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In this paper, we show that there are circumstances in which the damping of gravitational waves (GWs)
propagating through a viscous fluid can be highly significant; in particular, this applies to core collapse
supernovae (CCSNe). In previous work, we used linearized perturbations on a fixed background within the
Bondi-Sachs formalism to determine the effect of a dust shell on GW propagation. Here, we start with the
(previously found) velocity field of the matter and use it to determine the shear tensor of the fluid flow.
Then, for a viscous fluid, the energy dissipated is calculated, leading to an equation for GW damping. It is
found that the damping effect agrees with previous results when the wavelength λ is much smaller than the
inner radius of the matter shell ri; but, if λ ≫ ri, then the damping effect is greatly increased. Next, the
paper discusses an astrophysical application, CCSNe. There are several different physical processes that
generate GWs, and many models have been presented in the literature. The damping effect, thus, needs to
be evaluated with each of the parameters λ and ri and the coefficient of shear viscosity η having a range of
values. It is found that in most cases there will be significant damping and in some cases that it is almost
complete. We also consider the effect of viscous damping on primordial gravitational waves generated
during inflation in the early Universe. Two cases are investigated where the wavelength is either much
shorter than the shell radii or much longer; we find that there are conditions that will produce significant
damping, to the extent that the waves would not be detectable.
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I. INTRODUCTION

We have shown, previously, that a dust shell surrounding
a gravitational wave (GW) event modifies a GW wave in
both magnitude and phase [1] and extended the analysis to
show that a burst of GWs can, in principle, lead to echoes
[2], although, in practice, an astrophysical scenario that
would produce a discernible echo is unlikely. We further
showed that the results are astrophysically relevant: The
GW signal from events including core collapse supernovae
(CCSNe) and binary neutron star (BNS) mergers can be
changed so that the modification is measurable [2]. A key
point about these effects is that the magnitude is propor-
tional to λ=ri, where λ is the GW wavelength and ri is the
inner radius of the matter shell.
GWs traveling through a perfect fluid do not experience

any absorption or dissipation [3] as noted in Ref. [4].
However, Hawking [5] showed that, in the case of nonzero
shear viscosity η, GWs traveling through such a fluid would
interact with the matter, losing energy to the medium, and
energy dissipation would occur, with a damping rate
proportional to 16πη; see also Refs. [6–8].
In this paper, we calculate the effect of a viscous matter

shell on GW propagation. The procedure is straightforward,
but the intermediate algebraic expressions involve many

terms, and so the calculation is handled using computer
algebra. The starting point is a solution to the Einstein
equations linearized about Minkowski in Bondi-Sachs form.
The velocity field of dust in this spacetime is found, and
from there it is a straightforward calculation to find the fluid
shear tensor σab and thence the rate of energy dissipation
due to viscosity. The result obtained reduces to previous
results when ri ≫ λ; see Eq. (19). However, when λ ≫ ri
the damping effect can be large—see Eq. (21); to our
knowledge, this case has not been considered previously.
We next apply Eq. (21) to the astrophysical case of

CCSNe. CCSNe have long been regarded as a potential
GW source for detection by LIGO/Virgo, but to date no
such events have been observed. The modeling of CCSNe
involves many aspects of matter physics; we review this
literature and so determine a value range for each parameter
used in our model. The wavelength range is 300–3000 km,
corresponding to 100–1000 Hz, and the source region
radius range is 10–30 km so that Eq. (21) can be applied.
There are reported values of the shear viscosity that lead to
almost complete damping of the GW signal, whereas if the
viscosity is somewhat lower, then only the lower frequen-
cies in the GW signal would be damped out.
As a further case study, we consider primordial gravita-

tional waves (PGWs) generated during the epoch of cosmic
inflation. Here, we set up an early Universe scenario where a
discrete source generates PGWs, which are subsequently
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affected by viscous matter under the extreme conditions of
the early Universe. Two cases are considered where the
wavelength is either much shorter than the shell radii or,
alternatively, much longer. In both cases, there are con-
ditions that will produce significant damping, to the extent
that the waves will not be detectable.
In Sec. II, we discuss perturbations about Minkowski

spacetime in the Bondi-Sachs formalism and find the
velocity field and then the shear tensor of the fluid flow.
We then consider energy loss due to shear viscosity in
Sec. III. The consequences to astrophysics are considered,
in general, in Sec. IV. We consider the effects of a viscous
fluid shell on the propagation of GWs in CCSNe in Sec. V,
and in Sec. VI we investigate the effects on PGWs. We
summarize our results and conclusions in Sec. VII.
We use geometric units in this paper, with the gravita-

tional constant G and the speed of light c set to unity.
However, results from the astrophysical literature are
reported in SI units and then used with the appropriate
conversion factors.

II. USING BONDI-SACHS FORMALISM

We use the formalism developed previously [1,2] on
GWs propagating through matter shells. The metric is in
Bondi-Sachs form

ds2 ¼ −ðe2βð1þ rWcÞ − r2hABUAUBÞdu2 − 2e2βdudr

− 2r2hABUBdudxA þ r2hABdxAdxB; ð1Þ

where hABhBC ¼ δAC and the condition that r is a surface
area coordinate implies detðhABÞ ¼ detðqABÞ, where qAB is

a unit sphere metric (e.g., dθ2 þ sin2 θdϕ2). We represent
qAB by a complex dyad [e.g., qA ¼ ð1; i= sin θÞ] and
introduce the complex differential angular operators ð
and ð̄ [9], with the operators defined with respect to the
unit sphere as detailed in Refs. [10,11]. Then hAB is
represented by the complex quantity J ¼ qAqBhAB=2 (with
J ¼ 0 characterizing spherical symmetry), and we also
introduce the complex quantity U ¼ UAqA. We make the
ansatz of a small perturbation about Minkowski spacetime
with the metric quantities β, U, W, and J taking the form

β¼Reðβ½2;2�ðrÞeiνuÞ0Z2;2; U¼ReðU½2;2�ðrÞeiνuÞ1Z2;2;

Wc ¼ReðW½2;2�
c ðrÞeiνuÞ0Z2;2; J¼ReðJ½2;2�ðrÞeiνuÞ2Z2;2:

ð2Þ

The perturbations oscillate in time with frequency ν=ð2πÞ.
The quantities sZl;m are spin-weighted spherical harmonic
basis functions related to the usual sYl;m as specified in
Refs. [10,12]. They have the property that 0Zl;m are real,
enabling the description of the metric quantities β and W
(which are real) without mode mixing; however, for s ≠ 0,
sZ2;2 is, in general, complex. A general solution may be
constructed by summing over the ðl; mÞ modes, but that is
not needed here, since we are considering a source that is
continuously emitting GWs at constant frequency domi-
nated by the l ¼ 2 (quadrupolar) components.
As shown in previous work [1,12], solving the vacuum

Einstein equations under the condition of no incoming
radiation leads to

β½2;2� ¼ b0;

W½2;2�
c ¼ 4iνb0 − 2ν4C40 − 2ν2C30 þ

4iνC30 − 2b0 þ 4iν3C40

r
þ 12ν2C40

r2
−
12iνC40

r3
−
6C40

r4
;

U½2;2� ¼
ffiffiffi
6

p ð−2iνb0 þ ν4C40 þ ν2C30Þ
3

þ 2
ffiffiffi
6

p
b0

r
þ 2

ffiffiffi
6

p
C30

r2
−
4iν

ffiffiffi
6

p
C40

r4
−
3

ffiffiffi
6

p
C40

r4
;

J½2;2� ¼ 2
ffiffiffi
6

p ð2b0 þ iν3C40 þ iνC30Þ
3

þ 2
ffiffiffi
6

p
C30

r
þ 2

ffiffiffi
6

p
C40

r3
; ð3Þ

with constants of integration b0, C30, and C40. The gravi-
tational news N is defined in a coordinate system that
satisfies the Bondi gauge conditions limr→∞J;U;β;W=r¼0

and is calculated on making the required coordinate trans-
formation. The procedure in the general case was described
in Ref. [13]. This was then simplified for the linearized
approximation in Ref. [12] (Sec. 3.3), with an explicit
expression for the news given in Ref. [14] [Eq. (16)].
Denoting the news for the solution Eq. (3) by N 0 and
allowing for the conventions used here, we find N 0 ¼
−

ffiffiffi
6

p
ν3ReðiC40 expðiνuÞÞ2Z2;2. The rescaled gravitational

wave strain and news are related [see Eq. (276) in Ref. [10]]
H0 ¼ rðhþ þ ih×Þ ¼ 2

R
N 0du, giving

H0¼ReðH0 expðiνuÞÞ2Z2;2 with H0 ¼−2
ffiffiffi
6

p
ν2C40: ð4Þ

Thus, C40 is determined by the physical problem being
modeled, and b0 and C30 represent gauge freedoms.
We now suppose that the GWs pass through a shell of

matter and determine the velocity field Va treating the
matter as dust. The ansatz for Va is similar to that for the
metric and is
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V0 ¼ −1þ ReðV ½2;2�
0 ðrÞeiνuÞ0Z2;2; V1 ¼ −1þ ReðV ½2;2�

1 ðrÞeiνuÞ0Z2;2;

qAVA ¼ ReðV ½2;2�
ang ðrÞeiνuÞ1Z2;2: ð5Þ

Then, solving the matter conservation condition ∇aðρvaVbÞ ¼ 0, which in this case is equivalent to the geodesic
condition, leads to

V ½2;2�
0 ðrÞ ¼ 1

r3
ð3C40 − 2ir3νC30 − 2ir3ν3C40 þ 6iνC40r − 2iνb0r4 þ ν2r4C30 þ ν4r4C40 − 6C40ν

2r2Þ;

V ½2;2�
1 ðrÞ ¼ i

9C40 þ 12iνC40rþ 2iνb0r4 − ν2r4C30 − ν4r4C40 − 6C40ν
2r2

r4ν
;

V ½2;2�
ang ðrÞ ¼ −

i
ffiffiffi
6

p

r3ν
ð3C40 − 2ir3νC30 − 2ir3ν3C40 þ 6iνC40r − 2iνb0r4 þ ν2r4C30 þ ν4r4C40 − 6C40ν

2r2Þ: ð6Þ

The contribution of viscosity to the stress-energy tensor
of a viscous fluid is (see Ref. [15], p. 139)

Tab ¼ −2ησab − ζθPab; ð7Þ

where η and ζ are the coefficients of shear and bulk
viscosity; θ is the fluid expansion, σab is the shear tensor,
and Pab is the projection tensor, given by

θ ¼ gab∇aVb; Pab ¼ gab þ VaVb;

σab ¼
ðPac∇dVb þ Pbc∇dVaÞgcd

2
−
Pabθ

3
: ð8Þ

The velocity field of Eq. (6) gives

θ ¼ σ00 ¼ σ01 ¼ σ0A ¼ 0;

−σ½2;2�11 ¼ σ½2;2�W ¼ 12C40

3i − 3rν − ir2ν2

r5ν
;

σ½2;2�1U ¼ 2C40

6i − 6rν − 3ir2ν2 þ r3ν3

r4ν
;

σ½2;2�J ¼ C40

−3 − 3irνþ 3r2ν2 þ 2ir3ν3 − r4ν4

r3ν
; ð9Þ

where the above quantities are defined in terms of the usual
separation of variables, i.e.,

σ11 ¼ Reðσ½2;2�11 ðrÞeiνuÞ0Z2;2;

qAσ1A ¼ Reðσ½2;2�1U ðrÞeiνuÞ1Z2;2;

qABσAB ¼ Reðσ½2;2�W ðrÞeiνuÞ0Z2;2;

qAqBσAB ¼ Reðσ½2;2�J ðrÞeiνuÞ2Z2;2: ð10Þ

It is interesting to note that the expressions in Eqs. (9)
involve only the physical constant C40 and not the gauge
freedom constants b0 and C30. Thus, σab is gauge
independent.

III. ENERGY LOSS DUE TO VISCOSITY

We use the formula that the rate of energy loss per unit
volume is −2ησabσab, where η is the coefficient of shear
viscosity [15]. This quantity is evaluated using Eqs. (9) and
then integrated over a shell of radius r and thickness δr; the
integration is straightforward because of the orthonormality
of the angular basis functions sZl;m. We find

h _Eηi¼−12ηC2
40ν

6δr

�
1þ 2

r2ν2
þ 9

r4ν4
þ 45

r6ν6
þ 315

r8ν8

�
; ð11Þ

where hfi denotes the average of fðuÞ over a wave
period, i.e.,

hfi ¼ ν

2π

Z 2π
ν

0

fdt; ð12Þ

and where we have used hcos2ðνuÞi ¼ hsin2ðνuÞi ¼ 1=2
and hcosðνuÞ sinðνuÞi ¼ 0. Now, the rate of energy being
output in GWs is

h _EGWi ¼
1

4π

I
jNj2 ¼ 3C2

40ν
6

4π
; ð13Þ

so that

h _Eηi ¼ −16πηδrh _EGWi
�
1þ 2

r2ν2
þ 9

r4ν4
þ 45

r6ν6
þ 315

r8ν8

�
:

ð14Þ

Conservation of energy implies that the energy being
absorbed by the viscous fluid must be balanced by a
reduction in the GW energy. Thus,
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h _EGWiðrþ δrÞ ¼ h _EGWiðrÞ
�
1 − 16πηδr

�
1þ 2

r2ν2
þ 9

r4ν4

þ 45

r6ν6
þ 315

r8ν8

��
: ð15Þ

As introduced earlier, H represents the magnitude of the
GWs rescaled to allow for the 1=r falloff, i.e.,
H ∝ rhjhþ; h×ji. Then, h _EGWi ∝ H2 so that

Hðrþ δrÞ ¼ HðrÞ
�
1 − 8πηδr

�
1þ 2

r2ν2
þ 9

r4ν4

þ 45

r6ν6
þ 315

r8ν8

��
: ð16Þ

This leads to the differential equation

dH
dr

¼ −8πηH
�
1þ 2

r2ν2
þ 9

r4ν4
þ 45

r6ν6
þ 315

r8ν8

�
; ð17Þ

which is easily solved to give

HðrÞ¼Cexp

�
−8πη

�
r−

2

rν2
−

3

r3ν4
−

9

r5ν6
−

45

r7ν8

��
; ð18Þ

where C is a constant. There are two useful special cases.
Let ri and ro be the inner and outer radii, respectively, of
the shell. If ri and ro are much larger than the wavelength λ
of the GWs, then

HðroÞ ¼ HðriÞ exp ð−8πηðro − riÞÞ: ð19Þ

Results equivalent to Eq. (19) have been given before, and
some of the literature is reviewed in Sec. I. If ri is much
smaller than the wavelength of the GWs with ro ¼ αri with
α > 1, then

HðroÞ ¼ HðriÞ exp
�
−
360πη

r7i ν
8
ð1 − α−7Þ

�

¼ HðriÞ exp
�
−

45ηλ8

32r7i π
7
ð1 − α−7Þ

�
: ð20Þ

As ro → ∞, Eq. (20) reduces to

HðroÞ ¼ HðriÞ exp
�
−

45ηλ8

32r7i π
7

�
; ð21Þ

but the damping effect is reduced by only a little for a shell
of finite thickness. For example, ð1 − α−7Þ is 0.99 for α ¼ 2
and is 0.5 for α ¼ 1.104. To our knowledge, viscous
damping of GWs with ri ≪ λ has not been studied
previously, and Eqs. (20) and (21) are new. In the next
sections, we investigate some astrophysical implications.

IV. ASTROPHYSICAL APPLICATIONS: GENERAL
CONSIDERATIONS

In the next section, we will discuss CCSNe, for which
viscous damping of GWs can be significant. However, we
first make some general comments. The model developed
above uses a Minkowski background, rather than
Schwarzschild or Kerr for CCSNe. Thus, the numerical
values that will be obtained should not be regarded as
precise statements but rather as estimates as to when the
effect of viscous damping of GWs may be important.
A numerical relativity simulation of the full Einstein and

matter field equations with GW extraction far from the
source will properly include all effects described above.
However, at present, numerical simulations include the
effect of bulk viscosity (e.g., Refs. [16,17]) but not of shear
viscosity; and in situations such as CCSNe the treatment of
GW extraction is approximate, normally calculated using
a modified quadrupole formula. Thus, it is not useful to
compare the results of this paper to the output of currently
available numerical simulations. However, it will be
important to make such a comparison in the future once
appropriate numerical simulations are available, probably
for a model problem rather than for full CCSNe.
Geometric units are used in this paper, but the astro-

physical literature reports estimates of the shear viscosity in
SI units (kg=m=s ¼ Pa s), or sometimes in cgs units. The
conversion requires multiplication by G=c3, where G is the
gravitational constant and c is the speed of light; numeri-
cally, G=c3 ¼ 2.477 × 10−36 s=kg.

V. CORE COLLAPSE SUPERNOVAE

CCSNe have been identified as candidates of sources of
detectable GWs. While binary black hole (BBH) and BNS
mergers are currently the only GW events picked up by
LIGO and VIRGO, supernovae are expected to produce,
under certain conditions, GWs detectable by the current
generation of interferometers or those on the horizon. For
now, detection of supernovae has been confined to detec-
tion through electromagnetic waves [18–20] and neutrinos
[21]. The GW signal from a supernova event would be
different (but not altogether so) from the characteristic
signal of a BBH merger or BNS merger.
Photons originate at the outer edge of a star and, hence,

provide only limited information on the interior regions.
The detection of GWs which are the result of the aspherical
motion of the inner regions will provide a wealth of
information on these regions and the mechanism leading
to the supernova explosion, where all four fundamental
forces of nature are involved.
Although there exist discussions on the theory, nature, and

explosion mechanisms of CCSNe (such as Refs. [22–25]),
the central engines and inner regions of CCSNe have yet
to be fully understood. This makes numerical modeling
also difficult. There do exist several studies of CCSNe
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progenitors and the subsequent evolution and detection
[26–28]. For stars of mass larger than 8 M⊙, evolution
normally proceeds through several stages of core burning
and then to core collapse once nuclear fusion halts when
there are no further burning processes to balance the
gravitational attraction. Typically, these cores are iron
cores, with the critical mass signaling the onset of core
collapse ranging from 1.3 M⊙ to 1.7 M⊙. The core breaks
into two during the collapse, with the inner core of 0.4 M⊙
to 0.6 M⊙ in sonic contact and collapsing homologously
and the outer core collapsing supersonically. The inner
core reaches supranuclear densities of ∼2 × 1014 gm=cm3

where the nuclear matter stiffens, resulting in a bounce of
the inner core. The resulting shock wave is launched into
the collapsing outer core. However, the shock loses energy
to dissociation of iron nuclei, stalling at ∼150 km within
∼10 ms after formation. Many computationally demand-
ing simulations exist [29–31] for generation of GWs
from CCSNe.
The anticipated GW signal from CCSNe is normally

described by four phases. Initially, there is the convection
signal. This is followed by a quiescent phase. The third
phase is driven by the standing-accretion-shock instability
(SASI) and is also referred to as the neutrino convection
phase. Finally, there is the explosion phase.

A. General-relativistic simulations of core
collapse supernovae

There has been a steady increase within the numerical
relativity community of simulations of the evolution of
CCSNe, and we summarize some of the results of recent
efforts giving some of the important parameter values.
Astrophysics with CCSNe GW signals in the next

generation of GW detectors is discussed in Ref. [32] using
the supernova model evidence extractor (SMEE) to capture
the main features of GW signals from CCSNe using
numerical relativity waveforms to create approximate
models. These include features in the GW signal that are
associated with g modes and the standing-accretion-shock
instability, and testing SMEE’s performance using simu-
lated data for planned future detectors, such as the Einstein
Telescope, Cosmic Explorer, and LIGO Voyager. In third-
generation detector configurations, it was found that about
50% of neutrino-driven simulations were detectable at
100 kpc and 10% at 275 kpc.
Scheidegger et al. [33] produced 25 gravitational wave-

forms from 3D magnetohydrodynamic core collapse sim-
ulations of a 15 M⊙ zero age main sequence star (ZAMS)
progenitor star. They use a variety of rotation values from
nonrotating to rapidly rotating. Rotation leads to a large
spike at core bounce in the plus polarization only. The
simulations are short duration as they were stopped up to
130 ms after the core bounce time.
Müller, Janka, and Wongwathanarat [34] carried out 3D

neutrino-driven CCSNe simulations of nonrotating stars.

The waveforms have emission due to both SASI and g
modes. The GW signals extend to 1.3 s after core bounce,
with the strongest GW emission in the first 0.7 s after the
core bounce time. The Müller, Janka, and Wongwathanarat
waveforms do have g-mode emission; however, it is
relatively slow to develop and rarely approaches 300 Hz
[34]. Simulations were performed with the general relativ-
istic neutrino hydrodynamics code Vertex-CoCoNuT [35].
Andresen et al. [29] also carried out 3D neutrino-driven

CCSN simulations of nonrotating stars. They find that the
gravitational wave emission is dominated by late-time,
long-lived convection in the protoneutron star (PNS).
This means that the GW energy produced stems mainly
from the fluid dynamics within the PNS and not from
perturbations of the PNS by fluid dynamics above it. Their
investigations were confined to rough estimates based on
the expected excess power in second- and third-generation
GW detectors in two bands at low (20…250 Hz) and high
(250…1200 Hz) frequency. Third-generation instruments
like the Einstein Telescope, however, are expected to detect
all of their models at the typical distance of a Galactic
supernova (≈10 kpc) and strong GWemitters out to 50 kpc.
The GWs were generated within a radius of 104 to
2.8 × 104 m, and if we were to consider this the boundary
of the inner radius of our matter shell, then we can
take 104 m≲ ri ≲ 2.8 × 104 m.
Kuroda, Kotake, and Takiwaki [36] produced 3D sim-

ulations of a 15 M⊙ ZAMS progenitor star using three
different equations of state and a quadrupole approxima-
tion. For the SASI-origin emission, the peak value of GW
energy spectrum appears at 129 Hz and reaches almost a
comparable amplitude to that from g-mode oscillation. It is
expected that GWs from Galactic SNe are likely observable
even if their progenitors are nonrotating. For the SASI-
origin emission, ri ≈ 104 m, while from the other two
models we have 104 m≲ ri ≲ 2 × 104 m.
Mezzacappa et al. [37] carried out one general relativistic,

multiphysics, 3D simulation of a 15 M⊙ ZAMS progenitor
star with state of the art weak interactions. They also find
that the GW energy produced stems largely from the fluid
dynamics within the PNS. However, in their model, the
dominant emission stems from the convective region itself
rather than from the convective overshoot layer above it as
in Ref. [29]. Their simulation is stopped 450 ms after core
bounce. The strong GW emission starts at ∼120 ms after
core bouncewhen the SASI develops and the emission peaks
at a higher frequency of 1000 Hz due to g-mode oscillations
of the PNS surface. Again, 104 m≲ ri ≲ 2 × 104 m.
Powell and Müller [38] generated two neutrino-driven

simulations in 3D down to the innermost 10 km to include
the PNS convection zone in spherical symmetry. The first
simulation is the explosion of an ultrastripped star in a
binary system simulated from a star with an initial helium
mass of 3.5 M⊙. The ultrastripped simulation ends at 0.7 s
after core bounce. The second is a single star with a ZAMS
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mass of 18 M⊙, which was simulated up to 0.9 s after core
bounce. Both models have peak GWemission between 800
and 1000 Hz due to g-mode oscillations of the PNS surface,
and both models have ri ≈ 104 m.
Shibagaki et al. [39] considered GW and neutrino signals

from full general relativistic 3D hydrodynamics simulations
of nonrotating and rapidly rotating stellar core collapse.
They find that the GW and neutrino signals would be
simultaneously detectable by the current generation detec-
tors up to ≈10 kpc. Their findings indicate that the joint
observation of GWs and neutrinos is indispensable for
extracting information on the PNS evolution preceding
black hole formation. In the nonrotating case, Ω0 ¼
0 rad s−1, the GWs are generated within a radius of
104 m with a frequency of 200–300 Hz. In the Ω0 ¼
1 rad s−1 case, ri ∼ 104 m, and the frequency of GWs is
between 300 and 400 Hz. The Ω0 ¼ 2 rad s−1 model
produces GWs within a frequency range of 400–800 Hz
also within a 10 km core.
A summary of the results is given in Table I.

B. The viscosity for a shell surrounding a CCSNe

The viscosity in the core collapse environment has
received only a little attention in the literature. Potential
mechanisms for viscosity have been explored in Ref. [40]
and include neutrino viscosity, turbulent viscosity caused
by the magnetorotational instability (MRI), and turbulent
viscosity by entropy and composition-gradient-driven con-
vection. The MRI was found to be the most effective,
dominating the neutrino viscosity by 2–3 orders of magni-
tude. Within the PNS, the authors [40] find that the MRI
will operate and dominate the viscosity even for the slowest
rotators considered.
Figure 5 (left) in Ref. [40] plots values of the kinematic

viscosity coefficient due the MRI against radius. In the
region of the shell, say, between 10 and 30 km, it varies in
the range 1012 − 1014 cm2 s−1. Multiplication by the den-
sity, about 1012 gm=cm3, gives the dynamic viscosity at
1023 − 1025 kg=m=s. Reference [41] found values consis-
tent with these magnitudes. Values for η in neutron star
material are discussed in Ref. [42] (e.g., see Fig. 25) and
can be as high as 1022 kg=m=s.

C. The damping effect on GWs emanating from CCSNe

Putting together the results from the previous two
subsections, we consider the scenario of a CCSNe with
GW emission in the frequency range 100–1000 Hz, the
inner radius ri of the matter surrounding the GW source
in the range 104–3 × 104 m, and fluid viscosity η with a
maximum value of 1025 kg=m=s. Since ri is much smaller
than the wavelength of the GWs, we can use Eq. (21).
Figure 1 plots the inner radius of the shell (ri) on the x axis
(in meters), the GW frequency (f) on the y axis (in hertz),
and log10ðηÞ on the z axis, with η in kg=m=s. The surface
plotted has damping factor 0.5, i.e., HðroÞ=HðriÞ ¼ 0.5.
Values of η a little above the surface would lead to (almost)
complete damping, and those a little below would lead to
(almost) no damping.
The figure shows that, except in the case that both f and

ri are toward the top of their ranges, GW viscous damping
is expected to be significant.

D. Detection of GWs from CCSNe

The frequency range of CCSNe and the sensitivity of
various detectors is illustrated in Fig. 2. The expected
frequency range of GWs from CCSNe lie between 102 and
103 Hz, corresponding to a wavelength range of between
3 × 106 and 3 × 105 m. The expected GW magnitude from
CCSNe fell outside the sensitivity of LIGO. However, the
range fell within the sensitivity of Advanced LIGO, on its
first observation run aLIGO (O1). No GWs ascribed to
CCSNe were detected on this run or on the subsequent runs
O2 and O3. As the sensitivity improves with each run,
toward full design sensitivity, it is hopeful that the increased

TABLE I. Parameter values from various references.

Reference ri [m] Frequency [Hz]

Roma [32] 96–1000
Scheidegger [33] 317–935
Müller [34] 130–1100
Andresen [29] 104–2.8 × 104 100–700
Kuroda [36] 104–2 × 104 100–671
Mezzacappa [37] 104–2 × 104 200–600
Powell [38] 104 800–1000
Shibagaki [39] 104 200–800

FIG. 1. The figure plots the inner radius of the shell (ri) on the x
axis (in meters), the GW frequency (f) on the y axis (in hertz),
and log10ðηÞ on the z axis, with η in kg=m=s. The surface plotted
has damping factor 0.5, i.e., HðroÞ=HðriÞ ¼ 0.5. Some points on
the surface are labeled with their coordinate values, indicating
which parts of the surface have η > 1025 kg=m=s.
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cachement region leads to the first detection of GWs
from CCSNe.

VI. PRIMORDIAL GWs

A. Background

In our previous work [1], we showed that the thin dust
shell approximation can be extended to a thick shell by
integrating over multiple shells and from this, we can model
the dust-only effect on GWs in cosmology. Because of the
extremely low density of the matter-dominated Universe,
the effect from astrophysical events was, however, found to
be negligible. We now consider early Universe epochs
where extreme temperatures and density conditions are
expected. PGWs are of considerable interest in these
epochs, since direct observations from electromagnetic
radiation are limited to the region after the surface of last
scattering, around 370 000 years after the big bang, and
the expected low interaction of GWs with matter then
provides information from very early times. With detection
and interpretation of these waves, theories of the early
Universe, such as inflation, can then become accessible to
direct observation. Similarly, theories of high-energy phys-
ics that go beyond Earth-bound accelerators can also be
tested, e.g., probing matter properties in extreme temper-
atures. Interpreting PGW signals from their interaction with
their environment is, therefore, highly important.
In early works, such as that of Hawking in 1966 [44], it

was already shown that shear viscosity η will affect PGWs
through damping. These results along with the work of
Eckart in the 1940s [45] were consolidated and further
developed into what can be considered the seminal work
on primordial dissipative processes by Weinberg in 1971
[46]. Since then, there has been significant progress in
understanding the details of early epochs and their
physical properties, but the work of Weinberg is still
relevant as baseline formulas for relativistic viscous

effects. Accordingly, we will set up representative early
Universe scenarios to illustrate the viscous shell effects on
PGWs in the extreme conditions expected in the epoch
after cosmic inflation ends. While recognizing that PGWs
generated during inflation are expected to be fundamen-
tally stochastic (see [47]), for our purposes here, we will
consider a discrete source of PGWs and reserve extending
our work to better model the stochastic nature of PGWs
for future research.

B. Cosmological scenario

In order to illustrate the possible effects of viscosity in
cosmology, we consider an early Universe scenario based
on quantities derived from the standard model and some
classical references. We make use of the Friedman-
Lemaítre-Robertson-Walker geometry for a homogeneous
and isotropic universe with the metric as

ds2 ¼ −dt2 þ a2ðtÞγijdxidxj; ð22Þ

with γij being the 3-space metric of maximal symmetry and
aðtÞ the scale factor.
Based on the present time as t ¼ 13.7 Gyr ð¼ 4.32 ×

1018 sÞ with T ¼ 2.725 K, we normalize the scale factor
to be a0 ¼ 1 at present. Evolving back in time, the density
of radiation and matter were approximately equal at
t ¼ 56000 yr (1.7662 × 1012 s) and T ¼ 9000 K. Prior
to that time but after inflation, the Universe can be treated
as a radiation-dominated Einstein de Sitter model with
aðtÞ ∝ t1=2. During inflation, the expansion is exponential
with aðtÞ ∝ expðHtÞ, where H is the Hubble constant—
we use this notation to avoid confusion with the rescaled
GW strain H.
At the end of inflation at t ¼ 10−32 s and T ¼

1027 − 1028 K, according to Ref. [48] (Sec. 28.1), T is
proportional to 1=aðtÞ. Thus, at the end of inflation, we take
a ¼ 10−27. The inverse of the Hubble rate does not change
during inflation and is taken as 1=Hð¼ a= _aÞ ¼ 10−35 s,
which leads to the horizon scale as c=H ¼ 3 × 10−27 m.
Current ground-based GW detectors operate, approx-

imately, in the frequency range 10 − 103 Hz; pulsar timing
arrays [49–51] and the planned satellite system LISA
[52–54] will extend the lower limit to about 10−9 Hz.
Thus, searches for PGWs will cover wavelengths in the
range 3 × 105 to 3 × 1017 m. Since wavelength scales as
aðtÞ, this corresponds to a wavelength range at the end of
inflation of 3 × 10−22 to 3 × 10−10 m.
From Weinberg 1971 [46], rewritten with c ≠ 1, we get

τ ¼
�
16πGη
c2

�
−1

ð23Þ

for graviton interaction, where τ is the particle mean free
time and furthermore

FIG. 2. The signal range for CCSNe and sensitivities for
various gravitational wave detectors past, current, and future
for a source at 300 kpc. Figure produced using the Web server
reported in Ref. [43].
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η ¼ 4

15
aT4τ=c; ð24Þ

again rewritten with c ≠ 1. Then eliminating τ from the two
equations, we get

η2 ¼ aT4c
60πG

: ð25Þ

When T ¼ 1027 K,

η ¼ 3.68 × 1058 kg=m=s: ð26Þ

This value of η is very large, and, even when multiplied
by G=c3 to convert to geometric units, we get a value
of 9.09 × 1022 m−1.
If we consider a thin shell scenario where ri and ro are

much larger than the wavelength λ, using Eq. (19) with
rν ≫ 1 and rewriting in terms of t, we have

dH
dr

¼ −8πηH →
dH
dt

¼ −8πηcH:

Now, η behaves as T2, i.e., as 1=a2, and, furthermore, we are
in the radiation-dominated era and a behaves as t1=2. Thus, η
behaves as 1=t, and we have dH=dt ¼ −8πηicHti=t with
ηi ¼ 9.09 × 1022 and ti ¼ 10−32. Let A ¼ 8πηicti ¼ 6.9;
then, integrating

dH
H

¼ −A
dt
t

ð27Þ

we get

Ho ¼ Hi

�
ti
to

�
A
: ð28Þ

For example, suppose that

to ¼ 2ti; then Ho ¼ 0.009Hi: ð29Þ

Although it is believed that after inflation the Universe
entered a quark-gluon phase and so behaved as an almost
ideal fluid, this example shows that if η is as large as the
value in Eq. (26), then the damping effect is so rapid that it
may occur before the quark-gluon phase is reached.
Otherwise, considering that the wavelength is in the

range of 3 × 10−22 to 3 × 10−10 m while the horizon scale
is c=H ¼ 3 × 10−27 m, the case for ri; ro ≪ λ can be
justified and Eq. (21) becomes applicable. Using the same
formulation, significant damping can then occur for even
small values of η. As opposed to the first scenario where the
value of η dominates damping, this effect is present in
geometries where the ðλ=riÞ ratio is large, which amplifies
the value of the negative exponent in Eq. (21).

As an example, suppose that ri ¼ 3 × 10−27 m (a PGW
source the size of the horizon scale) with λ ¼ 3 × 10−22 m
(the lower wavelength limit), then Ho ¼ 0.5Hi for
η ¼ 2.0 × 1025 kg=m=s. This value is much smaller than
that of Eq. (26) and is of the same order as values considered
for CCSNe. The timescale of the damping is 10−35 s, which
is much shorter than the timescale of inflation.

VII. SUMMARY AND CONCLUSIONS

We have investigated, using the Bondi-Sachs form of the
Einstein equations linearized about Minkowski, the effect of
viscosity on GW propagation. A general expression for the
damping effect [Eq. (18)] was found, which reduces to a
known result [Eq. (19)] in the case λ ≪ ri. However, when
λ ≫ ri, Eq. (21) applies, which is a novel result. In this case,
viscous damping of GWs can be astrophysically important,
since the effect includes the factor ½λ=ðπriÞ�7 which can
be large.
The paper then looked at the astrophysical application

of CCSNe, but first noting that the model obtained may not
be directly applicable so the results should be regarded as
estimates rather than as precise predictions.
A number of CCSNe models have been proposed, and it

was found that in many cases significant viscous damping
of GWs was predicted. GW generation in CCSNe involves
a number of different physical processes, each with GW
output at a different frequency. It may be that a GW
observation of a CCSNe event would see only the higher
frequencies, with the lower ones completely damped out;
such an observation could be used to constrain a combi-
nation of η and ri.
We further considered PGWs generated in the early

Universe during inflation where the viscous shell model
can be applicable. As illustration, a high-viscosity configu-
ration was evaluated where ri; ro ≫ λ, which resulted in
significant damping. A further example considered was the
case ri ≪ λ. In this scenario, complete damping is predicted
for even low-viscosity values when the ðλ=riÞ ratio is high.
While these are rather speculative scenarios, we have
illustrated that significant PGW damping is possible within
reasonable parameter ranges when the combination of
geometry and physics allow for viscous shell modeling.
On the other hand, if PGWs are detected, the results
obtained here would constrain certain physical parameters
of the early Universe: The value of the viscosity η would
need to be significantly lower than that in Eq. (26); and there
would be a wavelength-dependent constraint on a function
of ri and η.
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APPENDIX: COMPUTER ALGEBRA SCRIPTS

The computer algebra scripts used in this paper are
written in MAPLE in plain text format and are available as
Supplemental Material [55]. The output file may be viewed
using a plain text editor with line wrapping switched off.
The file driving the calculation is ViscousShell.map,

and it takes input from the files gamma.out, initialize.map,
lin.map and ProcRules.map; the output is in Viscous-
Shell.out. The MAPLE script is adapted from that reported
in our previous work [1]. It first calculates and outputs the

metric coefficients given in Eqs. (3), and it then substitutes
this solution into the Einstein equations and checks that
they are all satisfied. The next step is to use the matter
conservation conditions for dust, obtaining Eqs. (6) for the
fluid velocity field; the script also checks that the solution
obtained satisfies the geodesic conditions. Next, the shear
tensor σab and the expansion θ are found, giving Eqs. (9).
Next, we evaluate the expression −2ησabσab, integrate the
result over a spherical shell of radius r and thickness δr,
and find the time average; the result is Eq. (11).

[1] N. T. Bishop, P. J. van der Walt, and M. Naidoo, Effect of a
low density dust shell on the propagation of gravitational
waves, Gen. Relativ. Gravit. 52, 92 (2020).

[2] M. Naidoo, N. T. Bishop, and P. J. van der Walt, Modifi-
cations to the signal from a gravitational wave event due to a
surrounding shell of matter, Gen. Relativ. Gravit. 53, 77
(2021).

[3] J. Ehlers, A. R. Prasanna, and R. A. Breuer, Propagation of
gravitational waves through pressureless matter, Classical
Quantum Gravity 4, 253 (1987).

[4] B. Q. Lu, D. Huang, Y. L. Wu, and Y. F. Zhou, Damping of
gravitational waves in a viscous Universe and its implication
for dark matter self-interactions, arXiv:1803.11397.

[5] S. W. Hawking, Perturbations of an expanding universe,
Astrophys. J. 145, 544 (1966).

[6] J. Madore, The absorption of gravitational radiation by a
dissipative fluid, Commun. Math. Phys. 30, 335 (1973).

[7] A. R. Prasanna, Propagation of gravitational waves through
a dispersive medium, Phys. Lett. A 257, 120 (1999).

[8] G. Goswami, G. K. Chakravarty, S. Mohanty, and A.
Prasanna, Constraints on cosmological viscosity and self-
interacting dark matter from gravitational wave observations,
Phys. Rev. D 95, 103509 (2017).

[9] E. T. Newman and R. Penrose, Note on the Bondi-Metzner-
Sachs group, J. Math. Phys. (N.Y.) 7, 863 (1966).

[10] N. T. Bishop and L. Rezzolla, Extraction of gravitational
waves in numerical relativity, Living Rev. Relativity 19, 2
(2016).

[11] R. Gómez, L. Lehner, P. Papadopoulos, and J. Winicour,
The eth formalism in numerical relativity, Classical Quan-
tum Gravity 14, 977 (1997).

[12] N. T. Bishop, Linearized solutions of the Einstein equations
within a Bondi-Sachs framework, and implications for
boundary conditions in numerical simulations, Classical
Quantum Gravity 22, 2393 (2005).

[13] N. T. Bishop, R. Gómez, L. Lehner, M. Maharaj, and J.
Winicour, High-powered gravitational news, Phys. Rev. D
56, 6298 (1997).

[14] C. Reisswig, N. T. Bishop, C. W. Lai, J. Thornburg, and B.
Szilagyi, Characteristic evolutions in numerical relativity
using six angular patches, Classical Quantum Gravity 24,
S327 (2007).

[15] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[16] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and K.
Schwenzer, Viscous Dissipation and Heat Conduction in
Binary Neutron-Star Mergers, Phys. Rev. Lett. 120, 041101
(2018).

[17] M. Chabanov, L. Rezzolla, and D. H. Rischke, General-
relativistic hydrodynamics of non-perfect fluids: 3þ 1

conservative formulation and application to viscous black
hole accretion, Mon. Not. R. Astron. Soc. 505, 5910 (2021).

[18] C. Pennypacker et al., Observation of the Type II Supernova
1986I in M99, Astron. J. 97, 186 (1989).

[19] A. C. Fabian and R. Terlevich, X-ray detection of SN1988Z
with the ROSAT HRI, arXiv:astro-ph/9511060.

[20] M. J. Montes, S. D. Van Dyk, K. W. Weiler, R. A. Sramek,
and N. Panagia, Radio detection of SN 1986e in NGC 4302,
Astrophys. J. Lett. 482, L61 (1997).

[21] K. Hirata et al., Observation of a Neutrino Burst from the
Supernova SN 1987a, Phys. Rev. Lett. 58, 1490 (1987).

[22] H. T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo,
and B. Mueller, Theory of core-collapse supernovae, Phys.
Rep. 442, 38 (2007).

[23] S. J. Smartt, Progenitors of core-collapse supernovae, Annu.
Rev. Astron. Astrophys. 47, 63 (2009).

[24] H. A. Bethe, Supernova mechanisms, Rev. Mod. Phys. 62,
801 (1990).

[25] H. T. Janka, Explosion mechanisms of core-collapse super-
novae, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).

[26] B. Müller, Hydrodynamics of core-collapse supernovae
and their progenitors, Astrophysics (Engl. Transl.) 6, 3
(2020).

[27] E. Abdikamalov, G. Pagliaroli, and D. Radice, Gravitational
waves from core-collapse supernovae, in Handbook of
Gravitational Wave Astronomy, edited by C. Bambi, S.
Katsanevas, and K. D. Kokkotas (Springer, Singapore,
2022), 10.1007/978-981-16-4306-4_21.

[28] S. E. Woosley, A. Heger, and T. A. Weaver, The evolution
and explosion of massive stars, Rev. Mod. Phys. 74, 1015
(2002).

[29] H. Andresen, B. Müller, E. Müller, and H. T. Janka,
Gravitational wave signals from 3D neutrino hydrodynamics

EFFECT OF A VISCOUS FLUID SHELL ON THE … PHYS. REV. D 106, 084018 (2022)

084018-9

https://doi.org/10.1007/s10714-020-02740-9
https://doi.org/10.1007/s10714-021-02841-z
https://doi.org/10.1007/s10714-021-02841-z
https://doi.org/10.1088/0264-9381/4/2/009
https://doi.org/10.1088/0264-9381/4/2/009
https://arXiv.org/abs/1803.11397
https://doi.org/10.1086/148793
https://doi.org/10.1007/BF01645508
https://doi.org/10.1016/S0375-9601(99)00313-8
https://doi.org/10.1103/PhysRevD.95.103509
https://doi.org/10.1063/1.1931221
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1088/0264-9381/14/4/013
https://doi.org/10.1088/0264-9381/14/4/013
https://doi.org/10.1088/0264-9381/22/12/006
https://doi.org/10.1088/0264-9381/22/12/006
https://doi.org/10.1103/PhysRevD.56.6298
https://doi.org/10.1103/PhysRevD.56.6298
https://doi.org/10.1088/0264-9381/24/12/S21
https://doi.org/10.1088/0264-9381/24/12/S21
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1093/mnras/stab1384
https://doi.org/10.1086/114968
https://arXiv.org/abs/astro-ph/9511060
https://doi.org/10.1086/310694
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1016/j.physrep.2007.02.002
https://doi.org/10.1016/j.physrep.2007.02.002
https://doi.org/10.1146/annurev-astro-082708-101737
https://doi.org/10.1146/annurev-astro-082708-101737
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1007/s41115-020-0008-5
https://doi.org/10.1007/s41115-020-0008-5
https://doi.org/10.1007/978-981-16-4306-4_21
https://doi.org/10.1103/RevModPhys.74.1015
https://doi.org/10.1103/RevModPhys.74.1015


simulations of core-collapse supernovae, Mon. Not. R.
Astron. Soc. 468, 2032 (2017).

[30] H. Andresen, E. Müller, H. Janka, A. Summa, K. Gill, and
M. Zanolin, Gravitational waves from 3D core-collapse
supernova models: The impact of moderate progenitor
rotation, Mon. Not. R. Astron. Soc. 486, 2238 (2019).

[31] D. Radice, V. Morozova, A. Burrows, D. Vartanyan, and H.
Nagakura, Characterizing the gravitational wave signal from
core-collapse supernovae, Astrophys. J. Lett. 876, L9 (2019).

[32] V. Roma, J. Powell, I. S. Heng, and R. Frey, Astrophysics
with core-collapse supernova gravitational wave signals in
the next generation of gravitational wave detectors, Phys.
Rev. D 99, 063018 (2019).

[33] S. Scheidegger, R. Kaeppeli, S. C. Whitehouse, T. Fischer,
and M. Liebendoerfer, The influence of model parameters
on the prediction of gravitational wave signals from stellar
core collapse, Astron. Astrophys. 514, A51 (2010).

[34] E. Müller, H. T. Janka, and A. Wongwathanarat, Parame-
trized 3D models of neutrino-driven supernova explosions:
Neutrino emission asymmetries and gravitational-wave
signals, Astron. Astrophys. 537, A63 (2012).

[35] B. Müller, H. T. Janka, and H. Dimmelmeier, A new multi-
dimensional general relativistic neutrino hydrodynamic
code for core-collapse supernovae. I. Method and code
tests in spherical symmetry, Astrophys. J. Suppl. Ser. 189,
104 (2010).

[36] T. Kuroda, K. Kotake, and T. Takiwaki, A new gravitational-
wave signature from standing accretion shock instability in
supernovae, Astrophys. J. Lett. 829, L14 (2016).

[37] A. Mezzacappa et al., Gravitational-wave signal of a core-
collapse supernova explosion of a 15 M⊙ star, Phys. Rev. D
102, 023027 (2020).

[38] J. Powell and B. Müller, Gravitational wave emission from
3D explosion models of core-collapse supernovae with low
and normal explosion energies, Mon. Not. R. Astron. Soc.
487, 1178 (2019).

[39] S. Shibagaki, T. Kuroda, K. Kotake, and T. Takiwaki,
Characteristic time variability of gravitational-wave and
neutrino signals from three-dimensional simulations of
non-rotating and rapidly rotating stellar core-collapse,
Mon. Not. R. Astron. Soc. 502, 3066 (2021).

[40] T. A. Thompson, E. Quataert, and A. Burrows, Viscosity
and rotation in core-collapse supernovae, Astrophys. J. 620,
861 (2005).

[41] H. C. Spruit, Dynamo action by differential rotation in a
stably stratified stellar interior, Astron. Astrophys. 381, 923
(2002).

[42] E. E. Kolomeitsev and D. N. Voskresensky, Viscosity of
neutron star matter and r-modes in rotating pulsars, Phys.
Rev. C 91, 025805 (2015).

[43] C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-
wave sensitivity curves, Classical Quantum Gravity 32,
015014 (2015).

[44] S. W. Hawking, Perturbations of an expanding universe,
Astrophys. J. 145, 544 (1966).

[45] C. Eckart, The thermodynamics of irreversible processes.
III. Relativistic theory of the simple fluid, Phys. Rev. 58,
919 (1940).

[46] S. Weinberg, Entropy generation and the survival of
protogalaxies in an expanding universe, Astrophys. J.
168, 175 (1971).

[47] C. Caprini and D. G. Figueroa, Cosmological backgrounds
of gravitational waves, Classical Quantum Gravity 35,
163001 (2018).

[48] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W.H. Freeman, New York, 1973).

[49] G. Hobbs et al., The international pulsar timing array
project: Using pulsars as a gravitational wave detector,
Classical Quantum Gravity 27, 084013 (2010).

[50] L. Lentati et al., European pulsar timing array limits on an
isotropic stochastic gravitational-wave background, Mon.
Not. R. Astron. Soc. 453, 2576 (2015).

[51] Z. Arzoumanian et al., The NANOGrav 11-year data set:
Pulsar-timing constraints on the stochastic gravitational-
wave background, Astrophys. J. 859, 47 (2018).

[52] P. Amaro-Seoane et al., Astrophysics with the laser inter-
ferometer space antenna, arXiv:2203.06016.

[53] C. Caprini et al., Science with the space-based interferometer
eLISA. II: Gravitational waves from cosmological phase
transitions, J. Cosmol. Astropart. Phys. 04 (2016) 001.

[54] N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein,
and A. Petiteau, Science with the space-based interferometer
eLISA. III: Probing the expansion of the Universe using
gravitational wave standard sirens, J. Cosmol. Astropart.
Phys. 04 (2016) 002.

[55] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.106.084018 for the com-
puter algebra scripts.

BISHOP, VAN DER WALT, and NAIDOO PHYS. REV. D 106, 084018 (2022)

084018-10

https://doi.org/10.1093/mnras/stx618
https://doi.org/10.1093/mnras/stx618
https://doi.org/10.1093/mnras/stz990
https://doi.org/10.3847/2041-8213/ab191a
https://doi.org/10.1103/PhysRevD.99.063018
https://doi.org/10.1103/PhysRevD.99.063018
https://doi.org/10.1051/0004-6361/200913220
https://doi.org/10.1051/0004-6361/201117611
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.3847/2041-8205/829/1/L14
https://doi.org/10.1103/PhysRevD.102.023027
https://doi.org/10.1103/PhysRevD.102.023027
https://doi.org/10.1093/mnras/stz1304
https://doi.org/10.1093/mnras/stz1304
https://doi.org/10.1093/mnras/stab228
https://doi.org/10.1086/427177
https://doi.org/10.1086/427177
https://doi.org/10.1051/0004-6361:20011465
https://doi.org/10.1051/0004-6361:20011465
https://doi.org/10.1103/PhysRevC.91.025805
https://doi.org/10.1103/PhysRevC.91.025805
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1086/148793
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1086/151073
https://doi.org/10.1086/151073
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/0264-9381/27/8/084013
https://doi.org/10.1093/mnras/stv1538
https://doi.org/10.1093/mnras/stv1538
https://doi.org/10.3847/1538-4357/aabd3b
https://arXiv.org/abs/2203.06016
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2016/04/002
https://doi.org/10.1088/1475-7516/2016/04/002
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018
http://link.aps.org/supplemental/10.1103/PhysRevD.106.084018

