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We revisit the no-hair theorems in Einstein-Scalar-Gauss-Bonnet theory with a general coupling function
between the scalar and the Gauss-Bonnet term in four dimensional spacetime. We first resolve the conflict
caused from the incomplete derivation of the old no-hair theorem by taking into account the surface term
and restore its reliability. We also clarify that the novel no-hair theorem is always evaded for regular black
hole solutions without any restrictions as long as the regularity conditions are satisfied.
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I. INTRODUCTION

The uniqueness theorems [1,2] made us believe that
black holes might have no hair except for the mass,
electromagnetic charge or angular momentum. This moti-
vated the assertion of the no-hair theorem [3–5] which
proved the nonexistence of black hole solutions with
nontrivial scalar field for asymptotically flat spacetime.
The cases for the massive vector or spinor field were also
discussed respectively in [6,7]. However the desire to find
new black hole solutions led to the discovery of several
kinds of nontrivial field such as colored black holes [8] or
Skyrmion hair black holes [9]. More recently, the evasion
of the no-hair theorem has been shown for Einstein theory
with a Gauss-Bonnet (GB) term which couples to massless
scalar fields [10–17]. These results were subsequently
extended to consider self-interactions [18,19] or a cosmo-
logical constant [20].
The theory of general relativity with higher derivatives is

well motivated. The early study arose in quantum field
theory by finding that higher derivative terms stabilize the
divergent structure of gravity and helps to establish a
renormalizable theory of gravity in the absence of matter
fields [21,22]. Inspired by this result, application to
cosmology was initially investigated in [23] and later more
broad construction of modifying Einstein gravity has been
widely studied in many works (see [24] and references
therein) which have increasing interest due the emergence
of novel ways to test the high curvature limit of GR via

gravitational waves [25,26] and black hole shadows
[27,28]. Furthermore, from the perspective of string theory,
taking the low energy limit, gravity theory is reduced to
Einstein theory with higher derivative terms whose coef-
ficient is α0, the inverse string tension, and associated with
the dilaton coupling. Therefore the α0 correction is con-
sidered as the stringy effect beyond Einstein gravity.
Moreover, the swampland conjecture asserts the “no global
symmetry” in quantum gravity regimes and this is sup-
ported by the no-hair theorem [29,30]. These circumstances
draw attention to the existence of black hole solutions in
higher derivative theories.
In particular, the Gauss-Bonnet theory has a special

interest since it is topological in four dimensions. The no-
hair theorems for Einstein-Scalar-Gauss-Bonnet theory
(ESGB) are argued in [13] but their analysis was not
complete both for the old no-hair theorem as well as the
novel version of the theorem as follows.
First, the old no-hair theorem for ESGB theory in [10,13]

showed the positive definite coupling fðφÞ > 0 as a
necessary requirement for the evasion of the old no-hair
theorem. However the evasion of the old no-hair theorem
was also found for fðφÞ < 0 in [31], which is contrary to
the previous studies. One might think that there is a
privileged manner to validate the evasion of the old no-
hair theorem, but then the theorem loses its universal
power. This situation has caused suspicion on the reliability
of the old no-hair theorem. Here we resolve this issue by
giving a correct treatment of a surface term and restore the
reliability of the old no-hair theorem. Indeed, this situation
differs from the original work of Bekenstein [4], where the
surface term vanishes because either the field is massive
and therefore enjoys a Yukawa-like, exponential decay, or
the field is massless and the theory is shift symmetric. In the
latter case, the surface term is unphysical since it can
always be canceled by a field shift which leaves the
Lagrangian invariant. On the other hand, in ESGB theory
with a massless scalar field, the surface term survives in
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general and it remains physical when the theory does not
enjoy a shift symmetry. Thus the no-hair theorem should be
understood on this basis.
Second, the novel no-hair theorem involves analyzing

the asymptotic behavior of the energy-momentum tensor
near the horizon and at infinity under the assumption of a
regular black hole solution and determines the possibility
that the energy-momentum tensor smoothly matches both
asymptotic limits. The application to the ESGB theory in
[13] shows that imposing the regularity condition on the
horizon is necessary to guarantee the evasion of the novel
no-hair theorem and to further ensure the evasion the
authors require the derivative of the energy-momentum
tensor ðTr

rÞ0 to be negative near the horizon. We revisit this
and find that the later condition plays no role in determining
whether physically acceptable solutions exist.
In this paper, we revisit the no-hair theorem in ESGB

theory studied in [13] and revise their argument with
respect to the old no-hair theorem as well as extend the
analysis of the novel no-hair theorem. In Sec. III we point
out the omission of the surface term for the old no-hair
theorem in [13]. In Sec. IV we show that in the case of the
novel theorem the energy-momentum tensor can be regular
without any further constraints as long as the condition for
regularity of the scalar field is satisfied. Then we demon-
strate our argument with numerical solutions in Sec. V.
Thus we clarify the conditions for the no-hair theorem to
hold and conclude that the no-hair theorem is more easily
evaded than previously studied.

II. EINSTEIN-SCALAR-GAUSS-BONNET THEORY

We start with the gravity action as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
∇αφ∇αφþ fðφÞG

�
; ð1Þ

where we set 2κ2 ¼ 16πG ¼ 1 and G denotes the GB term
that is written as

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ð2Þ

and which leads to the Einstein equations as follows:

Rμν −
1

2
Rgμν ¼ Tμν ¼ κ2

�
∂μφ∂νφ −

1

2
gμν∂ρφ∂ρφ

− ðgρμgλν þ gλμgρνÞηκλαβR̃ργ
αβ∇γ∇κf

�
; ð3Þ

where R̃ργ
αβ ¼ ηργστRσταβ ¼ ϵργστffiffiffiffi−gp Rσταβ and the scalar field

equation is

∇2φþ _fG ¼ 0; ð4Þ

where “_” indicates the variation with respect to the scalar
field φ. Employing the following metric ansatz

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2dΩ2; ð5Þ

the equations of motions are written as

rB0 þ B − 1

r2B
þ κ2

2
φ02 þ 4κ2

r2B

× ½ð1 − 3BÞB0 _fφ0 − 2ðB − 1ÞBðf̈φ02 þ _fφ0Þ� ¼ 0; ð6Þ

A0

Ar
þ B − 1

Br2
−
κ2

2
φ02 þ 4κ2ð1 − 3BÞA0φ0 _f

Ar2
¼ 0; ð7Þ

A0ð2A − rA0Þ
4A2r

þ B0ðrA0 þ 2AÞ
4ABr

þ A00

2A
þ κ2

2
φ02

−
2κ2

Ar

�
_fφ0
�
2BA00 þ 3A0B0 −

BA02

A

�

þ 2BA0ðf̈φ02 þ _fφ00Þ
�
¼ 0; ð8Þ

φ00 þ 1

2
φ0
�
A0

A
þ B0

B
þ 4

r

�
þ 2_f
Ar2

�ð3B − 1ÞA0B0

B

−
ðB − 1Þ

A
ðA02 − 2AA00Þ

�
¼ 0; ð9Þ

where “ 0” indicates the variation with respect to the radial
coordinate r.
If we assume the existence of a regular black hole, we

require the following boundary conditions near the horizon

AðrÞ∼Ahϵ; BðrÞ∼Bhϵ; φðrÞ∼φh þφh;1ϵ; ð10Þ

where ϵ ¼ r − rh is the expansion parameter and φh is a
finite value near the black hole horizon. First, as was
pointed out in several works before [10,13], in order to
ensure that the scalar field and its derivatives are finite one
requires the following constraint, valid on the horizon

φh;1 ¼ −
rh
4_fh

 
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96

r4h
_f2h

s !
; ð11Þ

Bh ¼
2

rh

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96

r4h
_f2h

s !−1

; ð12Þ

where _fh ¼ _fðφhÞ. We found that the numerical solutions
are generated only for the minus sign in front of root in (11)
with the plus sign in (12) and will just consider this case
hereafter. To avoid φ00ðrhÞ being divergent the inside of the
root should not be zero, namely

_f2h <
r4h
96

: ð13Þ
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These regularity conditions (11)–(13) ensure that the
solutions correspond to a regular black hole spacetime.
We also write the near horizon expansion of the Riemann
scalar invariant

RαβμνRαβμν ∼
64

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 96

r4h
_f2h

q
− 24

r4h
_f2h

��
1 − 24

r4h
_f2h

�

r4h

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 96

r4h
_f2h

q �
4

;

ð14Þ
which is finite unless the size of the horizon becomes zero
rh → 0. This ensures that the spacetime is not a naked
singularity but a regular black hole.
At infinity, the asymptotic flatness requires that the

metric and scalar field are found to be

AðrÞ ∼ 1þ A1

r
; BðrÞ ∼ 1þ A1

r
; φðrÞ ∼ φ∞ þ φ1

r
;

ð15Þ

where φ∞ takes a finite value that is physical if the theory
does not enjoy a shift symmetry on φ. Here φ1 is deeply
related to scalar charge [32], which is defined by

Q ¼ −
1

4π

Z
S2
d2Σμ∇μφ ð16Þ

at infinity. Plugging the expansion of the metric into the GB
term yields

G ∼
48

r4h

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96

r4h
_f2h

s �−2

þOðϵÞ; ðr → rhÞ; ð17Þ

G ∼
12A2

1

r6
þOðr−7Þ; ðr → ∞Þ; ð18Þ

which are positive at both asymptotics. Using these
expansions, we examine the existence of black hole
solutions.

III. OLD NO-HAIR THEOREM

As studied in [10,13], let us start with the scalar field
equation multiplied by the coupling function fðφÞ and then
take an integration over four dimensional spacetime

Z
V
d4x

ffiffiffiffiffiffi
−g

p
f½∇2φþ _fG� ¼ 0 ð19Þ

¼ −
Z
V
d4x

ffiffiffiffiffiffi
−g

p _fð∂μφ∂μφ − fGÞ

þ
Z
∂V

d3x
ffiffiffiffiffiffi
−h

p
fnμ∂μφ; ð20Þ

where h is the induced metric on a hypersurface defined by
a normal vector nμ. Since we assume that the static scalar
field depends on the radial coordinate, only the μ ¼ r
component makes a non-trivial contribution. Since the GB
effect vanishes approaching infinity as seen in Eq. (18), we
expect that the scalar field behaves like a massless particle
there and so their falloff would be slow enough for the
surface term to survive. To explicitly show this, we plug our
metric ansatz into the general expression above. Factoring
out the time and angular integrations, it reduces to

Z
∞

rh

dr

ffiffiffiffi
A
B

r
r2 _fð∂μφ∂μφ−fGÞ−

� ffiffiffiffi
A
B

r
r2grrf∂rφ

�����
r→∞

¼0;

ð21Þ

where the surface term, that is the second line above,
vanishes at the horizon since grr → 0 as r → rh.
Substituting the asymptotic expansion (15) to the surface
term, we see that it remains finite and approaches fðφ∞Þφ1.
The presence of a surface term makes it nontrivial to prove
the nonexistence of black hole solutions for a general
coupling function fðφÞ. But for the special cases such as in
the absence of the surface term by fðφ∞Þ ¼ 0 or φ1 ¼ 0,
the no-hair theorem still holds when fðφÞ < 0, but is
evaded again if fðφÞ > 0 as previously studied in [13].
Nevertheless, the case of fðφ∞Þ ¼ 0 cannot be achieved
for a general coupling. For the cases of fðφÞ ¼ αeγφðrÞ or
fðφÞ ¼ αφðrÞ−n with positive n, the regular scalar field
solution cannot make fðφ∞Þ to vanish and hence the
surface term is always present unless φ1 ¼ 0. On the
other hand, for the cases of fðφÞ ¼ αφðrÞn or fðφÞ ¼
αð1 − eγφ

2Þ, the surface term will disappear if φ∞ ¼ 0 and
so the no-hair theorem still holds for fðφÞ < 0, while if
φ∞ ≠ 0 the surface term survives. For the later case, black
hole solutions would exist for either positive or negative
sign of a coupling function. Thus, black hole solutions exist
regardless of the sign of fðφÞ in these cases. This fact will
be numerically demonstrated with the explicit coupling
functions in Sec. V.

IV. NOVEL NO-HAIR THEOREM

The novel no-hair theorem was formulated for scalar
fields that are minimally coupled to gravity in [33]. They
assume the positivity of the energy density E ¼ −Tt

t > 0
and illustrate the asymptotic behaviors of Tr

r and ðTr
rÞ0 at

horizon and infinity. They then show the impossibility of
smoothly matching these asymptotic conditions by making
explicit use of the Einstein equations. The same method-
ology was applied to the nonminimally coupled ESGB
theory, in [10,13], which showed that the smooth matching
of the energy-momentum tensor at both asymptotics may
be achieved if Tr

r > 0 and ðTr
rÞ0 < 0 close to the horizon.

We find that the second assumption is not required to

RECTIFYING NO-HAIR THEOREMS IN GAUSS-BONNET … PHYS. REV. D 106, 084024 (2022)

084024-3



smoothly connect the energy-momentum tensor at both
asymptotics. Our argument takes the following form.
We first expand the energy momentum tensor and its

derivative around the horizon as well as at infinity

Tr
r ¼ Tt

t ¼ −
1

rB0 Tθ
θ ¼ −

2B0 _fφ0

r2
þOðϵÞ; ð22Þ

ðTr
rÞ0 ¼ BA0

A

�
4ðrB0 þ 1Þ _fφ0

r3
−

rφ02

4ðrþ 2_fφ0Þ

−
2ðf̈φ02 þ _fφ00Þ
rðrþ 2_fφ0Þ

�
þOðϵÞ ð23Þ

and

Tr
r ¼ −Tt

t ¼ −Tθ
θ ¼ 1

4
φ02 þOðr−5Þ; ð24Þ

ðTr
rÞ0 ¼ −

1

r
φ02 þOðr−6Þ; ð25Þ

where the GB term is subdominant at large r. The product
_fφ0 is always negative definite for regular black hole (11)
and results in

Tr
rjr→rh > 0; ðTr

rÞ0jr→rh∶undetermined ð26Þ

Tr
rjr→∞ > 0; ðTr

rÞ0jr→∞ < 0 ð27Þ

where ðTr
rÞ0jr→∞ decays asymptotically as r−5. As pointed

out in [10,13], this indicates that the energy density is
negative near the horizon, E ¼ −Tt

t < 0, which is opposed
to the minimally coupled case in [33]. This is an effect
crucially driven by the GB term. The authors considered the
possible smooth matching of the energy-momentum tensor
at both asymptotics by requiring the condition

V ¼ f̈φ02 þ _fφ00 ¼ ∂rð _fφ0Þjrh > 0; ð28Þ

which guarantees ðTr
rÞ0jr→rh to be negative in smoothly

connecting the two asymptotic limits. However this is not
the only way of matching. We first argue that the condition
(28) is overly restrictive. To explicitly show this, we
explore the parameter space of ðTr

rÞ0jr→rh by using the
near horizon expansion which takes the form

ðTr
rÞ0 ¼ −

β2½68 − 41β2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
ð68 − 9β2Þ�

4r3h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ4

−
36f̈hβ2

r5h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ3

þOðϵÞ; ð29Þ

where f̈h denotes f̈ðφhÞ and we used a new variable

β ¼ �
ffiffiffiffiffi
96

p j _fhj
r2h

; ð30Þ

which ranges −1 < β < 1 and this will carry the same sign
as α in our examples. We plot the boundary in which
ðTr

rÞ0jr→rh changes sign in Fig. 1 as a solid line. Inspection
of the figure allows one to visualize the various possibilities
regarding the sign of ðTr

rÞ0 near the horizon but this does
not mean that all parameter space yields black hole
solutions. As seen in Fig. 1 the green region also makes
ðTr

rÞ0 to be negative even with a negative value of V. We
second point out that in spite of the undetermination of
ðTr

rÞ0 the rest of the conditions in (26)–(27) do not prevent
having ðTr

rÞ0jr→rh > 0 to smoothly join the energy-
momentum tensor from the horizon to infinity. Namely,
either sign ðTr

rÞ0 is allowed to match Tr
r at both asymptotic

regions. In conclusion the whole region except the points
with β ¼ �1 in Fig. 1 should be considered to generate
black hole solutions.
In the next section we explore all three regions and

numerically find solutions for regular black holes with
scalar hair for all three cases.

V. EXAMPLES

Here we verify the evasion of no-hair theorems for two
specific coupling functions. In order to generate the
numerical solution the expansion coefficients Ah, φh are
used as the parameters to give the initial conditions for
Eqs. (6)–(9), but Ah is determined by the boundary
condition at infinity. Here we produce a family of solutions
for varying φh fixing rh ¼ 1.

A. f ðφÞ=αeγφðrÞ
As addressed before, the surface term does not disappear

in this case unless φ1 ¼ 0 and therefore the no-hair theorem
is evaded for any values of α as long as the coupling
function satisfies (11)–(12). For a given φh, the value of
φ∞=φh is depicted as a function of β and the scalar
functions φðrÞ for the cases β ¼ −0.71, 0.136, and 0.5

FIG. 1. Parameter space for ðTr
rÞ0jr→rh. The blue (V > 0) and

green (V < 0) regions satisfy ðTr
rÞ0jr→rh < 0while the red region

ðTr
rÞ0jr→rh > 0, and β ¼ �1 is excluded.
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are displayed in Fig. 2. We fix γ ¼ 1 and only focus on the
positive case for γ since the equations of motion are
symmetric with −γ under the change of the sign of the
scalar field φðrÞ. Since there is a shift symmetry of the
Dilaton field in this case, a nonzero value of φ∞ can be
shifted to zero under a rescaling of the radial coordinate r
[10]. To examine the evasion of the old no-hair theorem
(21), we plot the bulk term and surface term, which are the
first and second line in Eq. (21) respectively, as a function
of β in Fig. 3. This demonstrates that the value of the
surface term is not zero but takes the opposite sign to the
bulk term and therefore plays a crucial role for the evasion
of the old no-hair theorem. We also investigated the energy-
momentum tensor, but since our parameter choices (γ ¼ 1)
are firmly in the blue region of Fig. 1, Tr

r is positive and
monotonically deceasing and ðTr

rÞ0 is negative and mono-
tonically increasing having positive V in (28). We have
found solutions for both the green as well as the red region
of Fig. 1 by changing the value of γ, but observed that the
behavior of the metric functions differs considerably from
the Schwarzschild-like behavior [34]. We instead will
explore the green and red regions of Fig. 1 for the novel
no-hair theorem in the next example.

B. f ðφÞ=αφðrÞ2
In this case, the surface term can vanish when φ∞ ¼ 0 or

φ1 ¼ 0 which reduces the bulk integration to be zero. This
cannot be achieved for fðφÞ < 0 or α < 0 and so the no-
hair theorem is expected to hold. This is numerically shown
in Fig. 4, where the solutions show an ever increasing value
of φ∞ for negative β and therefore certainly there are no
solutions that yield φ∞ ¼ 0 for negative values of β.
Moreover, as shown in Fig. 5, the bulk integration values

are growing in the negative β region. In addition, when
φ∞ ≠ 0 the surface term survives unless φ1 ¼ 0 and the
equality (21) becomes nontrivial, which indicates the
existence of black hole solutions. Thus the old no-hair
theorem is expected to be evaded and this is verified by
generating numerical solutions in Fig. 4. The comparison
between the bulk and surface terms are then plotted in
Fig. 5 and show that the bulk term is exactly the same as the
surface term with the opposite sign. To explicitly demon-
strate our argument for the novel no-hair theorem, the
energy-momentum tensor Tr

r and its derivative ðTr
rÞ0 are

depicted in Fig. 6, which shows that ðTr
rÞ0 can take positive

values with V being negative, while smoothly connecting
the two asymptotic regimes. This demonstrates that one
may obtain solutions for any of the regions displayed
in Fig. 1.

VI. CONCLUSION

We investigated the no-hair theorems in ESGB theory
previously studied in [13,14]. In the formulation of the old
no-hair theorem, the surface term has so far been neglected.
However, due to the nonminimal coupling, the asymptotic

FIG. 2. For f ¼ αeγφ (left) φ∞=φh vs β and (right) φðrÞ for
different values of β fixing φh ¼ 0.1.

FIG. 4. For f ¼ αφ2, (left) φ∞=φh vs β and (right) φðrÞ for
different values of β fixing φh ¼ 0.1.

FIG. 6. Novel no-hair theorem: For f ¼ αφ2 and φh ¼ 0.1,
(left) Tr

r and (right) ðTr
rÞ0 and V.

FIG. 3. Old no-hair theorem: For f ¼ αeγφ with φh ¼ 0.1 (left)
plot of bulk and surface term (right) the scalar charge
Q=

ffiffiffiffiffiffijαjp
vs β.

FIG. 5. Old no-hair theorem: For f ¼ αφ2 with φh ¼ 0.1 (left)
plot of bulk and surface term (right) the scalar charge
Q=

ffiffiffiffiffiffijαjp
vs β.
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behaviors of the scalar fields are drastically altered and
hence the surface term cannot be ignored in principle.
Consequently, the evasion of the old no-hair theorem
should be discussed taking the presence of the surface
term into account. We provided the right criteria for the old
no-hair theorem to hold or to be evaded. This explains the
existence of the numerical solutions when the coupling
function is negative, which was excluded in the previous
studies [13,14], and this fact is demonstrated for the cases
of f ¼ αeγφ and f ¼ αφ2. In the case of the novel no-hair
theorem, one generally expects it to be evaded for non-
minimal couplings since the original version explicitly
assumed a minimal coupling to gravity. We confirm this
fact by finding regular solutions numerically, which merely
obey the regularity condition (11) on the horizon and we
find that it is not necessary for the derivative of the energy-
momentum tensor to be negative. Instead, ðTr

rÞ0 may admit
either sign on the horizon while still yielding an acceptable
solution. In summary, the novel no-hair theorem is evaded
automatically in ESGB theory while the old no-hair
theorem holds for a very specific choice of parameters
and is, in fact, the only way to limit the possible black hole
solutions with nontrivial scalar hair.
This study explicitly clarified the parameter regimes of

new black hole solutions in ESGB theory and depending on
the sign of the coupling function the black hole solutionswill
show the distinctive properties fromones of standard general
relativity. Due to the recent illuminating development of the
astrophysical observation, we expect that this deviation can
be tested in various ways of detection. First, one of aims for
the gravitational waves analysis is to test classical general

relativity since Einstein’s theory of gravity is considered as
an effective theory. One idea to do so is to test the no-hair
theorem [35]. Analyzing the data of gravitational waves in
the ringdown phase from the LIGO can be compared to the
waveform that is numerically generatedwith givenmass and
angular momentum in Einstein theory [25]. The agreement
can prove the no-hair theorem which is predicted by the
standard general relativity, but the disagreement will indi-
cate that the black holes have more hair than just mass and
angularmomentum. In the latter case, it would be interesting
to see if ESGB theory corrects the deviation. Second, these
solutions can be used to obtain the direct image of the
shadow of the black hole as observed by the Einstein
Horizon Telescope. If we know the mass of the black hole
with high accuracy for Sagittarius A� (Sgr A�) or Messier
87 � (M87*) we get a precise prediction for the shadow
radius analytically. However, in theories such as ESGB
theory this shows that the radius deviates from a
Schwarzchild black hole for a given mass. Since these
supermassive black holes have very low angular momenta
the present work is a good approximation and therefore our
results are directly applicable for constraining the theory
using the observed black hole shadow [27,28].
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