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Electromagnetic quasinormal modes of Schwarzschild—-anti—de Sitter black
holes: Bifurcations, spectral similarity, and exact solutions
in the large black hole limit
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We revisit the peculiar electromagnetic quasinormal mode spectrum of an asymptotically anti—de Sitter
Schwarzschild black hole. Recent numerical calculations have shown that some quasinormal mode
frequencies become purely overdamped at some critical black hole sizes, where the spectrum also
bifurcates. In this paper, we shed light on unnoticed and unexplained properties of this spectrum by
exploiting some novel analytic results for the large black hole limit. We demonstrate, both numerically and
analytically, that the quasinormal mode spectra of large black holes become approximately isospectral, and
we refer to this new symmetry property as spectral similarity. We take advantage of this spectral similarity
to derive a precise analytic expression for the locations of the bifurcations, in which a surprising
Feigenbaum-like constant appears. We derive an exact solution for its spectrum and eigenfunctions, and
find that large black holes cannot be made to vibrate with electromagnetic perturbations, independently
of the boundary conditions imposed at spatial infinity. Finally, we characterize the insensitivity of the
spectrum to different boundary conditions by analyzing the expansion of the quasinormal mode spectrum

around the large black hole limit.
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I. INTRODUCTION

The study of the quasinormal mode spectrum of asymp-
totically anti-de Sitter (AdS) spacetimes is heavily
motivated by the AdS/CFT correspondence [1-4]. The
quasinormal mode spectrum of an AdS black hole may
offer information on the dual conformal field theory (CFT),
such as the stability of a thermal dual conformal theory
and its relaxation times or transport properties of its dual
conformal fluid [5-8].

The Schwarzschild—AdS (SAdS) black hole is a well-
trodden path. Historically, the first investigation of its
quasinormal mode spectrum was conducted in [9], while
its implications in CFT were first described in [10]. Since
then, a wealth of papers has been written for different
dimensions, coupled perturbing fields, boundary condi-
tions, as well as using different numerical and analytical
methods [11-24].

The vibrational modes of linear perturbations of a black
hole spacetime is determined by the spacetime’s properties.
For the SAdS black hole, these are the black hole radius 7,
and the AdS radius L. Together with appropriate boundary
conditions on the black hole horizon and at spatial infinity,
these modes form a discrete spectrum listed, for spherically
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symmetric spacetimes, by two numbers: its overtone
number n and its harmonic mode index /.

In this paper, we revisit electromagnetic (EM) perturba-
tions of the SAdS black hole, concentrating on the large
black hole limit, which is defined as

pi=— p <<l (1)

Sl

Compared to its scalar and gravitational counterparts, the
electromagnetic quasinormal mode spectrum of a SAdS
black hole has been shown to be rather peculiar. Here is a
list of observations and open questions.

(i) As the dimensionless parameter p is varied, a
bifurcation in the spectrum occurs [23,24]. This
happens when a pair of quasinormal modes (QNM)
satisfying

& = —" 2)

meet up at the negative imaginary axis, where they
split into two purely imaginary or overdamped
modes. What is the character of this bifurcation,
and can we predict when it occurs?

(i) As the dimensionless parameter p approaches zero,
these overdamped modes populate the lowest lying
eigenfrequencies [11]. In the large black hole limit,
can the spacetime still vibrate [12]?

© 2022 American Physical Society
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(iii) There is a freedom in choosing the boundary
conditions (BC) at infinity, which may be motivated
by the ease of calculation thereafter or by
considerations from the AdS/CFT correspondence
[1,18,20-22,25]. However, there seems to be some
evidence that the spectrum in the large black hole
limit is insensitive to this choice of BC (either
Dirichlet or Robin) whenever a QNM spectrum
results [25].

(iv) In the large black hole limit, the spectrum is
strongly independent of the harmonic mode index
¢ even though the potential is strongly dependent
on 7 [11,12,14].

In this paper, we expound and answer these questions.

First, we shall show that there is a fundamental difference

in the asymptotic behavior of bifurcated and unbifurcated
modes. As we shall see, with the appropriate rescaling, the
unbifurcated modes approach a level spacing of

é _3 = 0.866025 — 1.5i, (3)
2 2

in the large overtone and large black hole limit [14], while
the level spacing of bifurcated modes approach —i. We also
conjecture a numerically motivated Feigenbaum-like con-
stant characterizing the bifurcation, and derive a master
equation that accurately approximates the value of p when
the bifurcations occur.

Second, we shall derive the exact quasinormal mode
spectrum and eigenfunctions in the large black hole limit.
From this, we get several new and surprising results.

(1) The spectrum is fully determined by imposing

causality at the black hole boundary. The boundary
conditions only determine the form of the eigen-

functions.
(2) The spectrum, properly rescaled, turns out to be of
the form
0,—i,-2i,...,—ni, ..., necz, (4)

where the existence of the zero mode depends on
whether the boundary conditions at spatial infinity
can support a nonzero constant solution eigen-
function.

(3) An expansion of the spectrum around the large black
hole limit may be derived agnostic of a boundary
condition at spatial infinity. This allows a proper
quantitative characterization of how insensitive the
spectrum is to the boundary condition at infinity, in
the large black hole limit.

As a consequence of (4), electromagnetic perturbations
cannot vibrate in the large black hole limit. When we
reverse the rescaling, the spectrum corresponds to infinitely
damped modes, which seems to play an important role in
theories for quantum gravity [14,26,27].

Third, we shall show that not only is the spectrum
strongly independent of ¢ in the large black hole limit, but
that it is prescribed by a single number

y =206+ Do (5)

These observations shall reveal a new symmetry of the
spectrum in the large black hole limit: spectral similarity.
This property is distinct from isospectrality since the
spectra calculated for different pairs of (p,#) are equal
to within an order O(p2,., ), Where py.,, is the largest value
of p in that set of pairs.

Our results are both analytic and numerical. Where the
numerical results are concerned, a novel pseudospectral
method was used by using the Bernstein polynomial basis.
The code we used is distributed as a Mathematica package
we call SpectralBP [28].

This paper is organized as follows. In Sec. II, we
introduce the Regge-Wheeler master equation and manipu-
late it for numerical and analytical use. We will also briefly
describe the pseudospectral method we implemented. In
Sec. III, we numerically recreate well-known results in the
literature, as well as add a few observations and comments
relating to the bifurcations.

In Sec. IV, we provide numerical evidence of the spectral
similarity of the spectrum in the large black hole limit. We
explain this in terms of a perturbed eigenvalue problem we
may reach in the same limit. In Sec. V, we use this spectral
similarity and some numerics to show the existence of the
Feigenbaum-like constant determining the bifurcations and
derive a master equation for when the bifurcations occur.

Finally, in Sec. VI, we derive exact solutions in the
large black hole limit and the expansion of the spectrum
around the same limit. We also show the insensitivity of the
spectrum to the boundary conditions at spatial infinity.

II. EQUATIONS AND NUMERICAL METHOD

In this section, we arrive at the following ordinary
differential equation (ODE) eigenvalue problem used in
the analysis of the proceeding sections. We shall be using
natural units (G=c¢ =1) and denoting dimensionful
quantities with barred variables and dimensionless quan-
tities with unbarred variables.

When a spherically symmetric spacetime in
Schwarzschild coordinates,
ds* = —f(F)dt* + f(7)'dF* + FPdQ?, (6)

interacts linearly with an external field, its perturbations
may be described by the Regge-Wheeler equation,

RO, + (=02 + V)@, , =0, (7)

where s is the spin weight of the perturbing field, £ > s is a
harmonic mode index, x is the Regge-Wheeler tortoise
of the spacetime (6), and V,, is an effective potential
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dependent on the spin weight of the external field and the
metric function f(7).

Solutions with a stationary wave ansatz,

@, = R 5.0 (X) exp(—ian), (8)

together with appropriate boundary conditions that impose
physical requirements such as causality or energy con-
servation are called quasinormal modes. These modes form
a discrete and generally complex spectrum, where the
nonzero imaginary component of the spectrum signifies
that perturbations may decay either through black hole
boundary or out to spatial infinity.

In tortoise coordinates, quasinormal modes are solutions
to a Schrodinger-like equation

d? _
(_ @ + Vs,f) R(I),s.f = a)zR(I),s,f' (9)

For an SAdS black hole, the metric function has the form

_ 2M, 7
R =1-2t 4, (10
where M), is the mass of the Schwarzschild black hole and
L is the AdS curvature radius.

For analysis, the location of the black hole horizon 7, is
more important than knowing its mass. Moving forward,
we replace

P(L? 4 7)

Mh_) 21:2 s (11)
so that
_2 _ 7.2
_ rh ry

A. Boundary conditions

For asymptotically flat spacetimes, the effective potential
V¢ vanishes for any given s and £ as you approach either
horizon,

lim V, /(%) = 0.

X—+too

(13)

Thus, it is reasonable for any perturbation with compact
support outside the black hole horizon to impose the causal
requirement that perturbations may only fall into the black
hole or radiate out to infinity,

@, ,(x,7) ~ exp(—ia(f + X)),
@, ,(x,7) ~exp(—i@(7 — X)), X - 4. (14)

X = —00,

For anti—de Sitter spacetimes, however, we lose one of
these physically motivated constraints. This is because of
the cosmological term in the metric function,

e P
lim f(7) ~77

] (15)
r—0o0

The effective potential for an SAdS spacetime may either

diverge (scalar or gravitational perturbations) or become

a positive nonzero value (electromagnetic perturbations)

as X — oo.

Thus, perturbations with compact support should be a
mixture of ingoing and outgoing plane waves as you approach
spatial infinity even accounting for causality. Since our
Universe is not asymptotically AdS, there is no obvious
physics that motivates a particular boundary condition at
spatial infinity. We have a free choice, usually motivated by
numerical or analytical convenience or by considerations
coming from the AdS/CFT duality [1,18,20-22].

Here, we choose to impose that the ingoing and outgoing
waves at spatial infinity exactly cancel out, as in a total
internal reflection:

D, ,(x,7) ~ exp(—id (T + X)),
D, ,(x,7) ~0,

X > —00,

X — +oo. (16)
We make this choice, at first, for convenience. The
literature seems to favor Robin boundary conditions at
spatial infinity for AdS spacetimes. However, as we shall
see, the spectrum of the EM-SAJS black hole in the large
black hole limit is insensitive to the choice of boundary
conditions at spatial infinity.

B. The eigenvalue problem

For the calculations that will follow, it is more conven-
ient to solve Eq. (9) using the Schwarzschild 7, defined
implicitly by

dx 1
— = f(r)"", 17
= (1)
since the potential V,,(X) has a complicated form in
tortoise coordinates. For EM SAdS, we choose s =1,

which has the form

vie®) = D, (18)
and f(7) is the metric Schwarzschild-AdS metric function
given in (12).

The black hole radius 7, and the AdS radius L provide
natural length scales to nondimensionalize our variables.
In this paper, we shall be freely switching between two
coordinates: (1) a dimensionless coordinate system where

r =1 corresponds to the black hole horizon,
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F— Py, L - #,L, » —

. (19)

SRS

and (2) a dimensionless coordinate system normalized to
the AdS radius,

F— L, 7, = Lry, o —

IS

(20)

In either dimensionless coordinate system, the dimension-
less quantity

IR

p= (21)

is constant. We shall use this dimensionless quantity to
speak about both coordinate systems simultaneously, where
it may mean as the dimensionless AdS radius in coordinates
described by (19) or as the inverse dimensionless black hole
radius in coordinates described by (20),

(19) - p =1L, (20) - p =r; 1. (22)

We note that the large black hole limit then corresponds to
p— 0. (23)

In either dimensionless coordinate system, the domain
of the solution is semi-infinite. In particular, the semi-
infinite regions correspond to (1, 00) and (p~', c0) when
normalizing to the black hole radius and the AdS radius,
respectively.

We choose a transformation so that both semi-infinite
intervals are mapped to the same compact interval (0,1).
We use the coordinate transformation

r= % (24)

for the coordinates normalized to the black hole radius, and

1
r=— (25)
pu

for the coordinates normalized to the AdS radius. These
manipulations starting from Eq. (7) yield the same differ-
ential equation

' f(u)*R, o () + 1 f (u) (2 (1) + uf' () Ry, ,(u)
+ (@ = £(¢ + 1)f ()R, o (u) = 0. (26)

We proceed to peel away the singular behavior at the black
hole boundary

Ry (u) = exp(—iwx(u))gy. (). (27)

The equation now becomes

2 " . .
u f(u) %;2() + (Zia) +2uf(u) + u? %y) %ﬁ()
(€ + 1), r(u) =0. (28)

As a sanity check, consider a Frobenius expansion around
the black hole horizon u = 1 with

Do) = (=1 c,(u—1)", (29)
n=0

where y is the indicial exponent, solved by the indicial
equation

yy—-1)+ay+b=0 (30)
and
2 2 2 df (u)
a=lim(u-1) ot u];(u) R ;
i i f(u)
-2+ 1
bzlim(u—l)Z#. (31)
i i f ()
That is,
3 2 _ 2i 2
— W—Z""p, bh=0. (32)
3+p
The indicial equation has two solutions,
2iwp?
=0, . 33
y 31, (33)

This means there are two solutions around the black hole
horizon, with the asymptotic behavior,

2
+i tm—2
) +p
bl

;;,f(“) (u—1

¢y ()~ 1. (34)

We note that we have successfully scaled out the causal
part, since the first solution may be seen as exiting the black

hole horizon when we bring back the time dependence.
Curiously, the surface gravity [10]

Kk =2xT, (35)

where T is the dimensionless Hawking temperature
given by

(36)
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appears in the indicial exponent of the acausal solution,
y=0, —. (37)

This motivates us to rescale @ with

N (3 ;p,f 2)1. (38)

This scales out the diverging behavior of @ in the large
black hole limit, leaving A finite for all values of p. This
rescaled frequency, A, will feature heavily in the rest of
the paper.

The differential equation finally becomes

(u=1)((1+p*)u? 4+ u+ 1)7(12?;(@
+ (=i(3+ )4 =2p%u +3(1 + p*)u?) 7‘1"532(”)
+ (€ + 1)y (1) = 0, (39)

where the domain of the solution and the boundary
conditions are identical for either coordinate system.

To illustrate the usefulness of (39), consider, for exam-
ple, Fig. 2 below. There are two main features we needed
to resolve more accurately so that the interpolated graph
looked smooth. These are the first turning points of the real
part of the QNM frequencies, and the second are the
bifurcation points where the graph transitions from a
locally linear function to two branches of a square root
function, or vice versa—depending on whether you are
looking at the imaginary or real part.

The first feature is located where p~! is small and the
second feature is located where p~! is large. Thus, it was
convenient for us to search for points with coordinates
normalized to 7, for the first feature and coordinates
normalized to L for the second feature. We then used
the fact that p is constant in either coordinate system to
construct Fig. 2.

C. Numerical method

Hereafter, we shall solve several ODE eigenvalue prob-
lems using a collocation method, expanding the eigenfunc-
tion ¢, ;(u) as a linear sum of weighted basis functions,

Gre() = ciBY (u). (40)
=0

Specifically, we have used the Bernstein polynomial basis,
given by

N

B = ()

Jra-or (3) = e

(41)

When the expansion (40) is plugged into (39) and
evaluated at a set of collocation points, this turns the
ODE eigenvalue problem (39) together with the total
internal reflection boundary condition,

bre(w) ~u,  u—0, (42)
into a generalized eigenvalue problem for the set of
coefficients cy,

M(J)c = 0. (43)

Significant digits for A are determined by calculating some
particular value using two values of N in (40) sufficiently
far apart, keeping digits that are common between the two
calculations. For more details, please refer to [28].

The code we have used is implemented in a Mathematica
package we call SpectralBP. This Bernstein spectral imple-
mentation and all its unappreciated advantages are fully
described in [28]. A summary of its advantages and
disadvantages is featured in Sec. V.

As an example, the Bernstein basis has a special property
where a general class of mixed boundary conditions may
decouple a set of coefficients c;, and may be solved
independently of the differential equation. This leads to
many computational conveniences (enumerated in [28]),
such as the exact satisfaction of boundary conditions
such as (42) and the reduction of the size of the matrix
equation (43).

In contrast, the boundary conditions do not generally
decouple a set of coefficients for other basis polynomials
such as Chebyschev polynomials, and the algebraic equa-
tions which the boundary conditions impose on the set of
coefficients must be solved with the differential equation
as in a tau method. Because of the limitations of floating
point arithmetic, these boundary conditions will not be
generally exactly satisfied as well, unless special measures
are implemented.

III. BIFURCATIONS OF THE SPECTRUM

Figure 1 shows the resulting eigenvalues plotted on the
complex plane for different values of £, varying the value
of p € (1072,50). The spectra calculated here match
prior numerical work [11,12] when the proper units and
scaling are folded back in." We also confirm the following
observations from the recent literature [23]: When a pair of
eigenvalues satisfying the symmetry (2) meet at the

'Tables T and 11 of [11] and Tables V-VIII of [12].
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Im (w)

Re (w)
2nT

FIG. 1. EM-SAdS quasinormal modes plotted on the complex
plane, for # = 1 (black lines), £ = 2 (red lines), and £ = 3 (blue
lines) and p € (1072, 50). Different curves correspond to differ-
ent overtones.

negative imaginary axis, they split into two purely imagi-
nary or overdamped modes.

Such overdamped modes have been observed before in
other spacetimes, such as the Kerr metric [29,30]. As the
spin parameter of the Kerr metric is increased, quasinormal
mode frequencies are seen to fall into and emerge out of the
negative imaginary axis.

There is a related splitting that occurs where a suite (not
just a pair) of quasinormal mode frequencies limit to a set
of equally spaced modes on the real axis. This was first
analytically predicted to occur near the extremal Kerr
limit [31-33], where the limit set is dependent only on
the azimuthal harmonic index m and the Kerr black hole’s
mass. This was later numerically confirmed in high
accuracy numerical studies [29,34,35].

Both scenarios are distinct from the quasinormal mode
splitting that occurs around the Schwarzschild spectrum
when the black hole is given spin.

Explicit observation of what these overdamped modes
are doing on the negative imaginary axis seems to have
been hindered by methods that cannot find purely imagi-
nary eigenvalues [30]. However, in the Schwarzschild—
de Sitter spacetime, the behavior of these overdamped
modes have been observed using a purely spectral
code [36].

As the ratio between the de Sitter and black hole radii is
increased, a pair of QNM frequencies satisfying (2) meet up
at the negative imaginary axis. There, these overdamped
modes stay, moving up and down the negative imaginary
axis until they collide with another overdamped mode. The
reverse of the bifurcation then occurs: the two overdamped

modes leave the negative imaginary axis as two pairs
satisfying (2). We refer to Fig. 8 of Ref. [36] for an example
of this.

We point out three new observations pertinent to

our study:

(1) The rich behavior of the quasinormal modes sepa-
rating and recolliding at the negative imaginary axis
is not general. In contrast to the Kerr and de Sitter
cases mode splitting, here we find a scenario where
the overdamped modes approach a limit set on the
negative imaginary axis.

(2) These bifurcations occur at approximately the same
point between [—(2n + 1)i,—(2n + 2)i], indepen-
dent of 7.

(3) One of the eigenvalues approaches —(2n+ 1)i
and the other approach —(2n +2)i in the large
black hole limit. In other words, entire spectrum
approaches

-2i,-3i,...,

A - —i,

p— 0. (44)

In later sections, we shall provide analytic foundations to
these numerical observations.

IV. SPECTRAL SIMILARITY
AND ¢ INDEPENDENCE

We first demonstrate that the spectrum exhibits a
property in the large black hole limit which we call spectral
similarity. To the best of our knowledge, this is a newly
discovered symmetry of the spectrum which clarifies that
the # independence and the equal spacing of the spectrum
are independent properties.

Let {4,,,} be the spectrum of (39) for some # and p,
and let

y(€.p) =£(¢ +1)p°. (45)
We find that for any pairs of (7, p) and (¢, p’) satisfying

v(C.p)=v(.p). p<Il, (46)

the two respective spectra are approximately equal,
j’n.f.p ~ An,f’,p" (47)

One already sees hints of spectral similarity in Fig. 2, but
it is most strongly demonstrated in Fig. 3. In Fig. 2, we
show the dependence of the spectrum to both p and three
different values of #. We have included guiding lines for a
specific example of spectral similarity, choosing y(¢,p) =
1/350 and marking with vertical lines where p~! satisfies
the prior expression when £ = 1, 2, 3. The intersection of a
vertical line of a color to their respective colored curve
represents the spectrum for that particular #. All three
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FIG. 2. Real and imaginary parts of the eigenvalues as a
function of p~!, with the same color scheme as Fig. 1. Vertical
black, red, and blue lines are p that satisfy y = 1/350 =
£(¢ 4 1)p* for £ = 1, 2, 3, respectively. Horizontal lines serve
as guides to show that the spectra are similar at the different
values of p and /.

spectra are approximately equal, indicated by the horizontal
lines where at least visually all three spectra “hit.”

We note that this approximate equality extends to all
overtone numbers, not just the eigenvalues we have plotted
in Fig. 2. We also note that this approximate equality shows
up for all values of y(¢,p) that are sufficiently small
enough.

This spectral similarity is more distinctly shown in
Fig. 3, where we parametrized the spectra for different
values of p and £ using (45). Spectral similarity manifests
when different values of p and # almost coincide whenever
the corresponding values of y(p, £) are equal.

To compare with Fig. 2, we use y(p, £)~"/? since

v(p. )72~ pt (48)

__________________________________

<

’”~

'4

~. e e o o

S—

|
N
EE g

e ————
e il T T pp———

(w)
2T
A
-:.--

¢

i-:g--

]
I
1
]
]
I
1
]
1
1
1
]
1
1
1
]
]
1
]
el

e

0 10 20 30 40 50 60 70
y(p.)) 2

FIG. 3. Real and imaginary parts of the eigenvalues as a
function of the parameter y(p,#)”'/2, with the same color
scheme and data as Fig. 2. We note that the same interval in
Fig. 2 is mapped to different intervals in y(p, £)~'/2 for different
values of Z. Specifically, p € (1072,50) is mapped to (0.01414,
70.71) for £ =1, to (0.008165, 40.8248) for £ =2, and to
(0.005774, 28.87) for £ = 3. The coincidence of the three
curves in the large black hole limit is predicted by (51), where
we note that y(p,#)~"/? ~ p~! in the same limit. This indicates
the spectral similarity of the spectrum. The gap indicated by the
arrows is 0.845 — 1.52i.

The coincidence of the three curves corresponding to
¢ = 1,2, 3 in the large black hole limit is predicted by (51),
where we note that y(p, £)~"/? ~ p~! in the same limit. We
emphasize that the coincidence is not exact, which is why
we refrain from using the term isospectral for this property.
As we shall see, for different values of #, the difference
between similar spectra is bounded by the square of the
largest value of p in that set.

We note that the same interval in p is mapped to different
intervals in y(p,#)""/? for different values of 7.
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Specifically, p € (1072, 50) is mapped to (0.01414, 70.71)
for £ =1, to (0.008165, 40.8248) for £ =2, and to
(0.005774, 28.87) for £ = 3.

One may also observe that for small and intermediate
black holes, this symmetry is broken. Note how the spectra
split into different curves in Fig. 3 for y(p,£)~'/? < 5.

To explain spectral similarity, we may define a related
eigenvalue problem to (39) by simultaneously reaching the
eikonal limit £ — oo and the large black hole limit p — 0,
while keeping the product

y=2¢(¢+1)p* (49)
constant. We would arrive at

2
(u® = 1) %;2(”) +3(u? - id)

dd)ﬂ,y(u)
du

+ 7¢/1,y(”) =0.
(50)

Then {A,,,} of (39) is approximately equal to {4,,}
of (50) in the sense that

|’1n,y - ﬂn.ﬁp' ~ O(pz) (51)
or
14

This is because (39) may be treated as a perturbed
eigenvalue problem of (50), as in

L (. y. () + 3R (u, N)p(u) =0,  (53)

where &, (u,7,4)¢(u) is given by (50) with perturbing
parameter 6 = p and

2 u
(. )00) = 2 (u— 1) W
- (=id = 2u + 32) dﬁ,i;(u). (54)

The perturbation embodies finite-size effects of the black
hole to the eigenvalue problem. That is, we may expand

P(u) =wo(u)+ > yi(u). A=pg+Y . (55)
k=1 k=1

where (yo(u), o) are the eigensolutions of the unperturbed
ODE eigenvalue problem

N

L (u,y, po)wo(u) = 0. (56)

Spectral similarity is sufficient in explaining the strong ¢
independence of the spectrum: in the large black hole limit,
Eq. (51) tells us that it is y which determines the form of
the spectrum with corrections scaling with ~p?. In fact,
Eq. (52) tells us that the larger the value of Z, the quicker
the independence sets it (for the same value of y).

On the other hand, the equal spacing of the spectrum is
orthogonal to # independence, contingent on the properties
of (50). One can imagine a different form of £;(u,7,4)
which results with a spectrum that is unequally spaced.
This would result in a spectrum of the original problem
being both # independent and unequally spaced.

In the “asymptotic limit” [14] (i.e., n — o0 and p — ),
the spacing for general asymptotically AdS spacetimes has
been shown to be

V3 3 .
Initey = Aney =5 =75 = 0866025~ 1.5i.  (57)

We have already applied our specific scaling for better
comparison. This equal spacing is visible in Fig. 3, where
even the low overtones match the asymptotic value rea-
sonably well.

The spacing of (50) limits to (57). For example, choosing
y = 10724, we have’

Ja1, — 470, = 0.864(2560721) — 1.5014(08288)i.  (58)

A. Comments on “bifurcation”

The description of the splitting of two pairs satisfying (2)
into two purely imaginary modes as “bifurcations” was
given very recently [23,24]. (In the earlier Ref. [36], this
mode splitting was not referred to as a bifurcation.)
A bifurcation implies that a small continuous change in
a parameter of a system results in a sudden change in the
qualities of that same system, so it matters to specify what
discontinuously changes as p is varied.

It is not difficult to justify why the description of [23,24]
is appropriate.

When two quasinormal modes satisfy the symmetry (2),
the split into two distinct purely imaginary modes breaks
the symmetry. Before and after the bifurcation, the number
of pairs that satisfies (2) changes.

This should also shift the overtone number labeling of all
modes above them, and their corresponding eigenfunctions
no longer satisfy the symmetry (2) as well.

Furthermore, if you imagine how electromagnetic per-
turbations vibrate outside the black hole, the fundamental
“note” of these perturbations jumps before and after the

“Significant digits, as stated in Sec. IIC, are determined by
calculating two spectra using two values of N in (40). Specifically,
we have used N = 550 and N = 600. We have also included in
brackets digits coming from the higher accuracy calculation.
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FIG. 4. Bifurcation scenario where the appearance of an over-
damped mode implies a jump in the frequency of the lowest lying
vibrational mode. As the parameter is varied around p~! ~ 4.3,
the period of the lowest lying vibrational mode may either diverge
or remain finite, depending on which side of the bifurcation you
are on.

bifurcation. Specifically, the period of the lowest lying
vibration mode diverges prior to the bifurcation, while the
period of the lowest lying vibration mode is finite after
the bifurcation.

This is illustrated more clearly in Fig. 4, which shows the
path and jump of the fundamental vibrational frequency
around a bifurcation for £ = 1.

Finally, as demonstrated in the prior discussion, there are
actually two spacings to which the spectrum limits: the
well-known one describes the spacing of the unbifurcated
modes. The second spacing describes the bifurcated modes,
given by

(59)

ﬂn+1,y - ﬂn,y = —L

A dividing line then exists between the first 2n modes and
the rest of the modes, defined by a critical value of y which
marks the nth bifurcation event. The first 2n modes limit to
the spacing given by (59) while the higher unbifurcated
modes limit to (57).

By spectral similarity, an equivalent statement also
follows for p; ; and 4, . ,. This will be the topic of the
next section.

The bifurcation of the EM-SAdS spectrum seems to be
important also since it bypasses the spacing predicted
analytically in the asymptotic limit [14] for perturbations
of the SAdS, spacetime with arbitrary spin weight. This
analytic result, given by (57), concerning the equal spacing
for scalar, electromagnetic, and gravitational perturbations

of the SAdS black hole have been confirmed numerically
as well [12,13].

As the overdamped modes populate the lowest lying
overtones, we shall see when we solve the exact solution in
the large black hole limit that modes with spacing (57)
completely disappear, replaced by a spacing given by (59)
all throughout the spectrum. What this tells us is that, for
the EM-SAAS system, the large overtone limit and the large
black hole limit are not commutative: depending on how
you reach both limits, you would see a spectrum with
spacing given by either (57) or (59).

V. BIFURCATION MASTER EQUATION AND A
FEIGENBAUM-LIKE CONSTANT

As we have discussed, the set of bifurcation points {pj, ,}
is very interesting. The symmetry (2) for pairs of quasi-
normal mode frequencies is broken, and there is a corre-
sponding jump in the frequency of the fundamental
vibrational mode as well. These bifurcation points also
indicate which parts of the spectrum limit to a spacing
defined by (57) or (59).

Here we shall derive a master equation that accurately
approximates all values in this set, via a combination of
analytic and numerical arguments.

Using the spectral similarity relation demonstrated in the
previous section, we solve (50) for critical values of {y§}

and relate
o Yn
N+ 1)

If (60) is true, this would explain a feature in Fig. 2, related
to the spacing of the inverse of p;, , for a given overtone and
adjacent values of 7. Consider the difference

(60)

Alps )7 = (057 = (P o)™ (61)

Equation (67) predicts that the spacing is equal in the

eikonal limit,
lim A(p¢ )~ = !
=0 p”’f yfl

The values of y;, may be numerically calculated via a binary
search algorithm. The binary search algorithm uses the fact
that below the critical value the nth overtone exists as a pair
of modes satisfying (2), while above the critical value the
symmetry is broken and replaced by two pure overdamped
modes. The algorithm terminates when at least 25 signifi-
cant digits are recorded. A similar binary search algorithm
may be implemented to numerically calculate py, ,.

The first 16 values are given in Table I, where we only
show the first 10 significant digits and have also included

(62)
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TABLE 1. Critical values of y; of (50) such that the nth
overtone reaches the negative imaginary axis at /.

n Yn A

0 1.151448404 x 107! —1.365272160 i
1 5.165673360 x 1073 —3.344965176 i
2 1.739561715 x 10~ —5.340542424 i
3 5.421427407 x 1076 —7.338560128 i
4 1.625589807 x 1077 —9.337432770 i
5 4.761150906 x 10~° —11.33670536 i
6 1.372613841 x 10710 —13.33619716 i
7 3.912424972 x 10712 —15.33582206 i
8 1.105653757 x 10713 —17.33553383 i
9 3.103722261 x 10713 —19.33530543 i
10 8.665844274 x 10717 —21.33511998 i
11 2.408920121 x 10718 —23.33496641 i
12 6.671628545 x 10720 —25.33483715 i
13 1.841985180 x 102! —27.33472685 i
14 5.071935664 x 10723 —29.33463162 i
15 1.393316077 x 10724 —31.33454858 i

the value of the nth overtone when it hits the negative
imaginary axis. So as not to overload our notation, we
define

A=A (63)

c pe
Yn 1

The data in Table I are interesting, since they numerically
show that

lim (2, — AS) = =2i (64)

n—oo

and

. 7;L;+1 2ﬂ'>
llmil:l—‘, I' =ex - . 65
L p(-25) o)

This last expression is reminiscent of a Feigenbaum
constant, since it is equivalent to

Jim Vo1 =72

C C
n—ooy, — yn—l

=T. (66)
In fact, a more accurate expression is given by

}’2+1 1
—/—~(14+——I. 67
v4 ( 2(n + 1)> (67)

This expression is numerically motivated by Fig. 5, where
we have plotted %77—*‘ and matched it with

17541 1
/]l 4+ —. 68
T (+%wHQ (68)

1_V2+1
C va
1.7,
_____ 1+_1_
1.6 2(n+1)
-10
—20
1-5 -30 e |V$\um'ygn|
1.48 -40
\ -50
1.3F\ -60
=70
1.2 ‘\.\ 0 5 10 15
o
1.1 0*‘_..-.
.., (V0% eseeeese0ee
0 5 10 15 20 25

FIG.5. Plotof %y—“ and the fitting (1 + 5;!;) which motivates
(67). The inset gfves the absolute difference between the
numerical values found via binary search and the analytical
estimate (70), showing exponential convergence.

In fact, once the Feigenbaum-like constant was noticed,
the expression (67) became vital in speeding up the
binomial search algorithm, since it may be used to define
both the initial center and the interval of the search to great
precision.

Thus

i | 1T (1) |7 (69)

or we may fit

: 2n+ 1)
C — ] C
yn ( + 6)7/0 2,1’1!

T, (70)
where the constant e accumulates all the deviations
from (67). This constant is numerically consistent with

€ = 8.84744 x 1075. (71)

The agreement between the numerically calculated values
of y5 and (70) is excellent, as shown in the inset of Fig. 5
which plots the absolute difference between the two. The
inset shows exponential convergence between the numeri-
cal values and the analytic expression.

Finally, we arrive at our master equation

) . (41
Py, = \/ Ut gmeern™
where
Pue R P4 (73)
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FIG. 6. The critical values of pj, ; defined to be the value of p for
harmonic mode index ¢ so that the nth overtone of (39) reaches
the negative imaginary axis, for n = 0 and n = 1. Plotted also is
the estimate (60). The inset gives the difference between the
numerical value and analytical estimate, showing the expected
power-law falloff with a form given by (74).

We show how closely our analytic expression matches the
numerically solved values of the bifurcation points in
Fig. 6. The inset shows a power-law falloff of the absolute
difference between the numerical value and analytical
estimate. This is expected, since (60) is a zeroth order
approximation of (53). The form of the perturbing param-
eter implies that the first correction term is given by

P;Cz,z - (74)

Yn 1
20t + 1)‘ 26 +1)

VI. EXACT SOLUTIONS IN THE LARGE BLACK
HOLE LIMIT

In the large black hole limit p — 0, the ODE eigenvalue
problem (39) reduces to

d2¢z(“)

du?

dep,(u)
du

(- 1) +3(u? - id) 0. (75)

One of the solutions is a constant. Since the above equation
may be written as

d (<u3 —1) %(”) - 3i/1¢,1(u)> =0, (76)

du u

the second linearly independent solution satisfies the
separable equation,

(= 1)

%(”) — 3iddhy(u) = 0, (77)

u

whose solution is of the form

pi(u) = Ag(u)*?, (78)

where

g(u)

— %exp (—2\/§ arctan F J&;u} ) (79)

Since the above solution has the asymptotic behavior

i) ~ (1 —u)*, (80)

and we recall that the Frobenius expansion must be regular
around u# = 1, this gives us the eigenvalues

A=0,-i,-2i,-3i,...,—ni, ..., ne”Z. (81)
This spectrum matches the spacing (59); no overtones with

spacing (57) exist, even in the high overtone limit.
The zero mode corresponds to a constant eigenfunction,

po(u) = A. (82)

The Dirichlet boundary condition (42) corresponding to a
total internal reflection at spatial infinity does not support
the zero mode, since the corresponding eigenfunction
vanishes. However, other boundary conditions may support
the zero mode [23,24], whenever the boundary conditions
permit a constant nonzero solution.

Thus, the general solution of the EM SAdS in the large
black hole limit is of the form

¢,(u) = Ag(u)"/* + B, nez. (83)

In deriving the above general solution, we have so far
only imposed the regularity of the solution after scaling out
the asymptotic behavior of the causal solution around
the black hole boundary. Thus, different boundary con-
ditions at the spatial infinity would approach this universal
spectrum in the large black hole limit.

This has been observed numerically before, at least
comparing Dirichlet and Robin boundary conditions for
gravitational perturbations [25]. But the exact solution in
the large black hole limit enables the first (to the best of
our knowledge) analytic treatment both confirming and
explaining this numerical observation, at least for electro-
magnetic perturbations.

When we consider the dimensionful eigenvalues, @
correspond to infinitely damped modes. These seem to play
an important role in theories for quantum gravity [14,26,27].

A. Comment on the satisfaction
of the causal boundary conditions

The general solution we have derived corresponds to a
case where the indicial exponents are integer separated.
While it is common that the subdominant solution has a
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logarithmic tail, here the subdominant solution is just a
constant function. For the total internal reflection boundary
condition,

Pu(u) = A(1 =T4g(u)"?), (84)

where we have used the Feigenbaum-like constant that
appeared in a previous section. At this point, we are
reminded of the subtleties concerning the algebraically
special modes of asymptotically flat spacetimes [37,38].
Naively, the solutions satisfying the total internal reflecting
boundary condition seem to imply that the overdamped
modes are a mixture of causal and acausal waves around the
black hole boundary. That is, the overdamped modes are
not real quasinormal modes—very similar to what occurs in
asymptotically flat spacetimes [30,38].°

However, explicitly determining whether the solution
(84) satisfies the causal boundary condition (16) is difficult
because the dimensionful frequency @ diverges in the large
black hole limit. The plane wave prescription around the
black hole boundary thus breaks down.

For finite but large black holes, the indicial exponents
of the overdamped eigenfunctions are no longer integer
separated. If the overdamped eigenfunctions are a mixture
of causal and acausal parts, we expect that these solutions
are not smooth around the black hole boundary.

Since the acausal indicial exponent corresponding to each
overdamped mode is some positive noninteger value, it is
straightforward to try and look for divergent behavior around
the black hole boundary in the derivatives of an overdamped
eigenfunction. We have not observed this for the eigenfunc-
tions we have numerically calculated—they all seem per-
fectly smooth around the black hole boundary—suggesting
that they are bona fide quasinormal modes.

B. Expansion around the large black hole limit:
Overdamped modes

We shall now attempt to quantify the insensitivity of the
spectrum to the boundary conditions at spatial infinity
around the large black hole limit. In our discussion from
Sec. 1V, the ODE eigenvalue problem reduces to

d*¢p(u)

du?

dp(u)

3(u? —il
+3(u* —id) o

(' —1)

+rp(u) =0 (85)

*We recall the following for the asymptotically flat spacetimes:
after a rescaling similar to (27) and at the algebraically special
frequencies, both local solutions around the black hole horizon
corresponding to ingoing and outgoing solutions are analytic,
owing to a special disappearance of the logarithm that usually
accompanies the subdominant solution. This means that the
analyticity of the global solution does not guarantee that the
eigensolution at the algebraically special frequency satisfies
the quasinormal mode boundary conditions around the black
hole horizon.

in the large black hole limit. We start our analysis with this
ODE. Neither eigenfunction is convenient for use, because
of a complicated recurrence relation with its derivatives.

We thus rescale the eigenfunctions so that the general
solution has a useful form,

b = (Y2 . 89

u

For simplicity, we shall also be applying a transformation
on the eigenvalues,

A= —in,, (87)

so that the expansion of 7, around y = 0 has the form

n=nt > A (88)
k=0

The resulting differential equation is of the form

&>y, () dy, (u)
(MS - 1) de =+ (ﬂy - 2’7yu + (3 - 27];/)”2) (.;111

+ (v + 20, = O, + (n, = 2)n,u)y, (u) =0,  (89)

where there are again two linearly independent solutions in
the limit y — 0,

Wy, (1) = Ay, 1 (1) + By, 5 (1), (90)

where

s = ( 1;(;‘))", Voal) = (1= ). (1)

This is more convenient, since now (1 —u)" forms a
complete basis, whose derivatives satisfy a simple recur-
rence relation.

One of these constants of the general solution will be
determined by the boundary conditions at spatial infinity.
We shall keep our analysis very general. Suppose some
boundary condition at infinity imposes an eigenfunction
of the form

Wﬂo(”) = A(Wn,l (”) + él//n,Z(u))' (92)

For the total internal reflecting boundary condition, we
have

E=-T"1/4 (93)

where curiously I' is the Feigenbaum-like constant we have
identified earlier.

084028-12



ELECTROMAGNETIC QUASINORMAL MODES OF ...

PHYS. REV. D 106, 084028 (2022)

For finite y, we do not expect two regular solutions
around the black hole boundary. Thus, we choose

o () = A (w () + f;yk%m)). (94)
k=1

Now, we express both (92) and (94) as

(s

() =AY (1 - wt )
k=0
and
y, () = A di(y)(1 =)k, (96)
k=0
respectively, where
(-1)* &
%= g =1
(-1} o
di(r) =, w‘//n,( =1) (97)
We note that
-1 k dk
k= ( k') @Wﬂ,l(u = 1)+ (=15, (98)
and
_ =Dt _
di(0) = 7 Wl//n,l(u =1), (99)
where 6, ,, is the Kronecker delta
0, k#n
Orn = . 100
w={y (100

Consider the recurrence relation satisfied by ¢; and d(y)
for y = 0 and finite y,

(I+k=no)crr +3(k=no)er =3(k+ 1)cr . =0 (101)
and

14
(1 =k+n,)d_y(y) + <1+k—77y +3(k - ﬂy))dk(Y)

=3(n+ 1)d(y) = 0. (102)
Note the extra term for the recurrence relation for d;(y),
which remains finite as you approach y — 0. That is, if we
choose Kk =n—1 and use (88), we have for the both
of them

Cpo1 +nc, =0 (103)

and

1
(‘m + l)dn—l(o) +nd,(0)+ O(y) =0.  (104)

If we assume that y, (u) is continuously related to v, (u)

in the limity — 0, these two expressions must match in that
same limit. Thus, we arrive at an expression for the first
expansion coefficient of 7,,

At = (-1t =) (109
That is,
n, = n+yA(n) (106)
o
2= —in— iyA,(n). (107)

We note that this expression works for all overtone numbers
except for n = 0, and for any boundary condition imposed
at spatial infinity that results in a quasinormal mode
spectrum. Thus, black hole spacetimes cannot vibrate in
the large black hole limit independent of the boundary
condition at spatial infinity.

C. Expansion around the large black hole limit:
The zero mode

Calculating the expansion around the zero mode is less
straightforward. Equation (92) is no longer valid, since
the eigenfunction of the zero mode is simply a constant
function,

Wy, (1) = A. (108)
We shall use this fact, and assume that for (96),
limdy(y) ~ 1, limd, (y) ~ 7. (109)
y—0 r—0
Then, to determine A;(0) from
n=>_ A(0), (110)
k=0
we use a combination of the recurrence relation
(v +3n,(n, — 1))do(y) +3(n, = D)di(y) =0 (111)

and the boundary condition at spatial infinity that supports
a constant solution. As a sample calculation, let us consider
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the Robin boundary condition corresponding to a conser-
vation of energy condition at spatial infinity [23,24],

dy,, (0)

(’;VM =y, (0) = 0. (112)

The boundary condition leads us to
y

dy(7) :—ido(y)- (113)
We folded this back in to (111) to yield

3

7+, = 1) do(r) = 0. (114)

For the constant solution to be supported in the limit y — 0,
the above equation must be true while dy(y) # 0. That is,

3 0
rHS =1 =0 =3 A0 (115)
k=1
This yields
2
A1(0)2§. (116)

D. Testing the expansion around
the large black hole limit

We test our expansion around the large black hole limit.
We shall be using two boundary conditions. First, the
Dirichlet boundary conditions we have used in the bulk of
this paper,

w,,(0) =0, &p=-T714, (117)
and Robin boundary conditions,
dy,, (0)
2 d7u — ¥y, (0) =0, Ep=T"1% (118)

Both of these conditions conserve energy at spatial infinity.
Since

¢r = —¢p, (119)
then
Al,R(n) = —Al,D(”)- (120)
We define the finite differences,
Myp—n nyrR—N
M) === Ml =FT—. (121)

TABLE II. Comparison between the analytic and numerical
first order expansions around the black hole limit for Dirichlet
and Robin boundary conditions. Exact and decimal expressions
were calculated using (105) and (118), and numerical expressions
were calculated using the finite differences (121) with y = 107'2,
There is excellent agreement between the analytic and numerical
expressions, since the table shows a range of matching from all
digits shown at n = 0 and six digits at n = 8 for both boundary
conditions.

n Exact Decimal —Ap(y) Ag(y)

0 % 0.666666667 0.666666667
1 —%F“/“ —1.429884308 —1.429884308 —1.429884308
2 r-1/2 6.133707406  6.133707406  6.133707406
3 —2%1"_3/4 —30.69672190 —30.69672191 —30.69672190
4 13—3F_1 163.0302550  163.0302550 163.0302551
5 —%F‘S/“ —894.3523748 —894.3523762 —894.3523734
6 %F_yz 5007.591567 5007.591523  5007.591610
7 —%FJ/“ —28436.25211 —28436.25352 —28436.25070
8 %1—‘_2 163153.3347 163153.2881 163153.3814

where 17, p and 77, x is a quasinormal mode calculated using
either the Dirichlet or Robin boundary conditions, respec-
tively, and compare

Ay r(n) ~ =Ap(y) ~ Ag(y) (122)

for some small y. Note that the Dirichlet boundary con-
ditions does not support the zero mode.

In Table II, we do this comparison for y = 10712, We
note there is excellent agreement between the analytic
expression and the expansion around the large black hole
limit for either boundary condition, since the table shows a
range of matching from all digits shown at n = 0 and six
digits at n = 8 for both boundary conditions. For ease of
comparison, we show the exact expression for A zx(n) and
also show its decimal expansion.

VII. CONCLUSION

In this study, we have extensively explored the nature
of electromagnetic perturbations of Schwarzschild—anti—
de Sitter black holes in the large black hole limit. We have
presented three major results: (1) a novel symmetry of the
quasinormal mode spectrum which we call spectral sim-
ilarity, (2) a master equation which describes at what values
of the dimensionless constant p the bifurcations in the
spectrum occur, and (3) exact solutions of both the
spectrum and the eigenfunctions in the large black hole
limit, as well as the first order expansion of the spectrum
around the same limit.
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Between these three results, we expound on prior studies
on the EM-SAJS system, as well as answer open questions
found in the literature.

Spectral similarity is sufficient in explaining the # inde-
pendence of the spectrum in the large black hole limit. We
have also shown that the level spacing of the spectrum in the
same limit is a separate effect, attributed to the properties of a
related eigenvalue problem which results when simultane-
ously reaching the large black hole limit and the eikonal limit.

We have expounded on the bifurcations in the spectrum
[23,24], detailing the various sudden changes in the
qualities of the EM-SAdS system around the bifurcation.
Apart from a change in the number of pairs of modes
satisfying the symmetry (2) and a jump in the fundamental
“note” of electromagnetic perturbations, we have shown
that the bifurcation marks a shift in which of two asymp-
totic spacings sets of quasinormal modes reach in the large
black hole limit: either given by (57) or (59) for the
unbifurcated and bifurcated modes, respectively.

The master equation describing when the bifurcations
occur is itself very interesting because of the emergence of
a Feigenbaum-like constant which describes a geometric
speedup between consecutive bifurcations. For the related
eigenvalue problem, a part of the master equation predicts
the bifurcations with exponential convergence. For the full
master equation, there is a power-law convergence, fully
explained by our discussion.

With the exact solution, we show that the spacetime
cannot vibrate in the large black hole limit and, at least for
electromagnetic perturbations, explain the insensitivity of

the spectrum to the boundary conditions at spatial infinity.
We quantify the effect of the boundary conditions, which
only appear at first order around the large black hole limit.

Some of our results can be expected to have interesting
implications for the AdS/CFT correspondence, but they are
also of intrinsic interest insofar as they help to clarify some
of the peculiar properties of electromagnetic perturbations
in asymptotically AdS spacetimes that have fascinated
the community. We leave to future work extensions to
scalar and gravitational perturbations and to the Kerr-AdS
spacetime.

The code we have used, which we call SpectralBP, is publicly
available and may be found at [39]. Details of its imple-
mentation in a Mathematica package may be found at [28].
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