − 3∇cΩ∇cΩþ T̂
4
; ð3:4eÞ

where T
∘
ab denotes the trace-free part of the physical

energy-momentum-tensor

T
∘
ab ¼ T̂ab −

T̂
4
ĝab; ð3:5Þ

further complemented by the conservation equation for T̂ab
and its conformal transformation rule

Tab ¼
1

Ωq T̂ab ð3:6Þ

where Tab is the regular unphysical energy-momentum
tensor. Because the spacetime is asymptotically de Sitter we
will restrict ourselves to q ≥ 0.
A solution to the system (3.4) has the form of a collection

of fields

ðΩ; gab; s; Pab; dabcd; TabÞ ð3:7Þ

over M.
Remark 1. As ∇aΩ is orthogonal to level set of Ω,

Eq. (3.4e) is equivalent to the statement that ZðΩÞ is a
spacelike hypersurface—as long as T̂ ¼ 0 there.
Remark 2. If the trace T̂ vanishes, then for q ¼ 2 the

conservation equation ∇̂bT̂a
b ¼ 0 is conformally invariant

and regular everywhere.

B. Constraints

Let S be a spacelike hypersurface ofMwith unit normal
vector na, nana ¼ −1. The unphysical metric gab induces a
metric hab on S, given by

hab ≔ gab þ nanb: ð3:8Þ

The extrinsic curvature of S will be denoted by Kab and is
defined as

Kab ≔ ∇anb þ naab; ð3:9Þ

where ab ¼ ∇nnb is the acceleration of na. Let σ ≔ ∇⊥Ω,
so that one has the decomposition

∇aΩ ¼ DaΩ − naσ; ð3:10Þ

where Da is the Levi-Civita connection of hab.
Before discussing the constraints induced by the con-

formal field equations on S, it is useful to consider
decompositions of the relevant tensors with respect to
na. We have

T
∘
ab ¼ T

∘ ⊤
ab − 2nðaT

∘ ⊤
bÞ⊥ þ nanbT

∘
⊥⊥: ð3:11Þ

Similarly,

Pab ¼ P⊤
ab − 2nðaP⊤

bÞ⊥ þ nanbP⊥⊥: ð3:12Þ

The decomposition of the rescaled Weyl tensor dabcd is
given by

dabcd ¼ d⊤abcd − ndbabc þ ncbabd − nbbcda

þ nabcdb þ nancebd þ nbndeac

− nbncead − nandebc; ð3:13Þ

where eab ≔ d⊤a⊥b⊥ is its electric part and babc ≔ d⊤abc⊥
defines its magnetic part. Because of the symmetries of
dabcd its fully projected part can be decomposed further as

d⊤abcd ¼ eachbd þ ebdhac − eadhbc − ebchad: ð3:14Þ

The constraints induced on S by (3.4) can be obtained by
considering intrinsic and normal-intrinsic components of
this equations. They read

DaDbΩ ¼ σKab − ΩP⊤
ab þ shab þ

Ω
2
T
∘ ⊤
ab; ð3:15aÞ

Daσ ¼ Ka
bDbΩ − ΩP⊤

a⊥ þ Ω
2
T
∘ ⊤
a⊥; ð3:15bÞ

Das ¼ −P⊤
abD

bΩþ P⊤
a⊥σ þ 1

6
T
∘ ⊤
abDbΩ

−
1

6
T
∘ ⊤
a⊥σ þ Ω

6
ðDbT

∘ ⊤
ab þ T

∘ ⊤
abab

− Ka
bT
∘ ⊤
b⊥ − KT

∘ ⊤
a⊥ − hab∇⊥T

∘ ⊤
b⊥

þ T
∘
⊥⊥aaÞ; ð3:15cÞ

Dbeba ¼ −bbacKbc −Q⊤⊥⊥a; ð3:15dÞ

Dabbca ¼ 2ea½bKa
c� þQ⊤⊥bc; ð3:15eÞ

2D½bP⊤
c�a ¼ −2P⊤⊥½bKc�a þ ΩQ⊤

abc þ σbbca

− 2ha½bec�dDdΩ − 2ea½bDc�Ω; ð3:15fÞ

2D½aP⊤
b�⊥ ¼ 2K½acP⊤

b�c þ babcDcΩþΩQ⊤⊥ab; ð3:15gÞ

Λ̂ ¼ 6Ωs − 3DaΩDaΩþ 3σ2 þ T̂
4
; ð3:15hÞ

where K ≔ Ka
a. Any other projections are either trivial or

can be expressed by the linear combination of (3.15). This
system of equations is supplemented by
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Pð3Þ
ab ¼ Ωeab þ P⊤

ab − K

�
Kab −

1

4
habK

�

þ KacKb
c −

1

4
habKcdKcd; ð3:16Þ

where Pð3Þ
ab is the Schouten tensor of hab, and

2D½aKb�c ¼ Ωbabc þ 2hc½aP⊤
b�⊥: ð3:17Þ

These two equations are a consequence of the Gauss-
Codazzi and Codazzi-Mainardi relations.

C. Constraints on ZðΩÞ
Now, suppose that S is the future conformal boundary of

the asymptotically de Sitter spacetime—i.e., S ¼ ZðΩÞ.
The constraint equations (3.15) reduce greatly in that case
and read

Daσ ≐ 0; Λ̂ ≐ 3σ2; ð3:18aÞ

shab ≐ −σKab; ð3:18bÞ

Das ≐ σ

�
P⊤
a⊥ −

1

6
T
∘ ⊤
a⊥
�
; ð3:18cÞ

Pð3Þ
ab ≐ P⊤

ab − K

�
Kab −

1

4
habK

�

þ KacKb
c −

1

4
habKcdKcd; ð3:18dÞ

D½aKb�c ≐ hc½aP⊤
b�⊥; ð3:18eÞ

2D½aP⊤
b�⊥ ≐ 2K½acP⊤

b�c; ð3:18fÞ

2D½bP⊤
c�a ≐ σbbca − 2P⊤⊥½bKc�a; ð3:18gÞ

Dbeab ≐ −Q⊤⊥⊥a − Kbcbbac; ð3:18hÞ

Dabbca ≐ Q⊤⊥bc − 2K½baec�a; ð3:18iÞ

where ≐ denotes the equality on the zero set of Ω.

Equations (3.18) yield σ ≐
ffiffiffiffiffiffiffiffiffi
Λ̂=3

q
. Because this function

(the normal derivative of Ω) is constant on ZðΩÞ it is
convenient to define

κ ≔
s
σ
: ð3:19Þ

Then, from (3.18b) and (3.18c)

Kab ≐ −κhab; P⊤
a⊥ ≐ Daκ þ

1

6
T
∘ ⊤
a⊥; ð3:20Þ

e.g., ZðΩÞ is an umbilic hypersurface. The Gauss-Codazzi
constraint (3.18d) may serve as a definition of the projected
part of the unphysical Schouten tensor. More precisely,
one has

P⊤
ab ≐ Pð3Þ

ab þ 1

2
κ2hab: ð3:21Þ

It can be readily verified that the Codazzi-Mainardi relation

constraint (3.18e) yields T
∘ ⊤
a⊥ ≐ 0 in the current case, which

leads to (3.18f) being identically satisfied.
The constraint (3.18g) may now be viewed as a defi-

nition of the magnetic part of the rescaled Weyl tensor, i.e.,

bbca ≐
1

σ
2D½bP

ð3Þ
c�a ¼

1

σ
Að3Þ
abc; ð3:22Þ

where Að3Þ
abc is the unphysical three-dimensional Cotton

tensor. The last two constraints, (3.18h) and (3.18i),
reduce to

Dbeab ≐ −Q⊤⊥⊥a; Q⊤⊥ab ≐ 0; ð3:23Þ

where the divergence-free nature of Að3Þ
abc has been used.

This section can be summarized as follows:
Theorem 1.—Let ðM̂; ĝabÞ be an asymptotically de Sitter

spacetime with conformal extension ðM; gabÞ where
gab ¼ Ω2ĝab. Then, the constraints induced on the future
conformal boundary Iþ (zero locus of Ω) are as follows:

∇⊥Ω ≐

ffiffiffiffî
Λ
3

s
; Kab ≐ −

ffiffiffiffi
3

Λ̂

r
shab

P⊤
a⊥ ≐

ffiffiffiffi
3

Λ̂

r
Das; P⊤

ab ≐ Pð3Þ
ab þ 3

2Λ̂
s2hab;

babc ≐
ffiffiffiffi
3

Λ̂

r
Að3Þ
cab; Dbeab ≐ −Q⊤⊥⊥a;

Q⊤⊥ab ≐ 0; ð3:24Þ

where the unhatted quantities correspond to the conformal
metric gab and the superscript (3) indicates quantities
intrinsic to Iþ. Moreover, s ≔ 1

24
RΩþ 1

4
□Ω, eab and

babc correspond to the electric and magnetic part of the
rescaled Weyl tensor Ω−1Cabcd and Qabc ≔ Ω−1Âabc is the
rescaled Cotton tensor.
Remark 3. Following the postulates of the CCC, the

conformal boundary is the natural hypersurface to perform
matching between a past aeon and a future one.

IV. THE BIG BANG SINGULARITY: THE
PRESENT AEON

Having described the constraints on the future conformal
boundary of the asymptotically de Sitter (previous) aeon we
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will move to the formulation of the conformally regular
version of the Einstein field equations for the present aeon.
As will be seen, the approach described in the previous
section will not work due to the requirement of an initial
singularity.
Recall that ðM̌; ǧabÞ is a solution of the Einstein field

equations with the energy-momentum tensor Ťab and
positive cosmological constant Λ̌. Moreover, we assume
the existence of a conformal extension of this spacetime
ðM̄; ḡabÞ such that

ḡab ¼
1

ω2
ǧab ð4:1Þ

and ZðωÞ corresponds to the initial (big bang) singularity.
Since the physical energy-momentum tensor is singular at
ZðωÞ let

Ťab ¼ ω−vT̄ab ⇒ Ť ¼ ω−2−vT̄; ð4:2Þ

where v ≥ 0 and T̄ab (the unphysical energy-momentum
tensor) is regular everywhere. The Einstein field equations
can be written as

P̌ab ¼
1

2
Ťab þ

1

6
ǧabðΛ̌ − ŤÞ: ð4:3Þ

In terms of conformal quantities this last expressions
implies

ω2P̄ab þ 2∇̄aω∇̄bω −
1

2
ḡab∇̄cω∇̄cω − ω∇̄a∇̄bω

¼ 1

2
ω2−v

�
T̄ab −

1

3
ḡabT̄

�
þ 1

6
ḡabω4Λ̌: ð4:4Þ

Remark 4. Equation (4.4) can be used to derive
regularity conditions on the unphysical energy-momentum
tensor T̄ab at ZðωÞ. After taking its trace one obtains

ω2−vT̄ ≐ 0: ð4:5Þ

Similarly, if n̄a ≔ ∇̄aω is a normal vector to the level set of
ω, then

2n̄an̄b −
1

2
ḡabn̄cn̄c ≐

1

2
ω2−v

�
T̄ab −

1

3
ḡabT̄

�����
ω¼0

: ð4:6Þ

If ZðωÞ is a spacelike hypersurface, then after contracting
the equality above with the metric h̄ab [intrinsic to ZðωÞ]
one gets

ω2−vT̄⊥⊥jω¼0 ≥ 0: ð4:7Þ

Because of the trace-free character of the ω−2 terms in
Eq. (4.3) written in terms of conformal quantities, a similar

regularization procedure as Friedrich’s conformal Einstein
field equations cannot be employed here to obtain a system
that is regular on ZðωÞ. However, in the sequel we will
argue that if the physical energy-momentum tensor of the
matter is restricted in a certain way, then an approach that
uses the Bach tensor can be employed to produce a suitable
set of regular conformal equations.

A. The Bach equation

The Bach tensor B̌ab can be related to the energy-
momentum tensor Ťab with the use of Einstein field
equations. We have

B̌ab ¼
1

2
□̌Ťab −

1

6
ǧab□̌ Ť þ 1

6
∇̌a∇̌bŤ − Ťa

cŤbc

þ 1

6
ǧabŤðΛ̌ − ŤÞ þ ČacbdŤ

cd þ 1

4
ǧabŤcdŤ

cd

−
2

3
ŤabðΛ̌ − ŤÞ: ð4:8Þ

It can be verified that for ǧab ↦ ḡab ¼ ω−2ǧab the Bach
tensor transforms as

B̌ab ↦ B̄ab ¼ ω2B̌ab; ð4:9Þ

so the initial step in obtaining the conformal field equations
which describe an initial singularity spacetime is to verify
whether the right-hand side of (4.8) multiplied by ω2 and
written in terms of the unphysical energy-momentum
tensor is regular on ZðωÞ. Unfortunately, a simple calcu-
lation reveals that this is not the case for generic T̄ab.
Nevertheless, driven by an example concerning certain
class of electrovacuum spacetimes (as discussed in the
Appendix) where the source term in the Bach equation is
regular everywhere, we will proceed with the analysis of
the constraints assuming that the conformal equation has
the form

B̄ab ¼ Sab; ð4:10Þ

where Sab is a (regular) source term. It should be stressed,
however, that although Eq. (4.10) bears close resemblance
to the equation appearing in the conformally invariant
theories of gravity (see [21] for a recent developments),
here we take the point of view that it is a consequence of the
Einstein field equations.
Remark 5. The source term Sab vanishes for confor-

mally flat and conformally Einstein spacetimes.
The Bach tensor is equivalent, in dimension 4, to the

Fefferman-Graham obstruction tensor—see [22]. Hence,
an approach based on the equation Bab ¼ 0 has been used
to generalize Friedrich’s approach to higher-dimensional
asymptotically de Sitter spacetimes [12,13]—see also [23].
In our analysis the conformal extension of the present aeon
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is a solution of the Bach equation with a source term, so a
similar approach can be used to show the well-posedness
of this system. The relation between its solution and the
physical big bang singularity spacetime can be achieved
with the use of the nonlinear wave-type equation for the
conformal factor ω.

B. The regularized Bach equation constraints
on the conformal boundary I −

Following the discussion in the previous subsection we
will assume that the conformal version of the Einstein field
equations of ðM̌; ǧabÞ are given by

B̄ab ¼ Sab;

□̌ω ¼ J̄ω −
2

3
ω3Λ̌þ 1

6
T̄ω1−v; ð4:11Þ

where Sab is a regular source term which depends on the
matter content of the spacetime and the wave-type equation
for the conformal factor ω arises from taking a trace
of (4.4).
The constraints on the initial hypersurface implied by the

Bach equation can be obtained from the normal-normal and
normal-intrinsic components of Eq. (4.10). More precisely,
one has that

B̄⊥⊥ ¼ S⊥⊥; B̄⊤̄
a⊥̄ ¼ S⊤̄a⊥̄: ð4:12Þ

In a gauge where ∇̄⊥̄n̄a ¼ 0 on ZðωÞ we have (see
e.g., [24])

B̄⊥⊥ ≐ D̄aD̄bEab − D̄cðC⊤̄
cab⊥̄K̄

abÞ þ P̄⊤̄
abE

ab þ K̄abĀ⊤̄
a⊥̄b;

B̄⊤̄
a⊥̄ ≐ −D̄bĀ⊤̄

a⊥̄b − ðD̄bEcbÞK̄a
c

þ K̄a
dK̄bcC⊥̄bcd þ P̄⊤̄cdC⊤̄

dac⊥̄ þ P̄⊤̄̄
⊥bEa

b ð4:13Þ

where h̄ab ≔ ḡab þ n̄an̄b and K̄ab are the first two funda-
mental forms ofZðωÞ and D̄a the Levi-Civita connection of
h̄ab. Moreover, Eab ¼ Ca⊥̄b⊥̄ is the eletric part of the Weyl
tensor. To avoid introducing new notation symbol ≐ will
denote equality on ZðωÞ here.
The boundary conditions for the nonlinear equation for

the conformal factor ω consist of prescribing ω ¼ 0 on the
past conformal boundary I− and the condition that its
gradient has a negative unit length there (which corre-
sponds to I− being a spacelike hypersurface).
The discussion in the previous paragraphs can be

summarized in the following:
Theorem 2.—Let ðM̌; ǧabÞ be a spacetime with con-

formal extension ðM̄; ḡabÞ described by the conformal field
equations

B̄ab ¼ Sab;

□̄ω ¼ J̄ω −
2

3
ω3Λ̌þ 1

6
T̄ω1−v; ð4:14Þ

where ḡab ¼ ω−2ǧab and Sab is a regular tensor which
depends on the matter content on the spacetime. Moreover,
the initial conditions for the conformal factor ω are as
follows:

ω ¼ 0; ḡab∇̄aω∇̄bω ¼ −1 on I−ðM̌Þ; ð4:15Þ

i.e., I−ðM̌Þ≡ ZðωÞ and this hypersurface is spacelike.
Then, the constraints induced on the past conformal
boundary I−ðM̌Þ by the first equation are

S⊥⊥ ¼ D̄aD̄bEab − D̄cðC⊤̄
cab⊥̄K̄

abÞ þ P̄⊤̄
abE

ab þ K̄abĀ⊤̄
a⊥̄b;

S⊤̄a⊥̄ ¼ −D̄bĀ⊤̄
a⊥̄b − ðD̄bEcbÞK̄a

c

þ K̄a
dK̄bcC⊥̄bcd þ P̄⊤̄cdC⊤̄

dac⊥̄ þ P̄⊤̄̄
⊥bEa

b; ð4:16Þ

where Eab ≔ C⊥̄a⊥̄b is the electric part of the Weyl tensor.

V. MATCHING CONDITIONS FOR THE
CONFORMAL BOUNDARY BETWEEN AEONS

In the previous sections, we discussed two sets of
constraints on conformal boundaries. The first one holds
on the future conformal boundary Iþ of the previous aeon
ðM̂; ĝabÞ (asymptotically de Sitter spacetime) and the
second on the past conformal boundary I− (the big bang
singularity) of the present aeon ðM̌; ǧabÞ. In the CCC
scenario, those two hypersurfaces are identified and form a
common boundary between the aeons. In the sequel, we
will study the consequences of this assumption, i.e., use the
constraints induced on the future conformal boundary of
the previous aeon to simplify the Bach equation constraints
on the past conformal boundary of the present aeon.
The constraints coming from the conformal Einstein

field equations on the future conformal boundary of the
previous aeon imply that Iþ is an umbilic hypersurface and

the projections of Pab can be expressed in terms of Pð3Þ
ab ,

hab, and Das as in (3.24). If we use this information in the
Bach equation constraints (4.13), then

S⊥⊥ ≐ D̄aD̄bEab þ P̄ð3Þ
ab E

ab;

S⊤̄a⊥̄ ≐ −D̄bĀ⊤̄
a⊥̄b þ

ffiffiffiffi
3

Λ̂

r
sD̄bEab þ

ffiffiffiffi
3

Λ̂

r
Ea

bD̄bs; ð5:1Þ

where the fact that C⊤̄
abc⊥̄ vanishes on the umbilic hyper-

surface has been used.
A further simplification occurs after assuming that the

physical Cotton tensor vanishes at Iþ, e.g., q ≥ 1 in the
conformal transformation rule (3.6). Then Cabcd ≐ 0
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(see e.g., [25] and Theorem 10.3 in [15]). Moreover, on the
level set ofΩ an equality Aabc ¼ Âabc − σd⊥abc holds, so in
that case

A⊤
ab⊥ ≐

ffiffiffiffî
Λ
3

s
eab: ð5:2Þ

Hence, the Bach equation constraints on the transition
hypersurface between the aeons in the CCC reduce now to

S⊥⊥ ≐ 0;

S⊤̄a⊥̄ ≐

ffiffiffiffî
Λ
3

s
D̄beab: ð5:3Þ

The main result of this paper can be now stated in the
form of the full set of the matching conditions that are
imposed on the matching hypersurface between the aeons
in the CCC scenario with the regular Bach equation.
Theorem 3.—Let ðM̂; ĝabÞ be an asymptotically de Sitter

spacetime with cosmological constant Λ̂ and the future
conformal boundary Iþ where the Cotton tensor vanishes.
Assume that ðM̌; ǧabÞ is a spacetime with big bang
singularity located on the past conformal boundary I−,
which is a solution of the regular conformal Bach equa-
tions. Then, if ðM̂; ĝabÞ and ðM̌; ǧabÞ are subsequent aeons
in the conformal cyclic cosmology scenario the constraints

Dbeab ≐ −Q⊤⊥⊥a ≐
ffiffiffiffi
3

Λ̂

r
S⊤a⊥̄; Q⊤⊥bc ≐ 0;

bbca ≐
ffiffiffiffi
3

Λ̂

r
Að3Þ
abc; S⊥⊥ ≐ 0 ð5:4Þ

have to be satisfied on the common conformal boundary
between ðM̂; ĝabÞ and ðM̌; ǧabÞ. The quantities eab and
babc correspond to the electric and magnetic part of the
rescaled Weyl tensor dabcd, Qabc is the rescaled Cotton

tensor, and Að3Þ
abc is the Cotton tensor of the conformal

boundary. Tensor Sab denotes a source term in the regular
Bach equation.
Remark 6. The source term Sab in the Bach equation is

regular everywhere by assumption. Hence, the constraints
on the common boundary between the aeons imply that the
divergence of the electric part of the rescaled Weyl tensor
eab and the Q⊤⊥⊥a component of the rescaled Cotton tensor
are regular there.

A. Initial values of the (electro)magnetic fields

One of the questions posed in [14] is related with the
initial value of the magnetic field at the conformal
boundary of the present aeon ðM̌; ǧabÞ. We will show that
the constraints obtained in Theorem 3 can be naturally used

to partially determine this value from the matter content of
the previous aeon.
Suppose that ðM̌; ǧabÞ is the electrovacuum spacetime

which satisfies the regularized Bach equations. Then,

B̄ab ¼ Xab þ
2

3
Λ̌ω2Ťab; ð5:5Þ

(see the Appendix), where Xab is a regular tensor on
the conformal extension ðM̄; ḡabÞ. If we assume that
T̄ab ¼ ω2Ťab, then the constraints (5.4) will be equivalent
with

2

3
Λ̌T̄⊥⊥ þ X⊥⊥ ≐ 0 ð5:6Þ

and

2

3
Λ̌T̄⊤̄

⊥a þ X⊤̄
⊥a ≐ −

ffiffiffiffî
Λ
3

s
Q⊤⊥⊥a: ð5:7Þ

Before analyzing Eq. (5.7) let us first focus our attention on
(5.6). If we use the standard expression of the electromag-
netic energy-momentum tensor in terms of the electric and
magnetic field, Ěa and B̌a respectively, then (5.6) will read

2

3
Λ̌ðĒaĒa þ B̄aB̄aÞ þ X⊥⊥ ≐ 0 ð5:8Þ

where Ēa ¼ ωĚa and B̄a ¼ ωB̌a are the unphysical electric
and magnetic fields. Hence, this equation is a constraint on
the energy density of the electromagnetic field on the
conformal boundary.
To see how (5.7) can be viewed as a constraint on the

initial values of Ěa and B̌a suppose that the energy-tensor of
the previous aeon has the form of electromagnetic field, i.e.,

T̂ab ¼ 2F̂acF̂b
c −

1

2
ĝabF̂cdF̂

cd: ð5:9Þ

If we introduce its unphysical counterpart in a way which
makes the conservation equation ∇̂T̂a

b ¼ 0 conformally
invariant (see Remark 2), i.e.,

Tab ¼
1

Ω2
T̂ab ð5:10Þ

then (5.7) reads

2

3
Λ̌T̄⊤̄

⊥a þ X⊤̄
⊥a ≐ −

1

3
Λ̂T⊤⊥a ð5:11Þ

or

−
4

3
Λ̌ðĒ × B̄Þa þ X⊤̄

⊥a ≐
2

3
Λ̂ðE × BÞa ð5:12Þ
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where × denotes the vector product and Ea ¼ Ω−1Êa and
Ba ¼ Ω−1B̂a are the unphysical electric and magnetic fields
in the previous aeon. Hence, we see that the initial value
of the vector product of Ēa and B̄a is determined by an
analogous quantity computed with the use of the unphys-
ical fields in the previous aeon.
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APPENDIX: ELECTROVACUUM SPACETIMES
WITH REGULAR CONFORMAL BACH TENSOR

Following the discussion at the end of Sec. IV, we
present an example of electrovacuum spacetimes that
admit regular conformal Bach equation. This is based on
the analysis of the Chevreton tensor given in [26]. As the
equations simplify greatly with the use of spinorial for-
malism, we will employ it here. The signature of the metric
will be changed to ðþ;−;−;−Þ, which is usual in this
setting. The other spinorial conventions and notation follow
from [15] with the exception that the complex conjugation
will be denoted by 0.

1. Bach tensor for source-free electromagnetic fields

Let Ťab be a source-free electromagnetic energy-momen-
tum tensor. It can be expressed via Maxwell spinor ϕ̌AB as

Ťab ¼ ϕ̌ABϕ̌
0
A0B0 : ðA1Þ

Since

ϕ̌A
Bϕ̌BC ¼ 1

2
ϵ̌ABϕ̌CDϕ̌

CD; ðA2Þ

then

Ťa
cŤbc −

1

4
ǧabŤcdŤ

cd ¼ 0 ðA3Þ

and the Bach tensor reads

B̌ab ¼
1

2
□̌Ťab þ ČacbdŤ

cd −
2

3
Λ̌Ťab: ðA4Þ

The Maxwell equations are equivalent to ∇̌A
A0ϕ̌AB ¼ 0, so

0 ¼ ∇̌CA0∇̌A
A0
ϕ̌A

B ¼ −
1

2
□̌ϕ̌CA þ □̌CAϕ̌

A
B ðA5Þ

or with the use of □̌CAϕ̌
A
B ¼ ΨCBADϕ̌

AD þ 2
3
Λ̌ϕ̌BC,

□̌ϕ̌AB ¼ 2ΨABCDϕ̌
CD þ 4

3
Λ̌ϕ̌AB: ðA6Þ

This relation can be used to express □̌Ťab in terms of lower
order derivatives, i.e.,

□̌ðϕ̌ABϕ̌
0
A0B0 Þ ¼ 2∇̌CC0ϕ̌AB∇̌CC0

ϕ̌0
A0B0 − 2ČacbdŤ

cd

þ 8

3
Λ̌Ťab: ðA7Þ

Ultimately, the Bach tensor equals

B̌ab ¼ ∇̌CC0 ϕ̌AB∇̌CC0
ϕ̌0

A0B0 þ 2

3
Λ̌ϕ̌ABϕ̌

0
A0B0 ðA8Þ

or, when written in terms of tensorial quantities (compare
with [27]),

B̌ab ¼
1

2
ǧab∇̌cF̌de∇̌cF̌de − 2∇̌cF̌ad∇̌cF̌b

d þ 2

3
Λ̌Ťab ðA9Þ

where

F̌ab ¼
1

2
ϕ̌ABϵA0B0 þ 1

2
ϕ̌0

A0B0ϵAB ðA10Þ

is the Maxwell tensor.
The first term on the right-hand side of (A8) will be

singular when the equation is written in terms of unphysical
tensors associated with gab ¼ ω−2ǧab and ϕ̄AB ¼ ωϕ̌AB—
which makes Maxwell equations conformally invariant.
Hence, in order for the conformal Bach equation to be
regular, an assumption has to be made about the Maxwell
spinor. The result in [26] showed that the simple condition
∇̌CC0 ϕ̌AB∇̌CC0

ϕ̌0
A0B0 ¼ 0 restricts the spacetime to the

Petrov type N or O and vanishing cosmological constant,
so in that case the Bach tensor vanishes.
However, if we consider the following equation

∇̌CC0 ϕ̌AB∇̌CC0
ϕ̌0

A0B0 ¼ fϕ̌ABϕ̌
0
A0B0 ðA11Þ

where f is a regular function on the conformal extensionM,
we get a nonsingular and nontrivial Bach equation

B̄ab ¼
�
f þ 2

3
Λ̌
�
ϕ̄ABϕ

0
A0B0 : ðA12Þ

We see that one possibility for (A11) to be satisfied is

∇̌CC0 ϕ̌AB ¼ ϕ̌ðABťCÞC0 ðA13Þ

where ť is one of the null tetrad vectors. The other valid
approach would be to consider a generalization of con-
dition (24) from [26], where the homogeneous case was
considered (f ¼ 0). For example,

∇̌CC0ϕ̌AB ¼ ηoAoBoCιC0 ðA14Þ

BACH EQUATION AND THE MATCHING OF SPACETIMES IN … PHYS. REV. D 106, 084034 (2022)

084034-9



where oA, ιA are the spin basis elements and η a complex
function, could in principle be used to achieve the desired
result. However, it can be verified that this assumption leads
to a vanishing electromagnetic field if the cosmological
constant is not zero. On the other hand, a more general
approach with

∇̌CC0 ϕ̌AB ¼ ηoAoBoCoC0 þ χιAιBιCιC0 ðA15Þ

where χ is another complex function, still leads to the scenario
where null vector la ¼ oAoA

0
is geodetic and shear-free, but

does not correspond to the Weyl spinor of type N or O.
It should be stressed that the regularized Bach

equation (A12) is only a necessary condition for an electro-
vacuum spacetime to fit into the CCC scenario described in
Sec. V. It is not sufficient, because of the requirement that the
present aeon has a big bang singularity.
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