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We propose a generalization of the photon surfaces of Claudel, Virbhadra and Ellis to the case of
massive charged particles, considering a timelike hypersurface such that any worldline of a particle with
mass m, electric charge q and a fixed total energy E, initially touching it, will forever remain in this
hypersurface. Such surfaces can be defined not only with particle motion equations, but instead using
the partially umbilic nature of the surface geometry. Such an approach should be especially useful in the
case of nonintegrable equations of motion. It can be applied to the theory of nonthin accretion disks,
and can also serve as a new tool for some general problems such as uniqueness theorems, Penrose
inequalities, and hidden symmetries. A condition for the stability of worldlines is derived, which
reduces to differentiation along the flow of surfaces of a certain energy. A number of examples of
electrovacuum and dilaton solutions are considered; conditions are found for marginally stable surfaces
of massive particles, regions of stable or unstable surfaces of massive particles and photons, as well as
solutions that satisfy the no-force condition.
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I. INTRODUCTION

The recent publication of an image of a black hole at the
center of our Galaxy [1] and the M87 galaxy [2] stimulates
further interest in shadows of black holes and the strong
gravitational lensing as a tool for the search for new
physics. Black hole shadows and images of their surround-
ing accretion disks provide a direct way to observe the
optical properties of extremely strong gravitational fields;
see recent reviews [3–7].
The theoretical understanding of shadows is closely

related to photon surfaces and other characteristic surfaces
that form when gravity is strong enough. Since the advent
of general relativity, it has been well known that the
spherically symmetric Schwarzschild solution contains a
set of circular null orbits, which, by virtue of symmetry,
form a complete photon sphere. The deeper meaning and
consequences of the existence of such surfaces became
clear in the late 1990s. The seminal paper by Virbhadra and
Ellis [8] clearly defined the relationship between the
properties of photon spheres and the problems of strong
gravitational lensing, which led to the formal definition of
the photon sphere as a timelike hypersurface in spacetime,
where the angle of deflection of the light beam at the closest
approach distance becomes infinitely large. Later, Claudel
et al. [9] gave a definition of the general photon surface as a
timelike surface such that any null geodesic, touching it

tangentially, belongs entirely to it, and proved a theorem
connecting this definition with a geometry of the hyper-
surface. The equivalence of these definitions was shown
in [10] for general static spherically symmetric metrics. In
particular, it was found that the close relationship between
photon spheres and strong lensing remains valid in the case
of naked singularities, ensuring their division into weak and
strong ones.
An important property of the photon surfaces is

established by the theorem asserting that these are time-
like totally umbilic hypersurfaces in spacetime [11]
exhibiting proportionality of their first and second funda-
mental forms. This purely geometric property can serve as
a constructive definition for analyzing photon surfaces
instead of solving geodesic equations and plays a decisive
role in the analysis of the black hole uniqueness [12–21]
and area bounds [22–24].
In static nonspherical geometries, the photon sphere

deforms into photon surfaces of nonspherical form [25]
or disappear at all [26]. Some generalizations have been
proposed in the form of loosely trapped surfaces or
transversely trapped surfaces [27,28] and partial (non-
closed) transversely trapped surfaces [29,30]. These, how-
ever, are not directly related to shadows. Regarding photon
surfaces in stationary spacetime with rotation, it has been
observed that they can be generalized to a photon region
containing spherical orbits. They also fill spherical surfa-
ces, but not densely: each sphere corresponds to a certain
impact parameter of the orbit. This led to the definition of
partially umbilic surfaces as those for which the first and
second fundamental forms are equal on a subset of the
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tangent bundle [31,32]. In other words, the impact param-
eter ensures the foliation of spacetime into slices, which are
partially umbilic surfaces. In turn, it was shown that this
foliation is related to a new method for constructing Killing
tensors of the second rank, which are reducible in slices but
nonreducible in the complete manifold [33]. The integra-
bility conditions for the foliation, generating Killing
tensors, guarantee that slices of the foliation are partially
umbilic surfaces. This construction generalizes in a natural
way to conformal Killing tensors [34] and demonstrates
a deep connection between the integrability of geodesic
equations [35–38] and the existence of a nontrivial photon
structure. At the same time, the method based on the
partially umbilic condition opens up the possibility of
studying the optical appearance of compact objects without
integrating geodesic equations at all. We have shown how it
can be used to understand better the accretion disk images
for rotating configurations with a minimally coupled scalar
field [39]. Photon surfaces and their generalizations such as
photon regions in stationary spacetimes found wide appli-
cations in the description of optical properties and gravi-
tational shadows of black holes and other ultracompact
objects [40–52].
Here we explore a new kind of characteristic surfaces

around black holes, which have the property of holding the
worldlines of massive particles, including charged ones.
Such surfaces make it possible to understand the geometry
of “massive shadows” due to such particles, which certainly
exist in the vicinity of black holes surrounded by electrons,
neutrinos, etc. Such shadows are not directly observable,
but their existence can be detected due to modulation of the
plasma heating which will translate them into the observ-
able ranges of electromagnetic radiation from radio to
optics. In the case of massive particles, the characteristic
surfaces are not conformally invariant and do not represent
a totally umbilic hypersurface, but obey a new partially
umbilic condition as it was introduced to characterize
fundamental photon surfaces in stationary spacetimes
[31,32]. A new type of partially umbilic surfaces form
spacetime foliation locally parametrized by the values of
the energy of scattered particles. Due to this analogy, we
can expect that many results for photon spheres can be
generalized to this case as well. In particular, we can expect
existence of the restrictions on the spatial sections of such
surfaces—the so-called Penrose inequalities, which could
provide analytical approach to exploring compactness of
gravitating objects [53].
The paper plan is the following. In Sec. II we briefly

describe the equations of motion for charged massive
particles in spacetimes with a Killing vector and conven-
tions of the hypersurface geometry. In Sec. III we present
definition of massive particle surfaces, a key theorem, and a
discussion of the geometric and physical properties.
In Sec. IV we apply the developed formalism to many
important particular examples. The Appendix contains

proofs of some statements formulated in the main part
of the paper.

II. SETUP

Using conventions of [11], we define M to be a
Lorentzian manifold of dimension n ≥ 4 with metric tensor
gαβ, Levi-Civita connection ∇α. In addition to the metric
tensor describing gravity, we introduce the electromagnetic
potential Aα and the electromagnetic field tensor Fαβ ¼
∇½αAβ�.

1 The worldline γα of test particles with charge q and
mass m in this geometry obeys the following equations:

_γα∇α _γ
β ¼ qFβ

λ _γ
λ; _γα _γα ¼ −m2; ð1Þ

where _γα ¼ dγα=ds is a four-velocity of the particle, and s
is an affine parameter. Case q ¼ 0 describes neutral
massive particles, while the case q ¼ m ¼ 0 describes
massless neutral particles such as photons. The case of
hypothetical massless charges m ¼ 0, q ≠ 0 can also be
included.
Assume that the metric gαβ, and the electromagnetic

potential Aα share the same symmetry with respect to the
Killing vector field kα [34], timelike in the essential part of
spacetime (e.g., outside the ergosphere), i.e.,

Lkgαβ¼∇ðαkβÞ ¼0; LkAα¼kλ∇λAαþ∇αkλAλ¼0; ð2Þ

where Lk is the Lie derivative along the vector field kα.
Spacetimes with this type of symmetry include stationary
and static geometries that are not necessarily asymptoti-
cally flat. However, for the current consideration, similarly
to the study of photon surfaces, static nonrotating spaces
are of primary interest. This symmetry will imply con-
servation of the particle total energy E defined as

E ≡ −kαð_γα þ qAαÞ: ð3Þ

Indeed, as a consequence of Eq. (2), the total energy E will
be constant along the worldlines defined by Eq. (1) because

dE=ds¼ _γα∇αE

¼−_γα _γβ∇αkβ−qkβFβ
λ _γ

λ−q_γαAβ∇αkβ−q_γαkβ∇αAβ

¼−qkβFβλ _γ
λþq_γαkβ∇βAα−q_γαkβ∇αAβ¼0:

ð4Þ

It is also useful to consider two terms in the
expression (3) separately, introducing the kinetic and
potential energy E ¼ Ek þ Ep:

1We use the convention of symmetrization and antisymmet-
rization over indices with unit weight: TðαβÞ ¼ Tαβ þ Tβα,
T ½αβ� ¼ Tαβ − Tβα.
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Ep ≡ −qkαAα; Ek ≡ E − Ep: ð5Þ

In the general case, Ek and Ep are not conserved
separately. The potential energy is a predefined function
for given kα and Aα. But the kinetic energy Ek is introduced
as a secondary quantity which is a certain function of
coordinates for a fixed total energy. Alternatively, it can be
represented as a scalar product of the Killing vector kα with
some properly normalized timelike (for m ≠ 0, null for
m ¼ 0) vector vα so that

−kαvα ¼ Ek ¼ E − Ep; vαvα ¼ −m2: ð6Þ

Then, the set of linearly independent vectors vα will span
all worldlines of the particle with fixed total energy E,
mass m and charge q passing through a given point of the
spacetime.
Our main goal is to find hypersurfaces where particles

with fixed total energy E, massm and charge q live. In order
to describe such hypersurfaces, we will use the following
formalism and notations similar to Ref. [34]. Let S be a
timelike hypersurface of dimension n − 1 with a spacelike
normal unit vector nα (nαnα ¼ 1). The induced hypersur-
face metric reads

hαβ ¼ gαβ − nαnβ; ð7Þ

defining the projector operator hαβ and the symmetric
second fundamental form χαβ∶

hαβ ¼ δαβ − nαnβ; χαβ ≡ hλαh
ρ
β∇λnρ: ð8Þ

The corresponding tensor projections onto the tangent
space of the hypersurface read

T β…
γ… ¼ hβρ…hτγ…Tρ…

τ… ; DαT
β…
γ… ¼ hλαh

β
ρ…hτγ…∇λT

ρ…
τ… ;

ð9Þ

where Dα is a Levi-Civita connection in S.
For what follows, it is useful to project the Killing vector

onto the hypersurface:

kα ¼ κα þ k⊥nα; καnα ¼ 0; ð10Þ

and to distinguish cases κ2 ≠ 0 and κ2 ¼ 0 (κ2 ≡ κακ
α). For

the latter case the surface S will represent the Killing
horizon if the Killing vector is tangent to it (i.e., k⊥ ¼ 0).
Consideration of this case will be postponed to the
Appendix. In the first case we can decompose a vector
vα tangent to the surface S, subject to the constraints (6)

vα ¼ ð−Ek=κ2Þκα þ uα; καuα ¼ nαuα ¼ 0;

u2 ¼ −m2 − E2
k=κ

2; ð11Þ

where uα is some vector tangent to S and orthogonal to κα.
In most of the spacetime κ2 < 0 and absolute value jκ2j
must satisfy an additional inequality:

0 < jκ2j ≤ E2
k=m

2: ð12Þ

Indeed, in a Lorentzian manifold the orthogonal comple-
ment of a timelike vector κα can contain only spacelike
vectors, i.e., u2 > 0 (or uα ¼ 0). In particular, we find
Ek ≠ 0. This general limitation on the kinetic energy is
also preserved in the case κ2 ¼ 0 (see the Appendix).
Restriction (12) has a simple physical meaning in terms
of the particle motion. The strict equality corresponds to
the classical turning points of worldlines in S while the
inequality specifies the areas in hypersurface allowed for
motion [31,32]. In the case of massless particles, as
expected, there are no constraints on nonzero Ek, since
the right-hand side of Eq. (12) tends to infinity for any
finite Ek. This corresponds to conformal invariance of null
geodesic equations.

III. MASSIVE PARTICLE SURFACES

As it is mentioned in Ref. [9], the photon sphere Sph in
Schwarzschild spacetime has two main properties: (i) any
null geodesic initially tangent to Sph will remain tangent to
it; (ii) Sph does not evolve with time. The general definition
of a photon surface is based on only the first of these
properties and leads to the fact that such surfaces are totally
umbilic [9,11]. Now we would like to give the generali-
zation of the photon surfaces for massive charged particles
of fixed total energy: the massive particle surfaces.
Definition 3.1. A massive particle surface in M is an

immersed, timelike, nowhere orthogonal to Killing vector
kα hypersurface SE of M such that, for every point p ∈ SE
and every vector vαjp ∈ TpSE such that vακαjp ¼ −Ekjp
and vαvαjp ¼ −m2, there exists a worldline γ of M for a
particle with mass m, electric charge q and total energy E
such that _γαð0Þ ¼ vαjp and γ ⊂ SE .

2

In other words, any worldline of a particle with mass m,
electric charge q and total energy E initially tangent to
massive particle surface SE will remain tangent to SE . This
definition reduces to the definition of photon surfaces [9] if
we restrict it to the massless m ¼ 0, chargeless q ¼ 0 case
and require arbitrariness of the total energy. However, as we
will see later the arbitrariness of the worldline energy (or,
more precisely, photon frequency) will arise automatically
in this particular case. The independence of null geodesics
on the photon frequency is a consequence of conformal
invariance of the Maxwell theory. The theories of massive
particles do not possess conformal invariance, so it is

2The worldline is considered to lie on the surface SE in some
open neighborhood of any interior point, but in general it can
leave the surface through the boundary if the latter exists.
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crucial that we define the characteristic surfaces for massive
particles only for fixed energy.
The nonorthogonality condition for Killing vector makes

it possible to have the nonzero kinetic energy Ek for a
worldline tangent to the surface SE and is in fact a natural
condition for timelike surfaces. In the case when the Killing
vector is tangent to the SE , massive particle surfaces
automatically inherit the corresponding symmetry of the
original spacetime. In particular, for timelike Killing
vectors, such surfaces do not evolve with time, i.e., also
satisfy the second condition for photon spheres in the
Schwarzschild spacetime. The key geometric properties of
the massive particle surfaces are given by the following
theorem.
Theorem 3.1. Let SE is an immersed, timelike hyper-

surface inM and kα is a Killing vector nowhere orthogonal
to SE . If κ2 > −E2

k=m
2 and Ek ≠ 0 everywhere on SE , the

following statements are equivalent:
(i) SE is a massive particle surface for given q,m and E;
(ii) the second fundamental form satisfies

χαβvαvβ ¼ −qnβFβλvλ; ð13Þ

for all p ∈ SE and ∀ vα ∈ TSE so that vαvα ¼ −m2

and vακα ¼ −Ek;
(iii) the second fundamental form satisfies

χαβ ¼
χτ

n − 2
Hαβ þ ðq=EkÞF αβ; ð14Þ

where Hαβ is related to the induced metric hαβ as

Hαβ ¼ hαβ þ ðm2=E2
kÞκακβ; F αβ ¼

1

2
nρFρðακβÞ;

H ¼ Hα
α; χ ¼ χαα; F ¼ F α

α ¼ nρFρλκ
λ;

χτ ¼
n − 2

H
ðχ − qF=EkÞ; ð15Þ

(iv) every worldline in SE with _γακαjp ¼ −Ekjp and
_γα _γαjp ¼ −m2 at some point p ∈ SE is a worldline
in M.

Proof.—We will prove consequently that ðiÞ ⇒ ðiiÞ,
ðiiÞ ⇒ ðiiiÞ, ðiiiÞ ⇒ ðivÞ and ðivÞ ⇒ ðiÞ, so any state-
ment implies the other one. In the proof of ðiiÞ ⇒ ðiiiÞ we
will use the decomposition suitable for any surface except
the case κ2 ¼ 0. For the sake of clarity, the proof for this
case is given in the Appendix.
ðiÞ ⇒ ðiiÞ. Suppose SE is a massive particle surface. Let

p ∈ SE and let vαjp ∈ TpSE such that vακαjp ¼ −Ekjp.
Then there exists a worldline γ (_γα _γα ¼ −m2) of M such
that _γαð0Þ ¼ vαjp, γ ⊂ S. Consider the Gauss decomposi-
tion [11] of the covariant derivative in the particle equation
of motion:

qFβ
λ _γ

λ ¼ _γα∇α _γ
β ¼ _γαDα _γ

β − χασ _γ
α _γσnβ: ð16Þ

Projecting this equation onto the normal and tangent
subspaces, one obtains the following two conditions:

qhβγFγλ _γ
λ ¼ _γαDα _γ

β; ð17aÞ

qnβFβλ _γ
λ ¼ −χαβ _γα _γβ: ð17bÞ

Equation (17a) is an equation of motion of the charged
particle in the hypersurface SE , while the constraint (17b)
can be treated as a condition for the hypersurface itself.
So, the following condition must hold for any p ∈ SE∶

χαβvαvβ ¼ −qnβFβλvλ: ð18Þ

ðiiÞ ⇒ ðiiiÞ. We can always decompose the tensors vα

and χαβ as follows (for κ2 ≠ 0):

vα¼ð−Ek=κ2Þκαþuα; καuα¼0; u2¼−m2−E2
k=κ

2;

ð19aÞ

χαβ¼ακακβþκðαββÞ þλαβþðq=EkÞF αβ;

καλαβ¼0; καβα¼0; ð19bÞ

where the symmetrical form F αβ ≡ 1
2
nρFρðακβÞ in χαβ was

introduced to compensate the right-hand side in Eq. (18),
giving the following general condition:

αE2
k − 2Ekβαuα þ λαβuαuβ ¼ 0: ð20Þ

Since the condition (20) holds for any uα, and mapping
uα → −uα preserves the norm of the vector uα, this
condition must hold for any sign of uα∶

αE2
k � 2Ekβαuα þ λαβuαuβ ¼ 0: ð21Þ

Adding and subtracting these equations, we find

λαβuαuβ ¼ −αE2
k; βαuα ¼ 0: ð22Þ

From the arbitrariness of uα we get βα ¼ 0.
Introducing an orthonormal basis feaαg (eaαebα ¼ ηab,

with indices a; b ¼ 0; 1;…; n − 3), the equation λabuaub ¼
−αE2

k must hold for all vectors satisfying ηabuaub ¼
−m2 − E2

k=κ
2, where the matrix ηab ¼ diagð�1; 1;…; 1Þ

is a flat metric with the first element reflecting the signature
of the tangent subspace [with the symmetry G¼SOðn−2Þ
or SO(n − 3, 1)]. One can expect that λab has the same
symmetry, since it should not depend on the choice of the
basis. This is possible if λab is a unity element of G up to an
arbitrary multiplier λab ¼ ληab for some λ. Let us prove this
more strictly. From the full set of possible vectors ua,
choose a subset parametrized by a, b and ψ∶
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uα ¼ ae0α þ bðeiα cosψ þ ejα sinψÞ; ð23Þ

with the constraint b2 ¼ −η00a2 −m2 − E2
k=κ

2 and indices
i; j ¼ 1;…; n − 3. Then the left-hand side of Eq. (22) is

λabuaub ¼ a2χ00 þ
b2

2
ðχii þ χjjÞ

þ 2abðχ0i cosψ þ χ0j sinψÞ

þ b2
�
χij sinð2ψÞ þ

ðχii − χjjÞ
2

cosð2ψÞ
�
: ð24Þ

Since angle ψ and a ≠ 0 are arbitrary as long as a does not
violate the condition b2 > 0 (such a always exists due to
the condition κ2 > −E2

k=m
2) we get

χ00 ¼ η00χii; ðm2 þ E2
k=κ

2Þχii ¼ αE2
k;

χii ¼ χjj; χij ¼ 0; χ0i ¼ 0: ð25Þ

Note that for n ¼ 4 there are only two vectors in the tangent
subspace, so one can choose ψ ¼ 0 or π to stay with only
two basis vectors. Taking back the holonomic basis, the
final form of the tensor λαβ is

λαβ¼ λðhαβ−κακβ=κ2Þ; λ≡αE2
k=ðm2þE2

k=κ
2Þ: ð26Þ

Collecting all together, the second fundamental form can be
presented as

χαβ ¼ ακακβ þ λðhαβ − κακβ=κ2Þ þ ðq=EkÞF αβ

¼ χτ
n − 2

Hαβ þ ðq=EkÞF αβ; ð27Þ

where the function λ is changed to χτ ≡ ðn − 2Þλ.
ðiiiÞ ⇒ ðivÞ. If the condition ðiiiÞ holds, then Eq. (17b)

holds as well:

χασ _γ
α _γσ ¼ χτ

n − 2
ð−m2 þ ðm=EkÞ2E2

kÞ − qnβFβλ _γ
λ

¼ −qnβFβλ _γ
λ: ð28Þ

On the other hand, Eq. (17a) is an equation of motion for
the charged particle in SE , so γ is a trajectory of the charged
particle both in M and SE .
ðivÞ ⇒ ðiÞ Let p ∈ SE and let vαjp ∈ TpSE such that

vαvαjp ¼ −m2 and vακαjp ¼ −Ekjp. Let γ be a worldline of
SE such that _γαð0Þ ¼ vαjp. Then, by (iv), γ is a worldline
of M such that vαvαjp ¼ −m2 and vακαjp ¼ −Ekjp and
γ ⊂ SE . ▪
The obtained result is a complete analog of theorem 2.2

obtained in Ref. [9] for photon surfaces. In particular,
statement (iii) of the theorem describes the pure geometry
of a massive particle surface without references to the
worldline equations and it represents an analog of the

totally umbilic condition for photon surfaces [9,11]. This
equivalent definition is an effective way to analyze surface
geometry in nonintegrable dynamical systems [31,32,37]
and to study general theoretical problems such as Penrose
inequalities [22–24], uniqueness theorems [12–21] and
hidden symmetries [33–37].
The theorem works for the timelike and spacelike Killing

vectors and their projections κα. In the latter case, the
quantity E may not always be associated with the energy of
the particle, but is related to some other conserved quantity.
This freedom allows us to analyze both surfaces that fall
inside ergoregions where energy-related Killing vector is
spacelike and surfaces in general geometries such as
Kaluza-Klein’s models [54]. As an example, if one chooses
kα∂α ¼ ∂ϕ (here, ϕ is an azimuth angle), then the massive
particle surface would correspond to particles with fixed
mass m, charge q and angular momentum projection Lz.
The condition κ2 > −E2

k=m
2 is necessary for timelike

and null worldlines. If we are interested in tachyon matter,
this condition can be omitted, and hypersurfaces can be not
necessarily timelike.
Let us analyze some properties of the surfaces of massive

particles and captured worldlines, which follow from the
theorem.

A. Killing basis

For the clearer interpretation of the geometric definition
(iii), we introduce a basis associated with spacetime
symmetries. Namely, a set of the basis vectors is composed
by the vector κα and a set of linearly independent n − 2
vectors ταðiÞ in SE orthogonal to κα (i.e., ταðiÞκα ¼ 0). The

projections of the second fundamental form χαβ onto
vectors κα and ταðiÞ read

κακβχαβ ¼ κ2ðχ − χτÞ; ð29aÞ

κατβðiÞχαβ ¼
1

2
ðq=EkÞκ2nρFρλτ

λ
ðiÞ; ð29bÞ

ταðiÞτ
β
ðjÞχαβ ¼

χτ
n − 2

ταðiÞτ
β
ðjÞhαβ; ð29cÞ

and the traceless part of the second fundamental form is

σαβ ≡ χαβ − χ=ðn − 1Þhαβ
¼ m

Ek
κλαβ

�
χτm

ðn − 2ÞEk
κλ þ

q
m
nρFρλ

�
;

κλαβ ≡ καhλβ þ κβhλα − κλhαβ=ðn − 1Þ: ð30Þ

Using the definition of Ref. [31,32] for the partially umbilic
surfaces, we can claim that the second fundamental form of
the massive particle surface is partially umbilic with respect
to directions ταðiÞ orthogonal to tangential projection of the

Killing vector κα. The quantity χτ=ðn − 2Þ has a meaning of
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the mean curvature of the orthogonal complement to κα.
Partially umbilicity of the surfaces is exactly the same
property that defines fundamental photon surfaces [31,33].
However, now the mixed components are not arbitrary but
influenced by the Maxwell form. This geometric similarity
of massive and massless surfaces is quite expected, since
the construction of fundamental photon surfaces is based
on the condition of capturing null geodesics with a fixed
impact parameter, the role of which in the current consid-
erations is played by energy. In particular, one can expect
that massive particle surfaces form some foliations of
spacetime (or its parts) parametrized by energy values,
similarly to fundamental photon surfaces forming photon
regions [49,50] with a continuous change of the impact
parameter [31].

B. Principal curvatures

In the geometric definition of massive particle surface
(iii) we introduced new symmetric quadratic forms Hαβ

and F αβ associated with gravitational and electromagnetic
fields respectively. The quadratic form Hαβ is the induced
metric with an addition of one distinguished component
along the projections of the Killing vector field. For neutral
particles, this additional component leads to the fact that
the direction of the Killing vector κα defines a unique
principal direction along which the principal curvature
differs from all others. Indeed, from (29a) and (29c) the
principal curvatures along directions ταðiÞ and κα for neutral

particles read

λτðiÞ ¼
χτ

n − 2
; λκ ¼ λτðiÞð1þ ðm2=E2Þκ2Þ: ð31Þ

Thus, the surface is generally not totally umbilic (i.e., it has
not equal principal curvatures) unlike the photon surface.
Furthermore, under conformal transformations of the met-
ric, the ratio of principal curvatures λκ=λτðiÞ changes. The
requirement of the conformal invariance of this ratio leads
to the condition m ¼ 0, i.e., to the coincidence of all
principal curvatures and their independence from the
energy scale, which was expected for the photon surfaces.
The quadratic form F αβ determines the electromagnetic
force acting on the charged particles lying on the surface in
the direction normal to the surface. It consists of the normal
electric field F and tangential magnetic field nρFρλτ

λ
ðiÞ

(defined with respect to the observer moving along κα). In
the case of a nonzero tangential magnetic field nρFρλτ

λ
ðiÞ,

the surface may not have well-defined principal curvatures
as far as the induced metric and the second fundamental
form may not be simultaneously diagonalizable [11]. In
order to diagonalize the metric and the second fundamental
form simultaneously, one should find an orthogonal basis
such that any two different basis vectors contracted with χαβ
gives zero. For the sake of clarity we will assume that

κ2 < 0. First of all, we extract n − 3 orthogonal unit vectors
from the set ταðiÞ, which are also orthogonal to Fβ, where

Fβ ≡ nρFρλðhλβ − κλκβ=κ2Þ. The remaining subspace is a

linear span of the vectors κα=
ffiffiffiffiffiffiffi
jκ2j

p
and Fβ=

ffiffiffiffiffiffiffiffiffi
jF2j

p
. Using

Eq. (29), the second fundamental form in this basis has
the form

χab ¼
�

χ̃ab 0n−3
0n−3

χτ
n−2 1n−3

�
;

χ̃ab ¼

0
B@ χτ − χ − q

ffiffiffiffiffiffiffiffiffi
jκ2F2j

p
2Ek

− q
ffiffiffiffiffiffiffiffiffi
jκ2F2j

p
2Ek

χτ
n−2

1
CA; ð32Þ

where the matrix χ̃ab is a projection onto the subspace
ðκα=

ffiffiffiffiffiffiffi
jκ2j

p
;Fβ=

ffiffiffiffiffiffiffiffiffi
jF2j

p
Þ. Eigenvectors of the matrix χ̃ab are

always orthogonal and they give the basis, where the matrix
χ̃ab is diagonal. They exist as long as the eigenvalues λ� of
the matrix χ̃a

b are not complex:

λ� ¼ 1

2

�
2þ ðm=EkÞ2κ2

n − 2
χτ − qF=Ek �

ffiffiffi
λ

p �
;

λ ¼
�ðm=EkÞ2κ2

n − 2
χτ − qF=Ek

�
2

−
q2jκ2F2j

E2
k

: ð33Þ

Thus, λ should be larger or equal to zero. In the limit
q2F2 ¼ 0 we already have a diagonalized matrix with
eigenvalues χ − χτ and χτ=ðn − 2Þ. If q2F2 ¼ 0, there are
only one direction with a distinguished principal curvature;
otherwise, there are two such directions.

C. Master equation

In order to prove that a given surface is a massive particle
surface, one should show that the surface is umbilic with
respect to the directions ταðiÞ normal to κα, i.e., show that

Eq. (29c) holds. However, in a number of certain calcu-
lations, it is convenient to rewrite remaining Eqs. (29a)
and (29b) through some other known functions [33,34].
First, Eq. (29a) can be rewritten as

−κ−2καnβ∇ακβ ¼ χ − χτ: ð34Þ

After an explicit substitution of the relationship between χ
and χτ from Eq. (15), we find the master equation for the
massive particle surfaces:

−κ−2καnβ∇ακβ ¼
1þ ðm=EkÞ2κ2

n − 2
χτ þ qF=Ek: ð35Þ

Resolving Eq. (35) with respect to E, one can find the total
energy of the massive particle surface SE explicitly:
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E� ¼ �m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2χτ
K

þ F 2ðn − 2Þ2q2
4m2K2

r
þ F ðn − 2Þq

2K
− qkαAα;

ð36Þ

where

K ¼ −χτ − ðn − 2Þκ−2καnβ∇ακβ: ð37Þ

The only physical branch with future-directed particles
is Eþ. The right-hand side of Eq. (36) must be constant on
the surface; otherwise, the surface under consideration is
not a massive particle surface. Expression (36) manifests
the charge–time-reversal symmetry: E� → −E∓; q → −q.
The last condition for the massive particle surface to exist
follows from Eq. (29b) in the form

nατβðiÞ

�
κ−2∇βκα þ

1

2
ðq=EkÞFαβ

�
¼ 0: ð38Þ

If the Killing vector is tangent to the surface, kα ¼ κα,
the quantity ∇ακβ is antisymmetric, and Eq. (37) can be
simplified as follows:

K ¼ −χτ þ
n − 2

2
nα∇α ln κ2: ð39Þ

D. Special cases

In the case of neutral particles, the second fundamental
form is block diagonal and surface always has well-defined
principal curvatures. However, the charged particle surfaces
may also inherit this property, if the additional constraints
on the Maxwell form is imposed, namely, nαFαβτ

β
ðiÞ ¼ 0.

As we will see in examples from Sec. IV, this case is very
common among physically interesting solutions. Since τλðiÞ
is any vector from the corresponding subspace, the quantity
nαFαβ should be parallel to κβ:

nαFαβ ¼ fκβ ⇒ F αβ ¼ fκακβ; F ¼ fκ2: ð40Þ
The condition from Eq. (38) reduces to the simpler one:

nατβðiÞ∇βκα ¼ 0: ð41Þ

In this case, the electromagnetic Lorenz force manifests
only through the definition of the kinetic energy Ek ¼
E þ qkαAα and the relation between χ and χτ in Eq. (15). If
condition (40) holds, the traceless part σαβ is identically
zero if

qEk

m2
¼ −

χ

ðn − 1Þf : ð42Þ

Such surfaces are totally umbilic, which are known to be
photon surfaces. The coincidence of a massive particle

surface with a photon surface for some parameters has a
simple physical explanation. Imagine a photon surface and
throw massive neutral particles from this surface (with the
speed smaller than the speed of light). As they are neutral,
the electromagnetic field does not manifest in their
dynamic and they will fall inside. However, for charged
particles, one can try to find such a charge or energy that the
electromagnetic field repels them as strongly as gravity
attracts.

E. Gauge transformations

Under a gauge transformation of the potential
Aα → Aα þ∇αφ, the potential energy is transformed in
the following way:

Ep → Ep þ δEp; δEp ¼ −qkα∇αφ: ð43Þ

Imposing the requirement of the symmetry of the electro-
magnetic field,

0 ¼ kλ∇λ∇αφþ∇αkλ∇λφ

¼ ∇αkλ∇λφþ kλ∇λ∇αφ

¼ ∇αðkλ∇λφÞ; ð44Þ

total and potential energies of the worldline can only shift
by a constant under symmetry-preserving gauge trans-
formations. Accordingly, the complete massive particle
surface foliations are invariant up to a constant shift of
the defining parameter.

F. Worldline stability

As mentioned above, sets of fundamental photon surfa-
ces form manifold foliation parametrized by values of the
impact parameter. Similarly, in the massive case, a set of
massive particle surfaces with different energies also forms
some spacetime foliation. This foliation can be used, in
particular, to obtain a very simple and physically intuitive
condition for the stability of worldlines on a surface based
on equivalent definition (ii).3 Consider a particle with a
fixed mass m, charge q, total energy Ev ¼ Evk þ Ep, and
some four-velocity vα, which is weakly perturbed from the
worldline on the massive particle surface SE . The equation
of motion projected onto the normal direction is

3The stability of worldlines can also be investigated by the
method proposed in [19,55] without using the foliation of
massive particle surfaces with different energies, but the flow
of hypersurfaces for the same energy and the equivalent definition
(iii). However, in this case the stability condition will explicitly
depend on the choice of the worldline tangent vector. Also, we
would like to mention an interesting method for the stability
analysis using the Hadamard theorem [51].
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0 ¼ nβvα∇αvβ − qnβFβ
λvλ

¼ vα∇αvn − vαvβ∇αnβ − qnβFβ
λvλ

¼ −vnv
β
τnα∇αnβ þ vα∇αvn − vατv

β
τ χαβ

− qnβFβ
λvλτ þOðv2nÞ; ð45Þ

where vα ¼ vατ þ nαvn is a decomposition of the vector
onto the normal direction and tangent to the hypersurface.
Since the worldline represents a small deviation from the
worldlines from the surface SE , we consider vn is small.
The quantity vα∇αvn represents the normal acceleration
along the worldline:

vα∇αvn ¼ vατv
β
τ χαβ þ qnβFβ

λvλτ þ vnv
β
τnα∇αnβ þOðv2nÞ

≈ an; ð46Þ

where we have introduced the quantity an∶

an ¼ χαβvατv
β
τ þ qnβFβλvλτ þ vnv

β
τnα∇αnβ: ð47Þ

In the limit of the worldlines lying on the surface SE (i.e.,
Ev ¼ E, vn ¼ 0), the normal acceleration is zero an ¼ 0.
Substituting the second fundamental form of a massive
particle surface with energy E and an arbitrary vector vα,
we get

an ¼
χτ

n − 2
ð−m2 − ðnαvαÞ2 þ ðmEk

vk=EkÞ2Þ

− ðqEk
vk=EkÞnρFρλvλ þ qnβFβλvλ þ vnv

β
τnα∇αnβ;

ð48Þ

where Ek
vk ≡ Evk þ k⊥ðnαvαÞ is the kinetic energy of the

tangential motion. The change of the normal acceleration
along the worldline is described by vα∇αan:

∇van ¼
∇vχτ
n − 2

ð−m2 − ðnαvαÞ2 þm2ðEk
vk=EkÞ2Þ

þ χτ
n − 2

ð−2ðnβvβÞ∇vðnαvαÞ þm2∇vðEk
vk=EkÞ2Þ

þ ð1 − Ek
vk=EkÞq∇vðnρFρλvλÞ

− q∇vðEk
vk=EkÞnρFρλvλ þ∇vðvnvβτnα∇αnβÞ;

ð49Þ

where ∇v ≡ vα∇α. Here, we consider E (and Ek) is a
function of the coordinates, since each hypersurface in the
foliation has its own value, while Ev is a constant energy of
the particle with four-velocity vα. For simplicity, let us
consider that the Killing vector is tangent (k⊥ ¼ 0) and Ek
is constant at the surface (which is the case for all examples
considered in the text below), so

∇vðEk
vk=EkÞ ¼ −E−1

k ∇vE ¼ −vnE−1
k ∇nE; ð50Þ

where we used the constancy of E on the surface and omit

higher corrections in vn and 1 − Ek
vk=Ek. Keeping terms

which are only linear in vn and 1 − Ek
vk=Ek, we get

∇van → ð∇vanÞjSE

¼ −vnE−1
k

�
2m2χτ
n − 2

− qnρFρλvλ
�
∇nE

þ ð1 − Ek
vk=EkÞvατ∇α

�
−

m2

n − 2
χτ þ qnρFρλvλ

�

þ vατ∇αðvnvβτnα∇αnβÞ: ð51Þ

Equation (51) allows us to analyze the stability of the
worldline. In practice, one can often find that nα∇αnβ ¼ 0

[19], and quantities χτ and nρFρλvλ are constant on the
hypersurface. The term nρFρλτ

λ
ðiÞ describes a noncentral

magnetic field, which is not plausible in the spacetimes
with massive particle surfaces, and we consider this term
equal to zero. Using these facts and decomposition (19a),
in practice we will use the following expression:

∇van¼vnWnE−1
k ∇nE; Wn≡−

2m2χτ
n−2

−qFEk=κ2: ð52Þ

For convex hypersurfaces (χτ > 0), in the chargeless case,
the constant Wn is always negative.
This result has a number of advantages over the stability

formulas from [19,55]. First, Eq. (52) does not contain
an arbitrary vector tangent the worldlines, i.e., it character-
izes the stability of all worldlines and consequently the
massive particle surface by itself. In particular, we can
define analogs of antiphoton and photon surfaces [25].
Secondly, the use of this equation does not require the
calculation of any new quantities such as the Riemann
tensor and so on, except for the derivative of the previously
determined surface energy. Furthermore, this result has a
demonstrative physical explanation. Let the foliation be
parametrized by some parameter r. According to Eq. (36),
the total energy E is a function of the foliation parameter:
E ¼ EðrÞ. Consider that we analyze a metric, where one can
separate the radial equation as _r2 ¼ Rðr; L; rÞ, where L is a
set of other integrals of motion (e.g., total angular momen-
tum), which are also fixed at each SE . Then, EðrÞ corre-
sponds to the maximum or minimum of R for some L placed
at r. Maxima correspond to unstable orbits and minim
correspond to stable orbits. If the maximum merges with
another minimum at some r, such worldlines represent
marginally stable orbits (such as innermost stable circular
orbit: ISCO). In a physically meaningful case, the maximum
and the minimum meet each other at their highest
or lowest values (see an example for Schwarzschild solution
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in Fig. 1). Otherwise, two curves RðE; L1; rÞ and RðE; L2; rÞ
representing effective radial potentials for different L’s
would intersect each other, which is not a typical physical
case. So, dE=dr ¼ 0 distinguishes the marginally stable
orbits, separating stable and unstable orbits.

IV. STATIC EXAMPLES

Let the static four-dimensional spacetime have the
following form of the metric tensor:

ds2 ¼ −αdt2 þ γdϕ2 þ λdr2 þ βdθ2; ð53Þ

where α, β, λ, γ are functions of r, θ and we choose a
surface r ¼ const. Then the second fundamental form is

χαβdxαdxβ ¼
1

2
ffiffiffi
λ

p ð−∂rαdt2 þ ∂rγdϕ2 þ ∂rβdθ2Þ;

χ ¼ χαα ¼
∂r lnðαβγÞ

2
ffiffiffi
λ

p ; ð54Þ

and we choose the Killing vector along the asymptotic time
coordinate kα∂α ¼ ∂t (i.e., κ2 ¼ −α and E represents the
total energy of the particle). The Maxwell-related form F αβ

reads

F αβdxαdxβ ¼ −
αffiffiffi
λ

p ð∂rAtdtþ ∂rAϕdϕÞdt;

F ¼ F α
α ¼

∂rAtffiffiffi
λ

p : ð55Þ

A. Schwarzschild–(A)dS
The simplest example is the Schwarzschild black hole

with mass M defined by the following vacuum metric:

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

f ¼ r − 2M
r

; ð56Þ

with surfaces r ¼ const and the Killing vector kα∂α ¼ ∂t.
Indeed, spheres are partially umbilic with the mean
curvature

χτ ¼
2f1=2

r
: ð57Þ

The second fundamental form is diagonal. Substituting
other necessary quantities

ptχ ¼ f−1=2
2r − 3M

r2
; κ2 ¼ −f;

K ¼ 2f−1=2
−rþ 3M

r2
; F ¼ 0; kαAα ¼ 0; ð58Þ

in Eq. (36) we find the following expression for the energy
of massive particle surfaces:

E2=m2 ¼ ðr − 2MÞ2
rðr − 3MÞ : ð59Þ

ISCOs defined from the condition dE=dr ¼ 0 have the
radius rISCO ¼ 6M with E2=m2 ¼ 8=9. Expression (59)
diverges at rph ¼ 3M which corresponds to the photon
surface (see Ref. [9]). In the interval 0 < r < 3M, the energy
determined by expression (59) becomes purely imaginary. In
this range, massive particle surfaces are not defined and, in
particular, there are no spacelike particle surfaces between
the singularity and the horizon. As we will see later, in the
case of Reissner-Nordström and others solutions, the sit-
uation will be different and some branches of spacelike
surfaces excluded by the general definition arise [9].
Let us compare this result with the dynamical approach.

The conserving total energy and total angular momentum
read

E ¼ −_γαkα ¼ f_γt; L2 ¼ r4½ð_γθÞ2 þ ð_γϕ sin θÞ2�: ð60Þ

Substituting these into the equation _γ2 ¼ −m2, we get the
radial equation

_r2 ¼ RðE; L; rÞ≡ E2 −
r − 2M

r3
ðL2 þm2r2Þ: ð61Þ

The conditions _r ¼ 0 and ̈r ¼ 0 (i.e., R ¼ 0 and ∂rR ¼ 0)
leads to the following integrals of motion as a function of
the sphere radius:

E2=m2 ¼ ðr − 2MÞ2
rðr − 3MÞ ; L2=m2 ¼ Mr2

r − 3M
: ð62Þ

FIG. 1. The squared total energy (59) and Rð0; L; rÞ from
Eq. (61) as a function of r for different L in Schwarzschild
spacetime.
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The condition that distinguishes ISCO, ∂2rR ¼ 0, approves
the previous result rISCO ¼ 6M. The angular momentum of
ISCO orbits is L ¼ 2

ffiffiffi
3

p
mM ≈ 3.46mM.

The squared total energy function (59) and Rð0; L; rÞ
from Eq. (61) for different L are given in Fig. 1. Function
−E2=m2 goes through maxima and minim of Rð0; L; rÞ for
certain values of L. It is defined for r > 3M, increasing in
the region of unstable orbits 3M < r < 6M and decreasing
in the region of the stable orbits r > 6M. At r ¼ 6M it has a
maximum −8=9 corresponding to marginally stable orbits
(namely, ISCO).
The effects of dark energy on the massive particle

surfaces can be estimated. If one adds a cosmological
constant Λ through the conventional non-Weyl scaling
invariant action [56], redefining the function f to the case
of Schwarzschild–(anti)–de Sitter metric:

f ¼ 1 −
2M
r

−
Λr2

3
; ð63Þ

the energy of massive particle surfaces r ¼ const is
modified:

E2=m2 ¼ ðr − 2M − Λr3=3Þ2
rðr − 3MÞ : ð64Þ

As it was shown in Refs. [9,56], the radius of the photon
surface rph ¼ 3M is not influenced by the cosmological
constant Λ for the conventional dark energy action, which
is not fair for the massive case. Note that the region of
existence of massive particle surfaces is unaffected. In this
regard, for some values of the cosmological constant, one
can find spacelike massive particle surfaces existing under
the black hole horizon or above the cosmological horizon
and should be excluded according to the general definition.
Following condition (52), surfaces with marginally stable
orbits are determined by the equation

4r4Λ − 15Mr3Λ − 3Mrþ 18M2 ¼ 0: ð65Þ

B. Newman-Unti-Tambourino

The solutions of vacuum general relativity with mass M
and gravitomagnetic Newman-Unti-Tambourino charge N
(NUT) possess Killing vectors forming an algebra of a
spherical symmetry and time translations, though it is not
evident from the form of the metric

ds2 ¼ −fðdtþ 2N cos θdϕÞ2 þ f−1dr2

þ ðr2 þ N2Þðdθ2 þ sin2θdϕ2Þ;

f ¼ rðr − 2MÞ − N2

r2 þ N2
: ð66Þ

The algebra of the spherical symmetry can be exponenti-
ated up to the group, if one endows surfaces r ¼ const with

the topology of three-spheres S3 [57], forcing the time to
be compact. This metric is not diagonal and does not fit
ansatz (53). However, one can check that the surface
r ¼ const is umbilic in the sector orthogonal to the
Killing vector ∂t, i.e., ταð1Þ∂α¼ ∂θ, ταð2Þ∂α¼ ∂ϕ−2N cosθ∂t.

The mixed components καχαβτ
β
ðiÞ are not presented. Thus,

one can apply the master equation from Eq. (36).
Performing the same steps as for the Schwarzschild metric,
we get

χτ ¼
2r

r2 þ N2
f1=2; ð67aÞ

χ ¼ f−1=2
2r3 −MðN2 þ 3r2Þ

ðN2 þ r2Þ2 ; ð67bÞ

K ¼ 2f−1=2
−r3 þ 3Mr2 þ 3N2r −MN2

ðN2 þ r2Þ2 ; ð67cÞ

E2=m2 ¼ rðrð2M − rÞ þ N2Þ2
ðN2 þ r2Þðr3 − 3Mr2 − 3N2rþMN2Þ : ð67dÞ

The equation on the marginally stable orbits is a poly-
nomial equation of degree six and cannot be resolved
explicitly. Function (67d) is depicted in Fig. 2 for different
values of N. Also, there is a curve ðrISCO; EISCOÞ para-
metrized by N found numerically.

C. Fisher-Janis-Newman-Winicour

The Fisher-Janis-Newman-Winicour solution (FJNW)
is a Schwarzschild generalization with a scalar charge Σ
[58,59]. The most common and simplified form of FJNW
metric proposed in Ref. [60] and reads as

FIG. 2. The squared total energy (67d) as a function of r and
squared energy corresponding to ISCO for different N in NUT
spacetime.
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ds2 ¼ −fσdt2 þ f−σdr2 þ f1−σr2ðdθ2 þ sin2θdϕ2Þ;

f ¼ 1 −
2M
σr

; σ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2

p : ð68Þ

One can restore the Schwarzschild solution σ ¼ 1. For
0 < σ < 1 the solution has a globally naked strong-
curvature naked singularity at r ¼ 2M=σ [61]. Similarly,
we consider surfaces r ¼ const with a Killing vector ∂t.
The total energy function (36) of the massive particle
surfaces is defined by

E2=m2 ¼
�
1 −

2M
rσ

�
σ rσ −Mðσ þ 1Þ
rσ −Mð2σ þ 1Þ : ð69Þ

Differentiating the expression for E2=m2, one will find two
extrema at

r� ¼ M
3σ þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5σ2 − 1

p

σ
; ð70Þ

where the signþ (−) stands for a minimum (maximum). At
σ ¼ 1=

ffiffiffi
5

p
the minimum and the maximum merge and

disappear (Fig. 3). The photon surface, defined by the
divergence of the expression in Eq. (69), is placed at rph ¼
Mð2σ þ 1Þ=σ for 1=2 ≤ σ ≤ 1 [9]. The existence of a
photon sphere makes it possible to attribute FJNW solution
to the class of weak singularities for a given interval of
parameters σ [10]. In general for massive particle surfaces,
we have four cases (for comparison see Ref. [62]):
(1) 1=2 ≤ σ ≤ 1. There is a photon surface at rph ¼

Mð2σ þ 1Þ=σ and ISCO at rISCO ¼ rþ. Surfaces
rph ≤ r < rISCO are unstable and rISCO<r are stable.

(2) 1=
ffiffiffi
5

p
< σ < 1=2. There are no photon surfaces

and two marginally stable orbits r� exist. Stable
orbits are placed at 2M=σ < r < r− and rþ < r and
unstable orbits are placed at r− < r < rþ.

(3) 0 ≤ σ ¼ 1=
ffiffiffi
5

p
. There are no photon surfaces, and a

degenerate marginally stable orbit at r¼Mð3þ ffiffiffi
5

p Þ,
and for other 2M

ffiffiffi
5

p
< r orbits are stable.

(4) 0 ≤ σ < 1=
ffiffiffi
5

p
. There are no photon surfaces and

marginally stable orbits. All orbits 2M=σ < r are
stable.

D. Einstein-Maxwell-dilaton dyons
with stable photon spheres

Einstein-Maxwell-dilaton (EMD) dyons with mass M,
NUT N, scalar charge D and electric and magnetic charges
Q and P were revisited in Ref. [63], where one can find the
full definition of the solution. The scalar charge D is
constrained by a cubic equation for regular solutions. Let us
consider neutral massive particles placed at the surface
r ¼ const with a total energy defined with respect to the
Killing vector ∂t. In Ref. [63] stable photon surfaces are
found for some special classes of the naked singularities of
the theory. Stable photon surfaces indicate that the solution
is unstable. We will analyze these solutions in order to trace
the behavior of the massive particle surfaces in spacetimes
with stable photon surfaces. For example, we will consider
solutions with the following charges:

N=M ¼ 0; Q=M ¼ −1.5 cos ϵ ≈ −1.5;

P=M ¼ 1.5 sin ϵ ≈ 1.5ϵ ð71Þ

with some small ϵ ¼ 0.0998, 0.11, 0.125 (Fig. 4). For the
first two values ϵ ¼ 0.0998, 0.11 we have a similar
structure (orange and blue curves). Namely, we have
two unstable photon surfaces (let us denote them as r�u

ph

with r−uph < rþu
ph ) and one stable in between (let it be rsph).

Also, there are two marginally stable obits r1;2min such that
r−uph <r1min<rsph and rþu

ph < r2min. In the region rsph<r<rþu
ph

there are no massive particle surfaces at all. In the third

FIG. 3. The total energy (69) as a function of r for different σ in
FJNW spacetime.

FIG. 4. The total energy (36) as a function of r in EMD dyon
without NUT N ¼ 0 for different values of ϵ: (orange) 0.0998,
(blue) 0.11, and (yellow) 0.125.
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case ϵ ¼ 0.125 (yellow curve), two photon orbits rsph, r
þu
ph

disappear, and one more marginally stable orbit rmax
appears, corresponding to the maximum of the yellow
curve. It is notable that near the stable photon surface rsph,
the energy of the surface runs from its minimal value to
þ∞ in a very narrow interval of r, populating this region
with stable surfaces with all possible energies. For the
smaller values of ϵ, the solution provides itself with an
event horizon, covering the stable photon surface rsph.

E. Reissner-Nordström dyon

The dyonic Reissner-Nordström solution with mass m,
electric charge Q and magnetic charge P reads

ds2 ¼ −
Δ
r2
dt2 þ r2

Δ
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

Δ ¼ rðr − 2MÞ þQ2 þ P2; ð72Þ

Aαdxα ¼
Q
r
dtþ P cos θdϕ: ð73Þ

The inner and outer horizons are placed at

r�h ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − P2

p
; ð74Þ

and disappear for M2 −Q2 − P2 > 0. Applying Eq. (36),
the solution for E reads

E�=m ¼ −
qQ
2mr

þ ðqQ=mÞðMr − P2 −Q2Þ � 2Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ −Mrþ P2 þQ2 þ ðqQ=2mÞ2

p
2rðr2 − 3Mrþ 2P2 þ 2Q2Þ : ð75Þ

Since the energy is a real-valued quantity, massive particle
surfaces can exist only in the intervals r ≤ r−m and
r ≥ rþm, where

r�m ¼ 1

2

�
3M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 8ðM2 −Q2 − P2Þ − q2Q2=m2

q �
:

ð76Þ

These boundaries are always above the inner horizon
r�m > r−h if the latter exists (we do not consider the case
of negative mass M here). Thus, one can always find
formally defined spacelike massive particle surfaces situ-
ated between two horizons just like in the case of photon
surfaces [9]. Such spacelike surfaces are not full fledged,
since any particle must move along a timelike or null
direction, and they fail the condition κ2 > −E2

k=m
2 from the

theorem. For larger q, the forbidden region r−m < r < rþm
narrows, and it disappears for

q2Q2=m2 ≥ M2 þ 8ðM2 −Q2 − P2Þ: ð77Þ

The photon sphere is placed at the root of the
denominator [9]

r�ph ¼
1

2

�
3M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8ðQ2 þ P2Þ

q �
; ð78Þ

which coincides with the boundaries of the forbidden
interval (76) for q ¼ 0. The surface rþph is always above
the horizon. In accordance with the results for the bounda-
ries r�m, in the subextremal case M2 > Q2 þ P2, the
surface r−ph is between two horizons r�h, where r−ph is
a spacelike hypersurface, so it is not relevant to the
outer observer. Since there are no horizons in the over-
charged caseM2 < Q2 þ P2, the surface r−ph is not hidden

anymore in this case and represents a stable antiphoton
sphere [25]. For M2 ¼ 8

9
ðQ2 þ P2Þ photon surfaces r−ph

and rþph merge with each other and do not exist for
larger Q2 þ P2.
The marginally stable orbits determined from the con-

dition dEþ=dr ¼ 0 are depicted in Fig. 5. The structure
of the corresponding curves differs for subextremal and
superextremal cases. In the degenerate case, the curve is
tangent to the vertical line, and d2E=dr2 ¼ 0. The region in

FIG. 5. The position of the marginally stable orbits as a function
of qQ=mM for different values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ P2Þ=M2

p
in Reissner-

Nordström spacetime.
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the upper left corner is the region of the stable coordinates.
The upper left corner is characterized by the absence
of the stability. Thus, the charges corresponding to these
values cannot be stable at any distance from the center of
the solution. The straight line at qQ=mM ¼ 1 with M2 ¼
P2 þQ2 corresponds to the Bogomol’nyi–Prasad-
Sommerfield solutions [64,65], which are known to satisfy
the no-force condition. In this case, the test particle and
the central object do not interact with each other, and the
energy of the surfaces are the same for any radius r. The
curve

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2 þQ2Þ=M2

p
¼ 0 is not a straight horizontal

line, because it is understood as a limit Q → 0 with a finite
value of qQ=mM.

V. CONCLUSIONS

We proposed a generalization of the photon surfaces
introduced by Claudel, Virbhadra, and Ellis to the case of
massive charged particles. An important new feature of the
massive case is that the conformal noninvariance of the
corresponding worldlines makes it necessary to consider
particles with fixed energy, assuming the existence of the
corresponding Killing symmetry. With this in mind, we
define new massive particle surfaces as timelike hyper-
surfaces such that any worldline of a particle with mass m,
electric charge q, and the total energy E, initially touching
the surface, will remain tangent to it forever.
We have established the key theorem 1, which is a

complete analog of theorem 2.2 obtained in Ref. [9] for
photon surfaces. The most important point of the theorem is
the statement (iii) which describes the pure geometry of a
massive particle surface without references to the worldline
dynamic equations and it represents a modification of the
totally umbilic condition for photon surfaces. Such equiv-
alent definition of massive particle surfaces is an effective
way to analyze their geometry for nonintegrable dynamical
systems and to study general theoretical problems such as
construction of Penrose inequalities for spatial sections of
the massive particle surfaces and new uniqueness theorems
for asymptotically flat spacetimes.
Furthermore, we have established that the statement (iii)

is nothing but the condition of partial umbilicity of the
hypersurface, i.e., exactly the same property that defines
the fundamental photon surfaces in stationary spacetimes.
The difference between these cases is that instead of an
impact parameter, the geometry of massive particle surfaces
is determined by the energy, and, in presence of electro-
magnetic field, additional conditions on the mixed com-
ponents of the second fundamental form are necessary.
Also, massive particle surfaces usually have no boundaries.
The similarity between fundamental photon and massive
particle surfaces also lies in the fact that just as the former
form photon regions, the latter also form foliations of
spacetime, locally parametrized by energy values.

We have derived a master equation governing the energy
of the surface. In the case of neutral particles, the energy of
the surface depends on the projection of the Killing vector
and the mean curvature of the surface in directions
orthogonal to the Killing vector. For charged particles,
the energy of the surface also includes terms related with
electromagnetic Lorenz force acting on the particles. We
have found that photon surfaces can be also massive
particle surfaces for repelling charges.
The condition of stability of worldlines lying on the

massive particle surface was derived. In practice, it appeals
to differentiation of the surface energy along the flow of
the massive particle surfaces and does not depend on the
velocities of individual particles lying in them. In particular,
an extremum of the energy corresponds to the marginally
stable orbits.
We have considered a number of examples of the well-

known electrovacuum and Einstein-Maxwell-dilaton solu-
tions, demonstrating the application of the developed
instrument. This was shown to be helpful for finding
marginally stable orbits, regions of stable or unstable
spherical orbits, stable and unstable photon surfaces, and
solutions satisfying the no-force condition.
We hope that geometric definition of massive particle

surfaces and their possible generalizations to the case of
spacetimes with rotation will be useful in a variety of
theoretical applications including Penrose inequalities,
uniqueness theorems, hidden symmetries and integrability.
The possibility of observing shadows created in scattering
of massive charged particles is also worth to be explored.
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APPENDIX: CASE κ2 = 0

In case κ2 ¼ 0 (but κα ≠ 0), we can introduce the
following decomposition:

vα ¼ Ẽkκ
α þ Ekκ̃

α þ uα; καuα ¼ κ̃αuα ¼ 0;

κακ̃
α ¼ −1; κ̃ακ̃

α ¼ 0; ðA1Þ

u2 − 2ẼkEk ¼ −m2; −κ̃αvα ≡ Ẽk ¼ ðm2 þ u2Þ=ð2EkÞ:
ðA2Þ

The orthogonal complement can again contain only space-
like vectors 2ẼkEk > m2 and in particular again Ek; Ẽk ≠ 0.
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The second fundamental form can be decomposed into

χαβ ¼ αþþκακβ þ αþ−κðακ̃βÞ þ α−−κ̃ακ̃β þ κðαββÞ

þ κ̃ðαβ̃βÞ þ λαβ þ ðq=EkÞF αβ;

καλαβ ¼ κ̃αλαβ ¼ 0; καβα ¼ κ̃αβα ¼ 0; ðA3Þ

where the last term in χαβ was introduced to compensate the
right-hand side in Eq. (18), giving the following condition:

αþþE2
k þ 2αþ−EkẼk þ α−−Ẽ

2
k − 2Ekβαuα

− 2Ẽkβ̃αuα þ λαβuαuβ ¼ 0: ðA4Þ

It should hold for any Ẽk and uα satisfying the norm. From
the uα-parity analysis, it splits into two parts:

Ekβαuα þ Ẽkβ̃αuα ¼ 0;

αþþE2
k þ 2αþ−EkẼk þ α−−Ẽ

2
k þ λαβuαuβ ¼ 0: ðA5Þ

Let us substitute Ẽk explicitly and perform a scaling
transformation uα → kuα:

2E2
kβαu

α þ ðm2 þ k2u2Þβ̃αuα ¼ 0; ðA6aÞ

αþþE2
k þ ðm2 þ k2u2Þαþ−

þ α−−
ðm2 þ k2u2Þ2

4E2
k

þ k2λαβuαuβ ¼ 0: ðA6bÞ

Definitely, we can just take certain values of k and then add
and subtract equations with different k. Instead, we will
differentiate the equation with respect to k2. Differentiating
Eq. (A6a), we come to the conclusion that two terms are
equal to zero separately βαuα ¼ β̃αuα ¼ 0, and since uα is
arbitrary, each covector is zero: βα ¼ β̃α ¼ 0. Twice differ-
entiating Eq. (A6b) leads to α−− ¼ 0. And, differentiation
of Eq. (A6b) once gives

u2αþ− þ λαβuαuβ ¼ 0: ðA7Þ

Similarly to the analysis for κ2 ≠ 0, we find the tensor
λab ¼ −αþ−ðhαβ þ κðακ̃βÞÞ. Substituting this back into
Eq. (A6a) we get αþþ ¼ −αþ−m2=E2

k. Collecting all terms
together gives the final expression for the second funda-
mental form:

χαβ ¼ −αþ−

�
hαβ þ

m2

E2
k

κακβ

�
þ ðq=EkÞF αβ: ðA8Þ

After the redefinition of αþ−, one will arrive at the same
expression as for κ2 ≠ 0.
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