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We present the first spectral method to evolve a single black hole treated as a puncture, therefore without
singularity excision. We consider the Galerkin-Collocation method in single and multidomains to integrate
the extended Baumgarte-Shapiro-Shibata-Nakamura formulation. In addition, we adopt the moving
puncture approach but consider distinct Bona-Massó slicing families instead of the standard 1þ log slicing
condition. Further, we implement the maximal slicing version of the spectral code, where the lapse satisfies
an elliptic-like equation.
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I. INTRODUCTION

Recasting the original ADM equations or 3þ 1 formu-
lation of the Einstein equations to strongly hyperbolic
formulations was one of the main factors of successful
binary black hole simulations [1–3]. Henceforth, the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [4–6] for-
mulation, together with some of its variations, constitutes
the backbone of current numerical relativity works. Another
crucial ingredient was the use of the moving puncture
approach that consisted of the 1þ log slicing [7] and the
gamma-driver conditions [8,9]. Brown [10] extended the
original BSSN formulation suited for Cartesian coordinates
to include any curvilinear coordinate system. In particular,
the new recast set of equations is more suited to describe
many astrophysical problems where spherical or cylindrical
coordinates, for instance, adapt better.
The idea of representing a black hole as a puncture

without the need to excise its inner region or to impose an
isometry condition at the throat is structurally simple and
elegant [11]. To deal numerically with the inherent singu-
larity at the black hole center, one has to guarantee that no
grid points coincide with this locus. This strategy started by
considering fixed punctures [9] but later evolved into the
moving puncture, which plenty of numerical works nowa-
days adopt.
Spectral methods have become a viable and attractive

technique for numerical relativity problems [12]. The
primary feature of any spectral method is to express the
approximate solution as a series expansion in a set of basis
functions such as Chebyshev, Legendre, or Fourier func-
tions. For smooth problems, the spectral methods converge

exponentially to the exact solution when we increase the
resolution or the number of terms in the series expansion.
By focusing on spacetimes containing black holes, the

determination of the initial data with one or more black
holes represented the first application of spectral methods in
numerical relativity [13–19]. Most works on the simulations
involving a single black hole [20–22] or a black hole binary
system [23,24] (see also the references therein) with spectral
methods belong to the Caltech/Cornell group that deal with
the generalized harmonic formulation of the field equations.
Tichy [22] has considered the BSSN equations to evolve a
single black hole. The Meudon group [25] also adopted the
BSSN equation with spectral methods in the framework of
the constrained evolution. In addition, excising the black
hole interior to remove the singularity from the spatial or
physical domain is another common aspect shared by all
mentioned works. In this matter, we mention that the
Caltech/Cornell group solved the field equations by intro-
ducing the dual coordinate method to excise the black hole
interiors in a dynamical setting [26].
In the present work, we propose implementing single and

multidomain Galerkin-Collocation (GC) algorithms to
evolve a single black hole without excision with the
BSSN equations in spherical coordinates. We have consid-
ered the moving puncture approach with the Bona-Massó
and the gamma-driver conditions to evolve the lapse shift
vector. In this instance, we choose distinct Bona-Massó
functions [27–30] besides the one corresponding to the
standard 1þ log slicing.
We remark that the GC method adopts the basis

functions as appropriate combinations of the Chebyshev
polynomials to satisfy the boundary conditions identically.
Henrichs [31–33] has demonstrated the advantage of such
an approach by reducing the roundoff error near the end
points. Another distinctive aspect in most applications of*henrique.oliveira@uerj.br
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the GC method is the use of suitable mappings to
compactify the semi-infinite spatial domain into a finite
computational domain [34] [e.g., Eq. (29)]. See Refs.
[35–38] for some previous works on the GC method in
different problems.
We have organized the paper as follows: We outline the

equations of the extended or generalized BSSN formulation
for spherically symmetric spacetimes in Sec. II. We
describe in Sec. III the basic scheme of the single and
multidomain numerical implementations of the GC method
without excision. Section IV presents the numerical tests
that verify the analytical solutions of the Schwarzschild
black hole in different foliations or geometries, the tran-
sition from the wormhole to trumpet foliations, and the
power-law behavior of the lapse near the puncture. In these
experiments, we have considered other Bona-Massó fam-
ilies besides the standard 1þ log slicing. In Sec. V, we
summarize the results and indicate possible directions of
the present research.

II. THE BSSN FORMULATION
IN SPHERICAL SYMMETRY

A. Basic definitions

We follow closely Refs. [39–41] to establish the field
equations in the BSSN formulation using spherical coor-
dinates introduced by Brown [10]. The line element for
spherically symmetric spacetimes is written as

ds2 ¼ −ðα2 − βrβ
rÞdt2 þ 2βrdrdtþ e4ϕdl̄2; ð1Þ

where αðt; rÞ is the lapse, βi ¼ ðβr; 0; 0Þ is the shift vector
with βr ¼ βrðt; rÞ, and ϕðt; rÞ is the BSSN conformal
factor. The conformally related spatial line element dl̄2 is

dl̄2 ¼ γ̄ijdxidxj ¼ aðt; rÞdr2 þ r2bðt; rÞðdθ2 þ sin2 θdφ2Þ;
ð2Þ

where aðt; rÞ and b ¼ bðt; rÞ are the metric functions.
Unlike the original BSSN formulation, the background

metric denoted by γ̂ij is written in spherical coordinates
instead of Cartesian coordinates. To fix the present nota-
tion, we have

γ̂ij ¼ diagð1; r2; r2 sin2 θÞ: ð3Þ

From Eq. (1), the relation between the physical and the
conformal metric is

γ̄ij ¼ e4ϕγij; ð4Þ

and consequently, it follows that

e4ϕ ¼
�
γ

γ̄

�
1=3

: ð5Þ

We fix initially γ̄ðt ¼ 0Þ ¼ γ̂ [10], where γ̂ is the
determinant of the background metric. In addition, we have
adopted the so-called Brown’s “Lagrangian” condition

∂tγ̄ ¼ 0: ð6Þ

We complete the presentation of the relevant quantities
that appear in the field equations with the traceless part of
the conformal extrinsic curvature

Āij ¼ K̄ij −
1

3
γ̄ijK; ð7Þ

where K ¼ γijKij is the trace of the extrinsic curvature, and
K̄ij ¼ e−4ϕKij, with Kij being the physical extrinsic
curvature. For spherically symmetric spacetimes, the com-
ponents of Āij are

Āij ¼ diagðĀrr; r2Āθθ; r2 sin2 θĀθθÞ; ð8Þ

with the condition γ̄ijĀij ¼ Ārr=aþ 2Āθθ=b ¼ 0. Follo-
wing Ref. [39], we define

Aa ¼ Ār
r ¼

Ārr

a
; Ab ¼ Āθ

θ ¼
Āθθ

b
; ð9Þ

which yields

Aa þ 2Ab ¼ 0: ð10Þ

The last independent variable is the connection vector Δ̄i

defined by

Δ̄i ¼ γ̄jkΔΓi
jk ¼ γ̄jkðΓ̄i

jk − Γ̂i
jkÞ; ð11Þ

where Γ̄i
jk and Γ̂i

jk are the connections associated with the
conformal and the background metrics, respectively. For
spherically symmetric spacetimes, the connection vector
has only one component,

Δ̄i ¼ ðΔ̄r; 0; 0Þ; ð12Þ

with

Δ̄r ¼ 1

a

�
∂ra
2a

−
∂rb
b

−
2

r

�
1 −

a
b

��
: ð13Þ

B. Evolution equations

We now display the evolution equations for all relevant
variables, which are, in the present case, the metric
functions aðt; rÞ and bðt; rÞ, the conformal factor ϕðt; rÞ,
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the component Aaðt; rÞ [note that Abðt; rÞ ¼ −Aa=2], the
trace of the extrinsic curvature Kðt; rÞ, and the component
Δ̄rðt; rÞ of the connection vector. Since we are focusing on
describing black holes as punctures without excision with
spectral methods, we will not include matter in the field
equations.
The evolution equation for the conformal factor assumes

the form [39]

∂tϕ ¼ βr∂rϕþ ∇̄kβ
k −

1

6
αK; ð14Þ

where ∇̄k is the covariant derivative with respect to the
conformal metric, and as a consequence

∇̄kβ
k ¼ ∂rβ

r þ
�
∂ra
2a

þ ∂rb
b

þ 2

r

�
βr: ð15Þ

The conformal factor diverges at the puncture location;
therefore, it is not a regular function. Thus, to deal with an
everywhere well-defined function, we introduce a new
quantity χðt; rÞ related to the conformal factor by

χ ≡ e−nϕ; ð16Þ

where n is an integer number. The above relation has been
used in Ref. [40] with n ¼ 2; in Ref. [2], the choice was
n ¼ 1, which characterizes the χ method. Combining
Eqs. (14) and (16), we obtain the following evolution
equation for χ:

∂tχ ¼ βr∂rχ −
n
6
χ∇̄kβ

k þ n
6
χαK: ð17Þ

The evolution equations for the metric functions a and b
are

∂ta ¼ βr∂raþ 2a∂rβr −
2

3
a∇̄kβ

k − 2αaAa; ð18Þ

∂tb ¼ βr∂rbþ 2b
βr

r
−
2

3
b∇̄kβ

k þ αaAa; ð19Þ

where we have replaced Ab ¼ −Aa=2.
The evolution equation for the trace of the extrinsic

curvature is

∂tK ¼ βr∂rK þ 1

3
αK2 þ 3

2
αA2

a −∇2α; ð20Þ

where the Laplacian of the lapse is calculated with the
physical spatial metric taking into account the redefinition
of the conformal factor. Then,

∇2α ¼ χ4=n

a

�
∂
2
rα −

�
∂ra
2a

−
∂rb
b

þ 2

n
∂rχ

χ
−
2

r

�
∂rα

�
: ð21Þ

It is possible to implement the maximal slicing evolution
by setting ∂tK ¼ K ¼ 0, which results in an elliptic-type
equation for the lapse. In the next section, we have explored
this possibility with the spectral code.
We proceed with the presentation of the evolution

equations for Aaðt; rÞ and Δ̄rðt; rÞ. For the first function,
we have

∂tAa ¼ βr∂rAa −
�
∇r∇rα −

1

3
∇2α

�
þ α

�
Rr
r −

1

3
R

�

þ αKAa; ð22Þ

where

∇r∇rα−
1

3
∇2α¼χ4=n

3a

�
2∂2rα−

�
∂ra
a

þ∂rb
b

þ8

n
∂rχ

χ
þ2

r

�
∂rα

�
:

ð23Þ

Rr
r is the mixed radial component of the Ricci tensor

associated with the physical metric, and R ¼ γijRij is its
trace [39].
The last evolution equation is

∂tΔ̄r ¼ βr∂rΔ̄r − Δ̄r
∂rβ

r þ 1

a
∂
2
rβ

r þ 2

b
∂r

�
βr

r

�

þ 2

3
Δ̄rð∇̄kβ

kÞ þ 1

3a
∂rð∇̄kβ

kÞ− 2Aa

a

�
∂rαþ

6α

n
∂rχ

χ

�

þ 2αAa

�
Δ̄r þ 3

ar

�
1−

a
b

�
þ 3∂rb

2ab

�
−
4α

3a
∂rK; ð24Þ

where we have followed the form adopted in Ref. [41]
[see Eq. (9e)].
The gauge conditions dictate the evolution of the lapse α

and the shift vector βi. The moving puncture conditions
[2,3,9,42] become the standard choices for the numerical
evolution of black hole spacetimes. Then, we adopt for the
lapse the Bona-Massó condition

∂tα ¼ βi∂iα − α2fðαÞK; ð25Þ

where the choice of the Bona-Massó family fðαÞ specifies
the slicing under consideration. For instance, if fðαÞ ¼ 1,
we have the harmonic slicing, whereas fðαÞ ¼ 2=α char-
acterizes the 1þ log condition. It is possible to choose
other families of the Bona-Massó function fðαÞ that can
offer advantages from a numerical perspective [30,43].
We have considered the following form of the gamma-

freezing condition for the shift vector:
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∂tβ
i ¼ 3

4
Bi; ∂tBi ¼ ∂tΔ̄i − ηβi: ð26Þ

In these equations, we can use variant forms that
arise after replacing some or all of the ∂t derivatives with
∂t − βi∂i [44].
Finally, to complete the set of field equations, we present

the Hamiltonian and momentum constraints

H ¼ R −
3

2
A2
a þ

2

3
K2 ¼ 0 ð27Þ

Mr ¼ ∂rAa −
2

3
∂rK−

6Aa

nχ
∂rχþ

3Aa

2

�
2

r
þ ∂rb

b

�
¼ 0: ð28Þ

Both equations constitute valuable tests for the code,
since they must be satisfied along the dynamics.

III. THE MULTIDOMAIN GALERKIN-
COLLOCATION METHOD

We present the numerical procedure based on the
Galerkin-Collocation method in multiple nonoverlapping
subdomains to integrate the BSSN equations (17)–(20),
(22), and (24)–(26). We have followed the procedure
outlined in Ref. [35], which allows us to skip some details
of the implementation.
The first step is the compactification of the spatial

domain using the following map:

r ¼ L0

ð1þ xÞ
1 − x

; ð29Þ

where L0 is the map parameter and x ∈ ½−1; 1� is a
computational domain from which we define the colloca-
tion points. Other transformations can map semi-infinite
intervals into a finite domain, but the above one is more
suitable for those problems with functions decaying alge-
braically with r [34].
Figure 1 shows the basic scheme for implementing the

multidomain spectral code. Notice that for a single domain
code, we use the mapping (29) defining the computational
x, while for introducing multiple subdomains, we add nd
computational subdomains parametrized by −1 ≤ ξðlÞ ≤ 1,
l ¼ 1; 2;…; nd corresponding to each subdomain Dl. In
more detail, according to Fig. 1, the physical domainD∶0 <
r < ∞ is divided into nd subdomains D1∶0 < r < rð1Þ;…,
Dl∶rðl−1Þ ≤ r ≤ rðlÞ;…, Dnd∶r

ðnd−1Þ ≤ r < ∞, where r0 ¼
0 (excluded from the physical domain) and
rð1Þ; rð2Þ;…; rðnd−1Þ are the interface between contiguous
subdomains. We establish that x ¼ xðξðlÞÞ, l ¼ 1; 2;…; nd
are linear transformations connecting xðl−1Þ ≤ x ≤ xðlÞ into
−1 ≤ ξðlÞ ≤ 1 (see Ref. [35] for details).

The mapping (29) allows the definition of the rational
Chebyshev polynomials [34], which are the rescaled
Chebyshev polynomials. In other words,

TLkðrÞ ¼ Tk

�
x ¼ r − L0

rþ L0

�
; ð30Þ

where we obtain x ¼ xðrÞ after inverting the relation (29).
The resulting basis function is now defined in the whole
spatial domain. For the case of multiple subdomains, we
define rational Chebyshev polynomials associated with
each subdomain symbolically as [35]

TLðlÞ
k ðrÞ ¼ TkðξðlÞðrÞÞ: ð31Þ

We obtain the relation ξðlÞ ¼ ξðlÞðrÞ after inverting the
linear relation between x and ξðlÞ and combining with
Eq. (29).
When implementing the spectral code with the Galerkin-

Collocation method, we consider the whole spatial domain,
where the boundaries are the origin r ¼ 0 and the spatial
infinity. A distinctive aspect of our implementation is
establishing basis functions that enforce the boundary
conditions. For instance, for the case of spacetimes initially
without black holes (see Refs. [36,39,40]), the BSSN
equations in spherical coordinates have 1=r terms near
the origin that require a proper process of regularization. It
is possible, as we have shown [36], to define radial basis
functions to behave as constantþOðr2Þ near the origin.
However, the regularization procedure fails here due to a
singularity at the origin [39].
The simplest solution is the cornerstone of treating black

holes as punctures without excision. We exclude the origin
from the spatial domain; consequently, we do not impose
any particular conditions on the basis functions at the
puncture even though the new conformal factor χðt; rÞ is

FIG. 1. Basic scheme showing the subdomains D1;D2;…;Dnd
covered by the computational subdomains −1 ≤ ξðjÞ ≤ 1,
j ¼ 1; 2;…; nd, and the intermediate computational domain
−1 ≤ x ≤ 1. The origin r ¼ 0 is the locus of the black hole.
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regular [cf. Eq. (16)]. Thus, the spectral approximations can
vary in the neighborhood of the puncture to deal with the
1=r, 1=r2 terms near it.
The only condition we must enforce is guaranteeing that

the spacetime is asymptotically flat. Taking the rational
Chebyshev polynomials [Eq. (30)] in one domain or the
polynomials TLðndÞ

k ðrÞ [Eq. (31)] in the outer subdomain
(see the discussion in the sequence), we define the new
basis function ψkðrÞ as

ψkðrÞ≡ 1

2
ðTLkþ1ðrÞ − TLkðrÞÞ: ð32Þ

Since TLkðrÞ ¼ ð−1Þk þOðr−1Þ asymptotically, it fol-
lows that ψkðrÞ ¼ Oðr−1Þ.
At this point, by restricting to the single-domain case, we

can write the spectral approximations for the field variables.
The requirement of asymptotic flatness implies the following
conditions for two groups of field functions:

a; b; α; χ → 1 as r → ∞; ð33Þ

β; Δ̄r; K; Aa → 0 as r → ∞: ð34Þ

Thus, for the first group, we have

χðt; rÞ ¼ 1þ
XN
k¼0

χ̂kðtÞψkðrÞ; ð35Þ

and similar expansions for the metric functions a, b and the
lapse α. Here N is the truncation order that dictates
the number of unknown coefficients or modes χ̂k. For the
second group, it follows

Kðt; rÞ ¼
XN
k¼0

K̂kðtÞψkðrÞ; ð36Þ

where K̂kðtÞ are the correspondent modes associated with
the trace of the extrinsic curvature. Again, we have similar
expansions for the remaining functions of the second group.
The next step is determining the modes present in the

spectral approximations for both groups of functions. After
substituting all spectral approximations into the field equa-
tions, we obtain the corresponding residual BSSN equations.
For the sake of illustration, let us consider the residual
equation associated with the new conformal factor χ:

Resχðt; rÞ ¼ ∂tχ − βr∂rχ þ
n
6
χ∇̄kβ

k −
n
6
χαK: ð37Þ

Notice that Resχðt; rÞ does not vanish due to the inserted
approximations. Then, following the prescription of the
collocation method, we impose that the residual equa-
tion (37) vanishes at the N þ 1 collocation points rj. Then,

Resχðt; rjÞ ¼ 0 constitutes the set of N þ 1 equations

ð∂tχÞj ¼ ðβr∂rχÞj −
n
6
χjð∇̄kβ

kÞj þ
n
6
χjαjKj; ð38Þ

where the subscript j indicates that we evaluate the
quantities at the collocation point rj. From the above
set of equations, we can calculate the values χjðtÞ at the
next time level, provided the rhs is known. The values of
the conformal factor χjðtÞ and its modes χ̄kðtÞ are con-
nected through

χjðtÞ≡ χðt; rjÞ ¼ 1þ
X
k

χ̂kðtÞψkðrjÞ

so that we can determine the modes χ̂kðtÞ at any instant.
Here, the N þ 1 collocation points are initially defined in
the computational domain −1 ≤ x ≤ 1, usually as the
Chebyshev-Gauss-Lobatto points

xj ¼ cos

�
jπ

N þ 2

�
; j ¼ 1; 2;…; N þ 1; ð39Þ

where the points x ¼ −1 (j ¼ N þ 2) and x ¼ 1 (j ¼ 0)
are excluded, meaning that the origin and the spatial
infinity are excluded. The points in the physical domain
become

rj ¼ L0

ð1 − xjÞ
1þ xj

; j ¼ 1; 2;…; N þ 1: ð40Þ

After performing the same procedure described above
on the remaining BSSN field equations, we approximate
them as ordinary differential equations for the values of the
field functions at the collocation points, χj; βrj; Kj;…. We
obtain the initial values and corresponding initial modes
by specifying the initial configuration for each field.
Consequently, the rhs of each approximate equation is
known initially, implying that we can determine the values
at the next time level. Repeating this process iteratively, we
evolve the set of equations, or equivalently the spacetime.
Symbolically, the resulting set of approximate BSSN
equations are

ð∂tFÞj ¼ Gj; ð41Þ

where j ¼ 1; 2;…; N þ 1, and F represents all field
functions: χ; a; b; K; Aa; Δ̄r;α; β; B. The rhs is formed
by the field functions’ values and their spatial derivatives’
values at the collocation points.
Maximal slicing: We also have implemented a version of

the spectral code with the maximal slicing gauge [45]. In
this case, we have
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K ¼ ∂tK ¼ 0: ð42Þ

Consequently, the lapse does not satisfy a gauge
evolution equation, but rather an elliptic-type equation
given by

∂
2
rα−

�
2

r
−
∂ra
2a

þ ∂rb
b

−
2∂rχ

nχ

�
∂rα−

3

2
αaχ−4=nA2

a ¼ 0: ð43Þ

From the spectral perspective, we have approximated
this equation by a set of linear algebraic equations for the
values of the lapse αjðtÞ, j ¼ 1; 2;…; N þ 1. We solve this
equation in each interaction by the standard matrix inver-
sion. The procedure described previously for all other
functions is not altered.
Multidomain Galekin collocation method: In the case of

the multidomain implementation, we first establish spectral
approximations for the field functions of both groups in
each subdomain. In the subdomains D1;D2;…;Dnd−1, the
basis functions are the corresponding rational Chebyshev

polynomials TLðlÞ
k ðrÞ, whereas for the outer subdomain

Dnd∶r
ðnd−1Þ ≤ r < ∞, the basis functions are

ψ ðndÞ
k ðrÞ ¼ 1

2
ðTLðnÞ

kþ1ðrÞ − TLðnÞ
k ðrÞÞ: ð44Þ

In general, the truncation orders or the number of modes
for each field function, NðlÞ; l ¼ 1; 2;…; nd, are freely
chosen, but unless stated otherwise, we have set the same
truncation order for all functions.
The procedure to approximate the BSSN field equations

is similar to what we have done in a single domain. We have
to establish spectral approximations for the functions in
each subdomain. For instance, considering the new con-
formal factor, we have

χðlÞðt; rÞ ¼ 1þ
XNðlÞ

k¼0

χ̂ðlÞk ðtÞψ ðlÞ
k ðrÞ; ð45Þ

where χ̂ðlÞk ðtÞ are the modes and l ¼ 1; 2;…; n indicates the
subdomain, and k ¼ 0; 1;…; NðlÞ.
Next, after obtaining the residual equations in each

subdomain, we impose that these equations vanish at the
collocation points of the corresponding subdomains.
However, we must guarantee that each subdomain’s func-
tions’ approximations represent the same functions defined
in distinct subdomains. To this aim, the spectral approx-
imations must satisfy the transmission conditions [46,47]

χðlÞðt; rðlÞÞ ¼ χðlþ1Þðt; rðlÞÞ;�
∂χ

∂r

�ðlÞ

rðlÞ
¼

�
∂χ

∂r

�ðlþ1Þ

rðlÞ
; ð46Þ

with l ¼ 1; 2;…; nd − 1. Consequently, the number of
transmission conditions restricts the total number of collo-
cation points. For instance, if we have nd subdomains, the
total number of modes is

Xnd
l¼1

NðlÞ þ nd;

and with 2ðnd − 1Þ transmission conditions, the effective
number of values is

Xnd
l¼0

NðlÞ − nd þ 2:

The above number of values coincides with the total
number of collocation points distributed along the sub-
domains, and therefore, the total number of equations
represented by Eq. (41). In Table I [35], we show the
distribution of the collocation points in each subdomain.
We approximate the BSSN equations as a set of differ-

ential equations for the values of the field functions at the
collocation points as the final step of the implementation.
We can summarize these equations as

ð∂tFÞðlÞj ¼ GðlÞ
j ; ð47Þ

where FðlÞ represents all field functions in each subdomain,
j ¼ 1; 2;…; N̄ðlÞ, with N̄ðlÞ being the number of collocation
points in the lth subdomain, and l ¼ 1; 2;…; nd.
The implementation of the maximal slicing version is

straightforward. It follows the same procedure described
above for all functions, and the lapse satisfies Eq. (43) in
each subdomain, which we solve to obtain the values

αðlÞj , ¼ 1; 2;…; NðlÞ.

IV. NUMERICAL RESULTS

We present the numerical tests used to validate the domain
decomposition GC code for describing punctures without
excision, where we have proposed three groups of numerical
experiments. The first group verifies some relevant solutions
of the Schwarzschild black hole in distinct foliations or
geometries. We explore the transition from the wormhole to
trumpet foliations [44,48,49] in connection with the moving
puncture approach in the second group. In the third group,
we consider the description of the power-law behavior near

TABLE I. Distribution of the collocation points in each sub-
domain according to corresponding truncation orders.

D1 D2 � � � Dnd−1 Dnd

Nð1Þ Nð2Þ − 1 � � � Nðnd−1Þ − 1 NðndÞ
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the puncture after the establishment of the trumpet stationary
configuration.
We have integrated the resulting dynamical systems

[Eqs. (41) and (47)] with the Cash-Karp adaptive step-size
integrator [50] in all numerical experiments. We choose
n ¼ 2 for the conformal factor [Eq. (16)], the maximum
step size is 10−4, and the tolerance is in the interval 10−13

to 10−13.

A. Testing the code with exact solutions

We start with the standard exact Schwarzschild
black hole solution expressed in a wormhole geometry
or foliation:

ds2 ¼ −
�
1 − M

2r

1þ M
2r

�
2

dt2 þ
�
1þM

2r

�
4

ðdr2 þ r2dΩ2Þ; ð48Þ

where M is the black hole mass. The above metric is an
exact time-independent solution. Therefore, if we use it as
the initial configuration to feed the BSSN equation, we
would be able to verify the Schwarzschild solution’s static
character numerically. However, as pointed out in Ref. [49],
the negative values of the lapse for r < M=2 leads, in
general, to numerical instabilities.
We evolve the solution (48) as the initial data with the

nonadvective 1þ log slicing condition for the lapse and
the gamma-driver condition with η ¼ 0 for the shift in
Eq. (25), respectively. As a result, the numerical solution
crashes after a few time units, say t ∼Oð10MÞ. We repeat
the same experiment using Alcubierre’s gauge shock-
avoiding slicing [27]

fðαÞ ¼ 1þ κ0
α2

; ð49Þ

where for the sake of convenience, we have set κ0 ¼ 2=3.
We observe the growth of instabilities again, but at a much
slower rate. Figure 2 shows the log-linear plots of the
Hamiltonian constraint violation expressed by its L2 norm,
henceforth denoted by L2ðHCÞ, for an integration until t ¼
40M with truncation orders N ¼ 50, 70, 90, and map
parameter L0 ¼ 5M. Despite the increase in the error, the
advantage of the slicing condition (49) is clear in providing
a better agreement with the exact solution. As shown in
Fig. 2, L2ðHCÞ ∼Oð10−9Þ for N ¼ 90. Eventually, for
longer integration times, the numerical solution crashes. An
explanation for a better performance of the Alcubierre’s
fðαÞ is that the term α2fðαÞ is always positive, even though
the lapse assumes negative values for r < M=2.
We have examined the following analytical solution

due to Dennison and Baumgarte [51] representing the
Schwarzschild black hole in a trumpet geometry:

ds2 ¼ −
�

r
rþM

�
2

dt2 þ 2rM
ðrþMÞ2 drdt

þ
�
1þM

r

�
2

ðdr2 þ r2dΩ2Þ: ð50Þ

In addition, the trace of the extrinsic curvature and the
component Aa are given by [51]

K ¼ M
ðrþMÞ2 ; Aa ¼ −

4M
3ðrþMÞ2 : ð51Þ

With the metric (50) and the above expressions, we
establish the initial data to integrate the BSSN equations. In
this case, the Bona-Massó function fðαÞ is [51]

fðαÞ ¼ 1 − α

α
; ð52Þ

together with the advective lapse [Eq. (25)]. We present in
Fig. 3 the time evolution of the L2 norm of the Hamiltonian
constraint instead of comparing the exact and the analytical
metric functions. We have set the truncation order N ¼ 70,
the map parameter L0 ¼ 5, and evolved the system until
t ¼ 40M. The error remains at about Oð10−13Þ after
t ∼ 15M.
The third analytical solution we have considered is the

maximal slicing Schwarzschild black hole [53]. For con-
venience, we use the explicit analytical expressions in
isotropic coordinates obtained by Baumgarte and Naculich
[52] to generate the initial data. Then, with the spatial line
element

γijdxidxj ¼ Ψ4ðdr2 þ r2dΩ2Þ; ð53Þ
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10 -12

10 -10

10 -8

10 -6

FIG. 2. Time evolution of the Hamiltonian constraint evolution
with the truncation orders N ¼ 50, 70 and 90. The initial data are
for the Schwarzschild solution [Eq. (48)], where we evolve the
lapse nonadvecting condition with Alcubierre’s shock-avoiding
slicing [Eq. (49)], η ¼ 0 in the gamma-driver condition, and map
parameter L0 ¼ 5M.
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it follows that the conformal factor is

Ψ ¼
�
R
r

�
1=2

¼
�

4R

2RþMþ ð4R2 þ 4MRþ 3M3Þ1=2
�
1=2

×

�
8Rþ 6M þ 3ð8R2 þ 8MRþ 6M2Þ1=2

ð4þ 3
ffiffiffi
2

p Þð2R− 3MÞ

�
1=2

ffiffi
2

p

: ð54Þ

Here, R is the areal coordinate with a limiting value of
3M=2 when the isotropic radial coordinate r approaches
zero. The lapse and the shift are, respectively, given by

α ¼
�
1 −

2M
R

þ 27M4

16R4

�
1=2

; ð55Þ

βr ¼ 3
ffiffiffi
3

p
M2

4

r
R3

: ð56Þ

The collocation points are expressed in terms of the
isotropic coordinate r, but by inverting the relation r ¼
rðRÞ [cf. Eq. (54)], we obtain the corresponding points in
the areal coordinate R. Consequently, we generate the
initial values of the conformal factor χj, the lapse αj, and
the shift βrj, with j ¼ 1; 2;…; N þ 1. For the remaining
fields, we have initially a ¼ b ¼ 1; K ¼ Δ̄r ¼ 0.
We present in Fig. 4(a) the time behavior of L2ðHCÞ for

the truncation orders N ¼ 50, 70, 90, 110, 150, and 190
with map parameter L0 ¼ 5M, the nonadvecting 1þ log
slicing, and η ¼ 0 for the gamma-driver condition. We
notice that L2ðHCÞ decays as the resolution increases, but
for a more precise determination of its decay rate, we have
calculated the rms value of L2ðHCÞ for each truncation
order N. In Fig. 4(b), we present the log-log plot for the

map parameters L0=M ¼ 2, 5. In both cases, we observe an
algebraic rather than exponential decay.
The 1=r2, 1=r terms near the puncture and present in

Hamiltonian constraint, and some of the evolution equations,
spoil the usual exponential convergence. Nevertheless, the
rms value decreases by 2 orders of magnitude for L0 ¼ 2M
when the number of collocation points increases from 50 to
190. In our judgment, the cost of letting the spectral
approximations remain free near the puncture is worth it.
We repeat the same numerical test with Alcubierre’s

shock-avoiding gauge fðαÞ [Eq. (49)] (κ0 ¼ 2=3) and the
maximal slicing spectral code. In all simulations, we have
set L0 ¼ 2M and truncation orders N ¼ 70; 90;…; 190. To
compare the outcomes of distinct gauge conditions, we
have plotted in Fig. 5 the decay of the rms values of the

0 10 20 30 40
3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7
10 -13

FIG. 3. Time evolution of the Hamiltonian constraint violation
with the exact solution [Eqs. (50) and (51)] [52] taken as the
initial data. We evolve the lapse with the advective condition with
fðαÞ given by Eq. (52), η ¼ 0 in the gamma-driver condition, and
map parameter L0 ¼ 5M.
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FIG. 4. (a) Log-linear plots of L2ðHCÞ vs time for the
truncation orders N ¼ 50, 70, 90, 110, 130, 150, and 190 from
top to bottom. The initial data are for the analytical Baumgarte-
Naculich solution [52], and we evolve the lapse with the non-
advecting 1þ log slicing, with η ¼ 0 for the gamma-driver
condition, and the map parameter is L0 ¼ 5M. (b) Log-log plots
of L2ðHCÞRMS, showing its algebraic decay with the increase of
the truncation order, where the map parameters are L0=M ¼ 2, 5.
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error L2ðHCÞ for simulations until t ¼ 40M, including the
1þ log slicing. Although the individual rms values
obtained using Eq. (49) are greater than the corresponding
values for the maximal and 1þ log slicing, its decay seems
slightly faster than the algebraic decay. The maximal
slicing presents the best outcome.
Another valid test is the convergence of the ADM mass.

The spectral approximation of the field functions offers a
global description of the related functions. We use this
feature to calculate the ADM mass straightforwardly. Due
to the asymptotic flatness of spacetime, we can write

eϕ ¼ ðχÞ−1=n ¼ 1þMADM

2r
þOðr−2Þ; ð57Þ

where MADM is the ADM mass of the system. Using the
spectral approximation in Eq. (35) for the new conformal
factor and taking into account the asymptotic form of the
basis functions, we can express the ADM mass in terms of
the unknown modes χ̂k as

MADM ¼ 2χ−1
n

¼ 8

n

XN
k¼0

ð2k − 1Þχ̂kðtÞ; ð58Þ

where χ−1 is the coefficient of the 1=r term for the
asymptotic form of the approximate conformal factor
[Eq. (35)].
Figure 6 shows the convergence of the maximum

deviation of the ADM mass δM ¼ MADMð0Þ −MADMðtÞ,
since the numerical ADM mass varies with time. In all
cases, the exponential decay of jδMjmax is restored, with
similar results for fðαÞ given by Eq. (49) and the 1þ log
slice, where the maximal deviation reaches less than 1 part
in 108. The maximal slicing code exhibits a much better
convergence if compared with the previous choices of fðαÞ.
To explain the exponential convergence, we recall that the

ADM mass is a quantity evaluated far from the puncture.
Therefore, we infer that the numerical errors produced near
the puncture have a reduced influence on the ADM mass
value. It represents “a spectral” confirmation of one of the
main features of the moving puncture approach, where the
errors only affect the neighborhood of the puncture [41].

B. Transition from the wormhole to trumpet geometries

We explore the transition of the Schwarzschild black
hole from the wormhole to trumpet geometries [44,48,49]
that arises in connection with the moving puncture
approach. We have considered the multidomain version
of the spectral code for the numerical experiments and the
maximal slicing version for this aim. We characterize the
initial data by the spatial line element given by Eq. (53)
with the conformal factor

Ψ0 ¼ 1þM
2r

; ð59Þ

together with Kij ¼ 0. In addition, we assume the initial
precollapsed lapse

α ¼ Ψ−2
0 : ð60Þ

We remark that the initial condition for the lapse is no
longer necessary for the maximal slicing code.
We evolve the lapse with the nonadvective form of

Eq. (25) together with Alcubierre’s family fðαÞ, given by
Eq. (49) and

fðαÞ ¼ k0
α
; ð61Þ

fðαÞ ¼ κ20
2αþ ðκ0 − 2Þα2 ; ð62Þ

70 90 110 130 150 190

10 -7

10 -6

10 -5

FIG. 5. Algebraic decay of L2ðHCÞRMS for the Alcubierre
slicing [Eq. (49)] with κ0 ¼ 2=3 (squares), 1þ log slicing
(triangles), and the maximal slicing version of the code (circles).
Here, L0 ¼ 2M.
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FIG. 6. Exponential convergence of the ADMmass’s maximum
deviation for the Alcubierre shock-avoidance slicing [Eq. (49)]
with κ0 ¼ 2=3 (squares), the 1þ log slicing (triangles), and the
maximal slicing version of the code (circles). Here, L0 ¼ 2M.
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where the former is the generalization of the 1þ log slicing
(k0 ¼ 2), and the latter was proposed by Alcubierre [28]
after imposing zeroth-order shock avoidance. In this case,
we recover the 1þ log slicing condition for κ0 ¼ 2.
In all simulations, except with the maximal slicing code,

we have employed a spectral filter [54] to prevent the
growth of higher frequencies that spoil the accuracy of the
numerical solution. At each time step, we have applied an
exponential filter only to the modes of the extrinsic
curvature for simplicity and functionality. Trying, for
instance, to filter the modes of the metric functions
aðt; rÞ or bðt; rÞ breaks the stability of the numerical
integration. We intend to address this issue in more detail
elsewhere.
The rms value of the L2 norms of the Hamiltonian

constraint violation calculated in each subdomain and
denoted by L2ðHCiÞRMS, i ¼ 1; 2…; nd signalize the con-
vergence and accuracy of the code. Another quantity with
this aim is the deviation of the ADM mass from its initial
value. We determine the ADM mass in each instant with

MADM ¼ 8

n

XNðndÞ

k¼0

ð2k − 1Þχ̂ðndÞk ðtÞ; ð63Þ

where χ̂ðndÞk ðtÞ are the unknown modes associated with
the conformal factor χðt; rÞ in the outer subdmain
Dnd∶r

ðndÞ ≤ r < ∞.
The first numerical experiment illustrates the evolution

of the Hamiltonian constraint violation in the first sub-
domain represented by its L2 norm, L2ðHC1Þ, for the two-
subdomain maximal slicing code with Nð1Þ ¼ Nð2Þ ¼ 110,
i.e., with 110 collocation points in each subdomain. We
have set rð1Þ ¼ L0 ¼ 5M [xð1Þ ¼ 0 in the intermediary
computational domain] and η ¼ 2 for the gamma-driver
condition. The first subdomain contains the black hole
interior rH < 2M. In Fig. 7, we show the Hamiltonian
constraint violation until t ¼ 40M, and in the inset, the
whole evolution until¼ 100M to illustrate the achievement
of the stationary phase.
In the sequence, we exhibit the convergence of the L2

norms of the Hamiltonian constraints in both subdomains.
We have performed the numerical experiments with the
families fðαÞ given previously and the maximal slice code.
We set k0 ¼ 2 or 1þ log gauge in Eq. (61), with κ0 ¼ 2=3
and κ0 ¼ 1.7635 for the Alcubierre families in Eqs. (49)
and (62), respectively [29]. The map parameter is
L0 ¼ 5M, and η ¼ 2 for the gamma-driver condition in
all simulations.
Figure 8 shows the decay of the rms values of L2ðHCiÞ,

with i ¼ 1, 2 for the truncation orders Nð1Þ ¼ Nð2Þ ¼ 70,
110, 150, 190, and 230. In the first subdomain
D1∶0 < r ≤ rð1Þ ¼ 5M, the decay of L2ðHC1ÞRMS is alge-
braic and almost the same in all slicing conditions [the
results provided by the family in Eq. (49) are similar to the

other cases]. The errors near the puncture considerably
violate the Hamiltonian constraint and spoil the exponential
convergence.
When we turn to the second subdomain, we obtain an

evident exponential decay of L2ðHC2ÞRMS for the maximal
slicing code (black circles), with saturation taking place at
L2ðHC2ÞRMS ∼Oð10−7Þ. The simulations with the families
in Eqs. (61) and (62) (blue triangles and red squares,
respectively) show better accuracy with a satisfactory decay
rate, albeit not exponential; the minimum of L2ðHC2ÞRMS is
the same as that obtained with the maximal slicing code. The
simulations with the family in Eq. (49) with κ0 ¼ 2=3 yield
a slower convergence rate, but with acceptable violations of
the Hamiltonian constraint. We recall that the second
subdomain D2∶5M ≤ r < ∞, meaning that all the colloca-
tion points are outside the horizon and away from the
puncture, this therefore being the main reason for the
improvement of the convergence and accuracy of the results.
We illustrate the effect of filtering in the decay of

L2ðHC2ÞRMS with 1þ log slicing. The dashed curve on
the top of Fig. 8(b) with blue triangles refers to the absence
of filtering in contrast to the results obtained with a filter
(triangles with solid line). The improvement in the accuracy
is about 3 orders of magnitude.
We include the convergence of the ADMmass expressed

by its maximum deviation in Fig. 9. The log-linear plots of
jδMjmax indicate a rapid convergence in all cases, with the
outcome due to the maximal slicing code displaying a
much better convergence.
As a qualitative test, we present two illustrations show-

ing the approaches to stationary trumpet geometries
through snapshots of the shift in distinct instants, where
βr ¼ 0 initially. In both illustrations, we have used a two-
subdomain code with the nonadvective 1þ log slicing
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FIG. 7. Time evolution of the Hamiltonian constraint violation
in the first subdomain for the integration until t ¼ 40M, and the
inset shows the time evolution until t ¼ 100M to illustrate the
achievement of the stationary phase after t ≃ 30M. We have used
the maximal slicing code with Nð1Þ ¼ Nð2Þ ¼ 110, rð1Þ ¼ L0 ¼
5M, and η ¼ 2 for the gamma-driver condition.
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condition for the lapse. We set n ¼ 2 for the new conformal
factor, with the map parameter L0 ¼ 5M, and the interface
located at rð1Þ ¼ L0.
In the first illustration, we have chosen η ¼ 2 and

truncation orders Nð1Þ ¼ Nð2Þ ¼ 150. Figure 10 shows
the snapshots of the shift in four different instants, namely
t=M ¼ 1.4, 3.2, 15, 38 with dotted, dashed, dot-dashed and
solid lines, respectively, where the simulation ends at
t=M ¼ 40. We notice that at t=M ¼ 15, the shift is close
to the stationary configuration represented by the solid line
(t=M ¼ 38). After t=M ≃ 25, the curves become super-
posed to the solid line shown in Fig. 10.
For the second sequence of profiles of the shift towards

the equilibrium configuration, we have used more

resolution, Nð1Þ ¼ Nð2Þ ¼ 190, and fixed η ¼ 0. As a
result, we plot seven panels in distinct instants in
Fig. 11, namely t=M ¼ 1.4, 3.5, 5.6, 12.4, 14.9, 21.6,
and 37.7. In each panel, the black dashed line represents
the exact solution for the shift vector [52] for which the
numerical solution settles. We notice that the distinct
equilibrium configurations of the shift shown by Figs. 10
and 11 reflect the action of the parameter η in changing the
coordinates of the final slice, but not the slice [44,55,56].
We end the present subsection by repeating the same

convergence tests using a three-subdomain code with the
1þ log gauge [k0 ¼ 2 in Eq. (61)] and the two Alcubierre
families in Eqs. (49) and (62), in which κ0 ¼ 2=3 and
1.7365, respectively. The interfaces are located at rð1Þ ¼
L0=2 and rð2Þ ¼ 2L0 (xð1Þ ¼ −1=3 and xð2Þ ¼ 1=3 in the

FIG. 10. Snapshots of the lapse βr in different instants toward
the equilibrium configuration at t ¼ 38M evolved with the initial
wormhole data and the precollapsed lapse [Eq. (60)]. We adopt
the nonadvective 1þ log slicing condition for the lapse and the
gamma-driver condition for the shift with η ¼ 2 in the last
equation. The vertical line indicates the interface between the
subdomains.
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FIG. 9. Exponential convergence of the ADMmass’s maximum
deviation for the Alcubierre slicings in Eqs. (49) and (62) with
κ0 ¼ 2=3 and 1.7635, respectively, the 1þ log slicing (k0 ¼ 2),
and the maximal slicing version of the code. Here, L0 ¼ 5M.
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FIG. 8. (a) Algebraic decay of L2ðHC1ÞRMS using the 1þ log
slicing (k0 ¼ 2), the Alcubierre zeroth-order shock-avoidance
slicing with κ0 ¼ 1.7635 in Eq. (62), and the maximal slicing.
(b) The log-linear plot of L2ðHC2ÞRMS includes the Alcubierre
shock-avoidance slicing [Eq. (49)] with κ0 ¼ 2=3. The dashed
line with triangles at the top refers to the rms values obtained
without filtering. We have fixed the map parameter L0 ¼ 5M and
η ¼ 2 for the gamma-driver condition. The interface separating
both subdomains is located at rð1Þ ¼ L0 ¼ 5M.
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intermediary computational domain). The truncation orders
are equal in each subdomain; the map parameter is
L0 ¼ 10M, and η ¼ 2 is the gamma-driver condition.
In Fig. 12, we show the decay of the rms values of the L2

norms of the Hamiltonian constraints in the first (top
panel), second (center panel), and third (bottom panel)
subdomains. As expected, the log-log plot in the first
subdomain displays an algebraic convergence, since it
encompasses the neighborhood of the puncture. In this
instance, all families fðαÞ produce similar results.
The log-linear plots of L2ðHCÞRMS in the second and

third subdomains reveal better convergence and more
accurate results, with the slicing condition in Eq. (62)
presenting superior performance if compared with the other
slicing conditions. As expected, we regain a more closely
related exponential convergence far from the puncture’s
neighborhood. Interestingly, the shock-avoiding slicing
condition [Eq. (49)] with κ0 ¼ 2=3 produces inferior
convergence and accuracy.
Finally, Fig. 13 depicts the convergence of the ADM

mass with the decay of the maximum deviation δMmax. All
slicing conditions are similar, with the 1þ log slicing

slightly inferior to the others. We point out that for
Nð3Þ ¼ 230, the deviation of the ADM mass is about 1
part in 1010.

C. Power-law behavior of the lapse near the puncture

In the last set of numerical experiments, we explore the
power-law behavior of the lapse near the puncture.
The initial data are the same for the transition of the
Schwarzschild black hole from the wormhole to trumpet
slices described in the previous subsection, and we evolve
the lapse with the Bona-Massó condition [Eq. (25)]. In
achieving the stationary configuration, the lapse exhibits a
power-law behavior near the puncture [57], namely

α ∝ r1=γ; ð64Þ

where the exponent 1=γ is determined analytically and
depends on the choice for the function fðαÞ [29]. The
objective is to show agreement between the lapse’s ana-
lytical and numerical power-law behavior.
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FIG. 11. Snapshots of the lapse βr in different instants toward the equilibrium configuration represented [52] by the dashed line in each
panel. The vertical line indicates the interface between the subdomains. The initial data are the same as in Fig. 10, but we set η ¼ 2 in the
gamma-driver condition.
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We have considered the families of fðαÞ given by
Eqs. (61) and (62), considering several values for the
constants k0 and κ0. A three-subdomain code used pre-
viously with Nð1Þ ¼ Nð2Þ ¼ Nð3Þ ¼ 150 collocation points

is used to conduct the numerical experiments. We have also
set η ¼ 2 and the map parameter L0 ¼ 10M, yielding
rð1Þ ¼ 5M; rð2Þ ¼ 20M as the interface locations. The
transition from wormhole to trumpet geometries generally
settles approximately in t ¼ 30M, but we have integrated
until t ¼ 50M for the numerical experiments.
In Fig. 14, we present the profiles of the lapse, taking

into account the generalized 1þ log slicing fðαÞ ¼ k0=α
with the standard 1þ log condition k0 ¼ 2, as well as k0 ¼
1.46263 and k0 ¼ 3.245, which produce the power-law
exponents 1=γ ≃ 1.091, 1.0, and 1.201, respectively. We
indicate in all graphs the subdomain’s interfaces with
dotted vertical lines and the innermost collocation point
located at rinner ≃ 3.655 × 10−4M with the dashed vertical
line. We have also plotted all profiles on the same scale for
the sake of comparison among all cases. By observing how
the numerical profiles extend to the region r ≪ rinner, the
best case is k0 ¼ 1.46263 when the power-law exponent is
approximately equal to unity. For k0 ¼ 2 (1=γ ≃ 1.091), we
reproduce the power-law behavior accurately, but the lapse
becomes negative at some point due to numerical errors. A
similar and more accentuated feature is observed when
k0 ¼ 3.245, for which 1=γ ≃ 1.201.
We end this section by presenting the profiles of the lapse

considering the second family [Eq. (61)] in Fig. 15 for two
values of the free parameter: κ0 ¼ 4=3 and κ0 ¼ 1.7365.
The corresponding power-law exponents are 1=γ ≃ 0.801
and 1=γ ≃ 1.0, respectively. As in the generalized 1þ log
family, the numerical scaling produces a better result for the
integer exponent. However, we observe that the numerical
scaling of Fig. 15’s bottom panel extends to smaller radii
than in the case of generalized 1þ log fðαÞ.

V. FINAL CONSIDERATIONS

In this paper, we have extended the Galerkin-Collocation
multidomain decomposition technique to integrate the

70 110 150 190 230

0.004

0.006

0.008

0.015

70 110 150 190 230

10 -6

10 -5

10 -4

70 110 150 190 230
10 -9

10 -8

10 -7

10 -6

FIG. 12. The top, center, and bottom panels show the con-
vergence of L2ðHCÞRMS in the first, second, and third subdo-
mains, respectively. We have considered the maximal slicing, the
Alcubierre slicing families in Eqs. (49) and (63) with κ0 ¼ 2=3
and 1.7635, respectively. The interfaces separating the subdo-
mains are located at rð1Þ=M ¼ 5 and rð2Þ=M ¼ 20. In all cases,
η ¼ 0 for the gamma-driver condition.
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FIG. 13. Decay of the ADM mass’s maximum deviation for the
Alcubierre slicings in Eqs. (49) and (62) with κ0 ¼ 2=3 and
1.7635, respectively, the 1þ log slicing (k0 ¼ 2), and the
maximal slicing version of the code. Here, L0 ¼ 10M.
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BSSN equations in spherical coordinates adapted to
describe black holes represented by punctures without
excision; we have also implemented a maximal slicing
version of the code.
We have followed the standard strategy of previous

implementations with the Galerkin-Collocation method.
One of the main aspects of this method is constructing basis
functions satisfying the boundary conditions individually.

Hence, we have combined the rational Chebyshev poly-
nomials [34] to define basis functions to guarantee the
asymptotic flatness. However, the locus of a black hole is a
singularity, implying that it is ruled out from the spatial
domain, meaning that we can no longer impose any special
conditions regarding the basis functions at this point.
The simplest solution was not to impose regularity

conditions near the puncture and let the spectral approx-
imations deal with the 1=r and 1=r2 terms in the field
equations close to the puncture. The numerical integration
using finite differences adopts a similar strategy to deal with
punctures [41]. On the other hand, we recall that the
implementation of regularity conditions is mandatory for
spacetimes initially without black holes [36,39,40].
We validate the code with three distinct numerical tests.

The first is to examine the exact Schwarzschild solution in
distinct foliations as initial data; namely, the wormhole
solution in isotropic coordinates [cf. Eq. (48)], the
analytical trumpet slices [51], and the Baumgarte-
Naculich [52] analytical maximal slicing solution. The
second test is to explore the transition from the wormhole
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FIG. 15. Profiles of the lapse for the function fðαÞ given by
Eq. (62) with κ0 ¼ 4=3 and κ0 ¼ 1.7365 in the top and the bottom
panels, respectively. The solid lines represent the numerical
profiles of the lapse in the first subdomain, the vertical lines
indicate the location of the innermost collocation point and the
subdomain’s interfaces, and the inclined straight dotted lines
represent the scaling laws r ∝ r1=γ .

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

FIG. 14. Profiles of the lapse for the function fðαÞ given by
Eq. (61), with k0 ¼ 1.46263, k0 ¼ 2 (1þ log slicing), and k0 ¼
3.245 from the top to the bottom panels, respectively. The solid
lines represent the numerical profiles of the lapse in the first
subdomain, the vertical lines indicate the location of the inner-
most collocation point and the subdomain’s interfaces, and the
inclined straight dotted lines represent the scaling laws r ∝ r1=γ .
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to trumpet geometries starting with the “precollapsed”
lapse [cf. Eq. (60)], and the third consists of verifying the
power-law behavior of the lapse near the origin once we
achieve the stationary trumpet configuration.
In all tests, we evolved the shift with the gamma-driver

condition and the lapse with the Bona-Massó slicing
condition. We have considered several slicing conditions,
such as the standard 1þ log slicing, and the two families
of Alcubierre’s shock-avoidance slicing [27,28], besides
the maximal slicing in the numerical experiments. The
determination of the time evolution of the Hamiltonian
constraint violation through its L2 norm and the verifica-
tion of the ADM mass conservation constitutes the
diagnostics for accuracy and convergence of the spec-
tral code.
For the first set of numerical experiments, we have used a

single-domain code, while for the remaining tests, we have
used codes with two or three subdomains. Although the
convergence dictated by the Hamiltonian constraint viola-
tion was algebraic, the correspondent L2 norms’ accuracy
was entirely satisfactory. We have pointed out the influence
of the numerical errors close to the puncture as the main
factor for losing the standard exponential convergence.
However, the convergence of the ADM mass measured by
the decay of its maximum deviation δMmax with increased
numerical resolution yields a much better outcome. Since
the ADM mass is a quantity evaluated far from the
puncture, it is not surprising that it is unaffected by the
errors close to it. We have noticed the same feature when
dealing with the Hamiltonian constraint violations in
subdomains not containing the puncture.

Another aspect we have explored with the present code
was the influence of distinct Bona-Massó functions [30].
The numerical experiments indicate that Alcubierre’s
zeroth-order slicing family [28] [cf. Eq. (62)] presents
better results, but with the caveat that we must fix the
constants present in the Bona-Massó functions.
Interestingly, the maximal slicing spectral code in a

single domain and in two subdomains produced accurate
and convergent results superior to those with the Bona-
Massó slicing conditions.
We remark that the three-subdomain code accurately

described the predicted power-law behavior of the lapse
near the puncture after the evolution settles down into the
stationary trumpet configuration. For those cases with
integer exponents, the numerical solution reproduced the
expected power-law behavior for r much smaller than the
innermost collocation point.
Finally, the subsequent and natural development of the

present research is to extend the spectral code to situations
beyond the spherically symmetric spacetimes with or
without black holes.
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