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We examine in greater detail the proposal that time is the conjugate of the constants of nature.
Fundamentally distinct times are associated with different constants, a situation often found in “relational
time” settings. We show how in regions dominated by a single constant the Hamiltonian constraint can be
reframed as a Schrödinger equation in the corresponding time, solved in the connection representation
by outgoing-only monochromatic plane waves moving in a “space” that generalizes the Chern-Simons
functional (valid for the equation of state w ¼ −1) for other w. We pay special attention to the issues of
unitarity and the measure employed for the inner product. Normalizable superpositions can be built,
including solitons, “light-rays” and coherent/squeezed states saturating a Heisenberg uncertainty relation
between constants and their times. A healthy classical limit is obtained for factorizable coherent states, both
in monofluid and multifluid situations. For the latter, we show how to deal with transition regions, where one
is passing on the baton from one time to another, and investigate the fate of the subdominant clock. For this
purpose minisuperspace is best seen as a dispersive medium, with packets moving with a group speed
distinct from the phase speed. We show that the motion of the packets’ peaks reproduces the classical limit
even during the transition periods, and for subdominant clocks once the transition is over. Deviations from
the coherent/semiclassical limit are expected in these cases, however. The fact that we have recently
transitioned from a decelerating to an accelerating Universe renders this proposal potentially testable, as
explored elsewhere.
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I. INTRODUCTION

The problem of time in general relativity [1–4] and the
mystery of the origin and value of the constants of nature [5]
are two well-known conundrums embedded in the founda-
tions of physics. In [6] we suggested that they could be
inextricably intertwined. A priori this should certainly be
the case. Physical time concerns relational change. In
contrast, the constants of nature, if true to their name, are
the hallmarks of immutability. We could therefore expect
that time and the constants are conjugate dynamical
variables, or at least complementary in a quantum sense.
Should we, therefore, promote the constants to observables,
with their complementaries providing physical definitions
of time?
Naturally, a great many questions pour in. Foremost,

given the plethora of constants (some more fundamental
than others [7]), we have to settle on whether we should
contend with different physical times, or if, instead, a select
constant is the progenitor of a single time. In [6] we
suggested following the first route. A clock is built with
what is at hand. Depending on the constant(s) dominating

the dynamics, different phase space regions should employ
different times. Thus, we are led to times variously con-
jugate to the cosmological constant, Λ, the gravitational
constant, GN , or even the speed of light, c. Within such a
pragmatic approach we need to know how to pass the baton
from one clock to another. This adjustment of clocks should
be seen as a physical feature of our world.
Our proposal may sound radically new, but in fact it is

rooted in well-known literature. In the context of Λ it
follows directly from findings in unimodular gravity [8]
(in particular in the formulation of Henneaux and
Teitleboim [9]), where the conjugate of Λ is identified
with a time variable (unimodular time [9–11], a 4D version
of Misner’s volume time [12]). The proposal in [6]
amounts to extending these ideas and applying them to
constants other than Λ. A further point of contact is
the concept of Chern-Simons time [13], related to York
time [14], to be reinterpreted here.
The plan of this paper is as follows. In Sec. II we start by

reviewing the origins of our proposal: the fully diffeo-
morphism invariant formulation of unimodular gravity
[8,9], i.e. the formulation [9] which, contrary to its name,
does not restrict the theory to unimodular diffeomor-
phisms. Our construction can be seen as a generalization*j.magueijo@imperial.ac.uk
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of the prescription found in [9], targeting constants other
than Λ. A reduction to minisuperspace is then presented in
Sec. III, recovering the formalism in [6]. We quantize the
problem and present general solutions for a single per-
fect fluid.
In Sec. IV we make further connections with previous

literature by illustrating this procedure in the case of pure
Λ. We show that in the connection representation the
monochromatic plane waves move in a time (proportional
to the time defined in [9]) conjugate to 1=Λ (seen as a
“frequency”), and in a space which is the Chern-Simons
(CS) functional (so that the spatial part of the wave is the
real CS state [15]). But crucially, we can now superpose
the monochromatic plane waves into normalizable sol-
utions, as we show in Sec. V, where we identify solitons,
light rays, and coherent/squeezed states. In Sec. VI we
present a straightforward generalization to universes
dominated by radiation and fluids with generic equations
of state. In each of these the constant of choice is different,
so that the chosen time is different. Having a quantum time
variable and the ability to find peaked wave packets is
instrumental in finding the correct classical limit. We
explain how this is achieved by coherent states in Sec. VII,
once classical cosmology is rephrased in the connection
representation and with constant times.
The rest of the paper is spent formalizing how to change

the clock in multifluid situations, as already sketched in [6]
and reviewed in Sec. VIII. In Sec. IX we show how
minisuperspace can be seen as a dispersive medium, with
wave numbers that can be position and frequency depen-
dent. By examining the associated group speed we can then
find the equations of motion of the peak of suitable wave
functions. Using this technique (and assuming that the
wave function remains peaked) we prove in Sec. X that the
correct semiclassical limit is still obtained in crossover
regions. We also illuminate the fate of the minority clock
once the handover of clocks is completed. In Sec. XI
we formalize the reasons why a clock should indeed be
built with “what is at hand,” exposing the limitations of
minority clocks.
In a concluding section we summarize our findings and

discuss their ultimate implications.

II. DECONSTANTIZATION

The construction in this paper can be seen as a
generalization of the fully diffeomorphism invariant
formulation of unimodular gravity [8,9] (i.e. the formu-
lation which does not restrict to unimodular diffeomor-
phisms). The unimodular theory of gravity is renown for
converting the cosmological constant from a fixed param-
eter in the Lagrangian into an integration constant, owing
its constancy to an equation of motion, i.e. demoting it to
an on-shell constant only. To this process we will call
“deconstantization.”

In the formulation of [9], which we now review, one adds
to a “base theory”1 with action S0 a new term:

S0 → S ¼ S0 −
Z

d4xΛ∂μT
μ
U ¼ S0 þ

Z
d4xð∂μΛÞTμ

U ð1Þ

(the two equivalent up to a boundary term). Λ is a scalar
and Tμ

U is a vector density, so that the added term is indeed
diffeomorphism invariant (note that for a density ∇μT

μ
U ¼

∂μT
μ
U, and that the integrand has the correct weight for the

integral to be a scalar). Upon a 3þ 1 split, T0
U becomes the

canonical conjugate of Λ, and it was pointed out in [9–11]
that T0

U can be used to craft a definition of time. The
density Tμ

U does not appear in S0; therefore,

δS
δTμ

U
¼ 0 ⇒ ∂μΛ ¼ −

δS0
δTμ

U
¼ 0; ð2Þ

i.e. the promised on-shell constancy of Λ. The other
equation of motion is

δS
δΛ

¼ 0 ⇒ ∂μT
μ
U ¼ δS0

δΛ
¼ −

ffiffiffiffiffiffi−gp
8πGN

: ð3Þ

As suggested in [9], the gauge invariance Tμ → Tμ þ ϵμ

(with ∂μϵ
μ ¼ 0) implies that we should only consider as

physical the zero mode of T0, and none of its other
components (this point is irrelevant in a minisuperspace
reduction). Given (3) we find that on shell this is nothing
but unimodular time [9–11] (a 4D version of Misner’s
volume time [12]). The second equation of motion, Eq. (3),
should then be seen as the “time formula” of the theory.
The same prescription could be applied to any other

supposed constant of nature appearing in S0 (leading to the
proposal in [6], as we will show). For a vector of D
constants α we should take

S0 → S ¼ S0 −
Z

d4xα · ∂μT
μ
α; ð4Þ

where the dot denotes the Euclidean inner product in D
dimensional space. As with Λ above, we obtain two extra
equations of motion:

δS
δTμ

α
¼ 0 ⇒ ∂μα ¼ 0; ð5Þ

δS
δα

¼ 0 ⇒ ∂μT
μ
α ¼ δS0

δα
: ð6Þ

1Which here will be just the standard action of general
relativity plus a cosmological constant or whatever matter
content; but this could be applied to any other “base theory.”
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These are the on-shell constancy of α and generalized time
formulas (several examples of which will be studied in
Sec. VII A). We may either take one constant at a time (with
alternative options), or consider a multiconstant setting with
concurrent multiple definitions of time. This is not unusual
in relational time formulations (see for example [16] for
the implications this has for the singularity problem). We
explain later how such concurrent times become a function
of each other classically (Sec. VII A) and semiclassically
(Sec. X), despite being intrinsically different, off-shell, and
quantum mechanically.
Obviously a function of a constant is also a constant, so

there is a classical ambiguity in this construction. It leads to
theories related by a canonical transformation:

α → βðαÞ: ð7Þ
As with any such canonical transformation, the conjugates
transform according to

T0
β ¼

δα
δβ

T0
α: ð8Þ

More generally, on-shell, we have that

∂μT
μ
β ¼

δS0
δβ

¼ δα
δβ

δS0
δα

¼ δα
δβ

∂μT
μ
α ð9Þ

so that, using ∂μα ¼ ∂μβ ¼ 0, we have

Tμ
β ¼

δα
δβ

Tμ
α: ð10Þ

All theories generated by an arbitrary choice of βðαÞ are
classically (or “on-shell”) equivalent between themselves
(and to GR). Yet their quantum mechanics is very different.
For example, a state can only be coherent and factorizable
for one of the choices of βðαÞ. The inner product we will
propose is also not invariant under such transformations.
This will be essential in deriving the simplest quantum
theory later.
We note that several works found in the previous

literature can be expressed within this framework. The
solution to the cosmological constant problem going by the
name of “sequester” [17,42], in its local formulation [18],
is an example of one of these theories. The “fluxes” defined
in [18] are nothing but the age of the Universe according to
two possible times, associated with deconstantized param-
eters. Indeed the stabilized observed cosmological constant
in the sequester becomes the ratio of two such ages. In this
construction one takes the basis of constants:

α ¼
�

1

16πGN
; ρ0 ¼

Λ
8πGN

�
ð11Þ

(where GN is Newton’s gravitational constant, we recall),
i.e. the Planck mass squared and the bare vacuum energy ρ0,
respectively. This leads to times’ formulas:

∂μT
μ
α ¼ ffiffiffiffiffiffi

−g
p ð−R; 1Þ; ð12Þ

(where R is the Ricci scalar) that is, unimodular time, and
a version thereof weighted by the Ricci scalar, let us call
it Ricci time. This leads to two ages of the Universe
(considering a past and future boundary defined in [42]),
ΔTα1 the Ricci time age, and ΔTα2 the volume time age.
The space-time average of the Ricci scalar can be written
as a ratio between these two ages:

hRi ¼ −
ΔT1

ΔT2

: ð13Þ

After some manipulations [18] it is then proved that
the observed stabilized cosmological constant is given
precisely by

Λobs ¼
1

4
hRi ¼ −

ΔT1

4ΔT2

: ð14Þ

In a future publication we will investigate the connection
between the results in this paper and the sequester. Other
similar prescriptions targeting the gravitational coupling
and the Planck constant were considered in [19,20].

III. REDUCTION TO MINISUPERSPACE

It is straightforward to prove that these theories reduce
to [6] in minisuperspace. We take for base action the
Einstein-Cartan action reduced to homogeneity and
isotropy (e.g. [21,22])

S0 ¼ 6κVc

Z
dt

�
_ba2 −Na

�
−ðb2 þ kÞ þ

X
i

mi

a1þ3wi

��
;

ð15Þ

where the last term describes a set of generic perfect fluids
with equation of state wi (to be initially examined one at a
time). Here κ ¼ 1=ð16πGNÞ, k ¼ 0;�1 is the normalized
spatial curvature, a is the expansion factor (the only metric
variable), and the connection variable b is the off-shell
version of the Hubble parameter (since b ¼ _a on-shell, if
there is no torsion). The Lagrange multiplier N is the lapse
function and Vc ¼

R
d3x is the comoving volume of the

region under study (which could be the whole manifold,
should this be compact).
The summation term can accommodate a large number of

models, but their details will not be relevant here. For the
cosmological constant we have mi ¼ Λ=3 and wi ¼ −1.
For dust and radiation we have wi ¼ 0; 1=3, and we can set
mi ¼ Ci8πGN0=3, where Ci are conserved quantities, such
as those defined in [16], and the gravitational coupling is
kept fixedGN ¼ GN0. But we can also setmi ¼ Ci8πGN=3,
and deconstantize the gravitational coupling, GN , instead.
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None of these details (leading to alternative theories) will be
relevant to the solutions to be found here.
Hence, the Poisson bracket associated with the base

action is

fb; a2g ¼ 1

6κVc
; ð16Þ

leading to commutator:

½b̂; â2� ¼ i
l2P
3Vc

¼ ih; ð17Þ

where lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
is the reduced Planck length, imply-

ing an effective “Planck’s constant”2:

h ¼ l2P
3Vc

: ð18Þ

In the b representation (17) can be implemented by

â2 ¼ −i
l2P
3Vc

∂

∂b
¼ ih

∂

∂b
: ð19Þ

We now focus on the case of a single fluid with equation of
state w (or an epoch where a fluid dominates all the others).
From S0, a Hamiltonian H0 can be derived,

H0 ¼ 6κVcNa

�
−ðb2 þ kÞ þ m

a1þ3w

�
; ð20Þ

which leads to the standard Wheeler-DeWitt (WDW)
equation,

H0ψ sðb;mÞ ¼ 0 ð21Þ

with suitable ordering [namely that implied by (20)]. A
possibleway to solve (21) is to solve insteadH0ψ sðb;mÞ¼0
with

H0 ¼ hαðbÞa2 − α ¼ 0; ð22Þ

where:

hαðbÞ ¼ ðb2 þ kÞ 2
1þ3w; ð23Þ

α ¼ m
2

1þ3w; ð24Þ

that is, to solve

�
−ihhαðbÞ

∂

∂b
− α

�
ψ sðb;αÞ ¼ 0: ð25Þ

This is a standard way to get a solution in the connection
representation in the case of Λ (as we review in the next
section), and generalizes trivially for radiation, and for other
fluids (Sec. VI) (in multifluid cases some subtleties may
arise; see Sec. X and [24]). It leads to the (real) Chern-
Simons state and its adaptations. Setting

XαðbÞ ¼
Z

db
hαðbÞ

ð26Þ

the WDW Eq. (25) becomes a plane-wave equation in Xα,

�
−i

l2P
3Vc

∂

∂Xα
− α

�
ψ s ¼ 0; ð27Þ

with solution

ψsðb; αÞ ¼ N exp
�
i
3Vc

l2P
αXαðbÞ

�
: ð28Þ

Notice that we use the subscript α to index Xα not because it
is a function of α, but because the function XðbÞ depends on
the α targeted.
Having established the base theory (no extension has

been applied yet), we now subject the theory to prescription
(1), targeting α (suitably normalized by 6κ for conven-
ience). Hence, in minisuperspace,

S0 → S ¼ S0 þ 6κVc

Z
dt _αTα: ð29Þ

This addition does not change the Hamiltonian constraint,
but it does introduces a new pair of canonical variables,

fα; Tαg ¼ 1

6κVc
; ð30Þ

so that

½α; Tα� ¼ ih: ð31Þ

It has the virtue of converting theWDWequation (25) into a
Schrödinger equation

�
−ihhαðbÞ

∂

∂b
− ih

∂

∂Tα

�
ψðb; TαÞ ¼ 0; ð32Þ

with the wave function now depending on time Tα. Its
monochromatic solutions are

ψðb; TαÞ ¼ ψ sðb; αÞ exp
�
−
i
h
αTα

�
ð33Þ

2Throughout the paper we will use the shorthand h or not
depending on convenience, and comparison with previous
literature. Its interpretation as the actual Planck constant [23]
will not be relevant here.
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with the “spatial” ψ s satisfying the original (25). The full
monochromatic solutions are therefore plane waves in
Xα moving at fixed speed (set to 1 by the 6κ normalization
of α),

ψðb; TαÞ ¼ N exp

�
i
3Vc

l2P
αðXαðbÞ − TαÞ

�
; ð34Þ

with the choice

N ¼ 1ffiffiffiffiffiffiffiffi
2πh

p ð35Þ

to be justified later. Notice that XαðbÞ is like a linearizing
variable in doubly special relativity: the speed of propa-
gation is variable if measured in terms of the more
physically available b, rather than Xα. The most general
solution is a superposition of monochromatic solutions:

ψðb; TαÞ ¼
Z

dαffiffiffiffiffiffiffiffi
2πh

p AðαÞ exp
�
i
h
αðXαðbÞ − TαÞ

�
: ð36Þ

Note that the free Schrödinger equation (32) is in fact a
wave equation accepting only retarded waves:

�
∂

∂Xα
þ ∂

∂Tα

�
ψ ¼ 0: ð37Þ

Its associated conserved current is

j0 ¼ j1 ¼ jψ j2 ð38Þ

i.e. all the waves are outgoing (or retarded time) solutions.
The general solution takes the form

ψðbÞ ¼ FðTα − XαÞ; ð39Þ

where F can be any function. At once a definition of
probability is suggested, but we defer the matter to
Sec. V D.

IV. PURE LAMBDA AND A REINTERPRETATION
OF CHERN-SIMONS TIME

We first illustrate these principles with the cosmological
constant Λ, showing that the implications are a twist on
both unimodular gravity [8,9] (specifically the time variable
defined in [9]), and the concept of Chern-Simons time [13].
Indeed our proposal leads to a hybrid between these works,
with a significant reinterpretation of Chern-Simons “time.”
We start by reviewing some standard results. For a pure

Λ we have in minisuperspace (ignoring torsion [21,25])

H ¼ 6κVcNa

�
−ðb2 þ kÞ þ Λ

3
a2
�
: ð40Þ

A direct solution to the quantum Hamiltonian constraint in
the b representation

�
−ðb2 þ kÞ − i

Λl2P
9Vc

∂

∂b

�
ψ ¼ 0 ð41Þ

is given by the (real) Chern-Simons state [15,26,27]
reduced to minisuperspace [21,22,25]:

ψCS ¼ N exp

�
i
9Vc

Λl2P

�
b3

3
þ bk

��
. ð42Þ

As is well known, this is a pure phase, which is the product
of a “frequency” proportional to 1=Λ, and the “Chern-
Simons time” as proposed by Smolin and Soo [13].
Something similar can be obtained from our construc-

tion. We can put the Hamiltonian constraint associated
with (40) in the form

H0 ¼
1

b2 þ k
a2 −

3

Λ
¼ 0: ð43Þ

By doing this the Hamiltonian constraint acquires the
form (22) with

hαðbÞ ¼
1

b2 þ k
; ð44Þ

α ¼ ϕ ¼ 3

Λ
: ð45Þ

A Schrödinger equation (32) follows, with a time variable
Tϕ identified with pϕ, normalized such that

½ϕ; Tϕ� ¼ i
l2P
3Vc

≡ ih ð46Þ

[cf. (29) and (31)]. Its monochromatic solutions are

ψ ¼ ψsðb;ϕÞ exp
�
−i

3Vc

l2P
ϕTϕ

�
ð47Þ

with the “spatial” factor of the wave function satisfying

�
−i

l2P
3Vc

hαðbÞ
∂

∂b
−
3

Λ

�
ψ s ¼ 0: ð48Þ

This is the point of bringing the Hamiltonian to form (22)
and choosing the ordering we chose. As in (34), the ψ s are
plane waves:

ψ sðb;ϕÞ ¼ N exp

�
i
3Vc

l2P
ϕXϕðbÞ

�
ð49Þ

in “spatial” variable:
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XϕðbÞ ¼
Z

db
hαðbÞ

¼ b3

3
þ kb: ð50Þ

This is nothing but the Chern-Simons functional (in
minisuperspace) and (49) is the Chern-Simons state (42).
However, our interpretation of Chern-Simons time is

different from that of Smolin and Soo. The full mono-
chromatic solution is

ψðb; TϕÞ ¼ N exp

�
i
3Vc

l2P
ϕðTϕ − XϕðbÞÞ

�
ð51Þ

with Tϕ ≡ pϕ. Hence the (unitary) time evolution happens
in terms of a timewhich is not the Chern-Simons functional,
but the momentum conjugate to 1=Λ (up to a conventional
proportionality constant). Here Xi ¼ ℑðYCSÞ is not a time,
but a spatial variable. Time, instead, is the conjugate of
α ¼ 3=Λ. The waves, however, move at constant speed (set
to one by the conventional proportionality factors) in terms
of Xϕ and Tϕ. This is true of the phase speed and also of the
group speed if we construct wave packets, as we shall do in
the next section. Hence the spatial Xϕ and the time Tϕ can
be loosely confused if ψ is peaked. Its peak moves along the
outgoing “light-ray” Tϕ ¼ Xϕ, and hence confusing the two
may be harmless for some purposes.

V. MORE GENERAL STATES

By demoting Λ to a circumstantial constant we gain
more than a time variable in the quantum theory: we enlarge
the space of solutions. Instead of being restricted to (51)
we can now admit the most general superposition of these
monochromatic plane waves:

ψðbÞ ¼
Z

dϕffiffiffiffiffiffiffiffi
2πh

p AðϕÞ exp
�
i
h
ϕðXϕðbÞ − TϕÞ

�
; ð52Þ

with the probability for the cosmological constant given
from

PðϕÞ ¼ jAðϕÞj2 ð53Þ

with measure dϕ (fast-forward to the end of this section for
more details; also see [28] for alternatives).
Everything we state in this section about general states

for Λ, parametrized by ϕ, works for any other α, with
suitable modifications (i.e. ϕ → α in all relevant quantities).

A. Extreme cases

Two limiting cases are of interest. At one extreme we
may have a completely undetermined ϕ:

AðϕÞ ¼ ϵ ð54Þ

leading to

ψ ¼
ffiffiffiffiffiffiffiffi
2πh

p
ϵδðTϕ − XϕÞ: ð55Þ

This is the conformal constraint present in the parity-even
branch of the quasitopological theories of [21,25,28], where
Λ is allowed to vary by virtue of multiplying a Gauss-Bonnet
topological term. In such theories 1=Λ has a conjugate
momentum which is forced to equal the Chern-Simons
functional by a primary constraint. Here we see that this
constraint is interpreted as a “light ray” in minisuperspace: of
the many waves generally acceptable only a delta function
ray is possible in this theory. Time Tϕ is fully fixed by the
positionXϕ along this ray. Whereas in standard relativity any
state (52) is a solution, in these quasitopological theories
one is forced to have an infinitely sharp clock, with total
delocalization in “constant” ϕ.
At the opposite extreme we may completely fix ϕ:

AðϕÞ ¼ δðϕ − ϕ0Þ ð56Þ

leading to

ψ ¼ N exp

�
−i

3Vcϕ0

l2P
ðTϕ − XϕðbÞÞ

�
: ð57Þ

This is the Chern-Simons state in the usual Einstein-Cartan
theory, where Lambda is fully fixed. It implies a uniform
distribution in Xϕ. The crests of this infinite plane wave
still move at the speed of light, but its “location” does not,
because it is not localized. Hence time effectively dis-
appears, since the wave function is fully smeared in X and
T. This is an example of a more general fact: infinitely
sharp constants are failed clocks. They imply complete
delocalization in time. This clarifies and reinterprets the
discussion on a timelike tower of turtles in [29]. Obviously
these states are not strictly speaking normalizable.

B. Coherent squeezed states

In between these two extremes we can build coherent/
squeezed states centred at ϕ0:

AðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðϕ0; σϕÞ

q
¼

exp
h
− ðϕ−ϕ0Þ2

4σ2ϕ

i
ð2πσ2ϕÞ1=4

ð58Þ

(where N denotes a normal distribution). Evaluating the
integral we get

ψðb; TÞ ¼ N 0 exp
�−σ2ϕðXϕ − TϕÞ2 þ iϕ0ðXϕ − TϕÞ

h2

�

¼ N 0ψðb; Tϕ;ϕ0Þ exp
�
−
σ2ϕðXϕ − TϕÞ2

h2

�
: ð59Þ

The last expression relates the infinite norm Chern-Simons
state for ϕ0 to the finite norm wave packet built around a
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fixed Λ. We see that it is dressed by a Gaussian, which
regularizes it. This is just a Gaussian distribution in X − T,
with variance:

σ2T ¼ σ2X ¼ h2

4σ2ϕ
: ð60Þ

A Heisenberg uncertainty principle can therefore be estab-
lished, with: σX ¼ σT and

σTσϕ ≥
l2P
6Vc

: ð61Þ

For a coherent squeezed state this inequality is saturated.
Note that here (as in [30]) there is an ambiguity in

defining zero squeezing. Requiring σ2T ¼ σ2ϕ ¼ l2P=ð6VcÞ
would be dimensionally wrong. This is nothing but the
ambiguity in defining coherent nonsqueezed states for free
particles [31].3 It is well known that, unlike for a harmonic
oscillator or EM radiation, coherent states for a free particle
lack a natural scale with which to define dimensionless
quadratures [31,32] and the squeezing parameter. One may
ignore this and simply look at squeezed-coherent states as a
general class of solutions, or else introduce a scale in the
problem (as was done in [30]).

C. Solitons

Note also that we do not need to use monochromatic
waves to build states. As already explained, any function of
the form

ψ ¼ FðXϕ − TϕÞ ð62Þ

would work, as we saw in the discussion leading to (39).
Namely F can be just a Gaussian, without the plane wave
factor, as for (59):

ψðb; TÞ ¼ N 00 exp
�ðXϕ − TϕÞ2

4σ2

�
. ð63Þ

Such “solitons” could be interesting. We stress that unlike
coherent states, such solitons are not well localized in ϕ: for
that we need the internal beats of a plane wave, for which
this F would be the envelope.

D. Normalizability and measure

All of these solutions are normalizable with the “naive”
inner product. No longer do we need to blame the trivial
inner product for the nonnormalizability of the monochro-
matic solutions. Of course monochromatic solutions are

strictly speaking non-normalizable by themselves; their
superpositions, on the other hand, are normalizable in the
standard sense.
Specifically, mimicking the procedure in [33] for the

simpler current (38), we can infer the inner product

hψ1jψ2i ¼
Z

dXϕψ
⋆
1ðb; TϕÞψ2ðb; TϕÞ ð64Þ

with unitarity

∂

∂Tϕ
hψ1jψ2i ¼ 0 ð65Þ

enforced by current conservation

∂

∂Tϕ
hψ1jψ2i¼

Z
dXϕ

∂

∂Xϕ
ðψ⋆

1ðb;TϕÞψ2ðb;TϕÞÞ¼0: ð66Þ

(This vanishes only with suitable boundary conditions,
with subtleties like the ones highlighted in [16], e.g.
singularities, etc.) We can also swap Xϕ and Tϕ in this
definition,

hψ1jψ2i ¼
Z

dTϕψ
⋆
1ðb; TϕÞψ2ðb; TϕÞ ð67Þ

with the two definitions equivalent and amounting to

hψ1jψ2i ¼
Z

dϕA⋆
1ðϕÞA2ðϕÞ; ð68Þ

in view of (52). The normalizability condition jhψ jψij ¼ 1
therefore supports (53) identifying the probability of ϕ.
We stress that this argument is valid for each dominating

fluid i, adopting its associated α, Xα, and Tα. The argument
for unitarity is far more complicated in the transition
regions for multifluids, or for the minority clock, i.e. clocks
corresponding to subdominant components, as we shall see
later in this paper.

VI. RADIATION AND GENERAL
PERFECT FLUIDS

Our approach can be used to find the equivalent of the
Chern-Simons state for universes filled with a single fluid
with an equations of state more general than w ¼ −1.

A. The example of radiation

A radiation dominated universe (w ¼ 1=3) is a particu-
larly simple case. Then the Hamiltonian is

H ¼ 6κVc
N
a
ð−ðb2 þ kÞa2 þmÞ ð69Þ

already in the form (22), up to a redefinition of the lapse
function

3Our deconstantized constants can be seen as the momentum
of a free abstract particle, moving with uniform speed in an
abstract “space” which is our time variable.
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Ñ ¼ 6κ
N
a
Vc ð70Þ

even off shell. Time, therefore, is the conjugate momentum
to m and this can be identified with conformal time (more
on this later). The monochromatic solutions to the time-
dependent Schrödinger equations are

ψ ¼ ψ sðb;mÞ exp
�
−
i
h
mpm

�
ð71Þ

with

�
ihðb2 þ kÞ ∂

∂b
þm

�
ψ s ¼ 0 ð72Þ

so that we have plane waves in terms of

XrðbÞ ¼
R

db
b2þk ¼ 1ffiffi

k
p arctan

h
bffiffi
k

p
i

if k > 0

¼ − 1
b if k ¼ 0

¼ − 1ffiffiffiffi
jkj

p argtanh
h

bffiffiffiffi
jkj

p
i

if k < 0

to be seen as the equivalent of the Chern-Simons functional
for a radiation dominated universe. The plane wave
solutions at a generic time therefore are

ψðb; Tr;mÞ ¼ N exp

�
i
h
mðXr − TrÞ

�
ð73Þ

(with Tr ¼ pm). These solutions will form the basis for the
solution of the singularity problem proposed in [34].

B. One exception: Milne or curvature domination

The general solution (23) breaks down for w ¼ −1=3,
an equation of state degenerate with spatial curvature k
(or kc2, to put it suggestively). Backtracking to (20) we
see that the problem is that we lose the spatial differential
operator contained in a2. The spatial solution then
becomes ψ s ¼ δðb2 −mÞ, where m can include, or indeed
be just −kc2. The monochromatic solution is

ψðb; Tm;mÞ ¼ N δðb2 −mÞe− i
hmTm ð74Þ

with Tm ¼ pm as usual. Hence in this case there is no time
evolution, since for any superposition we have

ψðb; TmÞ ¼
Z

dmAðmÞδðb2 −mÞe− i
hmTm

¼ Aðb2Þe− i
hb

2Tm ð75Þ

so that jψ j2 ¼ jAðb2Þj2. The reason why this happens will
be made clear in the next section.

VII. THE CLASSICAL LIMIT

Given that “time evolution” is the most obvious feature of
classical cosmology, it is obvious that any quantum cos-
mology scheme lacking a “time” will have trouble con-
necting with the classical world. Reciprocally, the discovery
of a quantum time should be used in the first instance to
make sure that the classical limit is sound, before exploring
possible quantum departures/corrections.
In this section we first present the format in which the

classical results are best presented so that they can be
recovered by appropriately (semi)classical wave functions,
within our scheme. We then prove that coherent states
reproduce the classical limit.

A. The classical “time formula”

We first find a classical expression for our physical times
Tα as a function of the nonphysical coordinate time t
associated with lapse N. From the second Hamilton
equation [using (20), (30), and (24)] we can derive the
time formula:

_Tα ¼ _pα ¼ fpα; Hg ¼ −
1þ 3w

2
Na−3wm

3w−1
1þ3w

¼ −
1þ 3w

2
Na−3wα

3w−1
2 : ð76Þ

Note that we have used the original Hamiltonian, and not
H0, to work out the relation between Tα and time. We can
now set N ¼ 1 to derive the relation between Tα and
cosmological proper time t:

dTα

dt
¼ −

1þ 3w
2

a−3wm
3w−1
1þ3w ð77Þ

or else set

N ¼ Nα ¼ −
2

1þ 3w
a3wm

1−3w
1þ3w ð78Þ

to ensure we are using a time coordinate coincident with the
physical time T.
Within this scheme (but note [35]), we highlight the

following facts:
(i) Radiation is unique in that its time does not depend

on m, so when this goes to zero its time is still well
defined.

(ii) Specifically, radiation time is minus conformal time,
Tr ¼ −η, since

_Tr ¼ −N=a: ð79Þ

This is in agreement with [16].
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(iii) Dust time is proportional to minus proper cosmo-
logical time, with

Tm ¼ −
t
2m

: ð80Þ

(iv) Our Lambda time is proportional to unimodular
time [8]

_Tϕ ¼ N
a3

ϕ2
¼ N

Λ2

9
a3: ð81Þ

A canonical transformation relates the two: this is
responsible for linearizing the dispersion relations.
Unimodular time is related to Misner’s volume
time [12]; indeed it can be seen as a 4D version,
where time is measured by the 4-volume to the past
of an observer.

(v) The only degenerate case in (76) is w ¼ −1=3, but
this case is exceptional, as already discussed in
Sec. VI B. In this case we should not transform from
m to α, so that _Tm ¼ −Na.

The sign in the time-formula (76) is important and we
note that it changes from w > −1=3 to w < −1=3. This is a
key feature of our formalism and we will comment further
on this below.

B. The classical trajectory: A connection space picture

All classical descriptions are equivalent, so we may
select whichever makes better contact with our quantum
theory. In our case we pick a description which is unusual
in the following ways:

(i) Instead of the expansion factor a, we take for
dependent variable the minisuperspace connection
variable b. Recall that when torsion is zero, on shell,
this is the comoving inverse Hubble length _a ¼ b.
Quantum mechanically b is an independent and
complementary variable to the metric (or rather, the
densitized inverse triad a2).

(ii) Instead of using some coordinate time t as an
independent variable, we use the physical time(s)
Tα. These are classically (on shell) a function of t, as
just calculated in (76). Fundamentally, and quantum
mechanically, there can be many T, but in the
classical limit they all become functions of t (so
that there is only one time classically, but there are
several quantum mechanical times).

Hence, the classical description we are aiming for takes the
form b ¼ bðTÞ, possibly in the parametric form,

b ¼ bðtÞ; ð82Þ

Tα ¼ TðtÞ; ð83Þ

rather than the textbook a ¼ aðtÞ.

Then, we can show that the classical trajectory for a
single fluid system is given by

_Xα ¼ _Tα: ð84Þ

Indeed the full content of the classical equations can be
obtained from the first Friedman equation (equivalent to the
Hamiltonian constraint H ¼ 0),

b2 þ k ¼ m
a1þ3w ð85Þ

which should be assumed throughout, as well as the two
dynamical Hamilton equations:

_a ¼ fa;Hg ¼ Nb; ð86Þ

_b ¼fb;Hg ¼ −
1þ 3w

2
Na

m

a3ð1þwÞ ð87Þ

[where we have used (85) in the second equation].
Together, these two dynamical equations imply the
Raychaudhuri (second Friedman) equation (for N ¼ 1):

ä ¼ −
1þ 3w

2
a

m

a3ð1þwÞ : ð88Þ

It is easy to see that (84) implies

_b
hαðbÞ

¼ −
1þ 3w

2
a−3wm

3w−1
1þ3w ð89Þ

which upon some manipulations reproduces the dynamical
equation (87) [assuming the constraint (85) throughout].
Using this unconventional description [i.e. (84)] may

take some getting used to, even though it is classically
equivalent to the a ¼ aðtÞ description. Points of note
include the following:

(i) Expanding and contracting universes correspond to
b > 0 and b < 0, with b ¼ 0 representing a static
universe (and its vicinity the loitering model).

(ii) Hence, the ekpyrotic [36], or any such similar
“bouncing” models, will see b go through zero.
Tunneling between branches with different signs
may also be possible.

(iii) For a given matter content, b can either only increase
or only decrease in parameter time t; the first if
w < −1=3, the second if w > −1=3. For w ¼ −1=3
(or for the Milne universe, for example) b does not
change (this starts shedding light on the anomaly
found in Sec. VI B).

(iv) Hence, the equivalent of a “bounce” in b space is a
universe undergoing a transition from decelerated to
accelerated expansion, such as we have seemingly
undergone recently. At the end of inflation the
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reverse happens, the equivalent of a “turnaround” in
b space.

The fact that in this picture we have recently emerged
from a b bounce must have quantum mechanical implica-
tions; quantum reflection always leaves its traces. The
matter will be studied in more detail in [24].

C. Parenthesis on the “arrow of time”

In view of what we said, the issue of the arrow of “time”
merits a parenthesis. In the metric representation flipping
the time arrow interconverts expanding (increasing a) and
contracting (decreasing a) universes. There are always two
branches of solutions, as required by time-reversal symmetry.
In the b ¼ bðTÞ description, face value, there is only one

solution, for which b must increase with Tα,

db
dTα

> 0; ð90Þ

as implied by (84). This is reflected in the quantum
mechanical solutions [cf. (39)]; there can only be outgoing
waves. Thus, there is a sense in which there is only one
arrow of time in the connection representation and using
the times Tα. A Feynman absorber is not needed to set the
physical arrow of time.
This fact is actually an expression of the horizon (and

ultimately also the flatness) problem, as well as its standard
solution, as we now show. Let us first assume expanding
universes (b > 0). Then, the horizon problem is that for
w > −1=3 the comoving Hubble length 1=b increases in
time, whereas its solution follows from that it decreases if
w < −1=3. In our description this is expressed by (90) and
the fact that, using t as the auxiliary arbitrary time arrow,
the sign in the time-formula (76) changes from w > −1=3
to w < −1=3. Converting this into bðTαÞ we then get
that (90) is a statement of the horizon problem for
w > −1=3 and its solution for w < −1=3.
The actual arrow of t does not matter, because it cancels

in its double effect on b ¼ _a and on _b [note the invariance
of the Raychaudhuri equation (88) under time reversal].
Solutions to the horizon problem based on a contracting
phase (e.g. the ekpyrotic scenario [36]) can be understood
in our description from (90) being independent of the sign
of b; however, the statement of the problem and its solution
involves jbj, not b. So the criteria for the problem and
solution are reversed for models in a contracting phase
(b < 0), and this is still expressed by (90).

D. Coherent states and the classical limit

Having a quantum time variable and a larger space of
solutions (as described in Sec. V) are the two reasons why
contact with the classical limit is possible. Monochromatic
waves, such as those solving the fixed constant theory,
imply a uniform distribution [in XðbÞ], hardly a prediction,
but they are also not immediately physical. One needs both

a time variable and the ability to superpose plane waves
into normalized peaked distributions to recover something
minimally physical.
In fact having a peak is not enough. For example, since

_Xα ¼ _Tα represents the classical trajectory (as just dis-
cussed), one might think that the light ray, ψ ∝ δðXα − TαÞ,
described in Sec. VAwould be perfectly classical. But such
a state would have a totally undefined α, and so the Tα ¼
TαðtÞ part of the argument could not be true [note that α
generally appears in the right-hand side of (76)].
The semiclassical limit is only recovered for the coherent

states ψðb; TαÞ described in Sec. V B. For these, the second
Hamilton equation (76) is true not only on average (an
expression of Ehrenfest’s theorem), but with minimal and
balanced uncertainties in the complementary α and Tα

appearing on the two sides of (76). Both sides of the
argument implying that _Xα ¼ _Tα represents the classical
trajectory can now be reproduced, and so we have a truly
semiclassical state.
We can also understand the result in Sec. VI B. We do

not have propagating waves in this case. However, the
classical equation of motion is _b ¼ 0, i.e. the universe is
static in b, as already explained. Any coherent state in m
therefore reproduces this result (as well as the time formula
in terms of m).

VIII. MULTITIME

Naturally, we end up with the usual problem in quantum
gravity: either there is no time, or, if we succeed in defining
one, we are left with a multitude of choices. How do we
deal with multiple times and multiple fluids, even in
situations where there are epochs where one fluid domi-
nates? The proposal in [6] was to accept this multitude of
times, with the adjustment of clocks across different “time
zones” to be seen as a physical feature of our world. For the
rest of this paper we will examine further how the handover
between clocks can be made seamless for some states.
Let α be a vector with dimension D representing the

whole set of relevant constants and T their conjugates. The
D components of T are a priori independent variables, so
we have a plethora of times instead of a single one.4 Hence
the “Schrödinger” equation is a partial differential equation
in multiple times obtained from taking the Hamiltonian
following from (15) and applying the replacement:

H

�
b; a2;α → i

l2P
3Vc

∂

∂T

�
ψ ¼ 0 ð91Þ

(in whatever representation, a2, or b as chosen here). Its
general solutions are

4We used “a priori” here because “a posteriori”, i.e. on-shell
or semiclassically, all the T become a function of each other, as
we will see later, so that this is not to be confused with classical
theories with extra time dimensions.
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ψðb;TÞ ¼
Z

dαAðαÞ exp
�
−i

3Vc

l2P
αT

�
ψ sðb;αÞ; ð92Þ

where ψ sðb;αÞ solves the WDW equation with constant α.
We fix

jψ sj2 ¼ jN Dj2 ¼
1

ð2πhÞD ð93Þ

to streamline the algebra.
As outlined in [6], if the Hamiltonian divides phase space

into regions dominated by a single constant (or a single
fluid), the readjustment of quantum clocks across such
regions is seamless if we assume coherent states in all αi
and factorization:

AðαÞ ¼
Y
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðα0i; σiÞ

p
: ð94Þ

Then, as explained in [6], the ψ sðb;αÞ is a piecewise plane
wave in the XiðbÞ associated with each dominant αi.
Inserting into (92), each of these pieces gets grouped into
a factor with the phase associated with the corresponding Ti
(hence, the approximate single-time Schrödinger equation),
producing a wave packet describing the correct classical
limit (as described before).
In the next sections we will make this argument more

explicit, while addressing details such as what happens in
the transition regions between single fluid domination, or
what happens to the minority component clocks in each
phase where one fluid dominates. In order to address
these questions in detail, and properly deal with multi-
fluid situations, we need to first introduce a new tool for
generating solutions in minisuperspace.

IX. MINISUPERSPACE AS A
DISPERSIVE MEDIUM

The arguments in Sec. III for linearizing variables α, Xα,
and Tα are straightforward to apply only when one fluid
dominates the universe. The real world, however, is more
complicated. For example, at the crossover between two
epochs dominated by different fluids, we will find an X
variable which is a function not only of b but also of α [as
can be seen from the prescription leading to (26), and will be
found explicitly in the next section]. In such cases it is more
fruitful to revert to the original variable b [instead of any
function XðbÞ] and regard minisuperspace as a dispersive
medium. From this point of view the variables α, Xα, and
Tα, when they exist, are the “linearizing variables” of the
dispersive medium, to use the terminology of [37]. They
can and should be used where they exist, but more generally
we should face the dispersive nature of minisuperspace
head on.
In the general case we can still define times T for the

various α, impose the monochromatic ansatz (92), and find

the spatial solutions ψ s, which in general will not be plane
waves in any XðbÞ variable independent of α. The mono-
chromatic solutions can still be superposed into peaked
wave packets, as in (92). However it is important to realize
that, as with any other dispersive medium, the envelope of
such packets moves with a group speed that should not be
confused with the phase speed.
Specifically, writing

ψ sðb;αÞ ¼ N D exp

�
i
3Vc

l2P
Pðb;αÞ

�
ð95Þ

we identify dispersion relations:

α · T − Pðb;αÞ ¼ 0: ð96Þ

Assuming that the amplitude AðαÞ is factorizable and
sufficiently peaked around α0, we can expand

Pðb;αÞ ¼ Pðb;α0Þ þ
X
i

∂P
∂αi

����
α0

ðαi − αi0Þ þ � � � ð97Þ

to find that the wave function factorizes as

ψ ≈N De
i3Vc
l2
P
ðPðb;α0Þ−α0·TÞY

i

ψ iðb; TiÞ: ð98Þ

The first factor is the monochromatic (generally nonplane)
wave centered on α0. The other factors describe envelopes
of the form

ψ iðb; TiÞ ¼
Z

dαiAðαiÞe
−i3Vc

l2
P
ðαi−αi0ÞðTi− ∂P

∂αi
Þ ð99Þ

which therefore move according to

Ti ¼
∂PðbÞ
∂αi

����
α0

: ð100Þ

We can also dot this equation, to find the group speed on
fb; Tig space:

cg ¼
db
dT

����
peak

¼
_b
_T

����
peak

¼ 1
∂
2P

∂α∂b

: ð101Þ

The motion of these envelopes (and so of the peak of the
distribution) should agree with the classical equations of
motion. We will show in the rest of this paper that indeed it
does so, for coherent states, in a number of nontrivial
situations (such as for mixtures of fluids during transition
periods when none of them dominates, or for the sub-
dominant clock).
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This obviously generalizes the construction for single
fluids, for which a variable XðbÞ can be found such that
P ¼ αXðbÞ for some α. Then, with a a suitable choice of
α (and canonical Tα) we can always make the first term in
the dispersion relations αTα (for example, in the case of
Lambda by Λ → ϕ ¼ 3=Λ, TΛ → Tϕ ¼ −TΛ=ϕ2). They
are “linearizing” variables because clin ¼ _X= _T ¼ 1.

X. DEALING WITH CROSSOVER REGIONS

As it happens we are sitting right on a bounce in b. How
do we deal with such transitions? In this section we show
that the correct semiclassical limit is still obtained assuming
the wave function remains sharply peaked. What actually
happens to the wave function is left to future work [24]. We
also investigate the fate of the minority clock (i.e. the
radiation and Lambda clocks in the Lambda and radiation
epochs) once the handover of clocks is completed. We will
use as a working model a mixture of radiation and Lambda,
because the algebra is clearer, but generalizations to the
more relevant case of dust and Lambda behave in the
same way.

A. Monochromatic solutions

Our working model has classical Hamiltonian,

H ¼ Na

�
−ðb2 þ kÞ þ a2

ϕ
þ m
a2

�
; ð102Þ

spanning a two-dimensional constant space with

α ¼
�
ϕ≡ 3

Λ
; m

�
: ð103Þ

Its multitime “Schrödinger” equation (91) has solutions of
the form (92). One way to find the spatial ψ s is to put
H ¼ 0 in the form (22) with α ¼ ϕ, aware that hαðb; αÞ
may then be a function of α too. To this end we solve the
quadratic in a2 equivalent to H ¼ 0 to find

a2 ¼ g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 4m=ϕ

p
2=ϕ

ð104Þ

with gðbÞ ¼ b2 þ k. Since a2 must be real (although not
necessarily positive) we have

g2 ≥ g20 ¼
4m
ϕ

¼ 4

3
Λm: ð105Þ

The plus branch contains Lambda domination when
g2 ≫ g20; the minus branch contains radiation domination,
also with g2 ≫ g20. The transition happens when g2 ≈ g20
(with g2 > g20). Thus, we have a “bounce” in b space at
g ¼ g0, i.e. a transition from decelerated expansion
(decreasing b) to accelerated expansion (increasing b).

The Hamiltonian constraint is therefore equivalent to two
constraints of the required form:

H� ¼ h�ðb;ϕ; mÞa2 − ϕ ¼ 0 ð106Þ

with the important novelty that h (and so H0) is “energy”
dependent (dependent on the conjugate of time; i.e. the
constants):

h� ¼ 2

g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 4m=ϕ

p : ð107Þ

This is of course irrelevant for the ψ s, which is given by

ψ s�ðb;ϕ; mÞ ¼ N exp

�
i
3Vc

l2P
ϕX�ðb;ϕ; mÞ

�
ð108Þ

with

X�ðb;ϕ; mÞ ¼
Z

db
1

2

�
g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 4m=ϕ

q �
: ð109Þ

We see that for g2 ≫ m=ϕ the þ=− branches have

Xþðb;ϕ; mÞ ≈ Xϕ ¼ b3

3
þ kb; ð110Þ

X−ðb;ϕ; mÞ ≈m
ϕ
Xr ð111Þ

leading to the correct limits:

ψ sþðb;ϕ; mÞ ≈N exp

�
i
3Vc

l2P
ϕXϕðbÞ

�
; ð112Þ

ψ s−ðb;ϕ; mÞ ≈N exp

�
i
3Vc

l2P
mXrðbÞ

�
: ð113Þ

This illustrates with a concrete example the comments made
just after Eq. (94): the ψ sðb;αÞ is a piece-wise plane wave
in the relevant α and Xα in each region of single fluid
domination. To leading order it might seem that if AðαÞ
factorizes, then all the other times factorize, too, and stop
describing the b evolution since they became b-independent
phases. However this is not the case, as we now show by
considering the next to leading order in the expansion.

B. What happens to the minority clock(s)?

Before addressing the handover region itself, we first
examine in more detail what happens to the “minority”
clock once the handover is finished. Expanding (109) to the
next order we find

XþðbÞ ≈ Xϕ −
m
ϕ
Xr þ � � � ; ð114Þ
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X−ðbÞ ≈
m
ϕ
Xr þ

m2

ϕ2

Z
db
g3

þ � � � : ð115Þ

1. The radiation clock in the Lambda epoch

Including the next order term in Xþ we find that deep in
the Lambda epoch the monochromatic wave function is

ψðb;T;αÞ ¼N exp

�
−i

3Vc

l2P
ðϕðTϕ −XϕÞþmðTrþXrÞÞ

�
:

Inserting into (92) we find for any factorizable amplitude

ψðb;TÞ ¼ F1ðXϕ − TϕÞF2ðXr þ TrÞ: ð116Þ

In particular we could choose factorizable Gaussian ampli-
tudes for ϕ and m leading to coherent F1 and F2 [of the
form (59)]. As we will see this is more the exception than
the rule.
We see that both factors reproduce the classical equa-

tions of motion. These amount to the first and second
Friedmann equations:

b2 þ k ¼ a2

ϕ
þ m
a2

; ð117Þ

_b ¼ a
ϕ
−
m
a3

: ð118Þ

In addition, the times formulas (replicated quantum mechan-
ically by coherent factorizable states, just as before) are

_Tϕ ¼ a3

ϕ2
; ð119Þ

_Tr ¼ −
1

a
: ð120Þ

Evaluating

_Xϕ ¼ _bðb2 þ kÞ; ð121Þ

_Xr ¼
_b

b2 þ k
ð122Þ

we can then recover the monofluid equations of motion
in the appropriate epochs with _Xα ≈ _Tα, for α ¼ ϕ; m. But
some more algebra also reveals that deep in the Lambda era
we can write the classical trajectory as

_Xr ≈ − _Tr ð123Þ

and this is equivalent to _Xϕ ≈ _Tϕ. Hence, the peak of both
factors in (116) describes the classical trajectory.
This sheds light on what happens to our quantum

“multitime” in semiclassical situations, given that classically

only one time can exist. Quantum mechanically the two Ti
are independent variables and fundamentally remain so,
even for semiclassical states. There is never a constraint
between the different Ti. What happens is that for peaked
states the peak of the joint distribution maps out a trajectory
of b in 2D space T (in this case XϕðbÞ ¼ Tϕ and
XrðbÞ ¼ −Tr). This implies a constraint between the two
times at the peak of the joint distribution, so classically only
one time exists. The quantum fluctuations or these different
times, on the other hand, would remain independent.

2. The Lambda clock in the radiation epoch

Deep in the radiation epoch we have instead

ψðb;T;αÞ

¼N exp

�
−
i
h

�
mðTr−XrÞþϕ

�
Tϕ−

m2

ϕ2

Z
db
g3

���
ð124Þ

with the novelty that the factor associated with the
subdominant component (Lambda) now depends on m
as well. As a result, the wave packets never factorize into
separate radiation and Lambda factors, even if the ampli-
tudesAðαÞ do. In addition the minority factor no longer is a
plane wave in the original XðbÞ and α ¼ ϕ. Hence, even if
the original amplitudes were a diagonal Gaussian, the wave
functions will be very distorted. The simple arguments for
unitarity for single fluids also break down for a minority
clock in this situation. This will be discussed further in the
next section.
Nonetheless, we can show that for a peaked second factor,

the motion of the peak still reproduces the correct classical
limit (the first one obviously does). Using (101) and

c−1g ¼ ∂
2

∂ϕ∂b
m2

ϕ

Z
db
g3

¼ −
m2

ϕ2g3
ð125Þ

we find that for the peak,

cg ¼
_b
_Tϕ

����
peak

ð126Þ

implies

_b ¼ −
m
a3

ð127Þ

which is nothing but approximately (118) in the radia-
tion epoch.
Notice that within the same approximations used in

Sec. IX to derive (101), the wave function effectively
factorizes as

ψðb;T;αÞ ≈ ψ1ðTr − XrÞψ2ðb; Tϕ;m0Þ: ð128Þ
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Hence to this order, the arguments at the end of Sec. X B 1
in support of a single classical time still apply.

C. Semiclassical limit in the transition region

We can also show that if the distribution remains peaked
[24], then the peak follows the classical trajectory even
during the b bounce, for both branches�. In this case the P
function defined in Sec. IX is given by

P�ðb;m;ϕÞ ¼ ϕX�ðb;m=ϕÞ

¼ ϕ

Z
db

1

2

�
g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 4m=ϕ

q �
: ð129Þ

Within the approximations of Sec. IX [see (98) in particu-
lar] the wave function must be approximately given by
the monochromatic solution times the product of two
envelopes ψ1ðb; TϕÞψ2ðb; TrÞ. The latter move with group
speeds

cg1 ¼
_b
_Tϕ

����
peak

¼ 1
∂
2P

∂ϕ∂b

; ð130Þ

cg2 ¼
_b
_Tr

����
peak

¼ 1
∂
2P

∂m∂b

: ð131Þ

It is now a matter of algebra to show that in both branches
(�) these are equivalent to the classical equation of
motion (118) [with (117) assumed throughout].
Indeed, for the Lambda wave packet factor we have

∂
2P

∂ϕ∂b
¼ 1

h
�m

ϕ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − g20

p : ð132Þ

Using

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − g20

q
¼ 2a2

ϕ
− g ¼ a2

ϕ
−
m
a2

ð133Þ

and h ¼ ϕ=a2 we have

∂
2P

∂ϕ∂b
¼ a4=ϕ2

a2
ϕ − m

a2
ð134Þ

implying that the peak moves along

_b ¼
_Tϕ

a4=ϕ2

�
a2

ϕ
−
m
a2

�
¼ a

ϕ
−
m
a3

ð135Þ

i.e. (118), as required.
Likewise, for the m wave packet factor we have

∂
2P

∂m∂b
¼∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 − g20
p

¼ −
1

a2
ϕ − m

a2
ð136Þ

leading to

_b ¼ − _Tr

�
a2

ϕ
−
m
a2

�
ð137Þ

or (118).
Hence the correct classical limit is always obtained,

assuming the wave functions remain peaked. Whether
this is a good approximation remains to be seen [24]. In
addition there are other issues regarding the semiclassical
limit, as we now explain.

XI. WHY SWAP CLOCKS?

In this section we explain better why “a clock [should be]
crafted with what is at hand” as proposed in [6]. This is not
just common sense: It affects the semiclassical limit. As we
have just seen in detail, the probability peak’s motion has
the correct classical limit (assuming Ehrenfest’s theorem)
even for the minority clock, but this hides the fact that
typically the state will not be coherent in such a setup, and
so departures from the semiclassical regime are expected.
The Lambda clock in the radiation epoch is a good

illustration of this. As we saw in Sec. X B 2 [cf. Eq. (124)],
to leading order (in the saddle approximation of Sec. IX),
the Lambda factor in the radiation epoch changes its
dependence on b from Xϕ to

X ¼
Z

db
g3

ð138Þ

and its α from ϕ to

α ¼ m0

ϕ2
: ð139Þ

In Sec. X B 2 we studied in detail the peak of the wave
function, but the semiclassical limit requires also the
arguments in Sec. VII for the correct representation of
the time formula, and so we need more than a peaked
distribution; we should have a coherent state in m0=ϕ2. But
if we chose a Gaussian amplitude in ϕ, then this will not be
Gaussian in m0=ϕ2, quite the contrary: strong distortions
are expected. This is representative of what usually happens
to minority clocks. Indeed, the radiation clock in the
Lambda epoch (see Sec. X B 1) is the exception to this
rule. It is a rare case where a coherent majority clock
remains coherent in the subdominant phase.
We can also add the issue of unitarity and inner product

to the discussion. We can define a conserved inner product
as in Sec. V D, but it only leads to a simple conserved
current and reexpression in terms of a measure in b in the
dominant epoch. As we saw, in monofluid situations (and
so using the dominant clock in a multifluid situation) there
is a range of options for setting up the inner product and
conserved current. These are all ultimately equivalent: we
can either use Eq. (64), leading to a general expression,
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dμðbÞ ¼ dXα ¼
db

ðb2 þ kÞ 2
1þ3w

; ð140Þ

or we can trade Xα for Tα leading to (67), or we can use
(141) (with ϕ replaced by the applicable α). However, only

hψ1jψ2i ¼
Z

dαA⋆ðα1ÞAðα2Þ ð141Þ

generalizes to multifluid situations. Bearing in mind that
the general solution now is

ψðb; TÞ ¼
Z

dαAðαÞ exp
�
−i

3Vc

l2P
αT

�
ψ sðb; αÞ; ð142Þ

where ψ sðb; αÞ solves the WDW equation with constant α,
it is obvious that (141) reduces to (64) and (67) for single
fluids. For multifluids we recover (67) if and only if
ψ sðb; αÞ is a pure phase (so in cases where there is no b
bounce), but not (64). For multitimes this is still more
complicated. But whatever the case, the definition (141)
remains a general time-independent definition for the inner
product. However, it is only when the dominant clock and
its X are used that it leads to a simple inner product in terms
of b (see [24] for further discussion).

XII. CONCLUSIONS

In summary, in this paper we proposed an amplification
of the standard theory allowing the constants of nature to be
nonconstant off shell. Classically, the “constants” remain
constant in the equations of motion, and so nothing changes,
but quantum mechanically it all changes. Each constant
generates a space of quantum states composed of super-
positions of waves indexed by the value of the constant
(these can be seen as monochromatic partial waves). The
waves propagate in a fundamentally dispersive medium
where the “space” is the connection, the “time” is the
momentum conjugate to the constant, and the “energy” and
“momentum” are functions of the constant. In some regions
(or “epochs”) we can find simple linearizing variables
(Xα, α and Tα), in terms of which the partial waves are plane
waves moving at fixed speed, conventionally set to 1. In such
regions, for a given constant, our constructionprovides a good
clock and rod, leading to a simple inner product and definition
of unitarity, with coherent states providing the perfect
definition of a semiclassical state. However, this construction
is never global, and hence the need to change clocks at
different “time zones” in our Universe.
Specifically, we showed that the dominant fluid always

generates a good clock, but the “minority clock” is
generally problematic in that the linearizing variables are
not always available, and so the dispersive nature of the
medium has to be faced. Even if approximate linearizing
variables can be found, they will generally be different
functions of the constant than in the dominant phase. If the

wave function was coherent in the original variable, it will
not be in the second. If the wave function is peaked, the
peak follows the classical equations of motion; however
the quantum nature of the system can never be erased.
Unitarity can be defined in a universal way, but it becomes
cumbersome when written in terms of the minority clock.
Changing clocks is therefore advisable.
The interesting point remains that in transition regions we

may expect anomalies, and so interesting phenomenology.
To make matters more poignant, we happen to be loosely
sitting on the fence separating matter and Lambda domi-
nation. Our clocks, therefore, have been likely nonideal at
one point somewhere a few billion years ago. The fact that
the transition from deceleration to acceleration is a quantum
bounce, with its inevitable ringing, only compounds the
issue (see [24] for a preliminary investigation). This was
followed up in [38] in a more realistic setting and in
connection with the Hubble tension anomaly, providing the
perfect arena for testing this idea observationally.
Obviously many questions remain. Our predictions in

[24,38] will be in the form of semiclassical corrections, but
suppose the universe enters one of the nonsemiclassical
states also considered in this paper. How would we see a
universe going quantum? We are used to quantum systems
as microscopical subsystems living inside larger classical
macroscopical systems; but this is just the opposite. What if
our local classical world were encased in a universe which
on the very largest scales is behaving quantum mechan-
ically? Howwould we see it? We are currently investigating
this matter within the context of the decoherent histories
approach [39,40].
Even ignoring this question, other interesting problems

remain. Clock swapping is essential for keeping the
classical description, but why would the universe choose
to swap clocks? A selection principle seems to be at play,
and this may shed light on other fine-tuning problems, such
as the cosmological constant problem (e.g. [17–20,41–43]).
Also, what implications are there for the constants of nature
if they are not allowed to be infinitely sharp in a classical
world? In our framework, an infinitely sharp constant
implies total delocalization in the conjugate time. In this
sense, a perfect constant is a failed clock.5 Would this
have implications, either for our local physics, or for our
description of the large-scale universe (the two being
essentially complementary)? Finally, one may ask what
happens if more than one dominant clock is at play?
Preliminary work suggests that they would get in each
other’s way regarding classicality [35], but how problematic
is this? Is this, instead, another observational window of
opportunity?

5One may also appeal to Borges’s quote, “[Eternity can be
defined] as the simultaneous and lucid possession of all the
instants of time”. With this definition, an exact constant of Nature
is equivalent to eternity in one of the many possible times (viz. the
one dual to the infinitely sharp constant).
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