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Extreme mass-ratio inspirals (EMRIs) are one of the most highly anticipated sources of gravitational
radiation novel to detection by millihertz space-based detectors. To accurately estimate the parameters of
EMRIs and perform precision tests of general relativity, their models should incorporate self-force theory
through second-order in the small mass ratio. Due to their extreme mass ratio, EMRIs inspiral slowly when
sufficiently far from merger, and a two-timescale approximation can be applied. Within the two-timescale
approach, the slow evolution of the first-order metric perturbation contributes to the source for the second-
order metric perturbation, and must be accounted for in EMRI waveform models. In this paper we calculate
the slow evolution of the first-order metric perturbation in the Lorenz gauge for quasicircular orbits on a
Schwarzschild background in the frequency domain. Lorenz gauge solutions to the first-order metric
perturbation and its slow evolution are obtained via a gauge transformation from Regge-Wheeler gauge
solutions. The slow evolution of Regge-Wheeler and Zerilli master functions, in addition to a gauge field are
determined using the method of partial annihilators.
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I. INTRODUCTION

Gravitational wave (GW) astronomy has seen huge
progress since the first discovery by the LIGO/Virgo
Collaboration in 2015 [1]. To date, GWs have been detected
from numerous sources including compact binaries with
mass ratios from 1∶1 to ∼26∶1 [2], binary neutron stars [3]
and black hole-neutron star mergers [4]. The next gener-
ation of space-based GW detectors such as the Laser
Interferometer Space Antenna (LISA) [5], with access to
millihertz frequencies, will expand the current parameter
space of compact binaries available to detection. This drives
the need to develop GW models for millihertz sources:
extreme-mass-ratio inspirals (EMRIs), one of the key
anticipated sources of GWs detectable by LISA. EMRIs
are binary systems of compact objects in which the larger
body (the primary) has a mass M that is at least 104 times
that of the smaller body (the secondary) with mass μ.
Astrophysical observations establish the primary as a super-
massive black hole with a mass of∼104–107 M⊙ residing in
galactic centers, with the secondary a stellar-mass compact
object, either a black hole (BH), neutron star, or some exotic
compact object [6]. EMRI GW frequencies range between
∼10−3–10−2 Hz [5], placing them comfortably within the
LISA band, detectable so long as their signal is sufficiently
loud [7]. It is estimated that LISA will observe between a
few and a few thousand EMRIs over its lifetime [7]. This
estimate provides substantial motivation to develop models
of EMRIs with which to perform matched filtering of
LISA’s future data stream.

Black hole perturbation theory (BHPT) is a natural
choice for modeling EMRIs. The metric of the binary,
gαβ, is expanded around the metric of the primary, g0αβ, in
powers of the mass ratio ε ¼ μ=M ≪ 1 [8]:

gαβ ¼ g0αβðxμÞ þ
X∞
n¼0

εnhnαβðxμ; zμÞ; ð1Þ

where g0αβ depends on the background coordinates xμ,
which describe the primary, and hnαβ is the nth-order metric
perturbation, depending on both the background coordi-
nates and the position of the secondary’s worldline, zμðτÞ.
In this paper we take g0αβ to be the Schwarzschild metric,
with coordinates xμ ¼ ft; r; θ;ϕg and without loss of
generality we constrain the secondary to the equatorial
plane such that zμðτÞ ¼ ftp; rp; π=2;ϕpg.
Searching for and parametrizing EMRI waveforms in the

LISA data stream relies crucially on theoretical waveform
templates, where the phase error of the template with
respect to the true signal must be ≪ 1 radian [5,8,9]. In
order to reach this criteria the expansion in Eq. (1) must be
carried through second order in the mass ratio [9].
Due to their small mass ratio, orbital parameters such

as the radius, orbital energy, angular momentum, fre-
quency and amplitude of EMRIs evolve slowly during
the inspiral [8]. That is, they evolve on the radiation-
reaction timescale. On the other hand, the orbital phase
evolves on the orbital timescale, and accumulates rapidly
over many tens or hundreds of thousands of orbits [9].
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The presence of these disparate timescales allows for a two-
timescale expansion where at each order in ε the metric
perturbation is written as a product of slowly evolving
amplitudes and a rapidly evolving phase. Hereafter we
specialize to quasicircular inspirals and define the “fast
time” t such that ϕpðtÞ ¼

R
tΩðεt0Þdt0, whereΩ is the orbital

frequency. We then define the “slow time” to be t̃ ¼ εt [8].
At each order we write the metric perturbation as

hnαβðt̃; rp;ϕp; xiÞ ¼
X
m∈Z

hn;mαβ ðt̃; rp; xiÞe−imϕp ; ð2Þ

where xi ¼ ðr; θ;ϕÞ. The field equations for the metric
amplitudes hn;mαβ can be derived by substituting Eqs. (1)
and (2) into the Einstein field equations and expanding order
by order in ε. The field equations must also be regularized in
order to compute the regular contribution to the metric
perturbation that gives rise to the self-force (SF) that drives
the inspiral [10,11]. Through second order in the mass ratio,
this regularization procedure is presently best understood in
the Lorenz gauge [12,13].
Using the two-timescale expansion, time derivatives

that appear in the Einstein tensor can be handled using
dϕp=dt ¼ Ω and dt̃=dt ¼ ε, such that,

∂t ¼ Ω∂ϕp
þ ε∂t̃: ð3Þ

The presence of the second term means there is a
contribution from the “slow-time derivative” of the first-
order metric perturbation to the source of the second-order
metric perturbation [8]. The explicit form of the radial field
equations after further decomposing the metric perturba-
tions onto a basis of tensor spherical harmonics and
applying the Lorenz gauge condition can be found in
Eqs. (16) and (17) of Ref. [8].
The goal of this paper is to compute ∂t̃h1αβ, as it

contributes to the source for the second-order metric
perturbation and hence is a necessary ingredient for
accurate EMRI waveform templates. We begin by expand-
ing the orbital radius and frequency as rpðt̃Þ ¼ r0ðt̃Þ þ
OðεÞ and Ωðt̃Þ ¼ Ω0ðt̃Þ þOðεÞ where r0 is the radius of a
circular geodesic with orbital frequency Ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
.

We then write the slow-time derivative of the first-order
metric perturbation as1:

∂t̃h1αβ ¼
dr0
dt̃

∂r0h
1
αβ þOðεÞ: ð4Þ

The first term on the right-hand side can be computed
using dr0=dt̃ ¼ ðdE=dr0Þ−1dE=dt̃, with the balance law
dE=dt̃ ¼ −F , where E is the (specific) orbital energy and

F is the sum of the radiated energy flux of gravitational
waves through the event horizon and null infinity. The
computation of the slow-time derivative of h1αβ is thus
converted to computing the r0 derivative of the first-order
metric perturbation amplitude.

A. Lorenz gauge metric perturbations

We can decompose the trace-reversed metric perturba-
tion h̄1αβ ¼ h1αβ −

1
2
gαβh1 into spherical harmonic and

Fourier modes (dropping the dependence on rp for con-
venience):

h̄1αβ ¼
X∞
l¼0

Xl

m¼−l

X10
i¼1

aðiÞl
r

h̄ðiÞlmðrÞYðiÞlm
αβ ðr; θ;ϕÞe−imΩ0t; ð5Þ

where the YðiÞlm
αβ are the Barack-Sago-Lousto (BSL) tensor

spherical harmonic basis [14,15] and,

aðiÞl ¼ 1ffiffiffi
2

p ×

8>>><
>>>:

1 for i¼ 1;2;3;6;

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

for i¼ 4;5;8;9;

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl− 1Þp

for i¼ 7;10:

ð6Þ
Substituting this decomposition into the linearized Einstein
field equations and applying the Lorenz gauge condition
∇αh̄αβ ¼ 0 we arrive at the radial field equations [14–18]:

□lmh̄
ðiÞ
lm − 4f−2MðiÞ

ðjÞh̄
ðjÞ
lm ¼ J ðiÞ

lm; ð7Þ

where □lm ¼ ∂
2
r þ f0=f∂r − f−2½VlðrÞ − ω2

m� with fðrÞ ¼
1–2M=r, VlðrÞ ¼ f½2M=r3 þ lðlþ 1Þ=r2�, ωm ¼ mΩ0,

and MðiÞ
ðjÞ is a matrix that encodes the coupling between

the various components of the metric perturbation, whose
components can be found explicitly in [14,15], and

J ðiÞ
lm ∝ δðr − r0Þ, is the stress-energy tensor describing the

source of the perturbation, as decomposed onto this basis.
Taking an r0 derivative of the radial field equations we get

□lmh̄
ðiÞ
lm;r0

− 4f−2MðiÞ
ðjÞh̄

ðjÞ
lm;r0

¼ J ðiÞ
lm;r0

−□lm;r0 h̄
ðiÞ
lm: ð8Þ

This equation is challenging to solve for two main reasons:
(i) the source on the right-hand side is unbounded, and
(ii) the coupling between the tensor harmonic i modes via

theMðiÞ
ðjÞ matrix increases the complexity and computational

burden of the calculation. The noncompact source is
particularly challenging for the standard variation of param-
eters approach for constructing inhomogeneous solutions to
ordinary differential equations (ODEs), as this approach
relies on having the homogeneous solutions computed for all
radii inside the source. Nonetheless a numerical code using

1There are also contributions from the slow evolution of the
mass and spin of the primary which we ignore here as they can be
handled separately in a straightforward manner [8].

LEANNE DURKAN and NIELS WARBURTON PHYS. REV. D 106, 084023 (2022)

084023-2



the variations of parameters method to find solutions to
Eq. (8) has been implemented in Ref. [19].
We present in this paper a novel approach to calculating

∂t̃h1αβ by (i) making use of the a gauge transformation from
Regge-Wheeler (RW) to Lorenz gauge solutions [20,21]
and (ii) using the method of partial annihilators [21] to
replace the unbounded source with a compact one, at the
expense of introducing a higher-order operator on the left-
hand side of the field equations. The combination of these
two techniques means we only have to numerically solve
homogeneous equations for a handful of uncoupled scalar
fields that describe the RW master variables and their r0
derivatives. We can then construct the inhomogeneous
solutions entirely from data obtained on the worldline.
We find this approach more efficient and easier to imple-
ment than the variation of parameters method with an
unbounded source, such as that of Ref. [19].

B. Outline of our approach

Our method is outlined as follows. For a particular
choice of gauge vector ξα ∼OðεÞ, the infinitesimal coor-
dinate transformation: xα → x0α ¼ xα þ ξα allows us to
write the gauge transformation of the metric perturbation
to leading order as

h1Lαβ ¼ h1RWαβ þ £ξg0αβ; ð9Þ
where h1Lαβ and h1RWαβ are the metric perturbation in the
Lorenz gauge and RW gauge respectively, and £ξ is the Lie
derivative with respect to the gauge vector ξα. The right-
hand side of Eq. (9) can then be written in terms of
solutions to the spin-weighted RW and Zerilli (RWZ)
master equations. Taking the derivative of Eq. (9) with
respect to r0, we obtain ∂r0h

1L
αβ in terms of ∂r0h

1RW
αβ and the

gauge vector contribution: −2∂r0ξðα;βÞ. Numerically, it is
significantly easier to solve for the RWZ master functions
and their r0 derivatives then apply the gauge transformation
from Eq. (9) than to solve Eq. (8) directly to obtain ∂r0h

1L
αβ .

Expressions for the 10 independent components in Eq. (9)
were derived by Berndtson [20]. The homogeneous expres-
sions are provided explicitly in this paper in Sec. III and
Appendix F for the case where l ≥ 2 and ωm ≠ 0. We shall
drop the subscript m on ω henceforth.
The use of the gauge transformation in Eq. (9) and its r0

derivative simplifies the calculation of ∂r0h
1L
αβ , but we are

still left with the task of computing the r0 derivative of the
RWZmaster functions. As with the Lorenz gauge equations,
the radial equation for the r0 derivative of the RWZ master
functions will have a source with unbounded support. To
simplify the calculation we employ the method of partial
annihilators which we illustrate now with a toy example.
Consider an inhomogeneous second-order ODE of the form

Lφ ¼ S; ð10Þ

where L≡ ∂
2
r þ ωðr0Þ2, φ ¼ φðr; r0Þ and S ¼ μδðr − r0Þ.

Differentiating Eq. (10) with respect to r0 we arrive at

Lφ;r0 ¼ S;r0 − 2ωω;r0φ; ð11Þ
which, just like Eq. (8), has a source which is unbounded
due to the presence of φ in the source, which is defined ∀ r.
If we now act on Eq. (11) with L and make use of Eq. (10)
we get

L2φ;r0 ¼ LS;r0 − 2ωω;r0S: ð12Þ
We now have a fourth-order operator, L2, on the left-hand
side and a compact source on the right, containing only
Dirac delta functions and their derivatives. We find
equations of this form much easier to solve numerically
than equations of the form of Eq. (11). As such we will
use this technique multiple times throughout this work,
including cases where we have to introduce a sixth-order
operator on the left-hand side in order to arrive at a
compact source.
In this paper wewill focus on radiative modes as the static

modes are known analytically [22] and thus it is straightfor-
ward to take the r0 derivative of them. The rest of this paper
proceeds as follows. In Sec. II we introduce the RW gauge
by writing the metric perturbation in terms of a tensor
spherical harmonic basis and Fourier decomposition. We
introduce the spin-weighted RWZ master equations and
describe how to obtain their inhomogeneous solutions using
the method of variation of parameters in Sec. II A. We find
their homogeneous solutions using the ReggeWheeler
Mathematica package from the Black Hole Perturbation
Toolkit (BHPToolkit) [23]. In Sec. II B we then use the
method of partial annihilators to solve for the r0 derivatives
of the RWZmaster functions. To compute the homogeneous
solutions to the fourth-order equations, we construct appro-
priate boundary conditions at large radius and near the
horizon, and numerically integrate to r0 in Sec. II C. In
Sec. II D we show how to calculate the r0 derivative of the
GW energy flux at infinity as a demonstration of our
method. In Sec. II E we provide our numerical results,
consistency checks and directly compute the r0 derivative of
the GW flux to infinity.
In Sec. III we discuss the Lorenz gauge, providing

explicit expressions for h1Lαβ in the odd-sector using the
gauge transformation derived by Berndtson [20] for the
case where l ≥ 2 and ω ≠ 0. Berndtson’s transformation is
equivalent to the transformation in [21]. The majority of the
even-sector expressions are lengthy and are therefore
presented in Appendix F. We note here that the individual
components of Eq. (9) can also be derived using the recent
work of Dolan, Wardell and Kavanagh [24,25], at least in
the homogeneous case. In the odd sector, h1Lαβ is constructed
from two RWZmaster functions with compact sources. The
r0 derivative of each of these obeys an equation of the form
of Eq. (10) and as such the method of partial annihilators
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proceeds similarly to Eq. (11). In the even sector, h1Lαβ is
constructed from four RWZ master functions, three of
which have compact sources and an additional gauge field
whose source is unbounded. It turns out this additional
gauge field, known as M2af, can be again be tackled using
the method of partial annihilators. Solving for ∂r0M2af is a
little more involved than our earlier toy example however,
and we must solve a pair of sixth-order ODEs with compact
sources, discussed in Sec. III D. Solutions to ∂r0h

1L
αβ can

then be determined by taking the r0 derivative of the gauge
transformation in Eq. (9) and substituting RWZ master
functions and their r0 derivatives, calculated in Sec. II. We
also provide the transformation from Berndtson’s expres-
sions to the BSL spherical harmonic basis [14,15] in
Sec. III E, which is commonly used in SF calculations
[15–17,26,27]. We present our final numerical results and
consistency checks for h1Lαβ in Sec. III F. Future prospects
are discussed in Sec. IV. Our calculation of ∂r0h

1L
αβ provides

an important ingredient for second-order SF calculations
and our results have already been used in Refs. [28,29] to
calculate the second-order flux and post-adiabatic wave-
forms, respectively.
Raising and lowering indices and differential operations

are performed with respect to g0αβ. Geometric units will be
used throughout this paper such that G ¼ c ¼ 1, with
metric signature ð−þþþÞ.

II. REGGE-WHEELER GAUGE

In this section we will review the RW gauge and obtain
solutions to the RWZ master equations via the method of
variation of parameters. We then discuss in detail our
approach to solve for the r0 derivatives of the RWZ master
functions. To define the RW gauge, we must first introduce
the spherical harmonic mode and Fourier decomposition of
the first-order metric perturbation. The spacetime manifold
is chosen such that it is foliated by hypersurfaces defined by
constant t. In the frequency domain, using a tensor spherical
harmonic basis, h1αβ can then be written as

h1αβ ¼
X∞
l¼0

Xl

m¼−l
hlmαβðr; θ;ϕÞe−iωt: ð13Þ

We can split hlmαβ into two sectors, with either odd or even
parity. The odd-(even-) sector is defined for lþm odd
(even) such that

hlmαβðr; θ;ϕÞ ¼ ho;lmαβ ðr; θ;ϕÞ þ he;lmαβ ðr; θ;ϕÞ; ð14Þ

where ho;lmαβ and he;lmαβ are the odd- and even-sector pertur-
bations respectively. Following Berndtson’s notation [20],
the odd-sector metric perturbation contains 3 degrees of
freedom given by hlm0 ðrÞ, hlm1 ðrÞ and hlm2 ðrÞ. For conven-
ience we suppress the explicit dependence on r of the
odd-sector fields henceforth. The full odd-sector metric
perturbation is then written as [20]

ho;lmμν ¼

0
BBBBB@

0 0 hlm0 csc θ ∂Ylm
∂ϕ −hlm0 sin θ ∂Ylm

∂θ

� 0 hlm1 csc θ ∂Ylm
∂ϕ −hlm1 sin θ ∂Ylm

∂θ

� � −hlm2 Xlm hlm2 sin θWlm

� � � hlm2 sin2 θXlm

1
CCCCCA
; ð15Þ

where Xlm and Wlm are defined by [20]

Wlmðθ;ϕÞ ¼
∂
2Ylm

∂θ2
− cot θ

∂Ylm

∂θ
−

1

sin2 θ
∂
2Ylm

∂ϕ2
; ð16Þ

Xlmðθ;ϕÞ ¼
2

sin θ
∂

∂ϕ

�
∂Ylm

∂θ
− cot θYlm

�
; ð17Þ

and Ylm are the standard spherical harmonics, with nor-
malization

Z Z
dθdϕY�

lmðθ;ϕÞYl0m0 ðθ;ϕÞ ¼ δll0δmm0 ; ð18Þ

where � on the spherical harmonics denotes complex
conjugation. The even-sector metric perturbation then con-
tains 7 degrees of freedom, given by hlm0 ðrÞ, hlm1 ðrÞ,Hlm

0 ðrÞ,
Hlm

1 ðrÞ, Hlm
2 ðrÞ, KlmðrÞ and GlmðrÞ, where hlm0 ðrÞ and

hlm1 ðrÞ in the even sector are distinct to those in the odd
sector. As in the odd sector, we suppress the explicit
dependence on r of these fields henceforth, writing the
full even-sector perturbation as [20]

he;lmμν ¼

0
BBBBB@

fðrÞHlm
0 Ylm Hlm

1 Ylm hlm0
∂Ylm
∂θ hlm0

∂Ylm
∂ϕ

� Hm
2
Ylm

fðrÞ hlm1
∂Ylm
∂θ hlm1 Xlm

� � r2ðKlmYlm þGlmWlmÞ r2 sin θGlmXlm

� � � r2sin2θðKlmYlm − GlmWlmÞ

1
CCCCCA
: ð19Þ
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The RW gauge is defined by setting the field hlm2 from the
odd sector and the fields hlm0 , hlm1 and Glm from the even
sector for all l and m to zero [20,30]. The s ¼ 2 RW
(Zerilli) equations are derived from applying the RW gauge
to the odd (even) sector of the generic first-order linearized
Einstein field equations [31],

δG½h1αβ� ¼ −16πT1
αβ: ð20Þ

The first-order scheme is equivalent to treating the secon-
dary as a point particle and we solve for the retarded
field [8,13,32–34]. Therefore, T1

αβ can be written as

Tαβ
1 ðxμ; zμÞ ¼ μ

Z
∞

−∞

δ4ðxμ − zμðτÞÞffiffiffiffiffiffi−gp dzα

dτ
dzβ

dτ
dτ: ð21Þ

The odd- and even-sector split for Tαβ
1 is given explicitly in

matrix form in Appendix A. The odd- and even-sector
solutions for the s ¼ 0, 1 RW equations can be derived
similarly from electromagnetic and scalar perturbations.
For generic spin weight s and a given l, m mode, the radial
RWZ master equations are given by [30]:

Lsψ sðrÞ ¼ SsðrÞ; ð22Þ

where

Ls ≡
�
d2

dr2�
− VðrÞ þ ω2

�
: ð23Þ

The tortoise coordinate r� for a Schwarzschild background
is defined such that dr�=dr ¼ fðrÞ−1. Integrating this and
choosing an integration constant we get

r�ðrÞ ¼ rþ 2 log

�
r
2M

− 1

�
: ð24Þ

The RW master equation is obtained by setting the
potential in Eq. (23) to

VðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 2Mð1 − s2Þ

r3

�
; ð25Þ

where s is the spin weight. Similarly, the Zerilli equation is
obtained by setting the potential in Eq. (23) to

VðrÞ¼ fðrÞ
r2Λ2

�
2λ2

�
λþ1þ3M

r

�
þ18M2

r2

�
λþM

r

��
; ð26Þ

which is defined only for s ¼ 2, and where Λ ¼ λþ 3M=r
and λ ¼ ðlþ 2Þðl − 1Þ=2. The RWZ master functions,
ψ sðrÞ are the solutions to either the RW or Zerilli master
equations and are sourced by SsðrÞ. The inhomogeneous

RW gauge metric perturbation, h1RWαβ can then be recon-
structed from the RWZ master functions [30] and Eq. (13).

A. Solving for the Regge-Wheeler
and Zerilli master functions

For a given l,mmode, the radial RWZ master equations,
given by Eq. (22), can be solved using the standard method
of variation of parameters. With this approach the inho-
mogeneous solution can be written as

ψ sðrÞ ¼ Cþ
s ðrÞψþ

s ðrÞ þ C−
s ðrÞψ−

s ðrÞ; ð27Þ

where ψ�
s are the two linearly independent homogenous

solutions representing ingoing and outgoing solutions
radiating to asymptotic null infinity, Iþ and the future
event horizon Hþ respectively. Their asymptotic boundary
conditions are

ψþ
s ∝ eiωr� ; as r� → ∞; ð28Þ

ψ−
s ∝ e−iωr� ; as r� → −∞: ð29Þ

The weighting functions are given by

Cþ
s ðr�Þ ¼

Z
r�

−∞

ψ−
s ðr0�ÞSsðr0�Þ
Wsðr0�Þ

dr0�; ð30Þ

C−
s ðr�Þ ¼

Z
∞

r�

ψþ
s ðr0�ÞSsðr0�Þ
Wsðr0�Þ

dr0�; ð31Þ

and the Wronskian, Ws is defined in the usual way:

Wsðr�Þ≡ dψþ
s ðr�Þ
dr�

ψ−
s ðr�Þ −

dψ−
s ðr�Þ
dr�

ψþ
s ðr�Þ: ð32Þ

As there are no first derivatives with respect to r� in
Eq. (22),Ws is a constant by Abel’s theorem. Accordingly,
we drop the dependence on r� of Ws.
As the secondary can be treated as a pointlike particle to

first order in ε [8,11], the sources of the RWZ master
functions take the form

SsðrÞ ¼ psðr; rpÞδðr − rpÞ þ qsðr; rpÞδ0ðr − rpÞ; ð33Þ

where a prime denotes differentiation with respect to r. In
the case of quasicircular orbits, at leading order we have

SsðrÞ ¼ psðr; r0Þδðr − r0Þ þ qsðr; r0Þδ0ðr − r0Þ; ð34Þ

where the factors psðr; r0Þ and qsðr; r0Þ can be determined
from Eqs. (B1)–(B6) and Eqs. (C1)–(C10). For example,
the leading order source for the spin weight s ¼ 2 RW
master function in the odd sector is [20]
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Slm2 ðrÞ ¼ 4imπfðrÞð2δðr − r0Þ þ rfðrÞδ0ðr − r0ÞÞ
λðλþ 1Þrr30

×
ffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 3

r
∂θY�

lm

�
π

2
; 0

�
: ð35Þ

We can immediately read off psðr; r0Þ and qsðr; r0Þ as

p2ðr; r0Þ ¼
8imπfðrÞ
λðλþ 1Þrr30

ffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 3

r
∂θY�

lm

�
π

2
; 0

�
; ð36Þ

q2ðr; r0Þ ¼
4imπfðrÞ2
λðλþ 1Þr30

ffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 3

r
∂θY�

lm

�
π

2
; 0
�
: ð37Þ

Due to the distributional form of Ss in Eqs. (34), (30),
and (31) become

Cþ
s ðrÞ ¼ cþs Θðr − r0Þ; ð38Þ

C−
s ðrÞ ¼ c−sΘðr0 − rÞ; ð39Þ

where integration by parts has been used to evaluate terms
in Eqs. (30) and (31) involving δ0, and Θ is the Heaviside
step function, defined so that ΘðxÞ ¼ 1 for x > 0 and
ΘðxÞ ¼ 0 for x ≤ 0. The constants c�s are the weighting
coefficients

c�s ¼ 1

Ws

�
ψ∓
s ðr0Þpsðr; r0Þ

fðr0Þ
−

∂

∂r

�
ψ∓
s ðrÞqsðr; r0Þ

fðrÞ
��				

r¼r0

;

ð40Þ

and the radial derivatives of ψ s can be determined by taking
the radial derivative of Eq. (27).

B. Calculating the r0 derivative of the Regge-Wheeler
and Zerilli master functions

For quasicircular orbits, during the inspiral, slow-time
derivatives are equivalent to derivatives with respect to r0,
with an additional factor of dr0=dt̃. Wewish to solve for the
slowly evolving RWZ master functions, ∂r0ψ s, described
by the following equation, obtained by taking the r0
derivative of Eq. (22):

Lsϕs ¼ Ss;r0 − 2ωω;r0ψ s; ð41Þ

where ϕs ≡ ψ s;r0 and a comma followed by r0 denotes a
derivative with respect to r0. Unlike Ss, the source in
Eq. (41) is no longer compact, as ψ s is defined over the
entire domain. There are a variety of numerical techniques
for finding solutions to equations of the form of Eq. (41)
e.g., [19,20,35], but none of them are as efficient or easy to
implement as solving an equation with a distributional
source. We can find an equation for ϕs with a distributional
source by noticing that applying the operator Ls to the

second term on the right-hand side of Eq. (41), then making
use of Eq. (22), compactifies that term. Applying an
additional operator Ls to Eq. (41) therefore “partially
annihilates” the noncompact term on the right-hand side
[21,36], yielding a fourth-order differential equation with a
compact, distributional source:

L2
sϕs ¼ LsSs;r0 − 2ωω;r0Ss: ð42Þ

Thus we obtain a family of fourth-order ODEs with
compact sources, which we shall solve using the method
of variation of parameters. As a fourth-order differential
equation, there are four independent homogeneous solu-
tions. Two of these are the homogeneous solutions to
Eq. (22) as LðLðψ�

s ÞÞ ¼ Lð0Þ ¼ 0. The remaining two we
denote by ϕh4;�

s . These are homogeneous solutions to the
fourth-order equation, Eq. (42) but not the second-order
equation, Eq. (22). The homogeneous solutions have the
asymptotic boundary conditions

ϕh4;þ
s ∝ reiωr� ; as r� → ∞; ð43Þ

ϕh4;−
s ∝ logðfðrÞÞe−iωr� ; as r� → −∞: ð44Þ

Similarly to Eq. (27), and due to the distributional
source, we can write the inhomogeneous solution as

ϕsðrÞ ¼ ½ch2;þs ψþ
s ðrÞ þ ch4;þs ϕh4;þ

s ðrÞ�Θðr − r0Þ
þ ½ch2;−s ψ−

s ðrÞ þ ch4;−s ϕh4;−
s ðrÞ�Θðr0 − rÞ

þ cδsϕδ
sðrÞδðr − r0Þ; ð45Þ

where the constant coefficients (for a given s; l; m; r0) are
given by

ci;þs Θðr − r0Þ ¼
Z

r�

−∞

Wi;þ
s ðr0�ÞSsðr0�Þ

Ws
dr0�; ð46Þ

ci;−s Θðr0 − rÞ ¼
Z

∞

r�

Wi;−
s ðr0�ÞSsðr0�Þ

Ws
dr0�; ð47Þ

where i ∈ fh2; h4g and we have defined

Ss ≡ LsSs;r0 − 2ωω;r0Ss: ð48Þ

The fourth-order Wronskian Ws is also constant by Abel’s
theorem and has the standard definition

Ws ¼ det

0
BBBBB@

ψ−
s ϕh4;−

s ψþ
s ϕh4;þ

s

∂r�ψ
−
s ∂r�ϕ

h4;−
s ∂r�ψ

þ
s ∂r�ϕ

h4;þ
s

∂
2
r�ψ

−
s ∂

2
r�ϕ

h4;−
s ∂

2
r�ψ

þ
s ∂

2
r�ϕ

h4;þ
s

∂
3
r�ψ

−
s ∂

3
r�ϕ

h4;−
s ∂

3
r�ψ

þ
s ∂

3
r�ϕ

h4;þ
s

1
CCCCCA
; ð49Þ
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and Wh2=4;�
s are given by the determinant of the matrices

obtained from deleting the final row and the column
containing the corresponding field, ψh2=4;�

s and its deriv-
atives from the matrix in Eq. (49) [21,37], where we have
defined ψh2;�

s ≡ ψ�
s . The field ϕδ

sðrÞ in Eq. (45) is required
to balance the forth derivative of the delta function that
appears in the source in Eq. (42).
Owing to the distributional source, the integrals in

Eqs. (46) and (47) can be carried out analytically by
repeated application of integration by parts. An equivalent
approach is to match the coefficients of the delta function
and its derivatives between the left- and right-hand side
of Eq. (42). Following from Eqs. (34) and (48), Ss takes
the form

Ss ¼ a0ðr; r0Þδðr − r0Þ þ a1ðr; r0Þδ0ðr − r0Þ
þ a2ðr; r0Þδ00ðr − r0Þ þ a3ðr; r0Þδ000ðr − r0Þ
þ a4ðr; r0Þδð4Þðr − r0Þ; ð50Þ

where a0ðr; r0Þ;…; a1ðr; r0Þ can be identified with com-
binations of pðr; r0Þ, qðr; r0Þ and their derivatives with
respect to r and r0 by replacing the Ss in Eq. (48) with the
right-hand side of Eq. (34). Making use of the following
identity:

fðrÞδðr − r0Þ ¼ fðr0Þδðr − r0Þ; ð51Þ

and other identities derived from radial derivatives of
Eq. (51), the source Ss can be written in terms of Dirac
delta functions and their radial derivatives with constant
coefficients:

Ss ¼ b0ðr0Þδðr − r0Þ þ b1ðr0Þδ0ðr − r0Þ
þ b2ðr0Þδ00ðr − r0Þ þ b3ðr0Þδ000ðr − r0Þ
þ b4ðr0Þδð4Þðr − r0Þ; ð52Þ

where b0ðr0Þ;…; b4ðr0Þ can be identified with combina-
tions of a0ðr0Þ;…; a4ðr0Þ and their radial derivatives,
evaluated at r ¼ r0 such that they are now functions of
r0 only. As an example, the coefficients of the Dirac delta
functions and their derivatives are given explicitly for the
odd-sector source for spin weight s ¼ 2 in Appendix D.
Substituting Eq. (45) into Eq. (42) and making use of
Eq. (51) we obtain

L2
sϕs ¼ β1ðrÞΘðr − r0Þ þ β2ðrÞΘðr0 − rÞ

þ c0ðr0Þδðr − r0Þ þ c1ðr0Þδ0ðr − r0Þ
þ c2ðr0Þδ00ðr − r0Þ þ c3ðr0Þδ000ðr − r0Þ
þ c4ðr0Þδð4Þðr − r0Þ; ð53Þ

where c0ðr0Þ;…; c4ðr0Þ can be identified with combinations
of ch2=4;�s and cδs. Immediately we find β1ðrÞ ¼ β2ðrÞ ¼ 0

as these coefficients satisfy the homogeneous field equation,
and there are no Heaviside terms on the right-hand side of
Eq. (42). Equating the constant coefficients of the Dirac delta
functions and their radial derivatives from Eq. (53) with
those in Eq. (52), we obtain a linear system which we can
solve for ch2=4;�s and cδs in terms of pðr0Þ, qðr0Þ and their
derivatives, evaluated at r ¼ r0. We can write this linear
system of equations in the following form:

Cs ¼ Φ−1
s · Js; ð54Þ

where Cs ¼ ðch2;−s ; ch4;−s ; ch2;þs ; ch4;þs Þ and

Φs ¼

0
BBB@

−ψ−
s −ϕh4;−

s ψþ
s ϕh4;þ

s

−∂rψ−
s −∂rϕh4;−

s ∂rψ
þ
s ∂rϕ

h4;þ
s

−∂2rψ−
s −∂2rϕh4;−

s ∂
2
rψ

þ
s ∂

2
rϕ

h4;þ
s

−∂3rψ−
s −∂3rϕh4;−

s ∂
3
rψ

þ
s ∂

3
rϕ

h4;þ
s

1
CCCA

r¼r0

: ð55Þ

The vector Js is given by J ¼ ðJ0; J1; J2; J3Þwhere Jn is the
jump in the nth derivative of ϕs on the worldline. We give
the explicit form of ϕδ

sðr0Þ and these jumps for the s ¼ 2
RW field in odd sector in Appendix E. The jump conditions
for the Zerilli master function are too long to appear in this
article to we have included them in the Supplemental
Material [38].

C. Numerical boundary conditions and implementation

When solving for perturbations on hypersurfaces of
constant t we cannot place numerical boundary conditions
at future null infinity, Iþ, and the future event HorizonHþ.
Instead we will find series expansions of the solutions at
finite radii. For the homogeneous solutions to the RWZ
equations we expand the asymptotic boundary conditions
in Eqs. (28) and (29) as

ψþ
s ðrÞ ¼ eiωr�

Xnmax

i¼0

Aþ
i

ðrωÞi
				
r¼rout

; ð56Þ

ψ−
s ðrÞ ¼ e−iωr�

Xnmax

i¼0

A−
i fðrÞi

				
r¼rin

; ð57Þ

where the coefficients A�
i depend on the parameters s, l,m,

r0. In order for the expansion in Eq. (56) to converge, rout
must be in the wave zone such that rω ≫ 1 [39]. In
practice we find that rout ¼ 104M is sufficient for the
parameters we consider in this work. Similarly we find that
rin ¼ ð2þ 10−5ÞM ensures rapid convergence of the
expansion in Eq. (57). We shall use these values of
rin=out throughout this work. We also find a value of nmax ¼
50 is sufficient to ensure the series expansions satisfy the
homogeneous field equation to beyond machine precision.
We find this value of nmax is sufficient for all later
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boundary condition expansion as well. By substituting the
above expansions into the homogeneous field equation,
Eq. (22), recurrence relations can be derived for the
coefficients A�

i in terms of the leading i ¼ 0 coefficient.
In our code we use the ReggeWheeler package of the
BHPToolkit [23] to compute ψ�

s . The numerical integra-
tion option in this package implements the above boundary
condition expansions and then numerically integrates to r0
to find the homogeneous solutions at any radius. We note
here that the ReggeWheeler package uses the Mano-
Suzuki-Takasugi (MST) method by default, which com-
putes ψ�

s as a series of hypergeometric functions [40,41].
This method allows for very high precision numerical
results to be obtained but has the downside that it often
requires extended precision arithmetic and typically is
slower to compute the homogeneous solution at a given
radius for strong-field orbits. As the goal of this work is to
provide h1Lαβ;r0 on a dense grid of r values for use in
constructing the source to second-order perturbations, we
instead opt to use the faster numerical integration method.
The asymptotic boundary conditions for ϕh4;�

s , given in
Eqs. (43) and (44), can be expanded as

ϕh4;þ
s ðrÞ ¼ reiωr�

Xnmax

i¼0

½Ah4;þ
i þ Bh4;þ

i logðrÞ�
ðrωÞi

				
r¼rout

; ð58Þ

ϕh4;−
s ðrÞ ¼ e−iωr�

Xnmax

i¼0

½Ah4;−
i þ Bh4;−

i logðfðrÞÞ�fðrÞi
				
r¼rin

:

ð59Þ

As before, the coefficients Ah4;�
i and Bh4;�

i depend on the
parameters s, l, m, r0 and are derived by substituting the
above ansätze into the fourth-order equations, Eq. (42).
The recurrence relations for these coefficients are provided
in the Supplemental Material [38], and depend on the
choice of potential, either RW or Zerilli. The series
approximation to the homogeneous solutions near the
boundaries are then given in terms of one of the leading
coefficients. For the expansion at large radius for both
the RW and Zerilli cases we find Ah4;þ

0 ¼ Bh4;þ
1 =2 and

Bh4;þ
0 ¼ 0. For the series approximation that satisfies the

fourth-order equation, but not the second-order equation,
we find we can set, e.g., Bh4;þ

1 ¼ 1 and Ah4;þ
1 ¼ 0. Note if

we set Bh4;þ
1 ¼ 0 and Ah4;þ

1 ¼ 1 we recover the boundary
condition expansion in Eq. (56) above for the second-order
equation. For the expansion near the horizon we find that
setting Ah4;−

0 ¼ 0 and Bh4;−
0 ¼ 1 provides an approximate

solution to the fourth-order equation (but not the second-
order equation). Setting Ah4;−

0 ¼ 1 and Bh4;−
0 ¼ 0 we

similarly recover the boundary condition in Eq. (57).
Once the value of the leading terms is set, all other
coefficients are then determined by the recurrence relations.

These homogeneous solutions are not calculated by any
package in the BHPToolkit so we solve the recurrence
relations with the above conditions. This then provides
the boundary conditions at rout and rin and we use the
NDSolve function of Mathematica to numerically inte-
grate the solutions to r0.

D. The r0 derivative of the flux to infinity

In order to calculate the GW energy flux radiated to null
infinity we consider perturbations with constant retarded
time, u ¼ t − r�. These perturbations can be related to the
perturbations on constant t slices via

ψ lm;½u�
2 ¼ ψ lm

2 e−iωr� : ð60Þ
The GW energy flux radiated to infinity can be calculated
via [26,42]

_Elm
∞ ¼ λlðlþ 1Þ

8π
gðr0Þjψ lm;½u�

2 j2r→∞; ð61Þ

¼ λlðlþ 1Þ
8π

gðr0Þjcþ2;lmj2; ð62Þ

where gðr0Þ ¼ 1 for the RW case in the odd sector, gðr0Þ ¼
ðω=2Þ2 for the Zerilli case in the even sector, and the limit
to infinity is taken with respect to fixed retarded time.
Taking an r0 derivative of Eq. (61) we obtain

∂r0
_Elm
∞ ¼ λlðlþ 1Þ

8π
f2gðr0ÞRe½ϕlm;½u�

2 ψ lm;½u��
2 �

þ g0ðr0Þjψ lm;½u�
2 j2gr→∞: ð63Þ

To evaluate this formula we start by taking the r0 derivative
of Eq. (60), we get

ϕlm;½u�
2 ¼ e−iωr� ðϕlm

2 − ir�ω;r0ψ
lm
2 Þ: ð64Þ

Now using Eqs. (27) and (45) and the following leading
terms in the boundary condition expansions Eqs. (56)
and (58), given by

ψ lm
2 e−iωr� ∼ cþ2

�
1þ ilðlþ 1Þr3=20

2mr

�
; ð65Þ

ϕlm
2 e−iωr� ∼ ch2;þ2 þ ch4;þ2

�
r
2
þ logðrÞ

�
; ð66Þ

we get

ϕlm;½u�
2 ∼

�
ch4;þ2 þ 3icþ2 m

r5=20

��
r
2
þ logðrÞ

�
þ ch2;þ2

− cþ2

�
3lðlþ 1Þ

4r0
þ 3im logð2Þ

r5=20

�
: ð67Þ
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Note that the expansions given in Eqs. (65) and (66) are
valid for both the RWand Zerilli potentials. In order for this
result to be finite, when we take the limit to infinity we
must have

ch4;þ2 ¼ −
3icþ2 m

r5=20

: ð68Þ

Combining the above results, the GW flux to infinity in the
odd sector is given by

∂r0
_Elm;RW
∞ ¼ λlðlþ 1Þ

4π

�
Reðch2;þ2 cþ�

2 Þ− jcþ2 j2
�
3lðlþ 1Þ

4r0

��
;

ð69Þ

and in the even sector by

∂r0
_Elm;Z
∞ ¼ m2

4r30

�
∂r0

_Elm;RW
∞ −

6jcþ2 j2
4r0

�
: ð70Þ

E. Numerical results

Using the homogeneous solutions computed numerically
as described in Sec. II C and the jump conditions from
Eq. (54), Appendix E and the Supplemental Material [38],

we obtained numerical results for the r0 derivatives of all of
the RWZmaster functions. As an example, in Fig. 1 we plot
the results of the spin weight s ¼ 2 RWmaster function for
the ðl; mÞ ¼ ð2; 1Þ mode at r0 ¼ 10M out to large r.
To test the results of our partial annihilator method, we

check that ϕ2 satisfies the original second-order equation
with a noncompact source, Eq. (41). Our numerical
integrator returns the ϕ2 and its first, second, and third
radial derivatives which we use to compute the left-
hand side of Eq. (41). We compute the right-hand side
of Eq. (41) using the inhomogeneous solutions to ψ s
calculated earlier and find this matches the left-hand side
to near machine precision. We give an example of this for
the ðl; mÞ ¼ ð2; 1Þ mode in Fig. 2.
As a further check that our results are working correctly,

we compute ∂r0 _E
lm
∞ using Eqs. (69) and (70) and compare

these results to the r0 derivative of the flux when computed
numerically. To compute the latter we compute the flux on
a dense grid of r0 values using the ReggeWheeler
package [23]. Using the standard least-squares algorithm
we fit this data to an eighth-order polynomial centered on
the r0 value where we wish to compute the r0 derivative of
the flux. The linear coefficient in this fit is the numerical
approximation to the r0 derivative of flux. We find excellent
agreement between these two methods and present some

FIG. 1. Real and imaginary parts of ψ2 (top panel) and ϕ2 ¼
ψ2;r0 (bottom panel) for the ðl; mÞ ¼ ð2; 1Þmode with r0 ¼ 10M.
For the latter case, the amplitude of the wave grows proportional
to r for large r, as determined by the asymptotic boundary
condition in Eq. (58).

FIG. 2. Absolute values of the left- and right-hand sides of
Eq. (41). The top panel demonstrates that our calculation of ϕ2

(where ϕ2 ¼ ψ2;r0 ) for r0 ¼ 10M and ðl; mÞ ¼ ð2; 1Þ solves
Eq. (41), not including terms involving the Dirac delta functions
and its derivatives. The lower panel shows the absolute difference
between the data sets for the left- and right-hand side of Eq. (41).
This error is dominated by the interpolation order of the
numerical homogenous solutions and their radial derivatives.
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sample numerical results in Table I. We also numerically
check that the relation in Eq. (68) between ch4;þ2 and cþ2
holds to machine precision.
To assess the efficiency of our partial annihilator method

while avoiding issues regarding the level of code optimiza-
tion between our code and the BHPToolkit we can count the
number of times our approach must solve an ODE versus the
number of times required when computing the r0 derivative
numerically. Numerically computing the homogeneous basis
of solutions is by far the largest computational cost as all the
other steps, such as matching to get the inhomogeneous
solutions or calculating the flux, are quick algebraic oper-
ations. Computing ψ2 using the partial annihilator method
requires solving the left-hand side of Eq. (42) four times. To
numerically compute the r0 derivative of the flux at, e.g.,
r0 ¼ 8M, to a relative precision of ∼10−12 we find we must
compute the flux at 11 equally spaced radii between in the
range r0 � 0.2M, and fit to an eighth-order polynomial.
This require solving the left-hand side of Eq. (23) 22 times.
Thus our method is 22=4 ¼ 5.5 faster to compute ∂r0

_Elm
∞

than the numerical derivative approach. In practice, when
performing the Regge-Wheeler to Lorenz transformation
the speed up is closer to a factor of 10 as two of the
homogeneous solutions to Eq. (42) are ψ�

2 which will
already be computed for other parts of the transformation.
We also note that in order to reach a relative precision
beyond ∼10−9 in the numerical r0 derivative computed
using the ReggeWheeler BHPToolkit package we had to
used extended precision arithmetic.

III. TRANSFORMING TO THE LORENZ GAUGE

In this section we will review the Lorenz gauge, defined
at leading order by the gauge condition

h̄1 ;βαβ ¼ 0; ð71Þ

where the trace-reversed metric is defined via

h̄nαβ ≡ hnαβ −
1

2
g0αβg

μν
0 hnμν: ð72Þ

We shall assume the trace-reversed metric refers to Lorenz
gauge perturbations throughout this paper. The first-order
Einstein field equations can then be written in the Lorenz
gauge as [14]

□h̄1αβ þ 2Rμ
α
ν
βh̄1μν ¼ 16πT1

αβ; ð73Þ

where □≡∇α∇α is the covariant D’Alambertian operator,
Rαβμν is the Riemann tensor for Schwarzschild spacetime,
and T1

αβ is the stress-energy tensor of a point particle given
in Eq. (21). There are a variety of ways the Lorenz gauge
metric perturbation has been computed. In Schwarzschild
spacetime, decomposing the metric perturbation onto a
basis of tensor spherical harmonics decouples the angular
behavior. The resulting set of 1þ 1 partial differential
equations has been solved for circular [15] and eccentric
[26] orbital motion. A decomposition into azimuthal m
modes has allowed the perturbation to be computed for
circular orbits in the Schwarzschild [43] and Kerr [44]
spacetimes. By expanding the perturbation in the form of
Eq. (5), the Lorenz gauge metric perturbation has also been
computed in the frequency domain for circular [16] and
eccentric orbits [17,22]. In this case the radial behavior
decouples and leaves a set of coupled ODEs of the form of
Eq. (7). An alternative approach, that we shall pursue in this
work, is to calculate the perturbation in a different gauge
and transform to the Lorenz gauge [20,21,24,45].
One approach to compute h1Lαβ;r0 is to take the r0

derivative of Eq. (5) to get Eq. (8). As discussed in the
introduction, Eq. (8) is challenging to solve due to the
unbounded source and the coupling between the different
components of the metric perturbation. This approach has
been pursued in Ref. [19]. In this work we shall instead use
the gauge transformation approach. The transformation
from the RWZ metric perturbation to the Lorenz gauge
was first written down explicitly by Berndtson [20]. More
recently, the homogeneous case of these transformations
were derived from an approach to compute the Lorenz
gauge perturbation using the Teukolsky formalism [24]. In
this work we will compute h1Lαβ;r0 by taking the r0 derivative
of Berndtson’s gauge transformation. We will calculate h1Lαβ
and h1Lαβ;r0 for quasicircular orbits in terms of the RWZ
master functions ψ s, their r0 derivatives ϕs ≡ ψ s;r0 , and
their respective radial derivatives, whose solutions are
obtained from Sec. II.
In the odd sector, the fields ψ1, ψ2 and their radial

derivatives are sufficient to compute h1Lαβ [20]. With the
addition of ϕ1;ϕ2 it is also possible to compute h1Lαβ;r0 as
described in Sec. III A below. In the even sector we must
solve for the fields ψ2Z, ψ1, ψ0, ψ0b and M2af [20]. The
field ψ2Z refers to the Zerilli field, defined for s ¼ 2 only,
with all remaining fields in the even-sector subject to the
RW potential. The field ψ0b obeys the same field equation
as ψ0 but with a different distributional source [20], given

TABLE I. Numerical results for the r0 derivative of the GW
energy flux to null infinity, with modes summed up to lmax ¼ 15.
The first column gives the orbital radius, the second column
shows the r0 derivative of the flux radiated to infinity as
computed from our partial annihilator calculation. The third
column shows the relative error compared to a result computed by
computing the flux at many orbital radii and taking a numerical
derivative as described in the main text.

r0=M ∂r0
_E∞ Relative error

6 −8.859960015046 × 10−4 4.1 × 10−11

8 −1.291224908187 × 10−4 1.2 × 10−12

10 −3.155702796251 × 10−5 1.2 × 10−13
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in Appendix B. The additional field, M2af (following
Berndton’s notation) arises from the second term on the
right-hand side of Eq. (9), and hence is a ‘pure gauge’
contribution to the Lorenz gauge metric perturbation.
Unlike all the other fields, M2af has a source which is
unbounded. Fortunately, the source forM2af is such that we
can again apply the method of partial annihilators as we
describe in Sec. III C below. Taking an r0 derivative of
Berntdson’s expressions for h1Lαβ in the even-sector then
allows us to construct h1Lαβ;r0 from the above fields, in
addition to ϕ2Z, ϕ1, ϕ0, ϕ0b and M2af;r0 . We compute
M2af;r0 using the method of partial annihilators to arrive
at two sixth-order ODEs with distributional sources,
described in Sec. III D below.

A. Calculating the Lorenz gauge metric perturbation
and its r0 derivative: odd-sector

Using the decomposition of h1αβ in Eqs. (15) and (19) and
following Berndtson’s prescription [20], the homogeneous
odd-sector components of h1Lαβ forω ≠ 0 and l ≥ 2 are given
by the radial fields

h0ðrÞ ¼
1

iω

�
ψ1 þ

2λ

3
ψ2

�
; ð74Þ

h1ðrÞ ¼
1

ðiωÞ2
�
−
2λ

3
ψ 0
2 þ

2

r
ψ1 −

2λ

3r
ψ2 − ψ 0

1

�
; ð75Þ

h2ðrÞ ¼
1

ðiωÞ2
�
rfψ 0

2 þ ψ1 þ
ð3þ 2λÞr − 6M

3r
ψ2

�
; ð76Þ

where ψ1 and ψ2 refer to the odd-sector solutions to Eq. (22)
with a RW potential, and whose sources S1 and S2 are
given by Eqs. (B1) and (B2), respectively. Substituting the
solutions to ψ s and their radial derivatives from Sec. II A
into Eqs. (74)–(76), we calculate the inhomogeneous
Lorenz gauge metric perturbation for quasicircular orbits
in the odd sector.
Note that away from the worldline, we can substitute the

inhomogenous RW fields into Eqs. (74)–(76) to obtain the
inhomogeneous solution to the odd-sector metric pertur-
bation. On the worldline however, additional source
terms that appear in the inhomogeneous expressions for
Eqs. (74)–(76), which can be found in Ref. [20], all cancel
with any distributional terms arising from radial derivatives
of the RW fields. Therefore, inhomogeneous solutions to
h0, h1 and h2 in the odd sector are mode-by-mode C0

differentiable over the entire domain, as required in the
Lorenz gauge.
We now wish to calculate h1Lαβ;r0 in the odd sector, which

we shall do so by making use of the gauge transformation
in Eq. (9), and taking its derivative with respect to r0, or
equivalently taking the r0 derivative of Eqs. (74)–(76). As
such, h1Lαβ;r0 in the odd-sector will consist of the RW master

functions, their slow-time derivatives and both their radial
derivatives. For example, taking the derivative of Eq. (74)
with respect to r0, we obtain

h0;r0ðrÞ ¼
1

iω

�
ϕ1 þ

2λ

3
ϕ2

�
−
h0
ω
ω;r0 ; ð77Þ

which can be calculated by substituting inhomogeneous
solutions to ψs and ϕs from Sec. II B, away from the
worldline and matching at the particle.

B. Calculating the Lorenz gauge metric perturbation
and its r0 derivative: Even sector

For ω ≠ 0 and l ≥ 2, the even-sector components of h1Lαβ ,
given by the radial fields h0, h1, H0, H1, H2, K and G can
be written in terms of the fields ψ2Z, ψ1, ψ0, ψ0b and their
radial derivatives, in addition to the gauge fieldM2af and its
radial derivative. The explicit expressions for h1Lαβ in the
even sector are much longer than the odd-sector expres-
sions, so we give them in Appendix F. The fields h0, h1 and
ψ1 should not be confused with those from the odd sector.
Here ψ1, ψ0, ψ0b refer to the even-sector solutions to
Eq. (23) with a RW potential, whose sources are given by
Eqs. (B4)–(B6) respectively. The field ψ2Z is also an even-
sector solution to Eq. (23) with a Zerlli potential, whose
source is given by Eq. (B3). The additional gauge field
M2af is a contribution that comes from the trace free, s ¼ 0

piece of the pure gauge term in Eq. (9) [20,24]. The origin
ofM2af is elucidated by the framework of Ref. [24]. A part
of the Lorenz gauge metric perturbation that is pure gauge
can be constructed by a spin-weight s ¼ 0 gauge vector in
the following way:

h1Lðs¼0Þ
αβ ¼ −2ξðs¼0Þ

ðα;βÞ : ð78Þ

The part of this gauge vector that does not contain the trace
of the metric perturbation is related toM2af. As such,M2af

is a “pure gauge” field.
Similarly to the odd sector, inhomogeneous solutions to

h1Lαβ are constructed in the even sector using expressions in
Appendix F, and are C0 differentiable as required. Even-
sector solutions to h1Lαβ;r0 are then also constructed similarly
to those in the odd sector.

C. Calculating M2af

The equation governing M2af is given by [20]

L0M2afðrÞ ¼ fðrÞψ0ðrÞ; ð79Þ

where L0 is the operator from Eq. (23) with a RW potential
and spin weight s ¼ 0. Equation (79) is exactly the RW
equation, with a source that now contains ψ0 and is thus
unbounded. The form of Eq. (79) means that we can again
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tackle it with the method of partial annihilators. Applying
an additional L0 operator to Eq. (79) yields

L0

�
1

f
L0M2af

�
¼ S0; ð80Þ

where we have made use of the fact that L0ψ0 ¼ S0, with
the source S0 provided in Eq. (B5). As an inhomogeneous,
fourth-order ODE, Eq. (80) will have four independent
homogeneous solutions. Two of these solutions will be ψ�

0

from Sec. II A. As the fourth-order Eq. (80) does not have a
known MST-type solution, the other two homogeneous
solutions must be obtained by numerical integration start-
ing with appropriate boundary conditions at finite radii.
Series expansions of the homogeneous solutions near
infinity and the horizon are given by

Mh4;þ
2af ðrÞ ¼ reiωr�

Xnmax

i¼0

Ah4;þ
i

ðrωÞi
				
r¼rout

; ð81Þ

Mh4;−
2af ðrÞ ¼ fðrÞe−iωr�

Xnmax

i¼−1
fðrÞiAh4;−

i

				
r¼rin

: ð82Þ

The coefficients Ah4;�
i , not to be confused with those from

Sec. II C, are derived by substituting the above ansätze into
Eq. (80) and matching the coefficients of r and fðrÞ. For
brevity we have suppressed some indices and functional
dependence of the coefficients in the series expansion
which depend on the parameters l, m and r0, similarly
to those for ϕs. The coefficients Ah4;�

i obey recursion
relations provided in the Supplemental Material [38], and
are distinct to those defined in Eqs. (58) and (59). For
Eq. (81) if we set Ah4;þ

0 ¼ 1 and Ah4;þ
1 ¼ 0 we find the

series expansion satisfies Eq. (80) but not L0M
h4;þ
2af ¼ 0 and

thus we know we have found another linearly independent
homogeneous solution. If we set Ah4;þ

0 ¼ 0 and Ah4;þ
1 ¼ 1

we recover the boundary conditions for ψþ
0 given in

Eq. (56). Similarly for Eq. (82) if we set Ah4;−
−1 ¼ 1 and

Ah4;−
0 ¼ 0 we find a solution that satisfies Eq. (80) but not

L0M
h4;−
2af ¼ 0. If we set Ah4;−

−1 ¼ 0 and Ah4;−
0 ¼ 1we recover

the boundary conditions for ψ−
0 given in Eq. (57).

Following the same procedure as in Sec. II when
deriving ψ s and ϕs, we can write the inhomogeneous
solution to Eq. (79) as

M2afðrÞ¼ ðch2;−ψ−
0 ðrÞþch4;−Mh4;−

2af ðrÞÞΘðr0− rÞ
þðch2;þψþ

0 ðrÞþch4;þMh4;þ
2af ðrÞÞΘðr− r0Þ; ð83Þ

where the ch2=4;� are distinct from those in Eq. (45).
Substituting Eq. (83) into Eq. (80) and using the identity in
Eq. (51), we match the coefficients of the Dirac delta
functions and their radial derivatives with those in S0 and
solve the linear system of equation for ch2=4;�. As before,
we can write this in the following form:

C ¼ Φ−1 · J; ð84Þ

where C ¼ ðch2;−; ch4;−; ch2;þ; ch4;þÞ and

Φ ¼

0
BBBBB@

−ψ−
0 −Mh4;−

2af ψþ
0 Mh4;þ

2af

−∂rψ−
0 −∂rMh4;−

2af ∂rψ
þ
0 ∂rM

h4;þ
2af

−∂2rψ−
0 −∂2rMh4;−

2af ∂
2
rψ

þ
0 ∂

2
rM

h4;þ
2af

−∂3rψ−
0 −∂3rMh4;−

2af ∂
3
rψ

þ
0 ∂

3
rM

h4;þ
2af

1
CCCCCA

r¼r0

: ð85Þ

As the source S0 contains only Dirac delta functions with
no radial derivatives, the vector J has only one nonzero
component such that J ¼ ð0; 0; 0; J3Þ, where

J3 ¼
−16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp

ðr0 − 2MÞ2 Y�
lmðπ=2; 0Þ: ð86Þ

D. Calculating the r0 derivative of M2af

To compute slow-time derivatives of the Lorenz gauge
metric perturbation we must also compute M2af;r0 . By
taking an r0 derivative of Eq. (79) we obtain

L0M2af;r0 ¼ fϕ0 − 2ωω;r0M2af; ð87Þ

which also has an unbounded source. In fact, both terms on
the right-hand side of Eq. (87) are unbounded as they are
defined everywhere from the horizon to infinity. We can
choose to write M2af;r0 as a linear combination of two
fields, such that

M2af;r0ðrÞ ¼ χ1ðrÞ þ χ2ðrÞ; ð88Þ
with

L0χ1 ¼ fϕ0; ð89Þ
L0χ2 ¼ −2ωω;r0M2af: ð90Þ

As both of these equations have unbounded sources, we
turn once again to the method of partial annihilators. By
making use of Eqs. (22), (41), and (79), we obtain two
sixth-order ODEs with distributional sources:

L2
0

�
1

f
L0χ1

�
¼ L0S0;r0 − 2ωω;r0S0; ð91Þ

L0

�
1

f
L2
0χ2

�
¼ −2ωω;r0S0; ð92Þ

which we shall also solve via the method of variation of
parameters. Both Eqs. (91) and (92) have six independent
homogeneous solutions. For Eq. (91), four of these are
given by ψ�

0 and Mh4;�
2af . The final pair we will denote by

χh6;�1 and these satisfy the sixth-order equation but neither
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the second-order equation ðL0χ
h6;�
1 ≠ 0Þ nor the fourth-

order equation ðL0ð1=fL0Þχh6;�1 ≠ 0Þ. For Eq. (92), four of
the homogeneous solutions are given by ψ�

0 and ϕ�
0 .

Similarly we will denote the final pair by χh6;�2 .
For our numerical scheme we use the following series

expansion of the χh6;�k fields at finite radii as boundary
conditions:

χh6;þk ðroutÞ ¼ r2eiωr�
Xnmax

i¼0

Ah6;þ
k;i þ Bh6;þ

k;i logðrÞ
ðrωÞi

				
r¼rout

; ð93Þ

χh6;−k ðrinÞ ¼ e−iωr�
Xnmax

i¼0

½Ah6;−
k;i þ Bh6;−

k;i logðfðrÞÞ�fðrÞi
				
r¼rin

;

ð94Þ

where k ∈ f1; 2g. The recursion relations for Ah6;�
k;i and

Bh6;�
k;i are derived by substituting the above ansätze into

Eqs. (91) and (92). Similarly to those for M2af, the
recursion relations depend on the parameters l, m
and r0. These recurrence relations are provided in the
Supplemental Material [38].
For χh6;þ1 the three undetermined coefficients are

Ah6;þ
1;1 ; Ah6;þ

1;2 and Bh6;þ
1;1 . The field equations also enforce

that Bh6;þ
0;0 ¼ 0, Ah6;þ

1;0 ¼ Bh6;þ
1;1 =4 and Bh6;þ

1;2 ¼ iðlðlþ 1Þþ
1þ 4iωÞBh6;þ

1;1 =2ω. Setting Ah6;þ
1;1 ¼Bh6;þ

1;1 ¼0 and Ah6;þ
1;2 ¼1

we find the series in Eq. (93) approximates a solution that
satisfies Eq. (91) but not the ODEs with operators L0 or
L0ð1=fL0Þ. Thus χh6;þ1 is linearly independent from the
other two bases fψþ

0 ;M
h4;þ
2af g. For χh6;−1 the three undeter-

mined coefficients are Ah6;−
1;0 ; Ah6;−

1;1 and Bh6;−
1;1 . The field

equation also sets Bh6;−
1;0 ¼ 0. Setting Ah6;−

1;0 ¼ Ah6;−
1;1 ¼ 0

and Bh6;−
1;1 ¼ 1 we find the series in Eq. (94) approximates

a solution that satisfies Eq. (91) but neither the second- nor
fourth-order ODEs. This demonstrates that we have found
another linearly independent homogeneous solution.
For χh6;þ2 , the three undetermined coefficients are Ah6;þ

2;0 ;

Ah6;þ
2;1 and Ah6;þ

1;1 . The field equations, Eqs. (91) and (92)

also enforce that Bh6;−
2;0 ¼Bh6;−

2;1 ¼0 and Bh6;−
2;1 ¼ −ið4þ lþ

l2ÞAh6;þ
2;0 =ωþ 2h6;þ2;1 . Setting Ah6;þ

2;0 ¼ 1 and Ah6;þ
2;1 ¼

Ah6;þ
2;2 ¼ 0 we find the series in Eq. (93) approximates a

solution that satisfies Eq. (92) but not the ODEs with
operators L0 or L2

0. Thus χ
h6;þ
2 is linearly independent from

the other two bases fψþ
0 ;ϕ

h4;þg. For χh6;−2 the three
undetermined coefficients are Ah6;−

2;0 ; Ah6;−
2;1 and Bh6;−

2;0 .

The field equation also enforces that Bh6;−
2;1 ¼ ið1þ lþ

l2ÞBh6;−
2;0 =ðiþ 4ωÞ. Setting Ah6;−

2;0 ¼Ah6;−
2;1 ¼0 and Bh6;−

2;0 ¼1

we find the series in Eq. (94) approximates a solution that
satisfies Eq. (92) but not the second- or fourth-order ODEs.
This demonstrates that we have found the final linearly
independent homogeneous solution.
We can then write the retarded solutions to Eqs. (91)

and (92) in the form

χ1ðrÞ ¼ χ−1 ðrÞΘðr0 − rÞ þ χþ1 ðrÞΘðr − r0Þ; ð95Þ

χ2ðrÞ ¼ χ−2 ðrÞΘðr0 − rÞ þ χþ2 ðrÞΘðr − r0Þ; ð96Þ

where

χ�1 ðrÞ ¼ ðch2;�ψ�
0 ðrÞ þ ch4;�Mh4;�

2af ðrÞ þ ch6;�χh6;�1 ðrÞÞ;
ð97Þ

χ�2 ðrÞ ¼ ðch2;�ψ�
0 ðrÞ þ ch4;�ϕh4;�

0 ðrÞ þ ch6;�χh6;�2 ðrÞÞ:
ð98Þ

The coefficients in the above equations can be found by
substituting Eqs. (95) and (96) into Eqs. (91) and (92),
respectively, and matching the coefficients of the delta
functions and their derivatives. For χ1 we can once again
write the resulting system of equations in the now familiar
form

C ¼ Φ−1 · J; ð99Þ

where now C ¼ ðch2;−; ch4;−; ch6;−; ch2;þ; ch4;þ; ch6;þÞ and

Φ ¼

0
BBBBBBBBBBB@

−ψ−
0 −Mh4;−

2af −χh6;−1 ψþ
0 Mh4;þ

2af χh6;þ1

−∂rψ−
0 −∂rMh4;−

2af −∂2rχh6;−1 ∂rψ
þ
0 ∂rM

h4;þ
2af ∂rχ

h6;þ
1

−∂2rψ−
0 −∂2rMh4;−

2af −∂3rχh6;−1 ∂
2
rψ

þ
0 ∂

2
rM

h4;þ
2af ∂

2
rχ

h6;þ
1

−∂3rψ−
0 −∂3rMh4;−

2af −∂4rχh6;−1 ∂
3
rψ

þ
0 ∂

3
rM

h4;þ
2af ∂

3
rχ

h6;þ
1

−∂4rψ−
0 −∂4rMh4;−

2af −∂4rχh6;−1 ∂
4
rψ

þ
0 ∂

4
rM

h4;þ
2af ∂

4
rχ

h6;þ
1

−∂5rψ−
0 −∂5rMh4;−

2af −∂5rχh6;−1 ∂
5
rψ

þ
0 ∂

5
rM

h4;þ
2af ∂

5
rχ

h6;þ
1

1
CCCCCCCCCCCCA

r¼r0

: ð100Þ
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For χ1, the four nonzero components of the vector J are
given in Appendix E 2. For χ2, the matrix Φ is the same in
Eq. (100) except Mh4;�

2af is replaced by ϕh4;�
0 and χ�1 is

replaced by χ�2 . As the source for χ2 contains only Dirac
delta functions with no radial derivatives, the vector J
has only one nonzero component and we find that
J ¼ ð0; 0; 0; 0; 0; J5Þ where

J5 ¼ −
48πm2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p

r3=20 ðr0 − 2MÞ4
Y�
lmðπ=2; 0Þ: ð101Þ

E. Transforming to the Barack-Lousto-Sago basis

We now have everything we need to compute h1Lαβ
and h1Lαβ;r0 away from the worldline for quasicircular
orbits. The setup described above computes the perturba-
tion in Berndtson’s spherical harmonic basis given by
Eqs. (16)–(18). For comparison with prior work [14,16]
and for input into current second-order calculations
[8,27–29] we will transform to the BLS basis which is
used in Eq. (5) and given explicitly in Refs. [14,15]. By
comparing the components of h1Lαβ in each of [20,15] we
can find the radial Lorenz gauge metric perturbation
components in the BLS basis in terms of Berndtson’s
variables. For the even sector these are

h̄ð1Þlm ¼ rfðHlm
0 þHlm

2 Þ; ð102aÞ

h̄ð2Þlm ¼ 2rfHlm
1 ; ð102bÞ

h̄ð3Þlm ¼ 2rKlm; ð102cÞ

h̄ð4Þlm ¼ 2lðlþ 1Þhlm0 ; ð102dÞ

h̄ð5Þlm ¼ 2lðlþ 1Þfhlm1 ; ð102eÞ

h̄ð6Þlm ¼ rðHlm
0 −Hlm

2 Þ; ð102fÞ

h̄ð7Þlm ¼ 2rðl − 1Þlðlþ 1Þðlþ 2ÞGlm; ð102gÞ

and for the odd sector

h̄ð8Þlm ¼ 2lðlþ 1Þhlm0 ; ð102hÞ

h̄ð9Þlm ¼ 2lðlþ 1Þfhlm1 ; ð102iÞ

h̄ð10Þlm ¼ −
2ðl − 1Þlðlþ 1Þðlþ 2Þ

r
hlm2 : ð102jÞ

F. Numerical results

In this section we present our numerical results for h1Lαβ
and h1Lαβ;r0 and a variety of checks that provide confidence
in our results. We begin by showing results for M2af and
M2af;r0 in Fig. 3. As a check on the implementation of our
partial annihilator scheme for M2af we verify that our
solution to the fourth-order equation with a distributional
source, Eq. (80), satisfies the original second-order equa-
tion, Eq. (79) with an unbounded source. Similarly, we
check that our solution for M2af;r0, computed as the sum
of the solutions of two sixth-order equations, Eqs. (91)
and (92), satisfies the original second-order equation,
Eq. (87), with an unbounded source. Figures 4 and 5
show that the relevant second-order equations are satisfied
to near machine precision.
With confidence in our solution for M2af we can

compute h1Lαβ and find agreement with previously published
results [17] to the accuracy of those results. We present
sample results for both h1Lαβ and h1Lαβ;r0 in Fig. 6.

As a check on our results for ∂r0 h̄
ðiÞ
lm we compare them

with a numerically computed r0 derivative of h̄ðiÞlm. In our
check we computed data from our partial annihilator
method at r ¼ 50M with r0 ranging from 6.4M to 7.3M

FIG. 3. Real and imaginary parts of M2af (top panel) and
M2af;r0 (bottom panel) for the ðl; mÞ ¼ ð2; 2Þ mode with
r0 ¼ 10M. The amplitudes of the fields grow with r and r2

for large r respectively, as determined by the asymptotic
boundary conditions, Eqs. (81) and (93). Similar results are
obtained for other even multiple modes and different values of r0.

LEANNE DURKAN and NIELS WARBURTON PHYS. REV. D 106, 084023 (2022)

084023-14



in steps of 0.1M. The numerical derivatives are obtained by
interpolating data for the metric perturbation for different
values of r0, keeping the field point r constant. For the
numerical derivatives data was computed at r ¼ 50M for r0
ranging from 6.5M to 7.5M in steps of 0.1M. The wider r0
range was used for the interpolant data to avoid error at the
end points of the interpolation. We present the result of the
comparison in Fig. 7 where we find near machine precision

agreement between our results for ∂r0 h̄
ð8Þ
21 and ∂r0 h̄

ð1Þ
22 and

the numerical r0 derivatives of h̄ð8Þ21 and h̄ð1Þ22 respectively.
It is instructive again to consider the efficiency of the

partial annihilator approach verses taking the numerical
derivative. One significant new calculation introduced in
the gauge transformation in the even sector is the calcu-
lation of M2af;r0 . Using the partial annihilator method we
must solve the left-hand side of Eq. (91) 6 times and
Eq. (92) 4 times [two less as two of the bases are the same
as for Eq. (91)], giving a total of 10 ODE evaluations.
Computing M2af requires solving the left-hand side of
Eq. (80) 4 times and to numerically calculate its r0
derivative to a relative precision of ∼10−15 at, e.g., r0 ¼
7.5M we find we must evaluate M2af 8 times at equally
spaced radii between r0 ¼ 7.5� 0.1M and fit to an eighth-
order polynomial. This gives a total of 4 × 8 ¼ 24 ODE
evaluations. This means our approach is 24=10 ¼ 2.4 times
faster than numerically computing the derivative ofM2af;r0 .
In practice, when computing h1Lαβ;r0 the speed up is about

FIG. 6. Left panels: real and imaginary parts of the metric

perturbation components in the BSL basis, h̄ð8Þ21 (top) and ∂r0 h̄
ð8Þ
21

(second), h̄ð1Þ22 (third) and ∂r0 h̄
ð1Þ
22 (bottom). Plots of the odd-sector

fields are for the ðl; mÞ ¼ ð2; 1Þ mode and plots of the event-
sector fields are for the ðl; mÞ ¼ ð2; 2Þ mode. In both sectors, a
value of r0 ¼ 10M is chosen. Results are similar for the other
remaining Lorenz gauge fields and for different choices of r0 and
ðl; mÞ. Right panels: the same results as for the left panels are
shown, except only the real component of the fields are given near

the particle. We see C0 differentiability behavior for h̄ð1Þ22 and h̄ð8Þ21

as required.

FIG. 4. The top panel shows the absolute values of the left- and
right-hand sides of Eq. (79), for M2af given the solution
computed using the fourth-order equation, Eq. (80). The data
shown are for r0 ¼ 10M and ðl; mÞ ¼ ð2; 1Þ. The lower panel
shows that the absolute difference between the datasets for the
left- and right-hand side of Eq. (79) is near machine precision.

FIG. 5. The top panel shows the absolute values of the left- and
right-hand sides of Eq. (87), for M2af;r0 given the solution
computed using Eq. (88) and the two sixth-order equations,
Eqs. (91) and (92). The data shown are for r0 ¼ 10M and
ðl; mÞ ¼ ð2; 2Þ. The lower panel shows the absolute difference
between the datasets for the left- and right-hand side of Eq. (87) is
near machine precision.
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twice this as four of the homogeneous solutions for
Eqs. (91) and (91), namely ψ�

0 and ϕ�
0 , will already be

computed in other parts of the calculation.
For second-order calculations, where h1Lαβ;r0 is needed at

thousands of field points using numerical derivatives is
even less favorable as data for each field point r needs to be
calculated for a tens of values of r0, fitted to a high-order
polynomial and the linear coefficient extracted. As such,
our method of calculating h1Lαβ;r0 is strongly favorable in
this case.

IV. CONCLUSIONS

In this paper we present a novel calculation for the r0
derivative of the radiative modes of the first-order metric

perturbation in the Lorenz gauge, on a Schwarzschild
background, for circular orbits in the frequency domain.
Our work can also be used to calculate the metric pertur-
bation in the RW gauge automatically. Using the gauge
transformation first derived in Ref. [20], we obtain solutions
to h1Lαβ in terms of RWZ master functions and the gauge
field M2af, in addition to their radial derivatives. We also
obtain h1Lαβ;r0 in terms of RWZ master functions, M2af, their
derivatives with respect to r0, in addition the radial
derivatives of the listed fields. The field equations for the
r0 derivative of the RWZ master functions and M2af have
sources which with unbounded support which is challeng-
ing for the standard variation of parameters method to
tackle. To overcome this we use the method of partial
annihilators [21] which gives us higher-order differential
equations but with distributional sources. While this work
was being prepared for publication, a similar procedure for
computing the RWZ master functions was sketched in
Appendix C of Ref. [36]. In Secs. II E and III F we present
the numerical results of our calculation and show they agree
with results obtained by taking a numerical derivative of
the relevant field. The results of this work are already being
used to compute slow-time derivatives of the metric
perturbation that feed into the source for second order in
the mass ratio calculations [8,28,29]. These form part of the
recent calculations of the second-order energy flux at
infinity [28] and waveforms through second order [29].
There are a variety of natural extensions to this work.

First, with the numerical results we already have, we could
immediately construct the first-order metric perturbation
and its r0 derivative in the RW gauge. Second, the partial
annihilator approach can also be applied to the Teukolsky
formalism [46]. This would allow for the slow-time deriva-
tive of the metric perturbation of a particle moving on either
circular or spherical orbits around a Kerr black hole to be
calculated in the radiation gauge [47–49] following recent
work by Green et al. [50] and Toomani et al. [51], who
present regularized schemes on how to implement the
second-order Teukolsky equation in Kerr. Alternatively,
the same calculation could be done in the Lorenz gauge
following the work of Dolan et al. [24]. Unfortunately, it
seems unlikely that the method of partial annihilators will be
directly applicable to second-order perturbations to give a
compact source. The second-order perturbation to the
Einstein tensor that appears in the second-order source is
formed from quadratic combinations of the modes of the
first-order metric perturbation and its derivatives and there is
no obvious operator that would (partially) annihilate any
pair of first-order modes, let alone all of them.
Calculations for eccentric orbits are more challenging

than circular orbits. The same partial annihilator method
can be applied to eccentric orbit equations, arriving at
sources which only have support within the radial libration
region [21]. For highly eccentric orbits it is likely that
a time-domain approach would be preferable. In this

FIG. 7. Comparison of numerical results for h1Lαβ;r0 computed
using our partial annihilator method and by taking a numerical

derivative. The top panel shows the real part of ∂r0 h̄
ð8Þ
21 and the

third panel shows the real part of ∂r0 h̄
ð1Þ
22 at a fixed field point

r ¼ 50 as a function of r0. The second and forth panels show that
the absolute difference between numerically computing the r0
derivative and computing the r0 derivative using our partial
annihilators method is near machine precision. We find similar
results for all other remaining Lorenz gauge fields, their radial
derivatives as well as for a different choice of modes, fixed field
point and set of radii r0.
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approach, the derivative with respect to eccentricity or, e.g.,
the semi-major axis would only act on the source, leaving
the time-domain operator unchanged. This suggests that
already existing time-domain codes, e.g., [52–54], could be
quickly modified to calculate the slow-time derivatives for
these orbits.
We also note that while this work was being prepared, a

new numerical approach to frequency-domain calculations
of perturbations of black hole spacetimes was developed
[35]. That work showed, using a scalar-field toy model, that
using hyperboloidal compactified coordinates with a pseu-
dospectral numerical scheme allows the r0 derivative of the
scalar field to be calculated efficiently. It would be
interesting future work to compare the pros and cons of
the partial annihilator method used in this work with the
hyperboloidal approach.
Finally, we note that up to M2af, h1Lαβ can be written in

terms of semi-analytic Mano, Suzuki and Takasugi (MST)
expansions [40]. The gauge field M2af currently has no

known MST-type expansion however, excluding analytic
high-order PN calculations of h1Lαβ similar to those in, e.g.,
[55–58]. Research is currently being done to find a PN
solution for M2af [59], which would allow one to obtain a
PN series solutions of the complete Lorenz gauge metric
perturbation.
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APPENDIX A: THE METRIC PERTURBATION IN A TENSOR SPHERICAL HARMONIC BASIS

The source to h1μν, given by the stress-energy tensor T1
μν can be decomposed into a tensor spherical harmonic basis in the

following way [20]:

T1
μνðt; r; θ;ϕÞ ¼

X∞
l¼0

Xl

m¼−l

Z
∞

−∞
e−iωtðTo;lm

μν ðω; r; θ;ϕÞ þ Te;lm
μν ðω; r; θ;ϕÞÞdω: ðA1Þ

Similarly to h1μν in Sec. II, dependence on θ, ϕ and ω is dropped. The odd- and even-sector stress-energy tensors can then be
written as

To;lm
μν ðrÞ ¼

0
BBBBB@

0 0 Solm02ðrÞ csc θ ∂Ylm
∂ϕ −Solm02ðrÞ sin θ ∂Ylm

∂θ

� 0 Solm12ðrÞ csc θ ∂Ylm
∂ϕ −Solm12ðrÞ sin θ ∂Ylm

∂θ

� � −Solm22ðrÞXlm Solm22ðrÞ sin θWlm

� � � Solm22ðrÞ sin2 θXlm

1
CCCCCA
; ðA2Þ

and

Te;lm
μν ðrÞ ¼

0
BBBBB@

Selm00ðrÞYlm Selm01ðrÞYlm Selm02ðrÞ ∂Ylm
∂θ Selm02ðrÞ ∂Ylm

∂ϕ

� Selm11ðrÞYlm Selm12ðrÞ ∂Ylm
∂θ Selm12ðrÞ ∂Ylm

∂ϕ

� � Uelm22ðrÞYlm þ Selm22ðrÞWlm Selm22ðrÞ sin θXlm

� � � sin2 θðUelm22ðrÞYlm−Selm22ðrÞWlmÞ

1
CCCCCA
: ðA3Þ
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APPENDIX B: SOURCES FOR REGGE-WHEELER AND ZERILLI MASTER FUNCTIONS

Here we provide expressions for the sources to the RWZ master functions from Eq. (22) in terms of the components of
T1
μν. All of the expressions in this section are provided by reference [20]. The components of T1

μν are given explicitly in
Appendix C. The following expressions are the sources for the odd-sector RW master functions [20]:

Slm1 ðrÞ ¼ 32πðλþ 3Þðr − 2MÞ2
3r3

Solm12ðrÞ þ
32πλðr − 2MÞ

3r3
Solm22ðrÞ þ

16πðr − 2MÞ3
r3

∂rSolm12ðrÞ

þ 32πλðr − 2MÞ2
3r3

∂rSolm22ðrÞ; ðB1Þ

Slm2 ðrÞ ¼ −
16πfðrÞ2

r
Solm12ðrÞ þ

32πð6M2 − 5Mrþ r2Þ
r4

Solm22ðrÞ −
16πfðrÞ2

r
∂rSolm22ðrÞ: ðB2Þ

The following expressions are the sources for the even-sector RWZ master functions. Here Slm2 refers to the source for the
Zerilli master function. The remaining expressions are sources for the even-sector RW master function [20]:

Slm2 ðrÞ ¼ 16πMð2M − rÞð3M − ðλþ 3ÞrÞ
iωrð3M þ λrÞ2 Selm01ðrÞ þ

8πðr − 2MÞ2
3M þ λr

Selm11ðrÞ

þ 16πð2M − rÞð6M2 þ ðλ − 3ÞMrþ λðλþ 1Þr2Þ
iωr2ð3M þ λrÞ2 Selm02ðrÞ þ

16πðr − 2MÞ2
rð3M þ λrÞ Selm12ðrÞ

þ 32πð2M − rÞ
r2

Selm22ðrÞ þ
8πðr − 2MÞ2
iωð3M þ λrÞ ∂rSe

lm
01ðrÞ þ

16πðr − 2MÞ2
iωrð3M þ λrÞ ∂rSe

lm
02ðrÞ; ðB3Þ

Slm1 ðrÞ ¼ 16πr
3iω

Selm00ðrÞ þ
32πðr − 2MÞ2

3ðiωÞ2r2 Selm01ðrÞ þ
64πMð2M − rÞ

3ðiωÞ2r3 Selm02ðrÞ

−
16πðr − 2MÞ2

3iωr
Selm11ðrÞ þ

16πðr − 2MÞ2
3iωr2

Selm12ðrÞ þ
32πλð2M − rÞ

3iωr2
Selm22ðrÞ

þ 16πð2M − rÞ
iωr2

Uelm22ðrÞ −
32πðr − 2MÞ2

3ðiωÞ2r2 ∂rSelm02ðrÞ; ðB4Þ

Slm0 ðrÞ ¼ −16πrSelm00ðrÞ þ
16πðr − 2MÞ2

r
Selm11ðrÞ þ

32πðr − 2MÞ
r2

Uelm22ðrÞ; ðB5Þ

Slm0bðrÞ ¼
4πrðð−6λ − 5ÞM þ rð3λþ 2ðiωÞ2r2 þ 2ÞÞ

ðiωÞ2ð2M − rÞ Selm00ðrÞ

−
8πðMð−2λþ 8ðiωÞ2r2 − 3Þ − 2ðiωÞ2r3 þ λrþ rÞ

ðiωÞ3r Selm01ðrÞ −
16πðλþ 1ÞðM − 2ðiωÞ2r3Þ

ðiωÞ3r2 Selm02ðrÞ

þ 4πð2M − rÞðð14λþ 17ÞM − rð7λþ 2ðiωÞ2r2 þ 8ÞÞ
ðiωÞ2r Selm11ðrÞ −

8πðλþ 1Þð2M − rÞ
ðiωÞ2r Selm12ðrÞ

þ 16πλðλþ 1Þð2M − rÞ
ðiωÞ2r2 Selm22ðrÞ −

8πð6λþ 7Þð2M − rÞ
ðiωÞ2r2 Uelm22ðrÞ −

8πðλþ 1Þð2M − rÞ
ðiωÞ3r ∂rSelm02ðrÞ: ðB6Þ
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APPENDIX C: COMPONENTS OF T1
μν IN THE FREQUENCY DOMAIN

FOR QUASICIRCULAR ORBITS

Here we provide leading-order, frequency domain expressions for the components of the stress-energy tensor from
Eqs. (A2) and (A3), in the case of quasicircular, equatorial orbits. All sources are compactly supported on the particle’s
worldline and are provided by Ref. [20]:

Solm02ðrÞ ¼ μut
fðrÞΩ0

lðlþ 1Þ δðr − r0Þ∂θY�
lm

�
π

2
; 0

�
; ðC1Þ

Solm12ðrÞ ¼ 0; ðC2Þ

Solm22ðrÞ ¼ −2imμut
r2Ω2

0

2lðlþ 1Þðl − 1Þðlþ 2Þ δðr − r0Þ∂θY�
lm

�
π

2
; 0

�
; ðC3Þ

Selm00ðrÞ ¼ μut
fðrÞ2
r2

δðr − r0ÞY�
lm

�
π

2
; 0

�
; ðC4Þ

Selm01ðrÞ ¼ 0; ðC5Þ
Selm11ðrÞ ¼ 0; ðC6Þ

Uelm22ðrÞ ¼
1

2
μutr2Ω2

0δðr − r0ÞY�
lm

�
π

2
; 0
�
; ðC7Þ

Selm02ðrÞ ¼ imμut
fðrÞΩ0

lðlþ 1Þ δðr − r0ÞY�
lm

�
π

2
; 0

�
; ðC8Þ

Selm12ðrÞ ¼ 0; ðC9Þ

Selm22ðrÞ ¼ μut
r2Ω2

0ðlðlþ 1Þ− 2m2Þ
2lðlþ 1Þðl− 1Þðlþ 2Þδðr− r0ÞY�

lm

�
π

2
;0

�
; ðC10Þ

where the t component of the four velocity of the secondary is given by [20]

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0
r0 − 3M

r
: ðC11Þ

APPENDIX D: COEFFICIENTS OF DIRAC DELTA FUNCTIONS AND THE RADIAL
DERIVATIVES OF DIRAC DELTA FUNCTIONS FOR S2 IN THE ODD SECTOR

b0ðr0Þ ¼
8imMπ

ðlþ 2Þðlþ 1Þlðl − 1Þr100

�
r0

r0 − 3M

�
3=2

f1080ðl2 þ lþ 1ÞM4 − 6ð246lðlþ 1Þ −m2 þ 194ÞM3r0

þ ð722lðlþ 1Þ −m2 þ 412ÞM2r20 − 3ð49lðlþ 1Þ þ 16ÞMr30 þ 10lðlþ 1Þr40g∂θY�
lmðπ=2; 0Þ; ðD1Þ

b1ðr0Þ ¼
8imMπð2M − r0Þ

ðlþ 2Þðlþ 1Þlðl − 1Þr100

�
r0

r0 − 3M

�
3=2

f3240M4 þ 6ð38lðlþ 1Þ þm2 − 430ÞM3r0

þ ð−248lðlþ 1Þ þ 11m2 þ 604ÞM2r20 þ ð87lðlþ 1Þ − 4m2 − 32ÞMr30 − 10lðlþ 1Þr40g∂θY�
lmðπ=2; 0Þ; ðD2Þ

b2ðr0Þ ¼
8imMπðr0 − 2MÞ2

ðlþ 2Þðlþ 1Þlðl − 1Þr90

�
r0

r0 − 3M

�
3=2

f996M3 þ 2ð6lðlþ 1Þ þ 3m2 − 260ÞM2r0

− ð10lðlþ 1Þ þ 2m2 − 49ÞMr20 þ 2ðlðlþ 1Þ þ 3Þr30g∂θY�
lmðπ=2; 0Þ; ðD3Þ

b3ðr0Þ ¼
8imMπð2M − r0Þ3

ðlþ 2Þðlþ 1Þlðl − 1Þr80

�
r0

r0 − 3M

�
3=2

ð126M2 − 47Mr0 þ 2r20Þ∂θY�
lmðπ=2; 0Þ;

b4ðr0Þ ¼ −
16imMπðr0 − 2MÞ4

ðlþ 2Þðlþ 1Þlðl − 1Þr60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 3M

r
∂θY�

lmðπ=2; 0Þ: ðD4Þ
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APPENDIX E: JUMP CONDITIONS

In this appendix we present the jump conditions required to construct the various fields that go into calculating h1Lαβ;r0 . The
jump conditions for the r0 derivative of the Zerilli master function are too long to present here so we include them in the
Supplemental Material [38].

1. Jump conditions in ϕ2 in the odd sector

For the odd sector the jump conditions in Eq. (54) are for s ¼ 2 given by

J0 ¼
8iπmMð3M − 2r0Þ

ðl − 1Þlðlþ 1Þðlþ 2Þr5=20 ðr0 − 3MÞ3=2
∂θY�

lmðπ=2; 0Þ; ðE1Þ

J1 ¼
8iπmM

ðl − 1Þlðlþ 1Þðlþ 2Þr7=20 ðr0 − 3MÞ3=2ðr0 − 2MÞ2
f−2ðl2 þ l − 3Þr30 − 2M2r0ð6lðlþ 1Þ þ 3m2 − 22Þ

þMr20ð10lðlþ 1Þ þ 2m2 − 31Þ − 12M3g∂θY�
lmðπ=2; 0Þ; ðE2Þ

J2 ¼ −
8iπmM

ðl − 1Þlðlþ 1Þðlþ 2Þr9=20 ð2M − r0Þ3ðr0 − 3MÞ3=2
f2M3r0ð18lðlþ 1Þ þ 27m2 þ 16Þ

−M2r20ð40lðlþ 1Þ þ 41m2 þ 4Þ þMr30ð15lðlþ 1Þ þ 8m2Þ − 2lðlþ 1Þr40 − 48M4g∂θY�
lmðπ=2; 0Þ; ðE3Þ

J3 ¼
8iπmM

ðl − 1Þlðlþ 1Þðlþ 2Þr11=20 ðr0 − 3MÞ3=2ðr0 − 2MÞ4
f−2lðlþ 1Þðl2 þ l − 5Þr50

−24M4r0ð5lðlþ 1Þ þ 10m2 − 42Þ þMr40ðlðlþ 1Þð14lðlþ 1Þ þ 4m2 − 61Þ − 12ðm2 þ 4ÞÞ
þ2M3r20ðð12lðlþ 1Þ þ 59Þm2 þ 2lðlþ 1Þð6lðlþ 1Þ þ 5Þ þ 3m4 − 476Þ
þM2r30ð−20lðlþ 1Þm2 − 2lðlþ 1Þð16lðlþ 1Þ − 51Þ − 2m4 þ 21m2 þ 356Þ − 288M5g∂θY�

lmðπ=2; 0Þ: ðE4Þ

The coefficient of the Dirac delta function in Eq. (45) is given by

cδsϕδ
2ðr0Þ ¼

−8imMπ

λlðlþ 1Þr3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p ∂θY�
lmðπ=2; 0Þ: ðE5Þ

2. Jump conditions for χ 1
For χ1 the J vector in Eq. (99) has components J ¼ f0; 0; J2; J3; J4; J5g, where

J2 ¼
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp

ðr0 − 2MÞ2 Y�
lmðπ=2; 0Þ; ðE6Þ

J3 ¼ −
8πð42M2 − 21Mr0 þ 2r20Þ
ð2M − r0Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp Y�

lmðπ=2; 0Þ; ðE7Þ

J4 ¼
32πðM2r0ð6l2 þ 6lþ 3m2 − 2Þ −Mr20ð5l2 þ 5lþm2 − 4Þ þ lðlþ 1Þr30 − 24M3Þ

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp ðr0 − 2MÞ4 Y�

lmðπ=2; 0Þ; ðE8Þ

J5 ¼
16π

r20ð2M − r0Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp f4M3r0ð21l2 þ 21lþ 33m2 − 23Þ − 4M2r20ð9l2 þ 9lþ 15m2 þ 16Þ

−5Mr30ð3l2 þ 3l −m2 − 8Þ þ 6lðlþ 1Þr40 − 72M4gY�
lmðπ=2; 0Þ: ðE9Þ
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APPENDIX F: HOMOGENEOUS EVEN-SECTOR LORENZ GAUGE METRIC
PERTURBATIONS FOR l ≥ 2 AND ω ≠ 0

The following expressions are derived in Ref. [20]. The reader is referred there for the inhomogeneous case and for
expressions for l ¼ 0, 1 and ω ¼ 0.

H0ðrÞ ¼ −
λð1þ λÞMð−3M þ ð3þ λÞrÞψ 0

2

3ðiωÞ2r3ð3M þ λrÞ þ ð−M þ rÞψ0

ð2M − rÞr þ 2ð−2M2 þMrþ ðiωÞ2r4Þðψ0b þM2afÞ
ð2M − rÞr4

−
λð1þ λÞ

3ðiωÞ2ð2M − rÞr4ð3M þ λrÞ2 ½18M
4 þ 3ð−3þ 4λÞM3rþ ðiωÞ2λ2r6 − 3λMr3ð1þ λ − 2ðiωÞ2r2Þ

þM2ð6λ2r2 þ 9ðiωÞ2r4Þ�ψ2 þ
4iωð1þ λÞψ1

2M − r
þ ψ 0

0 þ
2Mðψ 0

0b þM0
2afÞ

r3
þ 4ð1þ λÞMψ 0

1

iωr3
; ðF1Þ

H1ðrÞ ¼ −
λð1þ λÞψ 0

2

3iωr
−
ð6M þ 4λM − 3r − 2λr − 2ðiωÞ2r3Þψ0

4iωMr2 − 2iωr3
þ ð2þ 2λÞψ1

2Mr − r2
þ 2iωð−M þ rÞðψ0b þM2afÞ

ð2M − rÞr2

−
λð1þ λÞð3M2 þ 3λMr − λr2Þψ2

3iωð2M − rÞr2ð3M þ λrÞ þ ψ 0
0

2iωr
þ 2iωðψ 0

0b þM0
2afÞ

r
þ 4ð1þ λÞψ 0

1

r
; ðF2Þ

H2ðrÞ ¼
λð1þ λÞð−9M2 þ ð3 − 5λÞMrþ 2λr2Þψ 0

2

3ðiωÞ2r3ð3M þ λrÞ þ ð−3M þ 2rÞψ0

ð2M − rÞr þ ψ 0
0 −

4ð1þ λÞðM − rÞψ 0
1

iωr3

þ 2ð6M2 − ð11þ 4λÞMrþ r2ð4þ 2λþ ðiωÞ2r2ÞÞðψ0b þM2afÞ
ð2M − rÞr4 þ ð−6M þ 4rÞðψ 0

0b þM0
2afÞ

r3

−
λð1þ λÞ

3ðiωÞ2ð2M − rÞr4ð3M þ λrÞ2 ½−54M
4 þ 3ð9 − 16λÞM3rþ λ2r4ð2þ 2λþ ðiωÞ2r2Þ

þ 9M2r2ð2λ − 2λ2 þ ðiωÞ2r2Þ þ λMr3ð3þ 5λ − 4λ2 þ 6ðiωÞ2r2Þ�ψ2

þ 4ð1þ λÞð−4ð1þ λÞM þ rð2þ 2λþ ðiωÞ2r2ÞÞψ1

iωð2M − rÞr3 ; ðF3Þ

KðrÞ ¼ λð1þ λÞð2M − rÞψ 0
2

3ðiωÞ2r3 þ ψ0

r
þ ð−4M þ 2ð2þ λÞrÞðψ0b þM2afÞ

r4
þ 4ð1þ λÞ2ψ1

iωr3
þ 2ð1þ λÞð2M − rÞψ 0

1

iωr3

−
λð1þ λÞð6M2 þ 3λMrþ λð1þ λÞr2Þψ2

3ðiωÞ2r4ð3M þ λrÞ þ ð4M − 2rÞðψ 0
0b þM0

2afÞ
r3

; ðF4Þ

h0ðrÞ ¼
λð2M − rÞψ 0

2

3iωr
þ ð−2M þ rÞψ0

2iωr2
þ 2iωðψ0b þM2afÞ

r
þ 4ð1þ λÞψ1

r
þ
�
1 −

2M
r

�
ψ 0
1 −

ð−2M þ rÞψ 0
0

2iωr

−
λð6M2 þ 3λMrþ λð1þ λÞr2Þψ2

3iωr2ð3M þ λrÞ ; ðF5Þ

h1ðrÞ ¼
λðð3þ λÞM þ λð2þ λÞrÞψ 0

2

3ðiωÞ2rð3M þ λrÞ −
rψ0

4M − 2r
þ 4ψ0b þM2af

r2
þ ð8M þ 8λM − 4r − 4λrþ ðiωÞ2r3Þψ1

2iωMr2 − iωr3

−
λ

3ðiωÞ2ð2M − rÞr2ð3M þ λrÞ2 ½9ðiωÞ
2M2r3 þ 2λ3r2ð−2M þ rÞ þ λ2rð−12M2 þ 2Mrþ 2r2 þ ðiωÞ2r4Þ

þ3λMð−4M2 þ r2 þ 2ðiωÞ2r4Þ�ψ2 −
2ðψ 0

0b þM0
2afÞ

r
−
2ð2M þ rþ 2λrÞψ 0

1

iωr2
; ðF6Þ

GðrÞ ¼ −
λð3þ 2λÞð2M − rÞψ 0

2

6ðiωÞ2r2ð3M þ λrÞ −
ψ0b þM2af

r3
−
2ð1þ λÞψ1

iωr3
þ ð2M − rÞψ 0

1

iωr3

þ ½4λ3r2 þ λ4r2 þ 27ðiωÞ2M2r2 þ 9λMðM þ 2ðiωÞ2r3Þ þ 3λ2ðM2 þMrþ r2 þ ðiωÞ2r4Þ�
6ðiωÞ2r3ð3M þ λrÞ2 ψ2: ðF7Þ
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