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We investigate the second-order effective energy-momentum tensor (2EMT) constructed by the
quadratic terms of the linear scalar cosmological perturbations while the universe is dominated by a
scalar field. We show that 2EMT is gauge dependent. We then study 2EMT in three (longitudinal, spatially
flat, and comoving) gauge conditions in the slow-roll stage of inflation. We find that 2EMT exhibits an

effective fluid of w = —1/3 on superhorizon scales in all of those gauge conditions.
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I. INTRODUCTION

An inflationary universe is a successful scenario so far,
according to the observation of the cosmic microwave
background (CMB). Cosmological perturbations produced
during the inflationary period explain the CMB data
successfully. As the precision of the observational tech-
nique improves, the higher-order perturbations beyond the
linear order have attracted more attention. Thus, it is
increasingly more important to understand the higher-order
nature of cosmological perturbations to test the paradigm of
inflation and to discriminate among different models of
inflation. The second-order cosmological perturbations
during inflation were investigated in Refs. [1,2], in par-
ticular, the second-order effective energy-momentum ten-
sor (2EMT) constructed by the quadratic terms of the linear
perturbations was considered. This has been studied as a
way of a backreaction of perturbations on the background.
The gauge invariance of 2EMT was also discussed.

Recently 2EMT of cosmological perturbations produced
by a perfect fluid was investigated in the Friedmann
universe [3]. The gauge dependence of 2EMT was pre-
sented in general. The 2EMT in three gauge conditions
(longitudinal, spatially flat, and comoving gauges) was
investigated in the matter- and radiation-dominated epochs.
No convergence of 2EMT was observed, i.e., each gauge
condition gives a different 2EMT in the given epoch.
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The story of the gauge invariance of the Einstein’s
equation can be discussed as below. One can expand the
Einstein’s equation by order as (let 824G = 1 in this section)

Gu=T,,
=GV +GY+G =T+ T+ (1)

The equality is satisfied order by order, G,(,'L) = T,(fﬁ). Let us

consider the first-order equation, G;(,L) = T,(,L). The Einstein
tensor G,(,ly) and the energy-momentum tensor T,(,lb) are not
gauge invariant by themselves. By adding terms on both
sides of the first-order equation, one can construct the

equation in a gauge-invariant form,

=~ (1 = (1

Giw) = T/(w)7 (2)
where the gauge-invariant quantities are given by

GY =G +sGY, TV =1L +eT). (3)

Here, 5G,(,L) and 5T,(,]D> are the terms added to make gauge-
invariant quantities.

Similarly, the second-order equation can be put into the
gauge-invariant form, Gﬁ) =1 ,(3,) However, each quantity
is composed in a more complicated way,

© 2022 American Physical Society
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G2 =GP +5G)
2 1 2
=G [92]+ G [9V]+6G [92]+5GR [9 V)], (4)

T =18 + 57
= 7312,y @] + T [V, )

+0T3) |9 w®) + 6T gy, (5)

where ¢ and (") represent the metric and the matter
perturbations of nth order. The second-order quantity
consists of two parts; one is linear order of the second-

order perturbations (e.g., G,(;,) [¢¥)]), and the other is

quadratic order of the linear perturbations (e.g., Gf,? [g(l)]).
2EMT is constructed by the underlined terms in Eqgs. (4)
and (5),

2.eff 2 2
T = 12 1oV v ] - G [gM). (6)

Considering G,(,%) and T,(,%) are gauge invariant individually,
it is difficult to expect T,%eff) in which only a collection of
parts of them are gauge invariant.

In Ref. [3], we derived 2EMT of a barotropic fluid and
showed that it is indeed gauge dependent. In this work, we
study 2EMT of a minimally coupled canonical scalar field.
We will derive 2EMT and show its gauge dependence. We
shall try to impose three gauge conditions (longitudinal,
spatially flat, and comoving gauges), and investigate the
convergence of 2EMT in the slow-roll background during
inflation. Very interestingly, we find that 2EMT in all gauge
choices converges to an effective fluid in the long-wave-
length limit. This convergence is absent in the barotropic
fluid in the Friemann universe studied in our previous
work [3].

II. EINSTEIN’S EQUATION AND 2EMT OF
SCALAR FIELD

In this section, we derive 2EMT starting from linear
perturbations. We consider the general metric

ds*=a?(n)[—(1+42A)dn* = 2B;dndx' + (5;;+2C;;)dx'dx'],
()

where the metric perturbations A, B;, and C;; are to be
expanded in all orders. The Einstein tensor G,, up to
second order was presented in our previous work [3], which
we will not duplicate here. In this section, we present the
energy-momentum tensor of a minimally coupled canoni-
cal scalar field ¢.

A. Energy-momentum tensor

The energy-momentum tensor of a minimally coupled
scalar field ¢ is given by the perturbed matter action S,
with respect to the metric ¢**,

2 68, 3 l . 3
Tﬂu__\/—_—gégﬂy_qﬁ,ygb.u Guv 2gp ¢.p¢.0 V(¢) ’ (8)

where V(¢) is the potential of ¢. We split ¢ into the
unperturbed background ¢, and the perturbation ¢,

b = o + 59 ©)

Then each component of the energy-momentum tensor is
readily found as, up to second order in perturbations,

T =5 (B2 + V() + o'+ 24V (o)
V()5 -+ 3 (507 + 5 (Vo)

1
+3 a*V 5 (0)3¢* + 2a*AV 4 (¢h)5¢p

1
+ EBkBk((ﬁf))z — $oBO k. (10)
1
Toi = oo, — 58,-((;5{))2 + a*B;V ()
+ 6¢/8¢ ; — Bip6¢ + AB;(¢hp)*
BV ($0)54, (1)

Ty = by [0 = Vi) +5, i — A

—a®V'(¢o)og] + Cij[(¢)* — 2a* V()]
+ 8¢ 16 ; + 2C;; (o6 — Algg)? — a*V (¢ho)d¢]

1 1 1
+ 5, [5 (5¢')* — 3 (Végp)? + <2A2 - 5B,(Bk) (h)?
1
—2A¢46¢" + By . — 542V¢¢(¢0)5¢2] . (12)

where a prime denotes a derivative with respect to the
conformal time #, V,, = 0V/dp|, and V4, = 0V /0¢?|,.
From now on, the potential is always evaluated with respect
to the background value, i.e., V = V(¢,) and so on.

B. Einstein’s equation

We can construct order by order the Einstein’s equation
by equating each component of the Einstein tensor and the
corresponding component of the energy-momentum tensor
(10)—(12).
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1. Background equations

The background equations, which contain no perturba-
tions but only background variables, are given by the 00
and ij components,

871G |1
ye = 86 [5 (0')? +a2v} (13)
2H' + H* = 8zG [—%(qﬁo’)z + aZV], (14)

where H = (da/dn)/a, and for later use, H = (da/dt)/a
with dt = adn. The equation for ¢, can be found from the
energy-momentum tensor conservation,

0+ 2Hepy + a*Vy = 0. (15)

2. Linearized equations

Using the background equations (13)—(15), we find the
most convenient form of the first-order equations,

2(H' +2H*)A — 2HB,; — 2HC} + ACk — Curna
= 82G((¢(09)" + 2HpoS¢ — 20,54, (16)

2HA ; + B gk + Cipx = Clai = 878G oo, (17)

8ij[2HA' + 2(H' + 2H?*)A + AA - Bl — 2HBy

— Cix = 2HCly + ACy — Cy ]

—A;+ B/(i,j> +2HB; ) + C}; + 2HC;

— AC; + 2Ci ik — Crij
= 811G, [(¢5¢) + 2H50)- (18)
The equation of motion for the scalar-field perturbation d¢
is given by
8¢" + 2HSP' — Adp + a*V 5 — (A" = Bry = Cii)

+ 24V ,4,A = 0. (19)

3. Gauge-invariant variables

Now, we consider only scalar components of the metric
perturbations such that they are written in terms of four
functions,

A=a,

B, =p,, Cij=-yo; +E;. (20

These functions transform under the infinitesimal coordi-
nate transformation x* — x* + &* as

a—a—E —HE, (21)

p—p-E+¢&, (22)

w =y + HE, (23)
E—-FE-¢& (24)

Then, it can be readily shown that the following variables
are gauge invariant up to first order,

d=a-0 -HO, (26)
Y=w+HO, (27)

where Q represents a time translation defined by
Q=p+E. (28)

Now, Egs. (16)—(18) enable us to express d¢ and 5¢’ in
terms of the gauge-invariant variable ¥ = @,

— Y4+ HY
op=——, 29
¢ 4xGdy, (29)
— AY - K¥Y' - LY
o =—— ————, 30
¢ 471'G¢6 (30)

where K and L depend only on the background variables,

14
K=3H+da*-2, (31)
0

14
L=H+2H>+ a2H¢—Z. (32)

Then, the linear equations (16)—(18) can be written solely in
terms of ¥ as

P — AW+ 2K + 2L¥ = 0. (33)

C. 2EMT

Since we have obtained the Einstein and the energy-
momentum tensors up to second order, and the Einstein’s
equation up to linear order, we now can construct the
2EMT in a similar manner as we did in our previous work
[3]. As we discussed in the Introduction, the second-order
Einstein’s equation is rearranged as

G [9%] = 82GT}) [¢%), 6] + 8xGTL™  with
) @ (1)
‘ G lg
T =1 [gV, 6p)] - % (34)

where the two quadratic terms make the 2EMT that
describes the backreaction of the linear perturbations.
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Using the results in the previous section, we can write Tﬁ'eﬂ) in terms of the gauge-invariant variable W and the gauge-

= (2.eff)

dependent variables Q and E. After taking the spatial average denoted by bra-ket notations, 7,, w ), we obtain

1

BTG =30 3

{—<(V‘P’) ) = (A¥)?) = 2(K + H)(VY'- V) = [3(H' = H?) + K2 + a®V | ((¥)?)

+ (OH' = 10H? = 2L){(V¥)?) + 2 {6?1(7—[’ —H?) - KL +2(H - H?)a? ZT - azHV¢4 (P9
0

- [L2 —4H(H' = H?)a? % + a2H2V¢¢] <‘Pz>}
+2<{ 2¢¢Q/ [37-(’ (4H + K)a? o +a2V¢¢]Q AQ+AE - 2HAE}T/>
0

+2<{—(L+6H2 2a2H¢ >Q’ [2H(L—3H’) + (L -2H +4H?)a? +Ha2V¢¢}Q

¢l

—AQ' — (K —H)AQ + 2HAE' + AZE}lP> — (H' +2H*)(Q"?) —2[H(H’ —4H?) + (H' = H?)a? 7 } (0'0)
0
I _H a a Vy a (g _
—{(H )[4H2+8H ¢O+ <¢0) + 2V¢¢] +3H'(H 4H2)}<Q2)
—2H(VQ' -VQ) + ([4H?Q + 2HAE — (H' + 2H*)E'|AE") + 4H{(HQ' + H'Q)AE), (35)
871Gty = 0, (36)
872Gz, = 6;; [H le{ (V9)2) — <(A‘P)2>+2<?—K> (VW - V) + (H = H? — K>+ a®V ) ((P)?)

+ B (11H' = 10H?) — 24 (V¥)?) 4 2[Ha?V 4y — KL + 2(H' — H?)(K + 2H)|(¥Y')

+ [4(H' —H*)(H' 4+ 2H* + L) — L? + H?*a*V 4] <‘P2>}

+ 2< [Q” +3BH-K)Q + (H' + 12H* + K* = THK — a*V ;)0 +%AE’ - g (K - H)AE} ‘P’>
+ 2<{4HQ” + (6H' +10H*> =3L)Q’ + AQ' — (K — 3H)AQ

- 2H" + a®HVy, — HK* + (5H' + 2H*)K — 11TH'H - 9H?]Q - % AE" — %HAE’ — %LAE + % AZE}lP>

2 2 4
+3(V0"-VO) + (V') + 7H (VQ'-VQ) +2H(Q"Q') - 2H(Q"Q) - (H' - 2H?)(Q")
—22H" + 3H'H + (H' — H*)(K + H)|(Q'Q)

- {4H7—[” +3H2 4+ AHH? + (H = H2) |4H2 + a?Vyy +a ( 7 )2] }<Q2>

- % ((2HQ — 3HE' + AE)AE") — % (BHQ'+8(H' +H?)Q - 3(H' + 2H?)E' + 2AF + 4HAE|AE')

- g ({HQ" +2(H' + H*)Q' + 2[3HH — H?> - (H' - ’H%K]Q}AE)} . (37)

As we can see, 2EMT does not depend only on the gauge-invariant variable ¥ but also on the gauge-dependent variables Q
and E. Therefore, we conclude that the 2EMT for a scalar field is gauge dependent like for a perfect fluid in Ref. [3].
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III. 2EMT IN DIFFERENT GAUGES

In the previous section, we have seen that 7, for a scalar
field is gauge dependent. Still, we may expect that even
under different gauge conditions 7, behaves similarly in
certain wavelength limits so that 7, describes effectively a
well-behaved fluid independent of gauge choices. In this
section, we examine this possibility under three gauge
conditions: longitudinal, spatially flat, and comoving
gauges. We consider the long- and short-wavelength limits
of 7,, in each gauge. Here, the long-wavelength limit
means the physical wavelengths 4, of the perturbation
modes are much larger than the Hubble scale H~!,
/lphys > H~! orin terms of the (comoving) momentum,

k< H. (38)

In the short-wavelength limit, conversely & > H.

W (n) = {Ale

47Gy[cy sin(kn) + ¢y cos(kn)]  (short wavelength)

where A; and c¢; are complex constants. Notice that since
W, is approximately constant on long-wavelength scales
and is rapidly oscillating on short-wavelength scales, their
cross terms in computing 7, from Egs. (35), (36), and (37)
vanish. We thus only consider the cases when two W;’s are
both in the long- and short-wavelength limits separately.
Also, we mention that when the scalar field ¢ is oscillating,
it is completely equivalent to a pressureless matter com-
ponent [4]. Then the analysis of the corresponding 2EMT
can follow straightly our previous study [3].

1
0= G (H — 1)

Since we are interested in a universe dominated by a
scalar field, i.e., the inflationary epoch representatively, we
expand 7, in the power of the slow-roll parameters,

= -3 =4G F‘; , (39)
__ P E (40)
He, 2He
With the Fourier-mode expansion
(41)

W(n,x) =Y Wiln)e*,
k

solving Eq. (33) in the long- and short-wavelength limits
gives the following solutions:

(long wavelength)

(42)
A. Longitudinal gauge
Let us take the longitudinal gauge by imposing
p=E=0. (43)

This in turn gives Q = 0. 7, in this gauge is found to be
described solely by the gauge-invariant variable ¥,

{—((V‘P’)Z) —((AY)?) = 2(K + H)(VY' - V¥) — B(H' — H?) + K* + a®V 4 ((¥)?)

1%
+ (OH' — 10H? = 2L){((V¥)?) +2 [67-((71’ —H?) =KL +2(H' —H*)a? (TZ — a*HV 4y | (PY)

Vv
— |:L2 - 4H(H/ - H2>Cl2 ¢—Z + a2H2V¢¢} <‘P2>:| 5

5
bl = 8aG(H = 1)

H
3

1
+ [3(1 IH — 10H?) - 24 ((V¥)?) + 2[Ha?V 4y —

+A(H = H2)(H +2H2 + L) — L? + H2a?V ) <w2>}.

s {3 e - qawp) 2( -k

(44)

><vqﬂ VW) 4 (H = HE = K2 4 a2V ) (2)2)
KL +2(H' = H*)(K + 2H)|(P¥)

(45)
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1. Long-wavelength limit

In the long-wavelength limit k¥ < 'H, we find 7, in the
longitudinal gauge as

A 2k2 H2

Too ~ | Slle |:2€ + 3 ? (—362 + €5):| . (46)
A P2 2 H?

Tisz —§€+3?(3€2—€6) . (47)

We note that the long-wavelength limit can be divided into
two sublimits, depending on which term inside the square
brackets dominates: (i) the ultralong-wavelength limit for
which the second term dominates so that H/k = 1/+/e, and
(ii) the infralong-wavelength limit for which the first term
dominates so that H/k < 1/4/e.

(i) Ultralong-wavelength limit: in this limit, k < \/eH
so that the second term, i.e., the O(e?) term, in the
2EMT is dominant. The value of the equation-of-
state parameter w in this limit is given by

p
w=Ix -1, 48
0 (48)
3H?A,|12(3¢2 — €6
o HMPGE =)

8rG ’

where the effective energy density and pressure of
the 2EMT are given by ¢ = 7y9/a’ and p = 7;;/a’.
Note that this result agrees with that in Ref. [2] in
which the authors showed that w ~ —1 with ¢ < 0.
Infralong-wavelength limit: in this limit, k > \/eH
so that the first term, i.e., the O(¢) term, in the 2EMT
is dominant. The value of w in this limit is given by

(ii)

1
N——, 50
w3 (50)
kA |*e
I~ > 0. 51
47Ga? (1)
1

0 = 82G(H — 1)
[ 3(H —H?)\2 4
(g Ty
_<+ H ) 7
1
H?

It is interesting to note that the scale dividing the ultra-
and infralong-wavelength limits coincides with the so-
called decoupling limit, where we can neglect the pertur-
bations in the metric and may only consider those in the
matter sector. That is, the gravitational background is
considered to be completely classical, and the Goldstone
boson picture for the curvature perturbation becomes
manifest [S]—only the scalar field is quantum mechanical
in the classical gravitational background. Interestingly, in
such a limit the equation of state of 2EMT is w ~ —1/3 in
all gauge choices we examine in this section.

2. Short-wavelength limit
In the short-wavelength limit k > H, we find 7, as

5 5 k4 H2
70 & (e + [ea] )4—512 6+p(14€—5) . (52)

K [10  H? [4e 56
@{Tﬁ(?‘?)} (53)

The value of w in this limit is given by

;% (e + |eaf?)

=, 54
3kt (Je1 P +1eal)
~ . 55
0 S (55)
B. Spatially flat gauge
Let us take the spatially flat gauge,
w=E=0, (56)

so that the spatial metric is unperturbed. It is equivalent
to set

(57)

7, in this gauge is then found to be described solely by ‘P,

{—((V‘P’Y} —{((AP)?) +2(L — M)(V¥' - V¥)
(H' = H?)(2H' + H?) + a2V,,),,,] (P")?)

[(H = 2H2)(H = 2H? = 2L) + (H' = 4H%) (K = H2)|(V'¥)?)

H? H

_[2L(H = H?) (31( _H 4+ 11H2) _2(H' -2H?)

H =21 [ 2(H =
2 >[(L_< )

2+ 12(H —H?) + a2V,/,(/,} <lI'2>},

H 612 V4”/):| <\P/lP>
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Sij 1 1
R L Z(2H = HOYU(VY)2) — = (H' - 2H2 ((AP)?
5 = e |3 2 - PP - 300+ 2 (s
2
=357 WH? +3HH = 81! + 2H + 1) HK|(VY' - V¥)

—B(H' = H*)(3H' = TH?) + 14H(H' = H*)K + H*K* = H?a*V 44 ((¥')?)

e

(H = 2H*)[2H™? + 10H'H? — 13H* + 2(2H' + H?)L]{(V¥)?)

2
+ |5 (H' = 2H?)(L? + 12(H = H?)L — 4(H' + 2H?)(H' = H?)) = 2H(H' — Hz)aZVM,} ('Y

(H' = 2H2)

———5——L* + 12(H' = H*)L = H*a*V 4, — 4(H' + 2H*)(H' — H?)] (\Iﬂ)}. (59)

H2

1. Long-wavelength limit

In the long-wavelength limit k < 'H, we find 7, in the
spatially flat gauge as

21,2 2
'f;l (;‘ [e+31(—362+65)], (60)

Too ~ k2

272 2
Tl-jz%l’le [—;€+37Z2(3€2—€5):|. (61)
Again, the long-wavelength limit is divided into the ultra-
and infralong-wavelength limits.
(1) Ultralong-wavelength limit: in this limit, the result is
exactly the same as that of the longitudinal gauge.
(ii) Infra long-wavelength limit: in this limit, the value
of w is the same as that in the longitudinal gauge, but
the energy density is smaller by factor 2,

kA€
~ ryrep (63)

K2 H? 76
Tij%(|cl|2+|02|2)w|:§+ﬁ<2€—?):|. (65)

And the value of w in this limit is given by
1
S 66
wrs (66)

K (ler [ + leal?)
N— 67
0 57 (67)
C. Comoving gauge

Let us impose the comoving gauge condition in the
scalar mode,

5p=E=0, (68)

for which the gauge-invariant variable ¥ and the gauge-
dependent variable Q are given by

Y =y +Hp, (69)
2. Short-wavelength limit
In the short-wavelength limit k > H, we find Y+ HY
K H> -
oo (1 +eoP) oy [2 4 2 (~de +0)|. (69
4a k 7, in this gauge is found to be
|
1
= | 2H(AVAY) — (4H' - 3H?)((AP)?
o0 = g = | ~UAYAY) - (¢ = 31) (A9))
F 2F F
+ rle (V¥')2) + rsz (V¥ - V) + ﬁ (V¥)2)
Fy 2Fs Fy
- (V)% - 2 (P'Y) - w2 |, 71
=7 P~ Gy Y - gy () (1)
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5 2

2P, P,

2
= —Z((AY)?) =2 (A?PAY) + ————— (AVAY) - ————— ((AP)?
ij SHG(H/—HZ)Z 3<( ) > 3< >+3<H/_H2)< > 3(H/_H2) <( ) >
P3 2P4 P5
VP )?) - —— 2 (V¥ - V¥) + ——2__((V¥)?
+3(H/_H2)2 <( ) > 3(H/_H2)2< > +3(H/_H2)2 <( ) >
Py 2P, Py
- Y2 4 — s (P — ——— - (P?) |. 72
3(H/ _ H2)3 <( ) > + (H/ _ H2)3 < > S(H/ _ H2)3 < > ( )
The time-dependent coefficients F; and P; are given in the Appendix.
|
- imi 11
1. Long-wavelength limit W 5 (79)

In the long-wavelength limit &k << H, we find in the
comoving gauge

|A1|2,H2 2 2
00 g = [9 + (49 = 365) + 4(166% — 2565 + 95°).
n
(73)
A 2972
rijz| 81|(7?—( [=3+(5¢+125) +4(13e*> —8e5—38%)]. (74)
b3

In the comoving gauge, unlike the other gauges we have
examined previously, the long-wavelength limit is not
subdivided into ultra- and infralong-wavelength limits.
The value of w in the long-wavelength limit is the same
as the infralong-wavelength limit of the previous gauge
choices, but with a different energy density,

-, 75
e (75)

C9HAR 9P |A P

~ 76
N rGa? 872G (76)

Notice that this comoving gauge condition coincides with
the uniform energy density condition §p = 0 in the limit of
k — 0, see e.g., [6]. However, here we work out only up to
second order in perturbations, thus when higher-order
contributions are taken into account our results may well
change.

2. Short-wavelength limit
In the short-wavelength limit k& > H, we find

K[ 26\  H?
(e o) |-+ (32 + e +20).

(77)

Kol 20 252
sy =(eil ey [+ (1430) +20]. 09

The value of w in this limit is given by

B+ P
4ate '

IV. CONCLUSIONS

We considered the cosmological perturbations in the
universe dominated by a scalar field. Introducing the scalar
modes of the metric perturbations and the matter field
perturbation, we derived the Einstein’s equation up to the
second order, and constructed a 2EMT, which is composed
of the quadratic terms of the linear perturbations, and is
responsible for the so-called gravitational backreaction.

Like the first order, the second-order Einstein’s equation
may be put into a gauge-invariant form after adding terms
on both sides of the equation. However, a 2EMT which is
the collection of only quadratic terms of the equation is not
guaranteed to have gauge invariance. Some works have
been done in this context, e.g., in Refs. [7-11]. However,
the gauge invariance of a 2EMT was doubted in
Refs. [12-14].

In this work, we derived a 2EMT directly and considered
its gauge dependence. As we observed in the Friedmann
universe driven by perfect fluid [3], the 2EMT in the
inflation period driven by a scalar field also exhibits gauge
dependence; the 2EMT does not depend only on the gauge-
invariant variable but also on the gauge-dependent
variables.

Although the 2EMT is gauge dependent, we investigated
it in certain wavelength limits under different gauge
conditions in order to examine if its behavior converges.
We examined in three conditions (longitudinal, spatially
flat, and comoving gauges) in the slow-roll regime of
inflation. The result showed that the 2EMT behaves as an
effective fluid of w = —1/3 in all gauges in the long-
wavelength limit. Specifically, it was observed in the
infralong-wavelength limit, \/eH < k < H. This behavior
was not observed in the Friedmann universe dominated by
fluid in Ref. [3].
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APPENDIX: TIME-DEPENDENT COEFFICIENTS IN THE COMOVING GAUGE
Here, we list the time-dependent coefficients F; and P; of the 2EMT in the comoving gauge in Eqgs. (71) and (72):

Fl = 2HH” +

= —QH - H)H' -

Fy = —4HH'H" +13(H')* - [8L - 2<K -

a’v
—H2<4HK—8L+H2 H¢¢>H’+2H5<K+4H— "’),
0

Fy= (H +2H2)(H')? -

(H)? + 4H(K -

(4K — 5H)(H')? + 2H(2KH + L — 3H*)H' — H3 (2L — 3H?),

42H(H')? -

2H)H' — H3(4K — 3H), (A1)
(A2)

2

‘,/"5)71 + 1274 (H')?
0

(A3)

0

K(H')? = KH*H' + H*(2K + H)|H"

02V¢ 2
+ {51{2 — 16KH + TH? = 2Ka*V'(¢o) / ¢}y + < - ) ](H/)3

— {31(2 — 16HK + 5H* — 6Ka2V’(¢0)/¢6 + 3<a Vl/) ]
2 2 2V¢ ? 4
{9 + 8HK — 1TH* + 6Ka*V'(¢y) /¢y — 3 < > ]H

2
{71<2+8H1< TH? + 2Ka2V' (¢hy) /)y — ( V¢) }Hé,

$o
H2

(A4)

Po

= (H' + 2H>)YH(H")?> - [(H’) <2HK +L—-14H> +H ¢: >(H’)

—<2HK+4L+15H2 2H ¢‘/’)H2H’ <4H1<+5L+12H2—H Y )H“}H”
0 0

—2(K =2H)(H')* + [3KL — 18H?K — THL + (HK — L — H?)

+ - H? aVy
I #

r 2
Ve
L 9

[ a2V¢ 2
e GO +HE
L 0

(3HK 3L —H2 4+ 3H

(3HK —3L+H>+3H
0

Po

Po
_,/’> — SH*(3KL + 10H2K + HL — 14H3)] H

a*V,
) +9KL + 20H*K + SHL — 20H3] HO,

a’v, 02V¢>2] 03
7 +H< e

) + H?*(3KL + 50H*K + THL — 687—[3)} (H')?
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—(H/ +2H2HA(H)?

v 2%
+2H [—(H’)3+ (L—10H2+H%> (H')?+ <4L+15H2 YL 7 >H2H’—H4 (5L+10H2—H%>]H"
0 0 0

2
+(H) - (ZL 33H? +2H ¢V>(H’)4+{Ha ¢V <2L+6H2+H >+L2—H2(42L+65H2)}(H’)3
0 0

0

[ an
+|-H p 6L+10’H2+3H ¢ +9L? +110LH> +39H* | H?* (H')?
L 0 0
[ V¢ 2 V 2 2 4 | qpdagr
+ |H—*%( 6L+ 10H +3ns —21L*=110LH? + 8H* | H*H
L o ¢o
@,
v <2L +4H2+H ) +11L2 +44HL - 4H4] HS, (A6)
L % &5
P, =4H" + (6K — 11TH)H' = 3H*(2K — H), (A7)
Py = 4HH" + 4(H')? + (8HK — 8L — 15H*)H' — H*(8HK — 8L — 3H?) (A8)

Py = =2(H — H>)YH" + 6(H")> + 2[(8K — 13H)H' — H*(8K — H)|H" + 9(H')?
+ [8K(2K — 5H) — 4L + 27H*(H')? — [16K (2K — 3H) — 8L + 1TH* | H*H'
+ [8K(2K — H) — 4L + SH?H*, (A9)
Py = —H(H' —H>)H" + 6H(H")? — [3(H')> — (22HK — 8L — 19H*)H' + 2H>*(11HK — 4L + H*)|H"
— (8K —29H)(H')? + [4K(5KH — 3L — TH?) + H(16L — 69H?)|(H')?
— H*4HK (10K — 9H) — 8L(3K — 2H) — 107H3|H' + H*[4K(SHK — 3L) — 43H7], (A10)

Ps = 4H*(H' — H*)YH" — 18H?*(H")? + H[60(H')*> — 4(3HK + 8L + 11H*)H'
+ 4H?(3HK + 8L + 14H?)|H" — 23(H')* + (60HK + 4L — 131H?)(H')?
— [AHK(10L + 39H?) — 4L (2L + 17H?) — 333H*|(H')?
+ H2[4HK (20L + 39H?) — 4L(4L + 21H?) — 35THAH'
— 2HA[IOHK (2L + 3H?) — 2L(2L + 3H?) — 53H*), (A11)

Pg=—6H(H' —H?)[H" +2(K - H)H —2H?K|H" + 12H(H")? - [9(H')> = H(48K — 5TH)H' + 6H> (8K +H)|(H")?
+12[-(3K = TH)(H')* + H(6K> —9HK — L —3H?)(H')?
—H3(12K? = 1THK = 2L — 13H?*)YH' + H3(6K? + HK — L — 5H*)|H"

! Joer

-6 [241<3 27THK? —90H2K — 12KL +8HL + 105H° = 3H (

2V 2
+3[—13K2+62HK—49H2 (“d) )](H’)
0

+12H {41(3 —2HK?=32H?K —2KL +2HL +29H3 — (

oo

a’V,
+12H5[12K3—8HK2—40H2K—6KL+2HL+36H3 < ¢>]

1%
—-3H’ [16K3+HK2—46H2K—8KL+33H3—H(a "’) ] (A12)
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P;=2H*(H' —H*)H" —4H(H')?> + 2H(HK + L +4H?)(H')? = 4H>(HK + L+ 2H*)YH' + 2H3 (HK + L + 2H?)|H"”
—4H2(H")3 4+ [12H(H')* = H(8HK + 8L —H?)H' +H> (8HK + 8L + 11H?)|(H")?
+[-9(H)* + (25HK + 5L - 36H?)(H')? — H(4HK? +39H?K +20KL — 23HL — 54H>) (H')?
+H3(8HK? +35H?K +40KL —29HL — 16 H3)H' — H> (4HK> + 21 H?K +20KL — HL — 19H3)|H"

a’v, 2 2 2 2V¢ a2V¢ ? 4
19K+55H+2 7 (H/) 20HK? —6H2K +9KL —29HL — 112H3 — 10H -H (H)
0

Po Po
252 3 2 2 2 4 3 V¢ 2[4 V¢ ? 3
—2H |36 H?>K? —58H?K —2L> 4+ 8K?L —2TH?L — 8HKL —45H* — 10H 7 -2H 7 (H')
0 0
ZV 2
—|—2H3[SZHZKZ—103H3K—6L2—|-24K2L—38H2L—31HKL+22H4 1077(3 ¢ 3H2< (/),"’> ](H’)2
0 0

V 2V 2
—’H5[72H2K2—151H3K—12L2+48K2L—74H2L—40HKL—|—61’H4 103 ¢"’ 4H2<a ¢,"’> ]H’
0 0

2y v
+H7[20H2K2 36HK — 4L + 16K2L — 23H2L — 3HKL + 16H* 21322 ¢"’ H2<a 7 "5)] (A13)
0 0

Py = —6H*(H' = H*)[HH" — 4(H')* + 2(L + 3H*)H' — 2H*(L + 2H?)|H" + 12H3 (H")?
= 3H?[21(H')? — (16L + 1TH?)H' + 4H>(4L + SH?)](H")?
+ 6H[13(H')* — (HK +23L — 6H?)(H')? + (8L* + 3H3K + 4HKL + 33H?L — 24H*) (H')?
—H?*(16L* + 3H*K + 8HKL + 29H*L — 34H*)H' + H*(8L? + H3K + 4HKL + 19H?L — SH*)|H"
—45(H")® + 6]6HK + 11L — 22H?*|(H')?

2 2
-3 [7L2 + 2H?K? + 40H3K + 36 HKL — 52H?L — 152H* — H? <a—V¢> ] (H')*

¢0
ZV 2
+12H [4KL2 + 2H?K? = 4HL? — 60H>L + 32H*KL + 11H*K — 43H° — H3( 7 ) ] (H')?
0
2V 2
-3H3 [48KL2 + 12H3K? = 58HL? — 356 H3L + 184H?KL + 12H*K — 41H° — 6H3 <a¢—,"> } (H')?
0
2V 2
+ 61 [24KL2 +4HPK? — 20HL? — 123H?L + 64H?KL — 4H*K + 6H> — 2H° <a¢—,"’) }H’
0
a?v \2
— 3H7 [16KL? + 2H3K? — SHL? — S6H3L + 36 H2KL — 4H*K + 6H° — H3 (—2) |. Al4
¢/
0
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