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Dr. Moliner 50, 46100 Burjassot (València), Spain
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We compute the emission of linear momentum (kicks) by both gravitational and electromagnetic radiation
in fully general-relativistic numerical evolutions of quasicircular charged black hole binaries. We derive
analytical expressions for slowly moving bodies and explore numerically a variety of mass ratios and charge-
to-mass ratios. We find that for the equal-mass case our analytical expression is in excellent agreement with
the observed values, and, contrarily to what happens in the vacuum case, we find that in the presence of
electromagnetic fields there is emission of momentum by gravitational waves. We also find that the strong
gravitational kicks of binaries with unequal masses affect the electromagnetic kicks, causing them to
strongly deviate from Keplerian predictions. For the values of charge-to-mass ratio considered in this work,
we observe that magnitudes of the electromagnetic kicks are always smaller than the gravitational ones.
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I. INTRODUCTION

With the advent of gravitational-wave (GW) astronomy
[1], the past decade has seen remarkable progress in our
ability to study strong-field gravity in highly dynamical
regimes. We can now monitor the GW-driven coalescence
of compact binaries, paving the way to new tests of general
relativity (GR) in the strong-field regime [2–4]. Some of
these studies rely on the simplicity of black holes (BHs) in
GR, namely, on the mathematical result that asymptotically
flat vacuum BH geometries must be parametrized by a small
number of quantities (their mass, angular momentum, and
charge) [5–7]. Nevertheless, the anticipated breakdown of
classical GR in BH interiors and our incomplete under-
standing of the matter content of the Universe motivates the
search for smoking-gun evidence for beyond-standard-
model physics in GW data.
While the search for new physics is challenging (in part

due to our nearly total ignorance of a quantum theory of
gravity or the nature of dark matter), we can take guidance
from robust aspects of specific modified theories of gravity
[3,8]. For instance, a generic feature that arises when extra
degrees of freedom are involved is dipole emission [9].
A specific example that we will use as a prototype

for modified gravity theories with such an effect is
Einstein’s theory minimally coupled to a massless vector
field, known as Einstein-Maxwell’s theory. In contrast to
most beyond-standard-model theories, Einstein-Maxwell
admits a well-posed initial value problem [10] and, hence,
is amenable to numerical integration. In this theory, BHs
can carry a conserved charge. While this charge can be
thought of as electric charge, astrophysical BHs are
expected to be electrically neutral to a very good approxi-
mation. This is due to Schwinger-type and Hawking
radiation mechanisms and the availability of interstellar
plasma, mechanisms that are effective largely because of
the huge charge-to-mass ratio of electrons (see, e.g.,
Ref. [11] and references therein). However, the mathemati-
cal description for Einstein-Maxwell not only describes
electric charge but can be applied to any U(1) field. If the
vector field is not a Maxwell field, it is possible to envision
scenarios where the charge-to-mass ratio of fundamental
particles is smaller and where BHs could be charged under
such a field. It is also possible to interpret the charge as
magnetic in nature (possibly due to primordial magnetic
monopoles). Within this framework, the existence of
interaction and another channel of radiation, in addition
to the GW channel, changes the dynamics of the compact
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binary, leading to potentially observable signatures in the
GWs. Indeed, the first constraints on the charge and dipole
moment of BH binaries, using GW detection, have been
placed [9,11–13] and show that the data are compatible
with a non-negligible amount of charge. In other words,
the Einstein-Maxwell theory is a good proxy for more
general theories of gravitation, but also an attractive
candidate for dark matter [11] (for theoretical scenarios
where the Einstein-Maxwell theory is mathematically
applicable, see, e.g., [12,14,15]).
One potentially important, but unexplored, consequence

of having charged objects is that EM radiation will induce a
recoil on the final object, in addition to that induced by GW
emission. The recoil induced by GWs was studied exten-
sively (see Refs. [16–28] for a very incomplete list). This
gravitational recoil, known as the kick, has important
implications on the structure of galaxies and the formation
of supermassive BHs [29–34] and particularly due to the
possibility that the resulting BH might exceed the escape
velocity of globular clusters, or even galaxies, thus being
ejected from them [35–39].
The rate of emission of momentum in GWs is caused by

the interaction between the quadrupole and the octupole of
the energy distribution [19]. In gravity theories with dipole
emission, this suggests that the leading-order effect giving
rise to a kick would be a dipole-quadrupole term, which can
lead to qualitatively new features, potentially surpassing the
GW effect. The purpose of this work is to explore this
question. Since in GR the kick is independent of the scale
of the system, our study applies to both stellar mass and
supermassive BHs alike. The detection of kicks in GW data
[40,41] allows one to place additional constraints on dipole
emission; these require a proper modeling of the system, an
important motivation for this analysis.
The paper is structured as follows: In Sec. II, we estimate

the kicks analytically assuming Keplerian circular orbits.
The numerical setup and code are explained in Sec. III.
Section IV exposes the results of the simulations and
compares them with the Keplerian estimate. We conclude
in Sec. V. We use units in which G ¼ c ¼ 1, where G is
Newton’s constant and c the speed of light in vacuum. The
conventions for the EM fields are those of Ref. [42]. We
express results in terms of the Arnowitt-Deser-Misner
(ADM) mass of the system, MADM. Greek indices range
from 0 to 3, and Latin ones range from 1 to 3.

II. SLOW-MOTION, WEAK-FIELD
APPROXIMATION

We follow here an approach analogous to what Ref. [18]
did for GW emission. We use a slow-motion, weak-field
approximation and start by solving for the EM field Aμ in
the Lorenz gauge, which leads to a wave equation with
source

□Aμðx; tÞ ¼ 4πJμ: ð1Þ

Here, x and t are the space and time coordinates in flat
space, respectively, and Jμ is the EM current density. Using
the Green’s function of the d’Alembertian operator, we get

Aμðx; tÞ ¼
Z

Jμðx0; t − jx − x0jÞ
jx − x0j dV ð2Þ

with dV ¼ d3x0. We will drop the primes from now on. A
straightforward manipulation yields up to higher order
terms

Aiðx; tÞ ¼ 1

r

�
_Di −

nj _Mij

2
þ njB̈ij

2

�
;

Bij ¼ 1

3

�
Qij þ δij

Z
J0r2dV

�
; ð3Þ

where ni is the outward-pointing unit 3-vector and we
define the electric dipole Di, the magnetic dipole Mij, and
the traceless electric quadrupole Qij as, respectively,

Di ¼
Z

J0xidV;

Mij ¼
Z

ðxiJj − xjJiÞdV;

Qij ¼
Z

J0ð3xixj − r2δijÞdV: ð4Þ

At sufficiently large distances from the source, the fields
behave as a plane wave [43]. In this limit, by neglecting the
Coulomb term (∝ r−2) in front of the radiative term (∝ r−1),
the Poynting vector becomes simply

S ¼ j _A × nj2 n
4π

: ð5Þ

After a lengthy manipulation of Eq. (5) and integrating over
the solid angle, we are left with the expression for the rate
of emission of linear momentum in the EM radiation:

dPi
EM

dt
¼ 1

15
D̈jQ

::: ji − D̈jM̈ji: ð6Þ

We see here that the dominant contribution to the momen-
tum emission is a combination of electric dipole and
magnetic dipole, and electric dipole and quadrupole, terms.
This formula is somewhat similar to its GW analog, where
the momentum emission arises from the interaction between
the mass quadrupole and a combination of mass octupole
and angular momentum moments [18].
For the particular case of point particles following

Keplerian circular orbits, we set [19]
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J0 ¼
X2
n¼1

qnδðx − xnðtÞÞ;

Ji ¼
X2
n¼1

qn _xinδðx − xnðtÞÞ; ð7Þ

with δ being Dirac’s delta. If the particles have masses m1

andm2 and charges q1 and q2 and are at a distance d of each
other (distance d1 and d2 from the center of mass), a direct
modification of Kepler’s third law yields an angular
velocity

Ωc ¼ d−3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þ

�
1 −

q1q2
m1m2

�s
; ð8Þ

where we also accounted for the EM interaction. Without
loss of generality, we may choose an instant of time where
both particles lie along the x axis, with their velocity
vectors in the y direction. The only nonzero components of
the electric dipole and quadrupole tensor derivatives are
then

D̈1 ¼ −ðd1q1 − d2q2ÞΩ2
c;

Q
:::12 ¼ Q

:::21 ¼ −12ðd21q1 þ d22q2ÞΩ3
c; ð9Þ

and the magnetic dipole tensor is zero. Therefore,

dPi
EM

dt
¼ 4

5
ðd1q1 − d2q2Þðd21q1 þ d22q2ÞΩ5

cŷ

¼
�
q1
m1

−
q2
m2

��
q1
m2

1

þ q2
m2

2

�
F0ŷ; ð10Þ

with

F0 ≡ 4

5

m3
1m

3
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm1 þm2Þd9
p �

1 −
q1q2
m1m2

�
5=2

: ð11Þ

By defining

M ¼ m1 þm2; ρ ¼ m1

m2

; λi ¼
qi
mi

; ð12Þ

we obtain

dPEM

dt
¼ 4

5

�
M
d

�
9=2 ð1−λ1λ2Þ5=2ρ2

ð1þρÞ5 ðλ1−λ2Þðλ1þρλ2Þ: ð13Þ

Following Ref. [25], we assume that the total integrated
momentum will have the same functional form. This result
predicts a zero kick for the cases λ1 ¼ λ2 (when the dipole
vanishes) and λ1 ¼ −ρλ2 (when the quadrupole vanishes),
in the center of mass frame. Note that the factor
ð1 − λ1λ2Þ5=2 is never zero in BHs, since λi are strictly

less than 1. We will now use full nonlinear simulations to
compute the actual recoil imparted by EM radiation, trying
to make contact with this flat-space result.

III. SETUP

The action for the Einstein-Maxwell theory is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
4
−
1

4
FμνFμν

�
; ð14Þ

where R is the Ricci scalar and the electromagnetic field
strength is defined as Fμν ¼ ∇μAν −∇νAμ. Variation with
respect to the metric tensor gμν and the electromagnetic
vector potential Aμ results, respectively, in

∇νFμν ¼ 0; ð15Þ

Rμν −
1

2
gμνR ¼ 2FμρFν

ρ −
1

2
gμνFρσFρσ: ð16Þ

To evolve these equations numerically, we employ the
standard 3þ 1 decomposition to formulate the equations
of motion as a Cauchy problem under the Baumgarte-
Shapiro-Shibata-Nakamura scheme [44,45]. Our numerical
approach follows that of previous evolutions of charged
BHs [12,15,46–49]. Specifically, numerical computations
are performed using the EinsteinToolkit (ET) code [50], within
the CACTUS framework [51] with grid functions being
computed on a CARPET adaptive-mesh-refinement
Cartesian grid [52]. To prepare initial data and diagnose
the spacetime, we adopt the codes TwoChargedPunctures and
QuasiLocalMeasuresEM developed in Ref. [14], which extend
the TwoPunctures [53] and QuasiLocalMeasures [54] to the full
Einstein-Maxwell theory. These codes have been employed
in Refs. [12,15,49], where it was demonstrated how one can
perform long-term and stable quasicircular charged BH
numerical evolutions. For a different approach to generating
initial data, see Ref. [55]. Time evolution of the electro-
magnetic fields is performed with the massless version of
ProcaEvolve thorn [42] within the CANUDA library [56]. The
spacetime is evolved with LEAN [57], also within CANUDA.
We employed the continuous Kreiss-Oliger dissipation
prescription introduced in Ref. [15]. AHFinderDirect [58] is
adopted for locating apparent horizons. To save computa-
tional resources, we impose symmetry with respect to the
orbital z ¼ 0 plane.
We approximate the initial momenta of the BHs in a

quasicircular inspiral by the 3.5 post-Newtonian approxi-
mation for neutral BHs and rescaling it by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1λ2

p
as explained in Ref. [15].

The emission of energy by EM and GWs can be
computed from the Newman-Penrose scalars [42,59] Ψ4

and Φ2, respectively, as
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dEGW

dt
¼ lim

r→∞

r2

16π

I ����
Z

t

−∞
Ψ4dt0

����2dΩ; ð17Þ

dEEM

dt
¼ lim

r→∞

r2

4π

I
jΦ2j2dΩ; ð18Þ

where
H

indicates surface integration over a coordinate
sphere of radius r and dΩ ¼ sin θdθdϕ is the differential
solid angle.
The expressions for linear momentum emission are

obtained simply by adding a radially pointing unit vector
n̂ inside the angular integral:

dPi
GW

dt
¼ lim

r→∞

r2

16π

I
ni
����
Z

t

−∞
Ψ4dt0

����2dΩ; ð19Þ

dPi
EM

dt
¼ lim

r→∞

r2

4π

I
nijΦ2j2dΩ: ð20Þ

The actual computation is done in terms of the multipole
decomposition coefficients of Ψ4 and Φ2 as explained in
Appendix A. We use multipole moments up to the order of
l ¼ 8, and we start the time integration at a retarded time of
40 computational units (about 39.2MADM) in order to avoid
the “junk” radiation (spurious radiation, arising from the
way that initial data are specified). As explained below, we
then convert the linear momentum to recoil velocity as
v ¼ P=MF, where MF is the quasi-isolated mass of the
final BH as computed by QuasiLocalMeasuresEM.
Several sanity checks (such as the comparison to neutral

results of Ref. [25]) have been performed on the numerical
implementation of the equations and are summarized in
Appendix B. The computation of the kicks from the
multipole moments has been compared to the direct
integration of momentum emission over the solid angle,
showing excellent agreement. The computation of the
Newman-Penrose scalars is implemented in the ET
NPScalars_Proca thorn [42]. Each run has 8 refinement levels
(each one halving the previous grid spacing), with outer-
most grid spacing of Δx ¼ Δy ¼ Δz ¼ 1.23MADM. This
corresponds to having at least 50 points across the horizon
in cases with ρ ¼ 1 and at least 33 across the diameter of
the horizon of the smallest BH for ρ ¼ 2.
We performed a sampling of a subset of the parameters

describing a binary BH. Namely, we use an initial coor-
dinate distance of d ¼ 6.86MADM, and we organize the
runs by “series” of fixed mass ratio ρ ¼ m1=m2 and λ1
(ρ ≥ 1). For each series, we vary λ2 from −λ1 to λ1 in
intervals of 0.1. The construction of the initial data by
TwoChargedPunctures fixing the bare masses introduces some
small deviations from the target initial masses and charges
of the individual BHs and also to the global ADM mass of
the system. This causes the mass ratios to be slightly
different from the exact values of ρ ¼ 1, 2 and the charge-
to-mass ratios λ to vary between runs, as measured by

QuasiLocalMeasuresEM. Additionally, the fact that MADM ≠ 1
creates a discrepancy between the computational code units
and the geometric units in terms of the total mass. For this
reason, it is important to keep in mind that, for all plots and
fitting functions that assume constant quantities in several
runs, this assumption is only approximately satisfied. Also,
waveforms extracted at a fixed radius Rex in computational
units will not correspond exactly to the same physical
distance, although the difference is negligible compared to
other sources of error. Table I lists the ADMmass, physical
masses of each BH, charge-to-mass ratios, and binary mass
ratios that we explored. The ADM mass is computed at the
level of initial data by surface integrals as in Ref. [60], and
the physical masses m1;2 refer to the values measured by
QuasiLocalMeasuresEM as in Ref. [14].
Fits to data were performed by the nonlinear least-

squares Marquardt-Levenberg algorithm implementation in
GNUPLOT, which also provides an estimate of the asymp-
totic standard errors in the coefficients.

IV. RESULTS

In Table II, we list the values of the kicks obtained for
each of the parameter configurations.
Although Eq. (13) assumes flat space and a circular

trajectory, it suggests a functional form for the EM kick. We
thus expect the rate of emission of EM momentum as a
function of λ2 to be a curve close to a parabola, with roots at
λ2 ¼ λ1 (zero dipole) and at λ2 ¼ −λ1=ρ (zero quadrupole).
As in Ref. [25], we conjecture that the total integrated
momentum (the kick) should follow the same kind of
dependence. Therefore, we fit a function of the form

vEM ¼ AðB − λ2ÞðCþ λ2Þð1 −Dλ2Þ5=2: ð21Þ

Based on the Keplerian expression, we expect B ¼ λ1,
C ¼ λ1=ρ, and D ¼ λ1. The constant A will depend on the
details of the decay of the orbital separation and is,
therefore, not possible to extract it at a purely

TABLE I. Parameters used in the initial data generation,
expressed in code units, for the first (top) and second (bottom)
series of runs.

MADM m1 m2 ρ ¼ m1=m2 λ1 λ2

1.02 0.52 0.52 1.00 0.19 −0.19
1.02 0.52 0.52 1.00 0.19 −0.10
1.03 0.52 0.52 1.00 0.19 0.00
1.03 0.52 0.52 1.00 0.19 0.10
1.02 0.52 0.52 1.00 0.19 0.19
1.02 0.68 0.35 1.94 0.19 −0.19
1.02 0.68 0.35 1.94 0.19 −0.09
1.02 0.68 0.35 1.94 0.19 0.00
1.02 0.68 0.35 1.94 0.19 0.09
1.02 0.68 0.35 1.94 0.19 0.19
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Newtonian level. The actual numerical values for the EM
kicks for equal-mass BHs are depicted in Fig. 1. We define
v ¼ P=MF, with MF being the mass of the final BH as
measured by QuasiLocalMeasuresEM. This expression is appro-
priate in the regime under consideration because the kicks
are nonrelativistic (v ≪ c). Note that both P and MF have
units of mass, so the kick magnitude is independent
on the mass scale of the system. The fitted values
from Eq. (21) are A ¼ 169.5� 0.3 km=s, B ¼ 0.192�
2 × 10−4, C ¼ 0.192� 2 × 10−4, and D ¼ 0.03� 0.01,
giving excellent agreement for the zeros of the kick but
a slightly more symmetric curve than the predicted by
Eq. (13). The uncertainties in the coefficients B andC are of
the same order as the variations of λ1 between the runs

used in the fit. Because of the symmetry between the two
BHs, we expect the GW kicks for equal-mass binaries to
vanish for λ1 ¼ λ2, which is indeed observed. For other
values of λ2, however, small GW kicks are produced as a
consequence of the EM fields, as shown in Fig. 2. The
profile of the GW kicks as a function of λ2 is again almost
parabolic, with the fit from (21) giving A ¼ 71.17�
0.03 km=s, B ¼ 0.192� 5 × 10−5, C ¼ 0.192� 4 × 10−5,
and D ¼ 0.085� 0.002.
When moving to BH binaries with unequal masses, the

numerical results deviate strongly from the Keplerian
prediction (see Fig. 3). In particular, the EM kicks no
longer vanish for the zero dipole (λ2 ¼ λ1) and zero
quadrupole (λ2 ¼ −λ2=ρ) configurations, and the maxi-
mum is displaced from the predicted position. We do not
have, at the present time, a clear explanation of the physical
phenomena causing this deviation when ρ > 1. We hypoth-
esize, however, that the (much stronger) emission of
momentum by the GW channel is “jiggling” the system
and, thus, invalidating the assumptions of our derivation
and contaminating the EM signal. The GW kicks for
mass ratio ρ ≈ 1.94 plotted in Fig. 4 can be fitted to be
approximately

vGW ¼ vGW;neutral þ Aþ BðC − λ2Þ2; ð22Þ

with A ¼ 12.9� 0.2 km=s, B ¼ 70� 6 km=s, and C ¼
0.17� 0.02, signaling a quadratic dependence on λ1 − λ2.
vGW;neutral ≈ 131.5 km=s is the value of the kick for a neutral

TABLE II. Values of the kicks for the first (top) and second
(bottom) series of runs, all of them having λ1 ¼ 0.19.

ρ ¼ 1.00 λ2 vEM (km/s) vGW (km/s)

−0.19 0.00� 0.00 0.00� 0.00
−0.10 4.73� 0.03 2.01� 0.09
0.00 6.25� 0.04 2.62� 0.12
0.10 4.66� 0.03 1.93� 0.09
0.19 0.00� 0.00 0.00� 0.00

ρ ¼ 1.94 λ2 vEM (km/s) vGW (km/s)
−0.19 6.17� 0.04 153.36� 6.9
−0.09 7.91� 0.05 149.54� 6.7
0.00 7.76� 0.05 146.23� 6.6
0.09 5.67� 0.03 144.74� 6.5
0.19 1.75� 0.01 144.42� 6.5

FIG. 2. Emission of momentum in the GW channel as a
function of time (top) and final kick (bottom), for equal-mass
binaries (ρ ≈ 1.00) and λ1 ≈ 0.192. The solid line is the
fitted function of the form (21). The fit error is estimated to
be of about 4.5%.

FIG. 1. Emission of momentum in the EM channel as a function
of time (top) and final kick (bottom), for equal-mass binaries
(ρ ≈ 1.00) and λ1 ≈ 0.192. The solid line is the fitted function of
the form (21). The fit error is estimated to be of about 0.6%.
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binary with the same mass ratio as the charged ones
(ρ ≈ 1.94). In order to parametrize the effect of the
gravitational emission of momentum on the electromagnetic
kicks, we fitted an empirical model which adds to the

Keplerian profile a contribution proportional to the GW
kick as

vEM ¼ α
ð1 − λ1λ2Þ5=2ρ2

ð1þ ρÞ5 ðλ1 − λ2Þðλ1 þ ρλ2Þ

þ 2βð1 − γλ2ÞvGW: ð23Þ

By using the results above, we obtain the dimensionless
coefficients α ¼ ð5.0� 0.1Þ × 103 km=s, β ¼ 0.0194�
3 × 10−4, and γ ¼ 3.5� 0.2. The comparison of the model
with the actual numerical values of the EM kicks is shown in
Fig. 5, giving remarkable accuracy with a maximum error of
0.3 km=s. For the smallest kicks, the relative error can be
large (about 13%). The physical meaning of these param-
eters is unknown. In Fig. 6, the directions of the EM and
GW are displayed. It is interesting to notice that, for equal
masses, the two channels seem to be oriented roughly in
opposite directions, while for higher mass ratios the
directions seem to be approximately the same.

V. DISCUSSION

We computed in a full nonlinear setup the linear
momentum carried by EM and GWs in charged BH binaries
in quasicircular orbits, with varying mass ratios and charges.
Our results are motivated and also described well by a
simple weak-field slow-motion expansion [Eq. (23)]. Note,
however, that we fixed the charge-to-mass ratio of one

FIG. 3. EM kicks for mass ratio ρ ≈ 1.94 and λ1 ≈ 0.195,
showing strong deviation from the prediction of Eq. (13), which
predicts the zeros to be at λ2 ¼ λ1;−λ1=ρ. The solid line is the
fitted function of the form (21). The error is estimated to be of
about 0.6%.

FIG. 4. Emission of momentum in the GW channel as a
function of time (top) and final kick (bottom), for mass ratio
ρ ≈ 1.94 and λ1 ≈ 0.195. The solid line is the fitted function of the
form (22). The error is estimated to be of about 4.5%.

FIG. 5. Comparison between the EM kicks obtained by
numerical simulation and the empirical fitted model (23). The
maximum absolute error is of 0.3 km=s, and the maximum
relative error (excluding the vanishing kicks) is 13%.
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component, λ1. Our fit is not informed by general charge-to-
mass ratios; hence, it does not have a proper neutral limit
[notice that, when λ1 ¼ λ2 ¼ 0, Eq. (23) predicts a non-
sensical EM kick]. Our results are robust against changes in
the initial orbital separation and small orbital eccentricity.
We observe that the presence of charge in equal-mass

binaries can induce a small GW kick at the fully nonlinear
level, as long as jq1j ≠ jq2j. For binaries with sufficiently
different masses, the EM kick is generally much weaker
than its gravitational counterpart for the explored values of
the charges. This would make it a subdominant effect in
astrophysical scenarios unless the U(1) charge is signifi-
cantly larger.
For equal-mass binaries, we observe a remarkable agree-

ment with the Keplerian prediction of the general depend-
ence of the EM kicks as a function of the charges. The kick
vanishes when either the electric dipole or the electric
quadrupole of the system is zero and presents a maximum
close to the middle point between the two roots. The vðλ2Þ
curve is, however, slightly more symmetrical than expected.
As soon as the masses differ, the vðλ2Þ curve strongly

deviates from the Newtonian prediction, showing nonzero
kicks even at zero electric dipole and zero electric quadru-
pole. We conjecture that this is due to jiggling of the system
by the much larger momentum of the gravitational radiation,
and we fit a purely phenomenological model that is able to
approximately capture the behavior.
The careful exploration of the origin of the deviation is

left for future work. The effect of the gravitational momen-
tum emission on the system during the late phases of
the inspiral must be further explored, possibly by

post-Newtonian approximations, in order to assess the
physics behind the numerical results.
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Superior Técnico (IST). Results were cross-checked with
KUIBIT [61], which is based on NumPy [62], SciPy [63], and
H5PY [64]. G. B. and V. P. thank Maggie Smith for cross-
checking Eq. (20).

FIG. 6. Unit vectors showing the directions on the ðx; yÞ orbital
plane of the EM and GW kicks for mass ratios 1 and 2.

KICKS IN CHARGED BLACK HOLE BINARIES PHYS. REV. D 106, 084017 (2022)

084017-7



APPENDIX A: MULTIPOLAR EXPANSION

We extend to arbitrary spin weights the approach used in
Ref. [65] to express the energy and momentum emission in
terms multipole moments of the Newman-Penrose scalars
Ψ4 and Φ2. Letting sYl;mðθ;φÞ be the spin-weighted
spherical harmonic with spin s and angular numbers l
and m, we have that

Ψ4 ¼
X∞
l¼2

Xl

m¼−l
Al;mðtÞ−2Yl;mðθ;φÞ;

Φ2 ¼
X∞
l¼1

Xl

m¼−l
Bl;mðtÞ−1Yl;mðθ;φÞ: ðA1Þ

1. Energy emission

In this case, the solution is immediate thanks to the
orthogonality relation between spin-weighted spherical
harmonics

I
sYl;m

s0Ȳ
l0;m0

dΩ ¼ δss0δll0δmm0 ; ðA2Þ

where the bar over complex quantities denotes complex
conjugation. Therefore, Eqs. (17) and (18) can be simply
rewritten as, respectively,

dEGW

dt
¼ lim

r→∞

r2

16π

X
l;m

����
Z

t

−∞
Al;mdt0

����2;
dEEM

dt
¼ lim

r→∞

r2

4π

X
l;m

jBl;mj2: ðA3Þ

The time integrations are computed numerically using the
composite trapezoidal rule. See Sec. III for more details on
the treatment of the initial “junk” radiation.

2. Momentum emission

In this case, the derivation of the expressions is slightly
more involved due to the presence of the radially outward-
pointing unit vector ni in the integrals which does not allow
for direct application of the orthogonality relation. It can be
simplified, however, by noticing that ni can be written in
terms of the ordinary spherical harmonics (spin weight 0) as

nx ¼ sin θ cosφ ¼
ffiffiffiffiffiffi
2π

3

r
½0Y1;−1 − 0Y

1;1�;

ny ¼ sin θ sinφ ¼ i

ffiffiffiffiffiffi
2π

3

r
½0Y1;−1 þ 0Y

1;1�;

nz ¼ cos θ ¼ 2

ffiffiffi
π

3

r
Y1;0; ðA4Þ

and the calculation becomes even simpler in terms of the
complex quantity

nþ ≡ nx þ iny ¼ −
ffiffiffiffiffiffi
8π

3

r
0Y

1;1: ðA5Þ

Using the expression of the angular integral of a triple
product of spin-weighted spherical harmonics in terms of
the Wigner 3−lm symbols, and after some algebra, we can
define the spin-weighted coefficients

sal;m ¼ −s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl −mÞðlþmþ 1Þp

2lðlþ 1Þ ;

sbl;m ¼ 1

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sÞðlþmÞðlþm − 1Þ

ð2l − 1Þð2lþ 1Þ

s
;

scl;m ¼ −
sm

lðlþ 1Þ ;

sdl;m ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sÞðl −mÞðlþmÞ

ð2l − 1Þð2lþ 1Þ

s
;

which lead to the final expressions for momentum emission:

dPþ
GW

dt
¼ lim

r→∞

r2

8π

X
l;m

�Z
t

−∞
Al;mdt0

��Z
t

−∞
ð−2al;mĀl;mþ1 þ −2bl;−mĀl−1;mþ1 − −2blþ1;mþ1Ā

lþ1;mþ1Þdt0
�
;

dPz
GW

dt
¼ lim

r→∞

r2

16π

X
l;m

�Z
t

−∞
Al;mdt0

��Z
t

−∞
ð−2cl;mĀl;m þ −2dl;mĀl−1;m þ −2dlþ1;mĀ

lþ1;mÞdt0
�
;

dPþ
EM

dt
¼ lim

r→∞

r2

2π

X
l;m

Bl;m½−1al;mB̄l;mþ1 þ −1bl;−mB̄l−1;mþ1 − −1blþ1;mþ1B̄
lþ1;mþ1�;

dPz
EM

dt
¼ lim

r→∞

r2

4π

X
l;m

Bl;m½−1cl;mB̄l;m þ −1dl;mB̄l−1;m þ −1dlþ1;mB̄
lþ1;m�: ðA6Þ
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APPENDIX B: NUMERICAL CHECKS

1. Neutral kicks

We performed consistency checks the numerical results
to quantify the quality of the simulations. First, we
reproduced established results in the context of kicks in
neutral BH. In Ref. [25], simulation data were used to
estimate the phenomenological trend for momentum lost
by GWs:

vGW ≈ 1.2 × 104η2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1 − 0.93ηÞ;

η ¼ ρ=ð1þ ρÞ2: ðB1Þ

Our simulations reproduce this result. Figure 7 shows the
real part of the ðl; mÞ ¼ ð2; 2Þ component of Ψ4 (multiplied
by the extraction radius Rex) and the GW kick of a neutral
binary with ρ ¼ 1.43 (as measured by QuasiLocalMeasuresEM).
For this mass ratio, Eq. (B1) predicts a kick of 95.92 km=s.
In Fig. 8 we obtain a value of 93.59 km=s. This is an error of
2.5% with respect to Eq. (B1), within the error bar given
in Ref. [25].

2. Convergence of the multipolar expansion

The kicks have been extracted from the multipolar
expansion coefficients of the NP scalars, up to l ¼ 8, as
explained in Appendix A. In Fig. 9, we show the value of
the extracted kick computed using different numbers of
multipole coefficients. Although the contribution to the
total kick is dominated by the ðl; mÞ ¼ ð2; 2Þ mode, the

FIG. 9. Value of the GW kick computed to different orders in
the multipole expansion, for a neutral binary with mass ratio 1.43.
The extraction radius is Rex ≈ 98MADM.

FIG. 8. Extrapolation to Rex → ∞ to estimate the kick, via a
second-order polynomial, for a neutral binary with mass ratio
1.43.

FIG. 7. Multipolar l ¼ 2, m ¼ 2 mode of ReðΨ4Þ and velocity
profiles as a function of extraction radius for a neutral binary with
mass ratio 1.43.

FIG. 10. Self-convergence testing on the ðl; mÞ ¼ ð2; 2Þ mode
of Newman-Penrose scalar ψ4; results are compatible with fourth-
order convergence.
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value experiences significant changes until l ¼ 4. It is
possible to see from the plots that the waveform and the
velocity profiles converge as Rex get larger. The same
happens with the EM sector for charged binaries. More
quantitatively, we can plot the final kick as a function of
1=Rex and extrapolate to obtain the value as Rex → ∞.

3. Self-convergence testing

Figure 10 shows a self-convergence analysis performed
on equal-mass binary BHs with λ1 ¼ 0.2, λ2 ¼ 0, by using
three different resolutions (fine, medium, and coarse). Each
run has eight refinement levels (each one halving the
previous grid spacing), with outermost grid spacings of
hc ¼ 1.47, hm ¼ 1.23, and hf ¼ 0.99 in units of MADM.
This produces the scaling factor of 1.87 for fourth-order
convergence, computed from ðh4c − h4mÞ=ðh4m − h4fÞ ≈ 1.87.
We observe high-frequency noise as described in Ref. [12].

4. Initial conditions

Starting the simulations with the orbiting BHs at a finite
(and small) distance will always introduce some systematic
error to the computation of the kicks, since we are
neglecting all emission from the system prior to the
computational starting time. Additionally, the initial
momenta of a quasicircular inspiral have to be estimated
and will also contain deviations from the momenta that
would be achieved at that distance when inspiraling from an
infinite distance. For this reason, we perform a check by
repeating one of the inspiral cases in this paper (namely,
ρ ≈ 1.94, λ1 ¼ 0.195, and λ2 ¼ −0.09), but starting at a
distance of d ¼ 7.84MADM instead of d ¼ 6.86MADM. This
results in a difference of 0.25% in the EM kick and 4% in
the GW kick. This is of the same order as the error found in
the previous section. We therefore estimate that our kicks
have errors of the order of a few percent.
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