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It has been argued that a self-interacting massive vector field is pathological due to a dynamical
formation of a singular effective metric of the vector field, which is the onset of a gradient or ghost
instability. We discuss that this singularity formation is not necessarily a fundamental problem but a
breakdown of the effective field theory (EFT) description of the massive vector field. By using a model of
ultraviolet (UV) completion of the massive vector field, we demonstrate that a Proca star, a self-gravitating
condensate of the vector field, continues to exist even after the EFT suffers from a gradient instability
without any pathology at UV, in which the EFT description is still valid and the gradient instability in
EFT may be interpreted as a standard dynamical instability of a high-density boson star from the UV
perspective. On the other hand, we find that the EFT description is broken before the ghost instability
appears. This suggests that a heavy degree of freedom may be spontaneously excited to cure the pathology
of the EFT as the EFT dynamically tends to approach the onset of the ghost instability.
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I. INTRODUCTION

On the one hand, although all the existing observational
data on astrophysical and cosmological scales are consis-
tent with the predictions of general relativity [1,2], current
and future probes of strong gravity regions including
gravitational wave astronomy provide new opportunities
to test general relativity [3–5]. On the other hand, while the
latest data of gravitational waves are all consistent with
the emissions from black hole and neutron star mergers
in general relativity, hypothetical (horizonless) compact
objects based on various theoretical grounds have been
extensively proposed [6,7], which will be tested with
various observational channels [3–5], depending on the
compactness and nature of objects.
Boson stars that are gravitationally bound nontopological

solitonic objects [8–11] are known as the representative
exotic horizonless compact objects. A complex scalar field
constituting a boson star has the oscillatory time dependence
e−iωt with the frequency ω. Boson stars are characterized by
the two conserved charges, the Arnowitt-Deser-Misner
(ADM) mass M and the Noether charge Q associated with
the global Uð1Þ symmetry. Since M and Q correspond
to the gravitational mass and the scalar particle number,
respectively, boson stars are gravitationally bound if
μQ > M where μ is the mass of the complex scalar field.
Boson star solutions were first constructed in the massive
complex scalar theory μ2jϕj2=2 [12–14]. It is known that the
properties of boson stars are characterized in the M − ω

(and Q − ω) relations. In the limit of the vanishing scalar
amplitude, M → 0 and Q → 0 while ω → μ, the spacetime
approaches the Minkowski spacetime. As one increases the
scalar amplitude at the center, while ω decreases, M and Q
first increase, reach their maximal values at the same ω, and
then decrease until ω reaches the minimum value, which
forms the first branch of the boson star solutions, where
μQ > M and boson stars are gravitationally bound. The
solutions with smaller central amplitude before reaching the
maximum of M and Q are also dynamically stale [15–17].
After reaching its minimal value, ω increases and decreases
repetitively and eventually converges to a single value as the
central amplitude increases, forming the second, third, and
higher branches in the MðQÞ − ω relations, where always
M > μQ and boson stars are dynamically unstable. In the
massive complex scalar field theory, the maximal mass of
boson stars is of OðM2

Pl=μÞ, where MPl is the (reduced)
Planck mass, while in the presence of the quartic order self-
interaction λjϕj4 this is ofOð ffiffiffi

λ
p

M3
Pl=μ

2Þwhich can bemuch
higher than the pure massive case for μ ≪ MPl [18]. Boson
stars in the presence of other self-interacting scalar poten-
tials have been extensively studied [9,19].
Boson star solutions can be naturally extended to other

bosonic fields, especially the complex vector (Proca) field,
which are known as Proca stars [20–27] (see also [28–30] for
spin-2 solitonic objects). In the massive complex Proca
theory μ2ĀμAμ=2, where Aμ is the complex vector field and
Āμ is the complex conjugate of Aμ, Proca star solutions exist
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for an arbitrary large amplitude of the Proca field at the center
of the star, and their properties are very similar to those of
scalar boson stars [20]. As in the case of scalar boson stars,
Proca star solutions can be divided into different branches in
the MðQÞ − ω relations, and only the first branch solutions
which have the smooth limit to the Minkowski solution for
the vanishing Proca amplitude and the maximal values ofM
and Q, are energetically stable, i.e., μQ > M. Due to the
healthy properties of the massive Proca theory, Proca star
solutions of this type have been extensively applied to
various astrophysical problems [31–36].
The situation, however, is drastically changed when

the self-interaction potential of the complex Proca
field VðĀμAμÞ, such as the quartic-order self-interaction
λðĀμAμÞ2=4, is taken into consideration besides the Proca
mass term μ2ĀμAμ=2. In Ref. [23], in the presence of the
quartic-order self-interaction as well as the mass term,
V ¼ μ2ĀμAμ=2þ λðĀμAμÞ2=4, it has been shown that
irrespective of the sign of λ Proca star solutions cease to
exist for the central Proca amplitude at a critical point
whose value depends on the other parameters in the model.
In the presence of the sextic-order self-interaction as well,
similar results were obtained in [24,25]. Proca star sol-
utions as well as scalar boson star solutions are constructed
numerically by integrating the field equations under the
regularity conditions at the center and the exponential
decay of the field at the spatial infinity. The problem arises
when the first-order radial derivative of the radial compo-
nent of the Proca field diverges at a certain radius, beyond
which one cannot integrate the field equations numerically.
As we see later, at the singular point the radial component
of the effective metric for the self-interacting Proca field
vanishes and the perturbations lose the hyperbolicity. Thus,
the problem may be interpreted as the onset of the so-called
gradient instability (see below) at the background level.
Such a problem is absent for the Proca field without a
self-interaction, while could generically arise for a self-
interacting Proca field.
Recently, a conceptually related problemwas pointed out

in [37–39], which claim that a self-interacting Proca field
suffers from a generic ghost instability. Note that the “ghost”
and “gradient” instabilities are associated with the wrong
signs of the kinetic and gradient terms in the Lagrangian
for the perturbations on a given background, respectively.
Unlike the tachyonic instability, i.e., the instability associ-
ated with the wrong sign of the mass term, which appears
only for longwavelengthmodes and growswith a finite rate,
the ghost and gradient instabilities grow arbitrarily fast if
they continue existing in arbitrarily high-energy/momentum
scales. The perturbation theory breaks down within an
infinitesimally short timescale, and no prediction is trust-
able. In the context of the time domain analysis, the onset of
the ghost or gradient instability could be interpreted as the
breakdown of the hyperbolic evolution of the perturbations
and hence the well-posedness of the initial value problems.

Reference [37] performed a numerical simulation of the
late-time evolution of the superradiant growth of the self-
interacting (real) Proca field on the Kerr background, and
showed that when the self-interaction becomes important
irrespective of the sign of the coupling constant the time
derivative of the temporal component of the Proca field
diverges at a certain moment of time, beyond which one
cannot follow the time evolution. At this moment of time
the temporal component of the effective metric for the
Proca field vanishes, and the self-interacting Proca field
suffers from a ghost instability. The problem of a ghost
instability is expected to be generic to the self-interacting
Proca sector, and independent of the background spacetime
geometry. Reference [38] studied the propagation of the self-
interacting Proca wave in 1þ 1 dimensional Minkowski
spacetime, and showed that it inevitably suffers from a ghost
(or gradient) instability. Once the role of space and time
is reversed, the situation is very similar to the gradient
instability problem for Proca stars with a self-interaction
mentioned above.
In the case that the self-interacting Proca field is a

fundamental field, the ghost or gradient instability is
indeed the pathology of the theory. On the other hand, in
the case that the self-interacting Proca theory is a low-energy
effective description of a more fundamental theory, the
problem may be avoided once ultraviolet (UV) physics, for
instance the dynamics of heavy fields, is properly taken into
consideration. The aimof thiswork is to suggest a solution to
this problem from the effective field theory (EFT) viewpoint,
and propose a (partial) UV completion to the self-interacting
Proca theory, where the onset of the gradient instability
simply indicates a breakdown of the self-interacting Proca
theory as an EFT. Although wewill not address a dynamical
simulation of the Proca field, our method should be directly
applied and can provide insight into the ghost problem
during the time evolution.
The paper is organized: In Secs. II and III, we review

the propagation of perturbations around a nontrivial back-
ground configuration of the self-interacting complex Proca
field, and Proca star solutions in the presence of the quartic-
order self-interaction, respectively. In Sec. IV, we introduce
a model of the partial-UV completion of the self-interacting
Proca theory. In Sec. V, we study the Proca star solution in
the partial-UV completion theory of the quartic-order self-
interaction and demonstrate how the inclusion of a heavy
field χ maintains the hyperbolicity of the equations of
motion even at the singularities of the effective metric. The
last Sec. VI is devoted to giving a brief summary and
conclusion.

II. PROPAGATIONS OF SELF-INTERACTING
COMPLEX PROCA FIELD

We consider a self-interacting complex massive (spin-1)
Proca field Aμ minimally coupled to gravity, which is
described by the action
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SProca ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4e2
FμνF̄μν − VðXÞ

�
ð2:1Þ

where R is the Ricci scalar associated with the metric gμν,
g ≔ detðgμνÞ, M2

Pl ¼ 1=8πG is the Planck mass with G
being the gravitational constant,

Fμν ≔ 2∂½μAν�; X ≔ AμĀμ ð2:2Þ

and the bar means the complex conjugate. VðXÞ represents
the self-interacting potential of the complex Proca field.
The parameter e can be set to unity by normalizing the
Proca field, but we keep it for later convenience. Since the
complex Proca field enjoys a global Uð1Þ symmetry, there
exists the associated Noether current

jμ ≔
i

2e2
ðF̄μνAν − FμνĀνÞ: ð2:3Þ

The Proca field Aμ may be suffered from a pathology
(e.g., ghost instability) in the presence of nonlinear self-
interaction, which is most easily understood by taking
the decoupling limit. Let us replace the Proca field Aμ

according to

Aμ → eAμ þ ∂μϕ ð2:4Þ

with ϕ a (complex) Stüeckelberg field. We take the limit
e → 0 while keeping the potential finite. Then, the action
(2.1) is reduced to a complex Maxwell field and a
decoupled complex k-essence:

SProca →
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνF̄μν − VðXϕÞ

�
; ð2:5Þ

where Xϕ ≔ ∇μϕ∇μϕ̄. The Stüeckelberg field has a non-
linear kinetic term, suggesting that the kinetic term is not
necessarily positive-definite around a nontrivial background.
Let us elaborate on propagations of the Proca field. The

equation of motion of the Proca field is

∇νFνμ − 2e2AμV 0 ¼ 0; ð2:6Þ

where V 0 may be regarded as the effective mass squared of
the vector field. The prime represents the derivative with
respect to the argument. The divergence of the equation of
motion leads to a constraint equation

∇μðAμV 0Þ ¼ ∇μAμV 0 þ Aμ∇μV 0 ¼ 0: ð2:7Þ

We study a high-frequency limit of the perturbations
around a nontrivial background configuration of the Proca
field. We continue to use Aμ to denote the background
Proca configuration, while we denote the perturbations of
the Proca field by δAμ þ ∂μπ with the perturbations of the

Stüeckelberg field π. In the high-frequency limit, we only
retain the highest derivative terms of the perturbations, so
the Eqs. (2.6) and (2.7) yield

∂
2δAμ − ∂

ν
∂μδAν þ � � � ¼ 0; ð2:8Þ

V 0
∂
2π þ V00ðAμĀν

∂μ∂νπ þ AμAν
∂μ∂νπ̄Þ þ � � � ¼ 0; ð2:9Þ

where � � � are terms that are at most linear in derivatives
of the perturbations. Here, we may replace the covariant
derivatives with the partial derivatives since we are inter-
ested in the short wavelength limit much smaller than the
spacetime curvature scale. The former equation is the
Maxwell equation, representing the luminal propagations
of the transverse modes of the Proca field, and does not give
rise to any pathology. On the other hand, the propagations
of the longitudinal modes may be modified due to the
nonlinear interactions. By the use of the form π ¼ π1 þ iπ2

where π1 and π2 are real fields, (2.9) can be rewritten as

�
V 0gμν þ 2V 00A1μA1μ 2V 00A1ðμA2νÞ

2V 00A1ðμA2νÞ V 0gμν þ 2V 00A2μA2μ

�

× ∂μ∂ν

�
π1

π2

�
þ � � � ¼ 0 ð2:10Þ

where A1
μ and A2

μ are the real and imaginary parts of the
background Aμ. Moving to the Fourier space by π1;2 ¼R
d4kπ1;2ðkÞe

ikμxμ with kμ being a four-wave vector, the partial

derivative may be replaced with ikμ in the high-frequency
limit, leading to the dispersion relations

det

�
V 0k2 þ 2V 00ðA1 · kÞ2 2V 00ðA1 · kÞðA2 · kÞ
2V 00ðA1 · kÞðA2 · kÞ V 0k2 þ 2V 00ðA2 · kÞ2

�

¼ V 0k2gμνeffkμkν ¼ 0 ð2:11Þ

with the effective metric

gμνeff ≔ V 0gμν þ 2V 00AðμĀνÞ: ð2:12Þ

The dispersion relation (2.11) implies that one of the
longitudinal modes propagates on the spacetime metric
gμν while the other propagates on the effective metric gμνeff .
The signature of the effective metric may differ from
ð−;þ;þ;þÞ which signals the presence of an instability.
The determinant of gμνeff is computed by

detðgμνeffÞ ¼ detðgμνÞV 02

× ½V 02 þ V 00ð2XV 0 þ V 00X2 − V 00AμAμĀνĀνÞ�:
ð2:13Þ

Hence, the effective metric is singular at the point where
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V 0 ¼ 0; ð2:14Þ

or

V 02 þ V 00ð2XV0 þ V 00X2 − V 00AμAμĀνĀνÞ ¼ 0; ð2:15Þ

at which one of the longitudinal modes would be infinitely
strongly coupled. The theory cannot be trusted when the
effective metric gμνeff becomes singular. Note that although
each component of the effective metric (2.12) is coordinate-
dependent, the physical conditions (2.14) and (2.15)
to determine the appearance of singular Proca star con-
figurations are expressed by scalar quantities and thus
coordinate-independent.

III. PROCA STARWITHQUARTIC INTERACTION

Before presenting a UV completion of the complex
Proca field, let us discuss a concrete solution which tends to
approach a singular effective metric. As a concrete exam-
ple, we use a quartic self-interaction

V ¼ μ2

2
AμĀμ þ λ

4
ðAμĀμÞ2; ð3:1Þ

and study a relativistic self-gravitating condensate of the
Proca field, known as the Proca star [20,22–25,40], under
the ansatz

gμνdxμdxν ¼ −σ2ðrÞ
�
1 −

2mðrÞ
r

�
dt2

þ
�
1 −

2mðrÞ
r

�
−1
dr2 þ r2dΩ2

2; ð3:2Þ

Aμdxμ ¼ e−iω̂tða0ðrÞdtþ ia1ðrÞdrÞ; ð3:3Þ

where a0ðrÞ and a1ðrÞ are real functions of r and ω̂ is a real
and positive parameter. Note that although the vector field
has both temporal and radial components with a time
dependence ∝ e−iω̂t, the effective metric (2.12) is still static
and diagonal under the above ansatz. Let us below explain
the properties of the Proca star in the presence of the quartic
interaction (see [23] for details). Here, we set e ¼ 1 by
normalizing the Proca field.
The basic equations are the Einstein equation and the

equation of motion of the Proca field (2.6). Note that
the Proca field must satisfy the constraint equation (2.7)
which reduces the order of differential equations. All the
components of the Einstein equation are not independent
thanks to the Bianchi identity; thus, we only need to use the
ðttÞ and ðrrÞ components as the independent equations. In
addition, there are two independent equations from (2.6)
and (2.7) which, in combination with the Einstein equation,
are enough to (numerically) solve the four functions
fσðrÞ; mðrÞ; a0ðrÞ; a1ðrÞg under appropriate boundary

conditions. By the use of (2.7) and the radial component
of (2.6), we finally find the set of the first-order differential
equations:

dσðrÞ
dr

¼ Fσ½σ; m; a0; a1; r�; ð3:4Þ

dmðrÞ
dr

¼ Fm½σ; m; a0; a1; r�; ð3:5Þ

da0ðrÞ
dr

¼ F0½σ; m; a0; a1; r�; ð3:6Þ

da1ðrÞ
dr

¼ F1½σ; m; a0; a1; r�; ð3:7Þ

where FAðA ¼ σ; m; 0; 1Þ do not contain any derivatives.
One can confirm that other components of the Einstein
equation and (2.6) are satisfied under (3.4)–(3.7). Note that
Ref. [23] uses (2.7) and the radial component of (2.6) to
solve the equations of motion of the Proca field by which
one obtains a second-order differential equation of a1.
Nonetheless, the same solutions are found by the first-order
equation (3.7) because the same boundary conditions are
imposed.
A caveat is that FA may pass a singularity during the

numerical integration. For instance, the functions FA
diverge at a point where r − 2m ¼ 0 which is a coordinate
singularity of the present ansatz (3.2). However, we will not
encounter such a singularity since we consider a horizon-
less object. As pointed out in [23], F1 is singular at

grreff ¼ 0 ð3:8Þ

which corresponds to a singularity of the effective metric
(2.12) and this singularity indeed appears in the solutions
with the quartic interaction. Then, we cannot integrate the
field equations numerically. The situation is analogous to
what happens in the time evolution problem [37–39], by
reversing the role of the time and the space.
Let us explicitly construct asymptotically flat solutions

satisfying the following boundary conditions:

m→ 0; σ → σc; a0 → ac; a1 → 0 as r→ 0 ð3:9Þ

and

m→m∞; σ→σ∞; a0→0; a1→0 as r→∞ ð3:10Þ

where σc, ac, m∞ and σ∞ are constant. Note that the ansatz
(3.2) and (3.3) has a freedom associated with a time
rescaling t → ct;ω → c−1ω; σ → c−1σ; a0 → c−1a0 with
c being a constant which can be used to set, for example,
σc ¼ 1 without loss of generality. More precisely, the
regularity condition at the center concludes that the solution
must be given by the form:
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mðrÞ ¼ a2c
24M2

Plσ
4
c
ð−3λa2c þ 2μ2σ2cÞr3 þOðr4Þ;

σðrÞ ¼ σc −
a2c

4M2
Plσ

3
c
ða2cλ − μ2σ2cÞr2 þOðr4Þ;

a0ðrÞ ¼ ac −
ac
6σ2c

ða2cλ − μ2σ2c þ ω̂2Þr2 þOðr4Þ;

a1ðrÞ ¼ −
acω̂
3σ2c

rþOðr3Þ: ð3:11Þ

On the other hand, the asymptotic form of the solutions is

given by a0; a1 ∝ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r where ω is the proper fre-

quency for a distant observer defined by

ω ≔
ω̂

σ∞
: ð3:12Þ

For numerical computations, it is useful to use the
following dimensionless variables

r̃≔μr; m̃≔μm; ã0≔a0=MPl; ã1≔a1=MPl ð3:13Þ

and the dimensionless parameters

ω̃ ≔ ω̂=μ; λ̃ ≔ λM2
Pl=μ

2: ð3:14Þ

Then, the parameters MPl and μ do not appear in the
equations of motion, so we do not need to fix them
explicitly. Furthermore, we introduce

α̃0 ≔
ã0

σð1− 2m=rÞ1=2 ; α̃1 ≔ ã1ð1− 2m=rÞ1=2 ð3:15Þ

by which the components of the (mixed) effective metric
Hμ

ν ≔ 2gμαeffgαν=μ
2 are computed as

Hμ
ν ¼ diag½Ht

t;Hr
r;Hθ

θ;Hφ
φ�; ð3:16Þ

Ht
t ¼ 1þ λ̃ð−3α̃20 þ α̃21Þ; ð3:17Þ

Hr
r ¼ 1þ λ̃ð−α̃20 þ 3α̃21Þ; ð3:18Þ

Hθ
θ ¼ Hφ

φ ¼ 1þ λ̃ð−α̃20 þ α̃21Þ; ð3:19Þ

where θ and φ are the angular coordinates. Note that
Ht

t ¼ 0 and Hr
r ¼ 0 are the roots of (2.15), while Hθ

θ ¼
Hφ

φ ¼ 0 is the root of (2.14). Since (2.15) is a scalar,
grreff ∝ Hr

r ¼ 0 is an actual (i.e., not coordinate) singularity
as long as Ht

t is finite.
There exists a family of Proca stars and each solution is

characterized by the ADM mass M, the Noether charge
associated with the global Uð1Þ symmetry Q, and the
eigenfrequency ω which are defined as

M ≔ 8πM2
Plm∞; ð3:20Þ

Q ≔
Z
Σ
d3x

ffiffiffiffiffiffi
−g

p
jt ¼

Z
∞

0

4πr2dr
a1ðω̂a1 − a00Þ

σ
; ð3:21Þ

respectively, where Σ denotes the entire domain of a
constant time hypersurface. Figure 1 represents M and
Q as a function of ω=μ for the quartic potential with
λ̃ ¼ −10. The limit ω=μ → 1 is the nonrelativistic limit
with the small amplitude and the central amplitude of the
Proca field increases as the solution moves along the curves
of Fig. 1. The M − ω (Q − ω) relation for a positive λ is
presented in [23]. We, however, do not consider the case
λ > 0 in this paper because the Proca field with λ > 0
contradicts the standard S-matrix properties such as uni-
tarity and causality [41,42].
Some numerical solutions and the corresponding effec-

tive metric are shown in Figs. 2 and 3, respectively. One
may adiabatically1 increase the amplitude of the Proca field
to follow the family of the Proca stars. As the amplitude of
the Proca field increase, the ðrrÞ component of the effective
metric approaches zero, forming a singularity at a critical
point. The critical point is indicated by a black dot in Fig. 1.
Since the equations of motion are singular at grreff ¼ 0, we
cannot find a Proca star beyond the critical point.
In the vicinity of r ¼ 0, using (3.11), Hr

r can be
expanded as

Hr
r ¼ 1 − λ̃ã2c þOðr2Þ; ð3:22Þ

where ãc ≔ ac=MPl. For λ̃ > 1=ã2c > 0, Hr
r is initially

negative, but immediately increases as r slightly increases,
and crosses zero in the vicinity of the center. Hence, no

FIG. 1. M − ω (red-solid curve) andQ − ω (blue-dashed curve)
relations with λ̃ ¼ −10.

1By “adiabatically,” we mean that the amplitude of the Proca
field is increased with an arbitrary small rate without breaking
the staticity of the background spacetime. In other words, we
consider a family of the static Proca star solutions with the
gradual increase of the central amplitude of the Proca field.
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self-interacting Proca star solutions exist for λ̃ > 1=ã2c
because of the onset of a gradient instability around
the center. Moreover, in the case 1=ã2c > λ̃ > 1=ð3ã2cÞ,
although a background Proca star solution exists, in the
vicinity of the center Ht

t crosses zero and the solution
would suffer from a ghost instability at the level of linear
perturbations. Here, in the rest we do not consider the case
of λ̃ > 0. On the other hand, for λ̃ < 0, from (3.22)Hr

r > 0
in the vicinity of the center, however as shown in Fig. 3, for
a sufficiently large central amplitude approaches zero at a
radius a few times larger than the Compton radius μ−1.
Since the expansion near the origin (3.11) is no longer valid
around such a radius, for λ̃ < 0 we could not analytically
estimate the critical amplitude where Hr

r vanishes and a
gradient instability appears. We numerically confirmed that
even for jλ̃j ¼ Oð100Þ the features of theM − ω andQ − ω
relations, especially the position of the critical points are
qualitatively similar to those in Fig. 1. In other words, for
λ̃ < 0, the appearance of the gradient instability and the
features of M − ω and Q − ω relations are qualitatively
insensitive to the choice of jλ̃j.
The recent numerical calculations [37–39] have also

shown that a singular effective metric is indeed dynami-
cally formed from a generic initial condition. Therefore, a
formation of a singular effective metric is not an artificial
problem and we need to resolve it in order to discuss a
nonlinear regime of the Proca field.

IV. PARTIAL UV COMPLETION OF
SELF-INTERACTING PROCA FIELD

A. A simple model

We now seek a partial UV completion of a self-
interacting complex Proca field. Here, “partial” means that
the UV theory is not necessary to be UV complete in the
strict sense (e.g., renormalizable), but the applicable range
of the partially UV complete theory is wider than (2.1). We
refer to [43] for a detailed discussion about the partial UV
completion in the context of a general k-essence field (see
also [44–48]). The extension to a complex vector field is
straightforward if the potential only involves X ¼ AμĀμ.
We consider the following UV completion by means of a
heavy field χ:

SUV ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4e2
FμνF̄μν −

1

2
fðχÞX

−
1

2
ð∂χÞ2 − VðχÞ

�
ð4:1Þ

where the functions fðχÞ and VðχÞ will be chosen to
reproduce the potential VðXÞ by integrating out χ. The
action has no nonlinear interaction in terms of the Proca
field. If the field χ is sufficiently heavy, the equation of
motion of χ may be approximated as

FIG. 2. σ (red), μm (blue), α̃0 (green), and α̃1 (magenta) are shown as functions of μr with λ̃ ¼ −10 where a deeper color corresponds
to a larger amplitude of the vector field. We have rescaled σ so that σ∞ ¼ 1.

FIG. 3. The radial dependence of the components of the effective metric for the solutions presented in Fig. 2.
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1

2
f0ðχÞX þ V 0ðχÞ ≃ 0 ð4:2Þ

which can be solved by χ ¼ χAðXÞ under the condition

1

2
f00ðχAÞX þ V 00ðχAÞ ≠ 0: ð4:3Þ

The action (4.1) is reduced to (2.1) with the potential

VðXÞ ¼ VðχAÞ þ
1

2
fðχAÞX ð4:4Þ

by neglecting the kinetic term of χ (See also [26,27]). The
corrections coming from the finite kinetic term can be
included by employing the derivative expansion which we
will discuss later.
Using the two real vector fields A1

μ and A2
μ, we write the

complex vector as

Aμ ¼ A1
μ þ iA2

μ; ð4:5Þ

giving

FμνF̄μν ¼ Fa
μνFaμν; AμĀμ ¼ Aa

μAaμ; ð4:6Þ

where a ¼ 1, 2 and the summation of a is understood. We
introduce Stüeckelberg fields according to the following
replacements

Aa
μ → ∂μϕ

a þ eAa
μ ≕Dμϕ

a: ð4:7Þ

The action (4.1) is then

SUV ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
Fa
μνFaμν −

1

2
ð∂χÞ2

−
1

2
fðχÞDμϕ

aDμϕa − VðχÞ
�
: ð4:8Þ

In particular, the limit e → 0 yields

SUV →
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
Fa
μνFaμν

−
1

2
γIJ∂μΦI

∂
μΦJ − VðχÞ

�
; ð4:9Þ

with

ΦI ¼ ðχ;ϕ1;ϕ2Þ; γIJ ¼ diag½1; fðχÞ; fðχÞ�; ð4:10Þ

which is nothing but a nonlinear sigma model with
decoupled gauge fields. Therefore, the UV theory has
neither a ghost nor a gradient instability so long as the
field-space metric γAB is positive definite. The field-space
metric is invariant under the translations of ϕa and the

rotation. The translation symmetry is gauged in (4.8) with
the help of the gauge fields Aa

μ
2 and (4.1) is recovered in the

unitary gauge.

B. Consistency with UV

We obtain the following relations:

dχAðXÞ
dX

¼ −
f0ðχAÞ
2μ2χ

ð4:11Þ

and

V 0ðXÞ ¼ 1

2
fðχAÞ; V 00ðXÞ ¼ −

1

4

f02ðχAÞ
μ2χ

ð4:12Þ

where χA in the right-hand side is understood as the
solution χA ¼ χAðXÞ and we have introduced a quantity

μ2χ ≔
1

2
f00ðχAÞX þ V 00ðχAÞ: ð4:13Þ

After integrating out χ while keeping corrections of the
kinetic term ð∂χÞ2, the (tree-level) EFT Lagrangian is
given by

LEFT ¼ M2
Pl

2
R −

1

4e2
FμνF̄μν − VðXÞ þ

X∞
n¼1

Ln ð4:14Þ

where Ln represent higher derivative corrections which are
suppressed by ∂

n=μnχ in comparison with the leading term
VðXÞ: for instance, the first higher-derivative correction
appears at n ¼ 2 which takes the form

L2 ¼
V 00ðXÞ
2μ2χðXÞ

∂μX∂μX: ð4:15Þ

The mass scale μ2χðXÞ determines the cutoff of the deriva-
tive expansion and only a finite number of the operators are
relevant as long as ∂ ≪ jμχ j. In particular, μχ agrees with
the mass of the field χ around the background Aμ ¼ 0.
Hence, the heavy field χ is consistently integrated out
around Aμ ¼ 0 only if χ is not tachyonic, μ2χð0Þ > 0. This
requires V 00ð0Þ < 0 which is translated into λ < 0 in (3.1).
The sign is consistent with the requirement from the
S-matrix [42] as it should be.
We emphasize that the higher derivative correction (4.15)

changes the propagation of the vector field when Aμ has a

2The gauge fields Aa
μ are thus Abelian gauge fields. On the

other hand, one may consider a UV completion of a complex
vector field by the use of a non-Abelian gauge field like the W
boson in the electroweak theory. In this case, however, the EFT
may have another self-interaction AμAμĀνĀν as well [and have
other gauge field(s)] due to the non-Abelian origin.
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non-vanishing background configuration. Since (4.15) is a
higher derivative operator, the resultant dispersion relation
of the perturbations must take a nonlinear form,

gμνeffkμkν þOðk4=μ2χÞ ¼ 0; ð4:16Þ

rather than the linear form gμνeffkμkν ¼ 0. Even if one finds
an instability in the Proca theory (i.e., a wrong sign of the
effective metric gμνeff ), this instability cannot be extrapolated
into a UV regime. Appearance of an instability in an IR
regime is ubiquitous in many systems (cf., the dynamical
instability of boson stars in the second branch, M > μQ).
We should, therefore, distinguish whether an instability

exists only in the IR regime or continues even in the UV
regime. There are two different branches of the singular
effectivemetric, (2.14) and (2.15). The second branch (2.15)
is not singular in the UV theory, suggesting that the singular
point that we have encountered in the construction of the
Proca star is not an actual singularity from the UV
perspective. The point grreff ∝ Hr

r ¼ 0 is simply a point that
the leading order approximation of the derivative expansion
is not valid due to the absence of the leading gradient term. If
the derivative correction (4.15) is taken into account, the
Proca star may continue to exist even beyond the critical
amplitude. A similar prescription is well known in the
context of the ghost condensate [49]. On the other hand,
the first branch V 0 ¼ 1

2
f ¼ 0 is not only a singularity of the

effectivemetric of the EFT but also an (at least “coordinate”)
singularity of the field-space of the UV theory. The function
f has to be positive to avoid the UV ghost and, within the
regime of validity of the EFT, the positive sign of f is
translated into the positivity ofV 0, the effectivemass squared
of thevector field. This implies that thevector field cannot be
tachyonic to be consistent with our UV completion.
It would be worth mentioning a possibility to have an IR

ghost in the EFT. Although a UV ghost signals a fatal
instability of a theory, an IR ghost around a nontrivial
background may be recast in a standard Jeans-like (or
tachyonic) instability and does not necessarily render
the theory inconsistent [50]. One can indeed obtain a
ghostly EFT from a healthy UV theory without any self-
inconsistency [43,51]. However, as opposed to the gradient
term, the sign of the kinetic term may not be flipped by a
finite number of higher derivative terms to avoid a strong
coupling. A distinction between the IR gradient instability
and the IR ghost instability is explained in Sec. VA of [43].
Hence, although Ht

t ¼ 0 itself is not necessarily patho-
logical in UV, a local EFT cannot achieve to change the
sign of the kinetic term. Since we are interested in the
asymptotically flat solutions with Ht

t → 1 as r → ∞, we
must find Ht

t > 0 within the validity of the EFT.
In summary, we may conclude
(i) Ht

t cannot change the sign in ∂ ≪ jμχ j;
(ii) Hr

r can change the sign in ∂ ≪ jμχ j; and
(iii) Hθ

θ ∝ V 0 cannot change the sign in ∂ ≪ jμχ j

under the ansatz (3.2) and (3.3). Although all the singu-
larities of the Proca theory are apparently pathological,
Hr

r ≤ 0 may be acceptable from the UV perspective. We
will confirm these statements by constructing Proca star
solutions in the UV theory. Here, we again stress that the
Proca theory without higher derivative corrections (2.1) is
not valid at Hr

r ¼ 0 due to the absence of the leading
gradient term. The validity of the Proca theory and the
validity of the EFT (the Proca theory with higher derivative
corrections) should be distinguished.

C. Reproducing quartic potential

As an example, we consider the three-dimensional
hyperbolic space as the field-space metric:

fðχÞ ¼ μ2e2χ=Λ: ð4:17Þ

The appropriate potential to recover the quartic self-
interaction (3.1) is given by

V ¼ −
μ4

4λ
ð1 − e2χ=ΛÞ2: ð4:18Þ

The field-space metric is regular and the potential is
positive semi-definite for λ < 0; thus, there is no patho-
logical instability in the UV theory with λ < 0. Our UV
theory is characterized by two scales Λ and −μ4=λ where
the former one determines the scalar curvature of the field
space to beR ¼ −6=Λ2, while the latter one determines the
height of the potential. Note that the dimension of the field-
space metric γIJdΦIdΦJ [see Eqs. (4.9) and (4.10)] is
½mass�2 rather than ½length�2. All the non-renormalizable
interactions are suppressed by Λ which may justify the use
of (4.17) and (4.18) as a partial UV completion of the
Proca theory in energy scales well below Λ. We assume that
Λ is much larger than the mass of χ as well as the typical
scales of the Proca star discussed below.3

The solution to (4.2) is

e2χA=Λ ¼ 1þ λ

μ2
AμĀμ ¼ Hθ

θ ð4:19Þ

and then (2.1) with the potential (3.1) is obtained by
substituting this solution to the action by ignoring the
kinetic term of χ. One can notice that the solution is
consistent only if

Hθ
θ ¼ 1þ λ

μ2
AμĀμ > 0; ð4:20Þ

which is equivalent to the condition f > 0. Since f ¼ 0 is a
coordinate singularity of the field-space metric, one cannot

3For this reason, we shall ignore higher derivative corrections
to the UV theory which would be suppressed by Λ as well.
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analyse this point in the present variables. By using the EFT
solution (4.19), the mass scale of the heavy field (4.13) is

μ2χ ¼ −
2μ4

λΛ2

�
1þ λ

μ2
AμĀμ

�
2

: ð4:21Þ

As we have seen, the typical massM and the radius R of the
relativistic Proca star with jλ̃j ¼ jλjM2

Pl=μ
2 ¼ Oð1Þ are of

order of

GM ∼ μ; R ∼ μ−1; ð4:22Þ

with

Aμ ∼MPl ð4:23Þ

meaning that all the scales of the relativistic Proca star are
determined by μ. Therefore, the typical size of the deriva-
tive is approximated by μ and then the condition ∂2 ≪ jμχ j2
in the relativistic regime is given by

1þ λ

μ2
AμĀμ ≫

Λ
jλ̃j1=2MPl

ð4:24Þ

in the present model.

V. PROCA STAR BEYOND CRITICAL POINT

We study the Proca stars4 based on the simple partial UV
completion (4.1) with the hyperbolic field space (4.17) and
the potential (4.18). We use the same ansatz as (3.2) and
(3.3) with e ¼ 1 and assume a static configuration of the
heavy field χ ¼ χðrÞ.
The equations of motion are

dσðrÞ
dr

¼ F σ½σ; m; a0; a1; χ; χ0; r�; ð5:1Þ

dmðrÞ
dr

¼ Fm½σ; m; a0; a1; χ; χ0; r�; ð5:2Þ

da0ðrÞ
dr

¼ F 0½σ; m; a0; a1; χ; χ0; r�; ð5:3Þ

da1ðrÞ
dr

¼ F 1½σ; m; a0; a1; χ; χ0; r�; ð5:4Þ

d2χðrÞ
dr2

¼ F χ ½σ; m; a0; a1; χ; χ0; r� ð5:5Þ

where F yðy ¼ σ; m; 0; 1; χÞ are regular functions (modulo
the singularities of the spacetime metric), as expected.
The solution near the origin is found to be

mðrÞ¼ μ2e
2χc
Λ

12λM2
Plσ

2
c

�
λa2c−2μ2σ2csinh2

�
χc
Λ

��
r3þOðr4Þ;

σðrÞ¼ σcþ
a2cμ2e

2χc
Λ

4σcM2
Pl

r2þOðr4Þ;

a0ðrÞ¼ acþ
ac
6

�
e
2χc
Λ μ2−

ω̂2

σ2c

�
r2þOðr4Þ;

a1ðrÞ¼−
acω̂
3σ2c

rþOðr3Þ;

χðrÞ¼ χc−
e
2χc
Λ μ2

6λΛ

�
λ
a2c
σ2c

−
�
1−e

2χc
Λ

�
μ2
�
r2þOðr4Þ; ð5:6Þ

where χc is the central value of the χ field. In the limit of

λ a2c
σ2c
− ð1 − e

2χc
Λ Þμ2 ≈ 0, χ stays almost constant near the

origin and the solution reduces to that in the EFT (3.11).
In the limit of r → ∞, assuming the asymptotic flatness

of the spacetime m → m∞ ¼ const > 0 and σ → σ∞ ¼
const > 0, then the Proca field behaves as

a0ðrÞ ≈ a0∞
e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r
;

a1ðrÞ ≈
a0∞ω

σ∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r
; ð5:7Þ

where a0∞ is a constant and the proper frequency for a
distant observer ω is defined by (3.12). As r → ∞, the
equation of motion for χ asymptotically becomes linear in χ
besides the source term given by a nonlinear combination
of Aμ and Āμ, and the solution for χ could be approximately
written as

χðrÞ ≈ χþ
eμχ∞r

r
þ χ−

−eμχ∞r

r
þ χAðrÞ; ð5:8Þ

where χ� are integration constants for the homogeneous
solutions,

μ2χ∞ ≔ μ2χð0Þ ¼ −
2μ4

λΛ2
ð5:9Þ

is the mass of χ in the asymptotic region, and χAðrÞ
represents the solution of (4.2) which also corresponds to
the inhomogeneous part of the solution in the asymptotic
region. The asymptotic flatness requires that the growing
solution vanishes, χþ ¼ 0.5 The characteristic size of the
Proca star is given by the Compton radius of the Proca field

4More precisely, the solutions in the partially UV complete
theory (4.1) should be called scalar-Proca stars due to the
existence of the scalar field χ. Nevertheless, because of the
continuation of the argument from the previous sections, we
simply call them Proca stars.

5Recall that we have assumed λ < 0 ðμ2χ∞ > 0Þ namely a
nontachyonic field χ. In the tachyonic case λ > 0 ðμ2χ∞ < 0Þ,
the field χ shows an oscillating behavior.
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μ−1, while χ may vary with the short length scale
μ−1χ∞ ≪ μ−1 for χ− ≠ 0. However, the EFT description is
valid only when the length scale of the system is much
larger than the length scale of the heavy field. Therefore, to
reproduce the Proca star within the partially UV complete
theory, we have to impose χ− ¼ 0, so that χ does not vary
with the length scale μ−1χ∞. Thus, from Eq. (5.8) the
asymptotic solution for χ is given by the inhomogeneous
solution χðrÞ ≈ χAðrÞ which is indeed what we have found
in (4.19). Since Aμ and Āμ vary with the length scale μ−1,
χAðrÞ which also varies with μ−1 is only the solution valid
within the EFT.
For the numerical calculations, we introduce

χ̃ ≔ μr
χ

Λ
; Λ̃ ≔

Λ
MPl

: ð5:10Þ

for the χ field and use the same dimensionless combina-
tions (3.13) and (3.14). Then, the parameters of the
equations of motion are λ̃ and Λ̃. The boundary condition
in terms of χ̃ is given by

	
χ̃ → 0 as r̃ → 0

χ̃ → 0 as r̃ → ∞:
ð5:11Þ

As we have discussed, the heavy field χ should be given
by (4.19) at the leading-order approximation in the regime
of the validity of the EFT. We shall numerically solve
(5.1)–(5.5) and use the relation (4.19) to check whether
solutions in the UV theory agree with the EFT solutions.
The ADM mass M and the Noether charge Q are shown

in Fig. 4 as functions of ω for Λ̃ ¼ 10−2 and Λ̃ ¼ 10−1 with
λ̃ ¼ −10. In the case of Λ̃ ¼ 10−2, the result is in good
agreement with Fig. 1 up to the critical point indicated by
the black dot. Since the equations of motion in the UV
theory is regular at grreff ∝ Hr

r ¼ 0, we can continue to find
the Proca stars beyond the critical point. Figure 5 represents
profiles of the effective metric for some solutions with
Λ̃ ¼ 1=10. As shown in the right panel of Figs. 5 and 6, the
profile of Hθ

θ ¼ e2χAðXÞ=Λ ¼ 1þ λ
μ2
AμĀμ almost coincides

with that of e2χ=Λ. In particular, in the deepest color curve
(the largest amplitude of the vector field), the relation (4.19)
still holds with an accuracy of one percent though the radial
component of the effective metric Hr

r changes the sign,
consistently with our discussions in Sec. IV: although the
point Hr

r ¼ 0 is a singularity of the Proca theory, the EFT
description is still available. However, as the amplitude
increases, the field configurations become sharper and it
is numerically difficult to find a solution. Hence, we also
consider a less hierarchical case Λ̃ ¼ 1=10 of which metric
profiles are shown in Fig. 7. In this case, we find solutions
in which not only Hr

r but also Ht
t and Hθ

θ have zeros.

FIG. 4. M − ω and Q − ω relations with Λ̃ ¼ 10−2 and
Λ̃ ¼ 10−1.

FIG. 6. The profiles of Hθ
θ=e2χ=Λ − 1 with Λ̃ ¼ 10−2.

FIG. 5. Ht
t (red), Hr

r (blue), Hθ
θ (green), and e2χ=Λ (black dashed) in the partial UV completion of the complex Proca field with

Λ̃ ¼ 10−2. The thicker curves correspond to the larger central amplitudes of the temporal component of the Proca field.
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Since μ2χ is proportional to ðHθ
θÞ2 in the present model, the

validity of the EFT description is lost asHθ
θ decreases. The

right panel of Fig. 7 indeed shows that the relation (4.19) no
longer holds before bothHt

t andHθ
θ cross zero. Since g

μν
eff

is the effective metric of the propagation in the regime of
the EFT but not the field-space metric of the UV theory,
the wrong sign of gμνeff does not lead to any pathological
instability. The positivity of e2χ=Λ guarantees the correct
sign of the kinetic term of the UV theory.
Note that the critical pointHr

r ¼ 0 appears at the second
branch of theM − ω relation withM > μQ. The solution is
expected to be dynamically unstable which is consistent
with the intuition that the EFT has a gradient instability
in the region Hr

r < 0. However, we emphasize that the
hyperbolicity of the equations of motion is guaranteed
by the positive-definite field-space metric in the partially
UV complete theory and there is no pathological instability
at UV. The gradient instability is pathological if the
instability continues to exist at high momentum modes.
On the other hand, by definition, the validity of the EFT is
limited in low-momentum modes and the instability in the
EFT may not be extrapolated to high-momentum modes.
The positive-definite field-space metric in the UV theory
implies that the instability exists only in low-momentum
modes which is a standard dynamical instability of the
high-density boson stars.

VI. SUMMARY

It has been argued that a self-interacting Proca field is
pathological due to a singularity formation in the effective
metric along which a longitudinal polarization of the Proca
field propagates. In the numerical construction of Proca star
solutions, such a pathology appears at a critical point where
the derivative of the radial Proca profile blows up, as one
cannot numerically integrate the field equations beyond it.
The critical point appeared for a critical amplitude of the
Proca field at the center, beyond which Proca star solutions
cease to exist. We confirmed that at a critical point the
radial component of the effective metric for the self-
interacting Proca field vanishes, and the existence of it
may be interpreted as the onset of a gradient instability at
the background level. The problem is closely related to a

ghost instability recently claimed in [37–39], where the
time evolution of a self-interacting (real) Proca field
crushes at a finite time, and the temporal component of
the effective metric for the Proca field vanishes. The
similarity between these two issues indicate that they
may be solved simultaneously within a single framework
for the extension of the self-interacting Proca theory. We
note that a singularity of the effective metric is not a
coordinate singularity but a physical one, as the conditions
(2.14) and (2.15) are expressed by coordinate-independent
scalar quantities.
We then considered the possibility that the self-interacting

Proca theory is a not fundamental theory, but a low-energy
effective description of a more fundamental theory. We
proposed a simple (partial) ultraviolet (UV) completion
model of the self-interacting Proca theory (4.1) by intro-
ducing the new scalar field χ which is heavy enough in the
regime where the self-interacting Proca theory arises as
the lowest order part of an effective field theory (EFT).
From the EFT viewpoint, the onset of a gradient or ghost
instability may not be a fundamental pathology, but simply
indicates a breakdown of the self-interacting Proca field
as an EFT. Using this model for the partial UV completion
of the self-interacting Proca theory, we demonstrated that
Proca star solutions continue to exist even beyond the
critical point at which the EFT suffers a gradient instability.
Around a critical point of the EFT, Hr

r ¼ 0, the EFT
relation (4.19) is slightly violated. However, a small
deviation is enough to regularize the singularity in the
EFT, making Proca star solutions exist beyond it.
By further increasing the amplitude of the Proca field, we

found solutions with zeros of Ht
t and Hθ

θ. In these points,
the EFT relation (4.19) is violated of the order of unity,
meaning that the EFT description is completely broken.
One should return to the UV theory if the EFT tends to
approach the singularities of Ht

t ¼ 0 and Hθ
θ ¼ 0.

Although we focused on the quartic-order self-
interaction (3.1), the analysis can be naturally extended
to a more general self-interaction including higher-order
terms of X. Note that we focused on the case of λ < 0, as if
λ > 0 the UV theory (4.1) becomes pathological and in the
context of the EFT a ghost instability appears at a lower
amplitude than that for a gradient instability. Moreover, we

FIG. 7. The same figures as Fig. 5 with Λ̃ ¼ 10−1.
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emphasize that the issue on Proca stars provides one of the
simplest cases to demonstrate the partial UV completion to
cure the pathology of the self-interacting Proca field, in the
sense that the system is given by a set of the ordinary
differential equations. On the other hand, the problems of
perturbations of the self-interacting Proca field on a non-
trivial background or the fully nonlinear time evolution of it,
including the cases considered in [37–39], are formulated by
a set of the partial differential equations depending on both
the space and time. Thus, the next task should be to confirm
the well-posedness of initial value problems. Nevertheless,
since the UV theory (4.1) was proposed in a general way,
we expect that this is generally applied to any type of the
breakdown of the self-interacting Proca theory as an EFT.
In particular, a dynamical formulation of the singular

effective metric would lead to a spontaneous excitation
of heavy degree(s) of freedom. Starting from an initial
condition where the EFT is valid and the heavy mode is
not excited, the system may evolve into a large amplitude
of the vector field as a consequence of a superradiant
instability or a gravitational collapse. As performed by
[37–39], a singular effective metric dynamically forms in
the EFT. However, we have discussed that the formation of
the singular effective metric is a sign of the violation of the
EFTand the UV physics has to be taken into account before
forming it. We may expect that the heavy mode is excited
during this dynamical process. If this is indeed the case,
these phenomena may be used to extract an observational
signature of the underlying theory of the massive vec-
tor field.
Finally, we would like to mention the ghost problem in

the context of so-called spontaneous vectorization [52–55],
which describes a spontaneous growth of Proca hair in a
nontrivial strong gravity background and is analogous to
the well-known spontaneous scalarization [56,57].
Recently, it has been shown that the instability appearing
in the models for spontaneous vectorization is not a
tachyonic instability but a ghost instability [58,59] (see

also [60]). By extending the method considered here,
one may regard the original models for spontaneous
vectorization with nonminimal matter-Proca coupling S ¼
Sg½gμν;Aμ� þ Sm½Ω2ðYÞgμν;Ψm� as an EFT, where Aμ is a
real vector field, Y ≔ AμAμ, ΩðYÞ is a regular function of
Y, and Sg and Sm are gravitational and matter actions,
respectively. By introducing a scalar field χ whose dynam-
ics becomes important in the UV regime, one may consider
a UV completion for the models of spontaneous vectoriza-
tion as S ¼ Sg½gμν;Aμ; χ� þ Sm½Ω2ðχÞgμν;Ψm�. Since the
profile of χ depends on the environment due to the coupling
to the matter field, the χ-dependent mass of the vector field
can be environment-dependent (this scenario has been
investigated in [61]). However, this UV completion does
not resolve the problem because the tachyonic instability of
the vector field is still a ghost instability even in the UV
theory, which we observe through a relation analogous to
(4.12). As long as considering the Higgs mechanism to
provide a mass of the vector field, the mass term is related
to the kinetic term which has to be positive definite. We
have argued that the EFT should break down before the
ghost appears and all predictions of the EFTafter appearing
of the ghost cannot be trusted. The ghost instability may not
be used for the spontaneous growth of the vector field.
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