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It has been explicitly shown how a theory with global GLðd;RÞ coordinate (affine) invariance which is
spontaneously broken down to its Lorentz subgroup will have as its Goldstone fields enough degrees of
freedom to create a metric and a covariant derivative. Such a theory would constitute an effective theory of
gravity. So far however, no explicit model has been found which exhibits this symmetry breaking pattern,
mainly due to the difficulty of even writing down a GLðd;RÞ invariant action in the absence of a metric. In
this paper we explicitly construct an affine generalization of the Dirac action employing infinite
dimensional spinorial representations of the group. This implies that it is built from an infinite number
of spinor Lorentz multiplets. We introduce a systematic procedure for constructingGLðd;RÞ and SLðd;RÞ
invariant interaction terms to obtain quite general interacting models. Such models have order operators
whose expectation value can break affine symmetry to Poincaré symmetry. We discuss possible interactions
and mechanisms for this symmetry breaking to occur, which would provide a dynamical explanation of the
Lorentzian signature of spacetime.
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I. INTRODUCTION AND SUMMARY

An often taken for granted observation is that physical
observables in the absence of gravity are invariant under
global SOð3; 1Þ spacetime coordinate transformations.
Although this invariance has of course been exhaustively
confirmed experimentally, one is left wondering why flat
space physics is SOð3; 1Þ invariant and not invariant under,
for instance, SOð4Þ, SOð2; 2Þ or some other group of
coordinate transformations. In other words, is there some
dynamical explanation of the Lorentzian signature of
spacetime?
One possible explanation is the spontaneous symmetry

breaking of a larger spacetime symmetry group. Just as the
laws governing the dynamics of a ferromagnet respect
SOð3Þ rotation invariance but at low enough temperatures
the dipole moments tend to align, spontaneously breaking
SOð3Þ → SOð2Þ, we could imagine the laws governing the
fundamental particle interactions respecting a larger coor-
dinate symmetry group G which spontaneously breaks
down to SOð3; 1Þ. To keep different spacetime symmetry
groups, such as SOð3; 1Þ and SOð4Þ, on equal footing, it is

necessary to assume invariance under at least global
SLð4;RÞ ⊂ G coordinate transformations, with GLð4;RÞ
being the largest possible group.1 We will chooseGLð4;RÞ
as our starting point and consider its spontaneous breaking
to SOð3; 1Þ, or more generally, any of its subgroups.
A theory invariant under global GLð4;RÞ coordinate

transformations (plus translations) lives on an affine space,
with no invariant notion of distance or volume, the only
invariant concept being whether two affine subspaces
intersect. Recently though, it has been explicitly shown
that a theory that has global GLð4;RÞ [or SLð4;RÞ]
coordinate invariance which is spontaneously broken down
to SOð3; 1Þ will have as its Goldstone fields enough
degrees of freedom to create a metric and a covariant
derivative [1] (for earlier work see [2–4]). The global
GLð4;RÞ symmetry is realized nonlinearly through these
ingredients. Subsequently, the effective theory is found to
be generally covariant, with the Einstein-Hilbert term being
the low energy leading term in the effective action. This
scenario therefore would not only give a satisfactory
explanation for why spacetime has SOð3; 1Þ as its sym-
metry group, but would also provide a description of
gravity which is inherently effective and renders the
perturbative nonrenormalizability of gravity a nonissue.
This idea is related to early work in which the photon and

graviton are seen as Goldstone bosons of Lorentz
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1Note that in this discussion we restrict ourselves to global
symmetry groups, and we consider physical spacetime to be four
dimensional.
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symmetry breaking [5] (and in more recent work [6]).
Because the Lorentz symmetry is broken, a theory of this
sort would necessarily differ from Maxwell theory and GR.
In contrast, the aim here is to obtain the graviton as a
Goldstone boson, while maintaining the full Lorentz group,
via spontaneous breaking of affine spacetime symmetry as
described above. The photon too can be realized as a
Goldstone boson without sacrificing Lorentz symmetry via
continuous one-form global symmetry breaking [7].
The result obtained in [1] assumes only the symmetry

breaking pattern, and nothing else about the details of the
underlying theory. While powerful in its generality, this
result is currently lacking in the existence of any concrete
examples that exhibit this symmetry breaking pattern. The
aim of this paper is to begin the search for a concrete
example.
If one starts looking for global GLð4;RÞ invariant

actions, they will quickly conclude that any such action
built out of fields that are finite representations ofGLð4;RÞ
will have trivial dynamics. For instance, a fieldΦðxÞ which
transforms like ΦðxÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detM−1j

p
ΦðM−1xÞ under the

affine coordinate change x → Mx has the invariant actionR
d4x 1

2
Φ2ðxÞ. This is an auxiliary field whose correlation

function hΦðxÞΦðyÞi ¼ δ4ðx − yÞ is trivial (notice that the
delta function appropriately measures whether the two
points x and y intersect). Similarly, one can only construct
topological actions for vector field representations. Tensor
representations will have similar limitations. This leaves
infinite dimensional representations of GLð4;RÞ as our
remaining option. It is possible that something nontrivial
emerges after incorporating an infinite number of fields.
Because the possibility of a dynamically generated metric
is so interesting, we will continue searching.
A decent body of literature [8–13] exists on infinite

dimensional representations of the affine group, mainly in
an attempt to define spinors on a curved manifold. A
theorem which goes back to Cartan [14] states that there
exists no finite dimensional spinor representations of
GLðd;RÞ. Because of this, when spinors are lifted onto
a curved background, they are usually defined to only
transform with respect to local Lorentz transformations. An
affine spinor (affinor?), which is necessarily infinite dimen-
sional, enjoys transforming under the full diffeomorphism
group on a curved manifold. Affine spinors can be
decomposed in terms of their Lorentz (or Euclidean) spin
content, which will generally be an infinite tower of all
possible half-integer spins. Because half-integer spin rep-
resentations can be used to construct integer spin repre-
sentations, we view the affine spinor representations as in
some sense more fundamental than their integer spin
cousins. Consequently, we will focus on constructing a
nontrivial affine theory which spontaneously breaks down
to its Lorentz subgroup out of these. Infinite dimensional
tensorial affine theories may be constructed from the affine
spinor if one wishes.

This paper is organized as follows. In Sec. II we will give
a brief review of the result detailed in [1]. In Sec. III, we
will use an infinite dimensional spinor representation of
GLðd;RÞ to construct an affine invariant Dirac action in
any dimension d. This spinor representation affords an
order operator which if nonzero can spell the breakdown of
affine invariance down to its Lorentz subgroup. In this
construction, we will find it useful to embed our GLðd;RÞ
representation within SLðdþ 1;RÞ, so that an affine
generalization of the gamma matrix Γμ exists. In
Sec. IV, we restrict ourselves to d ¼ 3 essentially for
technical reasons explained in the text, i.e., spinor repre-
sentations of SLðn;RÞ have only been written down in
exact detail for n ≤ 4 [10], and so we give an explicit
construction of the action in this case. In Sec. V, we will
show how to introduce interactions, which is of course
necessary for the goal of studying spontaneous symmetry
breaking. Section VI contains our conclusions.

II. GRAVITY AS THE EFFECTIVE THEORY OF
GLðd;RÞ → SO (d − 1, 1) SYMMETRY BREAKING

The d dimensional Affine algebra consists of generators
Qα

β and Pγ, which generate rotations, boosts, dilatations,
and translations in all coordinate directions, respectively.
Here α; β; γ ¼ 1;…; d. The algebra reads

½Qα
β; Qγ

δ� ¼ iδαδQγ
β − iδγβQα

δ; ð2:1Þ

½Qα
β; Pγ� ¼ iδαγPβ; ð2:2Þ

½Pα; Pβ� ¼ 0: ð2:3Þ

Here, indices that are raised are contravariant, trans-
forming like a coordinate xα, and lowered indices are
covariant, transforming like a derivative ∂α.
Frequently, it is useful to parametrize these generators

with respect to some subgroup which leaves some constant
metric gαβ invariant (here gαβ could be the Euclidean metric
δαβ or the Minkowski metric ηαβ etc.). To do this, we
express Qα

β ¼ 1
2
ðJαβ þ Tα

βÞ, where Jαβ ≡ gαγJγβ is anti-
symmetric and Tαβ ≡ gαγTγ

β is symmetric (and traceless
when restricting to the special linear group). Here Jαβ
generates the subgroup that leaves the metric g invariant,
and Tαβ generates the “rest” of the coordinate transforma-
tions. In terms of these generators, the algebra reads

½Jαβ; Jγδ� ¼ iðgαγJβδ − gαδJβγ − gβγJαδ þ gβδJαγÞ; ð2:4Þ

½Jαβ; Tγδ� ¼ iðgαγTβδ þ gαδTβγ − gβγTαδ − gβδTαγÞ; ð2:5Þ

½Tαβ; Tγδ� ¼ −iðgαγJβδ þ gαδJβγ þ gβγJαδ þ gβδJαγÞ; ð2:6Þ

½Jαβ; Pγ� ¼ iðgαγPβ − gβγPαÞ; ð2:7Þ
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½Tαβ; Pγ� ¼ iðgαγPβ þ gβγPαÞ; ð2:8Þ

½Pα; Pβ� ¼ 0: ð2:9Þ

For our purposes, we will take gαβ ¼ ηαβ ¼ diagð−1;
þ1;…;þ1Þ. Note now in this description, lowered indices
transform covariantly only under the Lorentz group, and
indices raised by ηαβ contravariantly only under the Lorentz
group. With this parametrization, we choose the indices to
run from 0 to d − 1.

A. Coset construction of GLðd;RÞ → SO (d − 1, 1)
We now assume spontaneous breaking of the global

GLðd;RÞ ¼ G to its SOðd − 1; 1Þ ¼ H subgroup. Such a
theory is best described by the now standard coset con-
struction [15] and subsequent modifications for spacetime
symmetries [16] which identifies field content that trans-
forms linearly under the unbroken groupH, but nonlinearly
under the full group G. This construction allows for any H
invariant action built out of these fields to be invariant
under G. For internal symmetries, one may start by noting
that any field ψ which transforms linearly under G may be
split into two factors

ψðxÞ ¼ γðξÞψ̃ðxÞ; γðξÞ ¼ exp

�
i
2
ξðxÞ · T

�
∈ G=H:

ð2:10Þ

Where the notation ξ · T ≡ ξαβTαβ was used, and Tαβ are
the broken generators. To accommodate for spacetime
symmetries it is useful to further parametrize

ψðxÞ ¼ ΓðξÞψ̃ ¼ expð−ixμPμÞ exp
�
i
2
ξðxÞ · T

�
ψ̃ðxÞ:

ð2:11Þ

Under the group action ψðxÞ → ψ 0ðx0Þ ¼ gψðx0Þ with
g ∈ G and x0μ ¼ Mμ

νðgÞxν, we see that

g expð−ix0μPμÞ exp
�
i
2
ξðx0Þ · T

�

¼ expð−iðM−1x0ÞμPμÞ exp
�
i
2
ξ0ðx0Þ · T

�

× exp

�
i
2
uðξ; gÞ · J

�
ð2:12Þ

defining a nonlinear realization of GLðd;RÞ coordinate
transformations on the fields ξðxÞ → ξ0ðx0Þ ¼ ξ0ðxÞ and
ψ̃ðxÞ → ψ̃ 0ðx0Þ ¼ expði

2
uðξ; gÞ · JÞψ̃ðxÞ. When g ∈ H,

these transformations become linear.
To construct an effective Lagrangian out of these one

also needs an appropriate notion of derivation on these

fields. This can be obtained by considering the Maurer-
Cartan form Γ−1dΓ

Γ−1dΓ ¼ iω̂αPα þ
i
2
DαβTαβ þ i

2
ωαβJαβ: ð2:13Þ

A calculation [1] shows

ω̂α ¼ dxμeμα; Dαβ ¼
1

2
fe−1;degαβ; ωαβ ¼

1

2
½e−1;de�αβ

ð2:14Þ

where e is a symmetric invertible matrix

eαβ ≡ ðexpðξÞÞαβ: ð2:15Þ

ω̂α and Dαβ transform homogeneously while ωαβ trans-
forms inhomogeneously (like a gauge field). ω̂α provides a
basis of 1-forms which we will use to define the covariant
derivative:

Dμψ̃ ¼ e−1αμ ∂αψ̃ þ i
2
ωμαβJαβψ̃ : ð2:16Þ

Where ωμαβ is a particular combination of Goldstone
“gauge field” ωαβ ¼ ω̂μω̃μαβ and covariant derivative
Dαβ ¼ ω̂μDμαβ as written in the ω̂ basis. Note that ω̂ is

dual to the vector basis êα ¼ e−1μα ∂μ so that hω̂α; êβi ¼ δαβ.
Any Lagrangian which is H (Poincaré) invariant and

written in terms of the building blocks D, ψ̃ , Dψ̃ etc. is
automatically G (Affine) invariant. This provides a general
way to describe an effective theory of GLðd;RÞ → SO
(d − 1, 1) breaking. A yet more powerful construction of
the effective theory, which better describes the physical
field content is to use the ingredients we have so far
developed to pass over to fields which transform linearly
with the full groupG, rather than only withH. For instance,
a covariant vector under H with components vα may be
converted to a covariant G vector Vμ via

Vμ ¼ eμαvα: ð2:17Þ
Indeed, one can readily check that Vμ transforms linearly
under G:

V 0ðx0Þ ¼ ðexpðξ0ðx0ÞÞÞv0ðx0Þ ¼ ðexpðξ0ðx0ÞÞÞΛðuðξ; gÞÞvðxÞ
¼ M−1ðgÞðexpðξðxÞÞÞvðxÞ: ð2:18Þ

In fact, the same passage can be made for any tensor
representation of H

Ψ̃μ1���μl
ν1���νk ¼ eν1

α1 � � � eνkαke−1μ1β1
� � � e−1μlβl

ψ̃β1���βl
α1���αk : ð2:19Þ

This is equivalent to the basis change fω̂; êg → fdx; ∂g.
Notice that this cannot be done for spinor representations of

SEARCHING FOR GRAVITY WITHOUT A METRIC PHYS. REV. D 106, 084026 (2022)

084026-3



H, and they will have to remain in the fω̂; êg basis (as will
become clear this is in fact natural). Of particular impor-
tance for this discussion is when this passage is applied to
the H invariant tensor ηαβ:

gμν ¼ eμαeνβηαβ: ð2:20Þ

This symmetric rank two tensor has an inverse gμν such that
gμλgλν ¼ δμν, defined similarly to be gμν ¼ e−1μα e−1νβ ηαβ.
This clearly has the form of a metric, built solely out of the
Goldstone fields ξ, with vielbein eμα.
One may further show [1] that the covariant derivative

appropriately defines a metric compatible connection Γμ
νλ

under this basis change, such that

Γμ
νλ ¼

1

2
gμκðgκν;λ þ gκλ;ν − gνλ;κÞ ð2:21Þ

and through this may further define a Riemann curvature
tensor Rμ

νρσ. With these new ingredients it is clear that any
effective Lagrangian will be constructed via the basic
framework of general relativity, the Einstein-Hilbert action
plus a cosmological term being the unique lowest energy
term to add for the Goldstone fields.
One may ask where the general coordinate invariance

arises out of a theory which only assumed global GLðd;RÞ
coordinate invariance. General coordinate invariance
appears from the fact that any G invariant expression built
out of the ingredients developed remains invariant under
transformationsMμ

νðgÞ ∈ G which have been made space-
time dependent, i.e., a transformation ∂x0μ=∂xν for any
differentiable x0ðxÞ. This general coordinate invariance
ultimately reduces the Goldstone field degrees of freedom
to that of a graviton. In this sense, the graviton is quite
literally the Goldstone particle of global GLðd;RÞ → SO
(d − 1, 1) symmetry breaking.

III. SPINOR REPRESENTATIONS OF GLðd;RÞ
AND THE AFFINE DIRAC ACTION

The result of the previous section is interesting in that it
does not assume any details of the underlying theory other
than the symmetry breaking pattern. This begs the question
of whether this scenario is realizable. To date, there are no
explicit examples of this symmetry breaking. The obstacles
ahead for constructing such a theory are obvious. Any
GLðd;RÞ action you might wish to construct out of finite
dimensional representations without the use of a metric (we
want the graviton to be produced dynamically through this
symmetry breaking process) will be either topological or
auxiliary as we saw in Sec. I. We must therefore resort to
looking at infinite dimensional representations ofGLðd;RÞ
to construct such a theory.
A decent body of literature [8–13] exists on infinite

dimensional representations of the affine group, mainly
in an attempt to define spinors on a curved manifold.

A theorem which goes back to Cartan [14] states that there
exists no finite dimensional spinor representations of
GLðd;RÞ. Because of this, when spinors are lifted onto
a curved background, they are usually defined to only
transform with respect to local Lorentz transformations. An
affine spinor, which is necessarily infinite dimensional,
enjoys transforming under the full diffeomorphism group
on a curved manifold.
Spinor representations of GLðd;RÞ are obtained through

its double cover GLðd;RÞ. Under the Iwasawa decom-
position GLðd;RÞ may be split into three factors KAN,
where A is the maximal Abelian subgroup of positive
diagonal matrices, N is the nilpotent subgroup of upper
triangular matrices with 1’s along the diagonal, and K is the
maximally compact subgroup OðdÞ (this is essentially the
QR decomposition of square matrices). The factors A, N
are connected, so the double coverGLðd;RÞ is obtained by
replacing K with its double cover K̄, i.e., OðdÞ → PinðdÞ.2
GLðd;RÞ spinors may therefore be built out of the standard
OðdÞ spinors. The double cover may similarly be defined as
replacing O (d − 1, 1) with its double cover, which is what
we do in what follows. When the context is clear, we will
refer to the double cover of GLðd;RÞ as GLðd;RÞ itself.
Assuming we have found such a spinor representation of

GLðd;RÞ, it is possible to construct an affine invariant
action out of a field ΨðxÞ in complete analogy to the Dirac
action. In particular, if we assume that under the coordinate
transformation x0μ ¼ Mμ

νxν,

Ψ0ðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detM−1j

q
UðMÞΨðM−1x0Þ ð3:1Þ

with UðMÞ some representation, and further postulate the
existence of a constant affine vector operator Γμ with the
transformation property

U−1ðMÞΓμUðMÞ ¼ Mμ
νΓν; ð3:2Þ

and the existence of an affine invariant inner product3 ð·; ·Þ
such that ðUf;UgÞ ¼ ðf; gÞ, then the following action is
affine invariant

S ¼ −
Z

ddxðΨ;Γμ
∂μΨÞ: ð3:3Þ

It remains to find a representation which admits the
vector Γμ and inner product ð·; ·Þ (see Secs. III A and IV
below for the explicit details). Before we do this, it is
important to first make sure that a theory with these objects,
after incorporating interactions (see Sec. V), has the ability
to break the symmetry. By this we mean there must be some

2This double covering is not unique, as there are two non-
isomorphic pin groups Pin�.3This will be positive definite in the case of a unitary
representation, but this is not required.
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order operator whose expectation value remains invar-
iant under some subgroup H but not invariant under
GLðd;RÞ=H transformations. The theory so far described
has many such order operators, the simplest one being

ðΨ;ΓμΓνΨÞ: ð3:4Þ

This will, for the representations we consider in Secs. III A
and IV, always be a real symmetric rank two tensor, whose
nonzero expectation value hðΨ;ΓμΓνΨÞi ¼ ḡμν will break
GLðd;RÞ to some subgroup H that leaves this constant
tensor ḡμν invariant. For instance if ḡμν ¼ ημν, the symmetry
is broken to SO (d − 1, 1). If instead ḡμν ¼ δμν, the
symmetry would break to SOðdÞ. One can always find a
GLðd;RÞ transformation which makes a real ḡμν a diagonal
matrix of 1’s, −1’s and 0’s. Excluding the possibility of 0’s,
which would make ḡμν noninvertible, the number of
possible broken phases endowed with a metric that this
order operator can distinguish is bd

2
þ 1c,4 corresponding to

the unbroken subgroups SOðp; qÞ such that p ≥ q ≥ 0 and
pþ q ¼ d. Which subgroup a theory breaks down to will
depend on the interactions, range of couplings, and choice
of representation.

A. Embedding of GLðd;RÞ in SLðd + 1;RÞ
and the deunitarizing automorphism

In contrast to spinor representations of the Lorentz
group, the existence of a vector operator and inner product
in a spinor representation of GLðd;RÞ are far from
guaranteed. In fact, it has been shown [11] that for
d ¼ 4 the simplest, multiplicity-free representations (rep-
resentations which consist of at most one of each irreduc-
ible SOð4Þ ðj1; j2Þ multiplet) you might think to use do not
admit vector operators.
If one embeds GLðd;RÞ within SLðdþ 1;RÞ and

uses representations of the larger group, these will
admit vector operators. To see this, note that if Qα

β with
α; β ¼ 1;…; dþ 1 are the generators of SLðdþ 1;RÞ, and
Qμ

ν with μ; ν ¼ 1;…; d are the generators of the GLðd;RÞ
subgroup, Eqs. (2.1) show that Γμ ≡Qμ

dþ1 and Ωμ ≡
Qdþ1

μ are contravariant and covariant vectors, respectively,
with respect to GLðd;RÞ. Note that ½Γμ;Γν� ¼ ½Ωμ;Ων� ¼ 0,
and so Γμ do not satisfy any Clifford algebra. So although
Γμ will play the role of γμ in the Lorentz Dirac action, it is
strikingly different in nature. Fortunately, ½Γμ;Γν� ¼ 0
ensures that the order operator (3.4) is symmetric.
What is left is to find a spinor representation of SLðdþ

1;RÞ which admits a GLðd;RÞ invariant inner product. To
ensure the existence of an inner product, it is enough to use
a unitary representation of SLðdþ 1;RÞ. Such a unitary

representation acts on a vector space consisting of finite
dimensional SOðdþ 1Þ multiplets, and subsequently a
vector Ψ in this representation will be built out of an
infinite number of irreducible SOðdÞ multiplets. Unitary
spinor representations of SLðn;RÞ have been explicitly
cataloged for n ≤ 4 [9,10] (cf. [17] for recent work on
extending this to arbitrary n). So in the following Sec. IV
we will restrict ourselves to constructing affine invariant
theories in dimensions d ≤ 3.
Let us suppose now that we have found a theory with a

field ΨðxÞ transforming with respect to the above unitary
representation, whose affine symmetry is spontaneously
broken down to its Lorentz subgroup SO (d − 1, 1). This
unbroken Lorentz subgroup would then be linearly realized
in the effective theory on infinite dimensional unitary
Lorentz field representations (and not on an infinite number
of nonunitary finite dimensional Lorentz field multiplets).
To better reflect the field content observed in nature then,

one should, instead, find a GLðd;RÞ representation which
acts on a vector space consisting of finite dimensional
Lorentz multiplets, so that the GLðd;RÞ → SO (d − 1, 1)
broken effective theory is expressed in terms of an infinite
number of finite dimensional nonunitary Lorentz multip-
lets. Luckily, one may still use the unitary representations
above by applying a deunitarizing automorphism on the
generators [9]:

J0ij¼Jij; T 0
ij¼Tij; J00k¼ iT0k; T 0

0k¼ iJ0k; T 0
00¼T00;

ð3:5Þ

where i, j, k run through spatial indices. After making
this transformation the new representation will act on a
vector space consisting of finite dimensional nonunitary
SOðd; 1Þ [and hence SO (d − 1, 1)] multiplets. Although
this representation is no longer unitary, it still has a
GLðd;RÞ invariant inner product. Note that the vector
operators Γμ and Ωμ transform under this automor-
phism as well: ðΓ0;Γ1;…;Γd−1Þ → ðiΓ0;Γ1;…;Γd−1Þ and
ðΩ0;Ω1;…;Ωd−1Þ → ð−iΩ0;Ω1;…;Ωd−1Þ.
Alternatively, the affine symmetry may break to one of

the other subgroups SOðp; qÞ with p ≥ q > 1, pþ q ¼ d.
In this case, starting with a unitary representation of
SLðdþ 1;RÞ and proceeding as above, in the GLðd;RÞ →
SOðp; qÞ effective theory the unbroken group will be
linearly realized on infinite dimensional unitary SOðp; qÞ
representations. It is straightforward, however, towrite down
the extension of the automorphism (3.5), which, applied to
the unitary representation, yields a nonunitary representation
consisting of an infinite number of finite dimensional
nonunitary SOðp; qÞ representations. Which of these sym-
metry breaking scenarios, i.e., which of the subgroups
SOðp; qÞ, is actually realized in any particular model is of
course dependent on the choice of interactions and the range
of coupling strengths. Note that models with phase diagrams
with more than two phases can, in principle, occur for d ≥ 4.

4Here bxc is the floor function, which rounds the real valued x
down to the greatest integer n such that n ≤ x. Similarly, the
ceiling function ⌈x⌉ rounds x up to the smallest integer n such that
n ≥ x.
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To summarize, we have identified a general way of
constructing a GLðd;RÞ invariant action which has an
order operator that, after incorporating interactions, can
break its affine symmetry down to some subgroup H, of
which H ¼ SO (d − 1, 1) is but one possibility, as long as
one has on hand a unitary spinor representation of
SLðdþ 1;RÞ. The current literature has only described
such representations in explicit detail for d ≤ 3. Thus, in the
following section, we restrict ourselves to d ¼ 3. The
important case d ¼ 4 is left for future work.

IV. EXPLICIT CONSTRUCTION OF A
3-DIMENSIONAL AFFINE DIRAC ACTION

In this section, we will demonstrate explicitly the
construction detailed above in the case of d ¼ 3. We will
not go into detail here of how to construct the representa-
tion itself, but mention here that we are using the unitary
irreducible e ¼ 1

2
, ð0; 1

2
Þ lattice representation of SLð4;RÞ

(in the notation of [9]). Unitary representations of SLð4;RÞ
are described in Appendix A.
This unitary representation acts on the vector space

built from finite dimensional multiplets of Spinð4Þ de-
noted ðj1; j2Þ, with j1, j2 standard SUð2Þ spin labels.
Specifically, it acts on an invariant lattice of points
ðj1; j2Þ ¼ ð2n; 2mþ 1

2
Þ; ð2nþ 1; 2mþ 1þ 1

2
Þ with m, n

non-negative integers and m ≥ n. A vector Ψ living on
this vector space will have components ψ j1j2

m1m2
, and the inner

product between two vectors Φ and Ψ which makes this
representation unitary is

ðΦ;ΨÞ ¼
X

j1m1j2m2

ϕ�j1j2
m1m2

κðj1; j2Þψ j1j2
m1m2

;

κðj1; j2Þ ¼
ðj1 þ j2 þ 1

2
Þ!!ðj2 − j1 − 1

2
Þ!!

ðj1 þ j2 − 1
2
Þ!!ðj2 − j1 − 3

2
Þ!! : ð4:1Þ

We now move over to the deunitarized representation
which is built out of finite dimensional ðj1; j2Þ Spinð3; 1Þ
representations. Everything is essentially the same as
above except a small modification of the kernel κ →
−ieiπðm1þm2Þκ (the added factor is a 3-dimensional parity
transformation).
Knowing the inner product and the generators which

create the vector operator Γμ is enough to explicitly write
down the action in this basis. What one should of course do
in the present context is write the field in terms of its finite
dimensional irreducible d ¼ 3 Lorentz components, since
this reducible GLð3;RÞ representation is defined by how it
acts on these components.
To this end, we will represent the components of ΨðxÞ in

terms of 3-dimensional spinor tensor fields ψn;h
μ1���μsðxÞ with

s Lorentz tensor indices and one omitted Dirac spinor
index. The labels n, h indicate which Spinð3; 1Þ multi-
plet the component came from: ðn − h; nþ hþ 1

2
Þ, with

n ¼ ⌈ s
2
⌉; ⌈ s

2
⌉þ 1;… and h ¼ 0;…; bs

2
c. The fields ψn;h

μ1���μs
are totally symmetric in their tensor indices, as well as
gamma traceless γμ1ψn;h

μ1���μs ¼ 0. These two algebraic con-
straints on the fields are necessary to treat them as
components of Ψ. Notice that now that we are at the level
of the individual Lorentz components of the GLð3;RÞ
covariant field Ψ, any statement made will only be
manifestly covariant under the Lorentz subgroup (the
gamma traceless condition is defined in terms of the
standard Lorentz gamma γμ). In terms of these ingredients,
the affine invariant action is

S ¼ −
Z

d3xðΨ;Γμ
∂μΨÞ

¼ −
X∞
s¼0

X∞
n¼⌈s

2
⌉

Xbs2c
h¼0

Z
d3xðψn;h

μ1���μs

× Πμ1���μsλν1���νs∂λðΓs;sψν1���νsÞn;h

− ψn;h
μ1���μsΠ

μ1���μsλν1���νs−1∂λðΓs;s−1ψν1���νs−1Þn;h

− ψn;h
μ1���μsΠ

μ1���μsλν1���νsþ1∂λðΓs;sþ1ψν1���νsþ1
Þn;hÞ; ð4:2Þ

ψn;h
μ1���μs ≡ ð−1Þsðψn;h

μ1���μsÞ†iγ0
ð2nþ1Þ!!
ð2nÞ!!

ð2hÞ!!
ð2h−1Þ!! ð4:3Þ

Here we have introduced several new objects. First,

ψn;h
μ1���μs is defined to incorporate the affine invariant inner

product, in much the same way the “bar” notation is used in
the Lorentz case. Then, we need several spinor matrix even
and odd rank tensor structures Πμ1���μsν1���νs , Πμ1���μsλν1���νs
respectively. These are all totally symmetric in their
μ and ν indices separately, as well as gamma traceless
γμ1Π

μ1���μsν1���νs ¼ 0, Πμ1���μsν1���νsγν1 ¼ 0 etc. Their adjoints
are ðΠλ

sÞ† ¼ γ0Πλ
sγ0, ðΠsÞ† ¼ −γ0Πsγ0, and they have the

normalizations ΠsΠs ¼ Πs, ΠsλΠλ
s ¼ 2sþ3

2sþ1
Πs. For example,

Πμν¼ 1
3
ð2ημν−γμνÞ and Πμλν¼ 1

9
ð4ημνγλ−ηλμγν−ηλνγμ þ

5γμλνÞ. These tensor structures quickly become too long
to write down, but there is an algorithm to generate all of
them, explained in Appendix B.
Finally, the objects Γs;s, Γs;s−1 and Γs;sþ1 are infinite

dimensional matrices acting on the n, h labels. Γs;s is
Hermitian with respect to the affine invariant inner product,
and ðΓs;sþ1Þ† ¼ Γsþ1;s. Their explicit forms are given in
Appendix B.

The ψn;h
μ1���μs equations of motion are

Γs;sΠμ1���μsλν1���νs∂λψν1���νs − Γs;s−1Πμ1���μsλν1���νs−1∂λψν1���νs−1
− Γs;sþ1Πμ1���μsλν1���νsþ1∂λψν1���νsþ1

¼ 0: ð4:4Þ

These equations are consistent in the sense that they
maintain the gamma traceless and symmetric constraints
on the fields γμ1ψn;h

μ1���μs ¼ 0.
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V. INCORPORATING INTERACTIONS

So far we have constructed a free affine invariant theory
out of an infinite dimensional representation. It is worth
discussing what using an infinite dimensional representa-
tion has bought us in terms of finding a theory whose affine
symmetry spontaneously breaks. As previously discussed,
any finite dimensional representation of GLðd;RÞ will
give trivial correlation functions. Indeed, any propagator
GðxÞ ¼ hΦðxÞΦð0Þi resulting from an affine invariant
theory must satisfy the differential equation

xμ∂νGðxÞ ¼ i½Qμ
ν; GðxÞ�; ð5:1Þ

where Qμ
ν corresponds to whatever representation GðxÞ is.

For a scalar propagator, the only solution is GðxÞ ¼ δdðxÞ.5
For other finite dimensional representations, the solution
will always have at most point support.
For infinite dimensional representations, the solution to

Eq. (5.1) is no longer obvious. It is likely though that for the
representation used in Sec. IV, such a propagator will have
finite dimensional Lorentz components which are covariant
only under the Lorentz subgroup, and mix nontrivially
among themselves under the other group transformations.
This is in fact what typically happens in a conformal field
theory, whose field representations are generically infinite.
This affords the possibility of having a nontrivial propa-
gator, and correspondingly nontrivial dynamics which
could exhibit spontaneous symmetry breaking.
To actually exhibit spontaneous symmetry breaking,

we need to incorporate interactions somehow. This can
be done in a number of ways. A first instinct one might
have is to couple this affine Dirac field Ψ to some gauge
field Aμ with some gauge group G [e.g., SUðNÞ or UðNÞ]
by replacing ∂μ with Dμ ¼ ∂μ − iAμ. Here however the
standard Yang-Mills kinetic term − 1

4g2 trðFμνFμνÞ cannot be
written down, since this requires a metric. Coupling Aμ toΨ
in this way can at most be interpreted as the strong coupling
limit g → ∞ of the Yang-Mills theory. In this limit, Aμ acts
as an auxiliary field which constrains the current Jμα ¼
ðΨ;ΓμtαΨÞ to vanish.
Another possibility is to model interactions with a simple

four fermion term, in analogy with the Nambu-Jona-Lasinio
(NJL) Model [18]. We will write this action in the form

S ¼ −
Z

ddxðΨ;Γμ
∂μΨÞ

−
Z

ddx
X
nm

ðgnðΨðxÞ; Am
nΨðxÞÞðΨðxÞ; BmnΨðxÞÞÞ;

ð5:2Þ

where An
m and Bmn are at this stage generic constant

operators. The current representation we are using allows
for an infinite number of possible A’s and B’s, e.g., A ¼
Γμ1 � � �Γμn and B ¼ Ωμ1 � � �Ωμn . There is no good reason to
choose a particular set ofA’s andB’s, sowe leave it arbitrary.
This representation does not in general offer operators An

m

and Bmn which leave the action invariant under affine
transformations, but only special affine transformations, so
this model in general will only allow us to study the
symmetry breaking pattern SLðd;RÞ → H. This is not much
of a restriction, since the result in Sec. II is not changed
dramatically if GLðd;RÞ is replaced with SLðd;RÞ.
This theory is analogous to the NJL model, which was

originally used to model chiral symmetry breaking via
dynamical mass generation. Because there is no chiral
invariant notion of mass, a dynamical generation of mass
will spontaneously break the symmetry. Similarly, there is
no affine invariant notion of mass, and so any generation of
some well-defined notion of mass will break the symmetry.
Peculiarly, while there is no affine invariant notion of mass,
the representation we use does allow for an affine invariant
“mass term” mðΨ;ΨÞ in the action. The effect of this
term cannot be interpreted as adding a mass to the
field Ψ.6 Instead, if a dynamical generation of a term like
mημνðΨ;ΓμΓνΨÞ or mημνðΨ;ΩμΩνΨÞ occurs, this would
spell the symmetry breakdown we are looking for.
In order to study the symmetry breaking aspects of these

interacting theories, one should first develop a formalism
for perturbative calculations which respects the affine
symmetry. Feynman diagrams are optimally designed to
calculate Lorentz invariant perturbations from free field
theory. When a theory has an extended spacetime sym-
metry, a Feynman diagram perturbation expansion is no
longer optimal, and may in fact obscure deep results that a
formalism which respects the full symmetry would make
obvious. This is true, for example, in the case of super-
symmetry, where Feynman diagram calculations yielded
surprising cancellations, which only after a supergraph
formalism was developed became less surprising [19]. We
do not attempt to develop an affine invariant formalism for
perturbative calculations in this paper, and leave it for
future work. A first step would be to determine the exact
free propagator of the Dirac action (4.2) (see Appendix C
for progress in this direction).

VI. CONCLUSION

The possibility of a dynamically generated metric
has motivated this search for affine invariant theories
which spontaneously break down to the Lorentz subgroup.

5Really this is for a scalar density field Φ0ðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detM−1j

p
×

ΦðM−1x0Þ.

6This term avoids breaking affine invariance by not adding a
single mass, but a continuous spectrum of masses of all values.
This is indeed what you would expect to happen, since a
continuous affine transformation does not leave the equation
p2 ¼ −m2 invariant.
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This has led us to use an infinite dimensional spinor
representation Ψ of GLðd;RÞ to construct an affine
generalization of the Dirac action. We next showed how
a large class of affine invariant interactions can be con-
structed to obtain interacting theories. Explicit construc-
tions were presented in d ¼ 3. The constructions being
nontrivial, they provide an essential toolbox for obtaining
such actions to study their potential spontaneous symmetry
breaking. These theories, which a priori have no notion of
distance, have the ability to produce a metric via the
expectation value hðΨ;ΓμΓνΨÞi ∼ ḡμν. Should such a non-
vanishing expectation value form, the model’s (special)
affine symmetry would spontaneously break down to one
of the subgroups SOðp; qÞ, pþ q ¼ d. Which of the
subgroups SOðp; qÞ, which in the unbroken phase are
all on equal footing, is actually picked out is determined by
the signature of the matrix ḡμν, which in turn is determined
by the form of the interactions. If this signature is
Lorentzian, this would amount to a dynamical explanation
of the observed signature of spacetime. GR then emerges as
the long distance effective theory in the manner detailed in
the cited literature, and reviewed in Sec. II above, with the
curved metric gμνðxÞ being an appropriate nonlinear com-
bination of the resulting Goldstone fields. As already
pointed out above, a good deal of work is needed for
the further development of this program to which we hope
to return in the future.

APPENDIX A: UNITARY REPRESENTATIONS
OF SLð4;RÞ

For noncompact Lie groups, there are no nontrivial finite
dimensional faithful unitary representations. The infinite
dimensional unitary representations of SLð4;RÞ can be
defined in the basis of its maximally compact subgroup

SOð4Þ ¼ SUð2Þ ⊗ SUð2Þ. Restricting ourselves to multi-
plicity-free representations, the homogeneous vector space
can be taken to be the set of all jj1m1; j2m2i with j1; j2 ¼
0; 1

2
; 1; 3

2
;… and jmij ≤ ji.

The SUð2Þ ⊗ SUð2Þ subgroup is generated by

Jð1Þi ¼ 1

4
ϵijkJjk þ

1

2
T0i; Jð2Þi ¼ 1

4
ϵijkJjk −

1

2
T0i; ðA1Þ

with i, j, k denoting spatial indices. The rest of the nine
generators form an SUð2Þ ⊗ SUð2Þ (1,1) tensor operator
Zαβ, with α; β ¼ 0;�1. In terms of these generators, the

SLð4;RÞ algebra reads:

½JðpÞ0 ; JðqÞ� � ¼ �δpqJ
ðpÞ
� ; p; q ¼ 1; 2; ðA2Þ

½JðpÞþ ; JðqÞ− � ¼ 2δpqJ
ðpÞ
0 ; ðA3Þ

½Jð1Þ0 ; Zαβ� ¼ αZαβ; ðA4Þ

½Jð2Þ0 ; Zαβ� ¼ βZαβ; ðA5Þ

½Jð1Þ� ; Zαβ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − αðα� 1Þ

p
Zα�1β; ðA6Þ

½Jð2Þ� ; Zαβ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − βðβ � 1Þ

p
Zαβ�1; ðA7Þ

½Z11; Z−1−1� ¼ −ðJð1Þ0 þ Jð2Þ0 Þ: ðA8Þ

The remaining commutation relations can be determined

from these. The JðpÞ0 , JðpÞ� have the well-known action on
the jj1m1; j2m2i vectors, and the general solution to the
matrix elements of Zαβ are [9]

hj01m0
1; j

0
2m

0
2jZαβjj1m1; j2m2i ¼ −ið−1Þ2ðj01þj0

2
Þ−m0

1
−m0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j01 þ 1Þð2j02 þ 1Þð2j1 þ aÞð2j2 þ 1Þ

q
×

�
e −

1

2
½j01ðj01 þ 1Þ þ j02ðj02 þ 1Þ − j1ðj1 þ 1Þ − j2ðj2 þ 1Þ�

�

×

�
j01 1 j1

−m0
1 α m1

��
j02 1 j2

−m0
2 β m2

��
j01 1 j1
0 0 0

��
j02 1 j2
0 0 0

�
; ðA9Þ

where e is the Casimir label associated with Qα
βQβ

α ¼
1
4
e2 − 4, the

� j0i 1 ji
−m0

i x mi

�
are 3-j symbols, and when

the ji’s are half-integers,
� j0i 1 ji
0 0 0

�
is understood by

taking the corresponding expression for integer values
and continuing it to half-integer ones. Studying the 3-j
symbols, we see that Z can change the SUð2Þ Casimir

labels with transitions ðj01; j02Þ ¼ ðj1 � 1; j2 � 1Þ and

ðj01; j02Þ ¼ ðj1 � 1; j2 ∓ 1Þ. In general then, there are eight

invariant ðj1; j2Þ lattices, generated from the points (0,0),

ð1
2
; 1
2
Þ, (0,1), ð1

2
; 3
2
Þ, ð1

2
; 0Þ, ð0; 1

2
Þ, ð3

2
; 0Þ, and ð0; 3

2
Þ. To get the

spinorial representations of SLð4;RÞ, we must choose a

representation which acts on one of the latter four lattices.

We choose the ð0; 1
2
Þ lattice since this includes the lowest
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weight spinor representations (the ð1
2
; 0Þ lattice is related by

a 4-dimensional parity transformation).
Unitarity of a representation is a statement about the

Hermiticity of thegeneratorswith respect to itsHilbert space.
Thuswemust find an inner product ðf; gÞ betweenvectors on
the ð0; 1

2
Þ lattice that render the generators Hermitian with

respect to it. The most general inner product on this vector
space has some kernel κðj1; j2Þ to be determined:

ðf; gÞ ¼
X

j1m1j2m2

f�j1j2m1m2
κðj1; j2Þgj1j2

m1m2
; ðA10Þ

the JðpÞi generators are already Hermitian with respect to this
inner product. The condition of Hermiticity for the shear
generators in terms ofZ isZ†

αβ ¼ ð−1Þα−βZ−α−β. In order for
this to hold, the kernel must satisfy

�
e −

1

2
½j01ðj01 þ 1Þ þ j02ðj02 þ 1Þ − j1ðj1 þ 1Þ − j2ðj2 þ 1Þ�

�
κðj01; j02Þ

¼
�
−e� −

1

2
½j01ðj01 þ 1Þ þ j02ðj02 þ 1Þ − j1ðj1 þ 1Þ − j2ðj2 þ 1Þ�

�
κðj1; j2Þ: ðA11Þ

We now state the value of e and κðj1; j2Þ for the
representation we use in our work.

e¼1

2
; κðj1;j2Þ¼

ðj1þj2þ 1
2
Þ!!ðj2−j1− 1

2
Þ!!

ðj1þj2− 1
2
Þ!!ðj2−j1− 3

2
Þ!! : ðA12Þ

With this value of e, we have hjþ 1; j − 1
2
jZjj;

jþ 1
2
i ¼ 0. This implies the invariance of a sublattice

consisting of points ðj1; j2Þ ¼ ð2n; 2mþ 1
2
Þ; ð2nþ 1;

2mþ 1þ 1
2
Þ with m, n non-negative integers and

j2 ≥ j1 þ 1
2
. This is the only multiplicity free unitary

representation acting on the ð0; 1
2
Þ lattice.

Other combinations of e and choice of lattice will result
in a different kernel κðj1; j2Þ, provided of course one can
satisfy Eq. (A11). We will not outline the rest of the unitary
representations.

APPENDIX B: DEFINING OBJECTS USED
IN THE CONSTRUCTION OF THE

3-DIMENSIONAL ACTION

The objects used to construct the 3-dimensional affine
Dirac theory are quite complicated, so we will spend some
time here to describe them.

The spinor matrix tensor structures Πμ1���μsν1���νs ,
Πμ1���μsλν1���νs are all totally symmetric in their μ and ν
indices separately, as well as gamma traceless
γμ1Π

μ1���μsν1���νs ¼ 0, Πμ1���μsν1���νsγν1 ¼ 0 etc. Their adjoints
are ðΠλ

sÞ† ¼ γ0Πλ
sγ0, ðΠsÞ† ¼ −γ0Πsγ0, and they have the

normalizations ΠsΠs ¼ Πs, ΠsλΠλ
s ¼ 2sþ3

2sþ1
Πs. Here are the

first few spinor matrices:

Π ¼ 1; ðB1Þ

Πλ ¼ γλ; ðB2Þ

Πμν ¼ 1

3
ð2ημν − γμνÞ; ðB3Þ

Πμλν ¼ 1

9
ð4ημνγλ − ηλμγν − ηλνγμ þ 5γμλνÞ; ðB4Þ

Πμ1μ2ν1ν2 ¼ 1

10
ð−2ημ1μ2ην1ν2 þ 3ημ1ν1ημ2ν2 þ 3ημ1ν2ημ2ν1

− ημ1ν1γμ2ν2 − ημ2ν1γμ1ν2 − ημ1ν2γμ2ν1 − ημ2ν2γμ1ν1Þ;
ðB5Þ

Πμ1μ2λν1ν2 ¼ 1

100
ðð−20ημ1μ2ην1ν2 þ 22ημ1ν1ημ2ν2 þ 22ημ2ν1ημ1ν2Þγλ

þ ð8ηλμ2ην1ν2 − 6ηλν2ην1μ2 − 6ηλν1ην2μ2Þγμ1 þ ð8ηλμ1ην1ν2 − 6ηλν2ην1μ1 − 6ηλν1ην2μ1Þγμ2
þ ð8ημ1μ2ηλν2 − 6ημ1ν2ηλμ2 − 6ημ2ν2ηλμ1Þγν1 þ ð8ημ1μ2ηλν1 − 6ημ1ν1ηλμ2 − 6ημ2ν1ηλμ1Þγν2
− 14ðγμ1ν1λημ2ν2 þ γμ2ν1λημ1ν2 þ γμ1ν2λημ2ν1 þ γμ2ν2λημ1ν1ÞÞ: ðB6Þ

The even rank matricesΠμ1���μsν1���νs are projection matrices
(Π2 ¼ Π) which leave the subspace of totally symmetric and
gamma traceless rank s spinor fields invariant, while the odd
rankmatricesΠμ1���μsλν1���νs behave likevector operators on this

subspace (one can think of them as a spin sþ 1
2
generalization

of γλ in three dimensions). In this tensor basis these objects are
very complicated, but in the SOð2; 1Þ spin basis jsþ 1

2
; mi

they are defined in, they have a very simple form
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Πs

����sþ 1

2
; m

�
¼
����sþ 1

2
; m

�
;

Π0
s

����sþ 1

2
; m

�
¼ i

m
sþ 1

2

����sþ 1

2
; m

�
; ðB7Þ

where Πs are the even rank spinor matrices and Π0
s is the 0th

component of the vector operator Πλ
s which defines the odd

rank spinor matrices action in this basis. If one wants to find
these matrices in the tensor basis for some s, they can use
Eqs. (B7) and simply change the basis.
The matrices Γs;s, Γs;s−1, and Γs;sþ1 are infinite dimen-

sional matrices acting on the n, h labels. Γs;s is Hermitian
with respect to the affine invariant inner product, and
ðΓs;sþ1Þ† ¼ Γsþ1;s. Explicitly,

ðΓs;sÞnh;n0h0 ¼
1

2ð2sþ 3Þ
�
ð4nþ 3Þð4hþ 1Þδnn0δhh0

þ 2nð4hþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2n−1− sÞð2n− sÞð2nþ 1þ sÞð2nþ 2þ sÞ
ð2nþ 2hÞð2nþ 2hþ 2Þð2n− 2h− 1Þð2n− 2hþ 1Þ

s
δn−1;n0δhh0

þ ð2nþ 3Þð4hþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ 1− sÞð2nþ 2− sÞð2nþ 3þ sÞð2nþ 4þ sÞ
ð2nþ 2hþ 2Þð2nþ 2hþ 4Þð2n− 2hþ 1Þð2n− 2hþ 3Þ

s
δnþ1;n0δhh0

− ð4nþ 3Þð2h− 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 2− 2hÞðsþ 1− 2hÞðsþ 2hÞðsþ 1þ 2hÞ
ð2nþ 2hÞð2nþ 2hþ 2Þð2n− 2hþ 1Þð2n− 2hþ 3Þ

s
δnn0δh−1;h0

− ð4nþ 3Þð2hþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs− 2hÞðs− 1− 2hÞðsþ 2þ 2hÞðsþ 3þ 2hÞ
ð2nþ 2hþ 2Þð2nþ 2hþ 4Þð2n− 2h− 1Þð2n− 2hþ 1Þ

s
δnn0δhþ1;h0

�
;

ðΓs;sþ1Þnh;n0h0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsþ 2Þð2sþ 3Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ 1− 2hÞðsþ 2þ 2hÞð2nþ 3þ sÞð2n− sÞ
p

δnn0δhh0

þ 1

2
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1− 2hÞðsþ 2þ 2hÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n− 2− sÞð2n− 1− sÞð2n− sÞð2nþ 2þ sÞ

ð2nþ 2hÞð2nþ 2hþ 2Þð2n− 2h−1Þð2n− 2hþ 1Þ

s
δn−1;n0δhh0

þ 1

2
ð2nþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1− 2hÞðsþ 2þ 2hÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 3þ sÞð2nþ 4þ sÞð2nþ 5þ sÞð2nþ 1− sÞ

ð2nþ 2hþ 2Þð2nþ 2hþ 4Þð2n− 2hþ 1Þð2n− 2hþ 3Þ

s
δnþ1;n0δhh0

−
1

2
ð2h− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 3þ sÞð2n− sÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1− 2hÞðsþ 2− 2hÞðsþ 3− 2hÞðsþ 1þ 2hÞ
ð2nþ 2hÞð2nþ 2hþ 2Þð2n− 2hþ 1Þð2n− 2hþ 3Þ

s
δnn0δh−1;h0

þ 1

2
ð2hþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 3þ sÞð2n− sÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− 2hÞðsþ 2þ 2hÞðsþ 3þ 2hÞðsþ 4þ 2hÞ

ð2nþ 2hþ 2Þð2nþ 2hþ 4Þð2n− 2h− 1Þð2n− 2hþ 1Þ

s
δnn0δhþ1;h0

�
;

ðΓsþ1;sÞ ¼ ðΓs;sþ1Þ†: ðB8Þ

Throughout this paper there are also several mentions
of the covariant vector operator Ωμ ≡Qdþ1

μ. In this
3-dimensional representation, Ωμ is related to the contra-
variant vector Γμ by

Ωμ ¼ ημνĨΓνĨ ðB9Þ

Where Ĩ is a simple matrix in the n, h labels
ðĨÞs;s0nh;n0h0 ¼ ð−1Þnþhδnn0δhh0δs;s0 , where the superscript s,
s0 is used to denote the component of the matrix which
sends a tensor rank s0 Lorentz field to a tensor rank s
Lorentz field.

APPENDIX C: FINDING THE PROPAGATOR

In order to perform any calculation in the theory
described in Sec. V in a way which preserves SLðd;RÞ,
one needs at least the free propagator. The infinite dimen-
sional nature of the representation makes finding the exact
propagator a technical challenge. In the 3-dimensional
example, a calculation of the propagator ðΓμpμÞ−1 requires
finding the inverses of all Πμ1���μsλν1���νspλ’s and Γs;s’s.
Whereas finding the inverses of Πμ1���μsλν1���νspλ are pretty
straightforward, the inverses of the infinite dimensional
matrices Γs;s are nontrivial. Γ0;0 and Γ1;1 have the following
inverses
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ðΓ0;0Þ−1n;n0 ¼ 6ð−1Þnþn0 ð2maxðn; n0ÞÞ!!
ð2maxðn; n0Þ þ 1Þ!!

ð2n0 þ 1Þ!!
ð2n0Þ!! ;

ðC1Þ

ðΓ1;1Þ−1n;n0 ¼ 2ð−1Þnþn0 ð2maxðn; n0ÞÞ!!
ð2maxðn; n0Þ þ 1Þ!!

ð2n0 þ 1Þ!!
ð2n0Þ!!

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 minðn; n0Þð2 minðn; n0Þ þ 3Þ
2maxðn; n0Þð2maxðn; n0Þ þ 3Þ

s
: ðC2Þ

These inverses were obtained because Γ0;0 and Γ1;1 have
a relatively simple form, i.e., they are both tridiagonal.
There is a beautiful formula for the inverse of a nonsingular
tridiagonal matrix T

T ¼

0
BBBBBBBB@

a1 b1 0 � � � 0

c1 a2 b2
. .
. ..

.

0 c2
. .
. . .

.
0

..

. . .
. . .

. . .
.

bn−1
0 � � � 0 cn−1 an

1
CCCCCCCCA

given by

ðT−1Þij ¼

8>><
>>:

ð−1Þiþjbi � � � bj−1θi−1ϕjþ1=θn i < j

θi−1ϕiþ1=θn i ¼ j

ð−1Þiþjcj � � � ci−1θj−1ϕiþ1=θn i > j

where the θi satisfy the recursive relation

θi ¼ aiθi−1 − bi−1ci−1θi−2 i ¼ 2; 3;…; n

with initial conditions θ0 ¼ 1, θ1 ¼ a1 and the ϕi satisfy

ϕi ¼ aiϕiþ1 − biciϕiþ2 i ¼ n − 1;…; 1

with initial conditions ϕnþ1 ¼ 1, ϕn ¼ an. Note that the
sequences θi and ϕi are determinants of the submatrices

θi ¼

���������������

a1 b1 0 � � � 0

c1 a2 b2
. .
. ..

.

0 c2
. .
. . .

.
0

..

. . .
. . .

. . .
.

bi−1
0 � � � 0 ci−1 ai

���������������
; ϕi ¼

���������������

ai bi 0 � � � 0

ci aiþ1 biþ1
. .
. ..

.

0 ciþ1
. .
. . .

.
0

..

. . .
. . .

. . .
.

bn−1
0 � � � 0 cn−1 an

���������������
:

For the cases of Γ0;0, Γ1;1, θi and ϕi can be explicitly
solved for. This formula stops being useful for Γs;s with
s > 1, as the rest of these are no longer tridiagonal, but
block tridiagonal. Such an mn ×mn matrix can be written
in the form

T ¼

0
BBBBBBBBB@

A1 B1 0 � � � 0

C1 A2 B2
. .
. ..

.

0 C2
. .
. . .

.
0

..

. . .
. . .

. . .
.

Bn−1

0 � � � 0 Cn−1 An

1
CCCCCCCCCA

where now Ai, Bi and Ci are m ×m square matrices
(ðbs

2
c þ 1Þ × ðbs

2
c þ 1Þ in the case of Γs;s). We would like

to develop a generalization of the formula for the inverse
m ×m block elements ðT−1Þij such that

T−1¼

0
BBBBBBBBB@

ðT−1Þ11 ðT−1Þ12 ðT−1Þ13 ��� ðT−1Þ1n
ðT−1Þ21 ðT−1Þ22 ðT−1Þ23 . .

. ..
.

ðT−1Þ31 ðT−1Þ32 . .
. . .

. ðT−1Þn−2n
..
. . .

. . .
. . .

. ðT−1Þn−1n
ðT−1Þn1 ��� ðT−1Þnn−2 ðT−1Þnn−1 ðT−1Þnn

1
CCCCCCCCCA
:

To do this we first note the formula for the inverse of a
block matrix partitioned into four parts

�
A B

C D

�
:

If we assume that both A andD are nonsingular, the inverse
may be written
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�
A B

C D

�
−1

¼
� ðA − BD−1CÞ−1 −A−1BðD − CA−1BÞ−1
−ðD − CA−1BÞ−1CA−1 ðD − CA−1BÞ−1

�
:

Using this, a formula for ðT−1Þij can be obtained:

ðT−1Þij ¼

8>><
>>:

ð−1ÞiþjΘ−1
i Bi � � �Θ−1

j−1Bj−1ðT−1Þjj i < j

ðAi − Ci−1Θ−1
i−1Bi−1 − BiΦ−1

iþ1CiÞ−1 i ¼ j

ð−1ÞiþjðT−1ÞiiCi−1Θ−1
i−1 � � �CjΘ−1

j i > j

ðC3Þ

where the Θi satisfy the recursive relation

Θi ¼ Ai − Ci−1Θ−1
i−1Bi−1 i ¼ 2; 3;…; n

with initial condition Θ1 ¼ A1 and the Φi satisfy

Φi ¼ Ai − BiΦ−1
iþ1Ci i ¼ n − 1;…; 1

with initial condition Φn ¼ An. This formula of course
presumes the existence of all the inverses indicated
above. The usefulness of this formula has yet to be
seen, but it seems to be as close as one can get to an
analogous formula to the tridiagonal case. It may be
useful in writing down the inverse of the full affine
propagator Γμpμ, as this itself is block tridiagonal,
with As¼Γs;sΠμ1���μsλν1���νspλ, Bs¼−Γs;s−1Πμ1���μsλν1���νs−1pλ

and Cs ¼ −Γs;sþ1Πμ1���μsλν1���νsþ1pλ.
For s > 1, the inverses of Γs;s have yet to be

determined. At this stage, we are therefore able to
explicitly write down the propagator if one only includes
the fields ψn and ψn

μ:

hψnðxÞψn0 ðyÞi ¼ −
6

9
ð−1Þnþn0 ð2maxðn; n0ÞÞ!!

ð2maxðn; n0Þ þ 1Þ!!
ð2n0 þ 1Þ!!
ð2n0Þ!!

Z
d3p
ð2πÞ3

−=p
p2 − iε

eip·ðx−yÞ; ðC4Þ

hψnðxÞψn0
μðyÞi ¼ −

5ffiffiffi
3

p ð−1Þnþn0 2maxðn0 − n; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0ð2n0 þ 3Þp Z

d3p
ð2πÞ3

pλΠλμ

p2 − iε
eip·ðx−yÞ; ðC5Þ

hψn
μðxÞψn0

νðyÞi ¼ 18ð−1Þnþn0 ð2maxðn; n0ÞÞ!!
ð2maxðn; n0Þ þ 1Þ!!

ð2n0 þ 1Þ!!
ð2n0Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 minðn; n0Þð2 minðn; n0Þ þ 3Þ
2maxðn; n0Þð2maxðn; n0Þ þ 3Þ

s

×
Z

d3p
ð2πÞ3

1

p2 − iε

�
pλΠμλν −

�
ημν −

pμpν

p2

�
=p − pλγμλν

�
eip·ðx−yÞ: ðC6Þ

Of course, any calculation done with a propagator which
includes only spin 1=2 and 3=2 fields explicitly breaks affine
invariance, and so nothing regarding the theory’s spontaneous
breaking can be determined. The above propagator does
however have properties that onemight expect from an affine
propagator. Namely, that if we add a “mass” termmðΨ;ΨÞ to
the action, the above propagator changes such that it has a
continuumofmasses. This is an expected feature of any affine
invariant theory, since a continuous affine transformationdoes
not leave theequationp2 ¼ −m2 invariant.This continuumof
masses follows fromthe fact thatΓ0;0 andΓ1;1 havecontinuous
spectra. Indeed, Γ0;0 has eigenvectors

Γ0;0vðλÞ ¼ λvðλÞ; ðC7Þ

vnðλÞ ¼
�

3

4πλ

�
1=4

e−3λ=2
1

2nð2nþ 1Þ!!H2nþ1ð
ffiffiffiffiffi
3λ

p
Þ; ðC8Þ

where H2nþ1ðxÞ are the standard odd degree Hermite poly-
nomials.This expressionworks formally forall complexλ, but

it is only for λ > 0 that we get the following orthonormality
conditions

ðvðxÞ; vðyÞÞ ¼
X∞
n¼0

ð2nþ 1Þ!!
ð2nÞ!! vn�ðxÞvnðyÞ ¼ δðx − yÞ;

Z
∞

0

dxvnðxÞvn0�ðxÞ ð2n
0 þ 1Þ!!

ð2n0Þ!! ¼ δnn0 ;

and 1

λ
ffiffi
5

p Γ1;0vð5λ=3Þ is an eigenvector of Γ1;1 with eigenvalue

λ. For simplicity, wewrite the propagatorwith the abovemass
term just including the ψn fields

hψnðxÞψn0 ðyÞi ¼
Z

d3p
ð2πÞ3

Z
∞

0

dμρnn
0 ðμÞ

×
−=pþ iμ

p2 þ μ2 − iε
eip·ðx−yÞ; ðC9Þ
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ρnn
0 ðμÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3

4πmμ

s
e−3m=μ H2nþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
3m=μ

p ÞH2n0þ1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
3m=μ

p Þ
2nþn0 ð2nþ 1Þ!!ð2n0Þ!! :

ðC10Þ

Notice that if the inverse of Γμpμ exists, it is difficult to see how the recursive formula (C3) produces a continuum of
masses, and will only have poles at p2 ¼ 0.
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