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In accordance with current models of the accelerating Universe as a spacetime with a positive
cosmological constant, new results about a cosmological upper bound for the area of stable marginally
outer trapped surfaces are found taking into account angular momentum, gravitational waves, and matter.
Compared to previous results which take into account only some of the aforementioned variables, the
bound is found to be tighter, giving a concrete limit to the size of black holes especially relevant in the early
Universe.
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I. INTRODUCTION

According to observations of our Universe, there are
two accelerating expansion phases, the current phase and
the very early stage. Such a Universe is approximately
described as a spacetime with a positive cosmological
constant. Considering the Einstein equation with a positive
cosmological constant, the simplest solution is the de Sitter
spacetime. Therefore, we can obtain useful insight into our
Universe by examining the characteristics of asymptoti-
cally de Sitter spacetimes. One interesting result is the
presence of an upper bound for the area of event horizons.
This is consistent with the intuitive feature that black holes
should be smaller than the cosmological horizon, as we
can see for the Schwarzschild-de Sitter solution. There are
several works showing the existence of a cosmological
upper bound for the area of an apparent horizon or so,
in general, spacetimes/axisymmetric spacetimes [1–8]
(see Sec. IV.4 in Ref. [9] for a review). In some of these,
the contribution from charge and angular momentum was
also considered.
In this paper, taking into account the contribution from

every relevant variable we can think of, with the exception
of charge, we reexamine the cosmological bound for the
area of a stable marginally outer trapped surface (stable
MOTS) [10] in realistic spacetimes with a positive cos-
mological constant. The analysis is quasilocal; that is, the
asymptotic behavior of spacetime is not required to be
imposed. We can justify the omission of contribution from
charge by the fact that it is unlikely that charged black holes
exist in our neutral Universe [11,12], so this simplifies
our setup.
This paper is organized as follows. In Sec. II, we present

the setup and some basic concepts. In Sec. III, we derive the
cosmological upper bounds for the sizes of black holes in
spacetimes with a cosmological constant. Finally, we give a

summary and discussion. The derivation of the key
equation of the main result is presented separately in the
Appendix.

II. SETUP AND BASICS

Let us consider a compact 2-surface (S, hab) in a
three-dimensional spacelike hypersurface (Σ, qab) in a four-
dimensional spacetime (M, gab). Denoting the future-
directed unit normal vector to Σ in M by na and the
outward-directed spacelike unit normal vector to S in Σ by
ra, the metric gab is decomposed as

gab ¼ hab þ rarb − nanb ¼ qab − nanb; ð1Þ

and one can define the extrinsic curvatures of Σ inM and S
in Σ as

Kab ¼ qcaqdb∇cnd ð2Þ

and

kab ¼ hcahdb∇crd; ð3Þ

respectively, where ∇a is the covariant derivative with
respect to gab. We decompose Kab as

Kab ¼ KðrÞrarb þ κab þ varb þ vbra; ð4Þ

where

KðrÞ ≔ Kabrarb; ð5Þ

κab ≔ hcahdbKcd; ð6Þ

and
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va ≔ hcarbKbc: ð7Þ

After some manipulation, we obtain the derivative of
θþ ¼ κ þ k along the ra direction [13,14] (see Appendix
for the full derivation),

ra∇aθþ ¼ −
1

2
θþabθ

abþ −
1

2
θ2þ þ θþðKðrÞ þ κÞ þ 1

2
ð2ÞR

þDaVa − VaVa − Gabkanb; ð8Þ

where Gab is the four-dimensional Einstein tensor,

θþab ≔ κab þ kab; ð9Þ

Va ≔ va −Da lnφ; ð10Þ

ka ≔ na þ ra; ð11Þ

and Da is the covariant derivative with respect to hab. φ
is the lapse function for the radial direction so that
qcbr

a∇arb ¼ −Dc ln φ. Note that ka is a future-directed
null vector, and Va is spacelike vector tangent to S. Since
θþ ¼ hab∇akb ¼ habθþab holds, θþ is the outgoing null
expansion rate associated with the null vector ka.

III. COSMOLOGICAL UPPER BOUND FOR AREA
OF STABLE MOTS

Following Ref. [10], the stable marginally outer trapped
surface (stable MOTS) is defined as a compact 2-surface S
satisfying1

θþjS ¼ 0 and ra∇aθþjS ≥ 0: ð12Þ

Then, taking the integral of Eq. (8) over S and using the
Einstein equation Gab ¼ 8πTab − Λgab with a positive
cosmological constant Λ, we have

1

2

Z
S

ð2ÞRdA ≥ ΛAþ
Z
S
½VaVa þ 8πðρþ þ ρþgwÞ�dA; ð13Þ

where A is the area of the stable MOTS S, ρþ ≔ Tabkanb ¼
Tabnanb þ Tabranb, and ρþgw is defined by

8πρþgw ≔
1

2
θ̃þabθ̃

abþ ¼ 1

2
ðκ̃abκ̃ab þ k̃abk̃

abÞ þ κ̃abk̃
ab:

ð14Þ

The tilde stands for the traceless part, i.e., θ̃þab ¼
θþab − ð1=2Þθþhab. Note that ρþgw is positive definite.
The last expression in the right-hand side of Eq. (14) can be

seen as a summation of the energy density and flux of
gravitational waves as well as in ρþ. Now, assuming that
the dominant energy condition holds, that is, ρþ ≥ 0, one
can see that the right-hand side of Eq. (13) is non-negative.
From the Gauss-Bonnet theorem, this shows us that the
topology of a stable MOTS is a 2-sphere,2 that is,R
S
ð2ÞRdA ¼ 8π. Thus, Eq. (13) gives us

A ≤
4π

Λ
−
1

Λ

Z
S
½VaVa þ 8πðρþ þ ρþgwÞ�dA: ð15Þ

This can be regarded as a generalization of the result
obtained by Gibbons for stable minimal surfaces [4]. A
minor arrangement gives us

Z
S
½VaVa þ 8πðρþ þ ρþgwÞ�dA ≤ 4π − ΛA: ð16Þ

Bearing the cosmological setup in mind, one may define
the surface-averaged total density ρ̄þtot as

ρ̄þtot ¼
1

A

Z
S
ρþtotdA; ð17Þ

where ρþtot ≔ ρþ þ ρþgw. Then, Eq. (15) is simplified as

A ≤
4π

Λþ
−

1

Λþ

Z
S
VaVadA; ð18Þ

where

Λþ ≔ Λþ 8πρ̄þtot: ð19Þ

From the definition, Va includes the contribution from the
angular momentum. Indeed, va in Va is approximately
expressed as va ¼ habrcKbc ¼ −habnc∇brc ∼ ∂rgtφ, and
nontrivial gtφ appears when spacetimes have a rotation,
where t, r, and φ are the time, radial, and angular
coordinates. Thus, one can see how the size of stable
MOTS is limited by the presence of gravitational waves,
matter, and angular momentum.3

As an application to the event horizon of a slowly
rotating Kerr-de Sitter spacetime, we can evaluate the
second term in the right-hand side of Eq. (18). The metric
of the Kerr-de Sitter spacetime is

1In Refs. [2,15], the concept of a future trapping horizon was
proposed instead, with the direction of the derivative in the
second condition taken to be past-directed outgoing null.

2Even for cases with a nonpositive cosmological constant,
Eq. (13) holds. Then, if the integration in the right-hand side of
Eq. (13) is large enough that the right-hand side is positive, the
topology of a stable MOTS is also shown to be a 2-sphere.

3Even for cases with a nonpositive cosmological constant, the
result here is true if Λþ is positive.
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ds2 ¼ −
ζ

ρ2

�
dt −

a sin2 θ
λ

dϕ

�
2

þ ρ2

ζ
dr2 þ ρ2

χ
dθ2

þ χ sin2 θ
ρ2

�
adt −

r2 þ a2

λ
dϕ

�
2

; ð20Þ

where ζ¼ ðr2þa2Þð1−Λr2=3Þ−2mr, ρ2 ¼ r2 þ a2 cos2θ,
λ ¼ 1þ Λa2=3, and χ ¼ 1þ ðΛ=3Þa2 cos2θ. a is the Kerr
parameter, and m is the mass parameter. The unit normal
vector ra to the horizon in the t ¼ const slice is

ra ¼
ρffiffiffi
ζ

p ðdrÞa; ð21Þ

and then, one can read φ as

φ ¼ ρffiffiffi
ζ

p : ð22Þ

At the leading order, the components of Va are given by

Vθ ¼ −∂θ ln φ ¼ a2 cos θ sin θ

ρ2
¼ Oða2Þ ð23Þ

and

Vϕ ¼
ffiffiffi
ζ

p
ρ

Kϕr ¼ −
3am
r2

sin2 θ þOða3Þ: ð24Þ

Note that the θ component of Va does not contribute to the
evaluation at the leading order. Integrating over the event
horizon, we have

Z
SH

VaVadA ¼ 24π
ðamÞ2
r4H

þOða4Þ: ð25Þ

Notice that at the leading order there is no dependence on
the cosmological constant. Although we can compute
higher order terms of a, the expression would be
rather complicated, and it would be difficult to discern a
physical or geometrical meaning. Nevertheless, since
ðr4H=24Þ

R
SH

VaVadA gives us the angular momentum

ðamÞ2 at the leading order, the above observation may
prompt us to define the surface-averaged angular momen-
tum as4

ð8πJ̄Þ2 ≔ A2

6π

Z
S
VaVadA: ð26Þ

Then, Eq. (18) gives us

Aþ 6πð8πJ̄Þ2
ΛþA2

≤
4π

Λþ
: ð27Þ

Due to the presence of the angular momentum, the area A
has a lower bound too. A minor rearrangement of Eq. (27)
gives us

ð8πJ̄Þ2 ≤ 2

3
A2

�
1 −

Λþ
4π

A
�
: ð28Þ

This is similar to the inequality for the Komar angular
momentum JK in axisymmetric spacetimes [6],

ð8πJKÞ2 ≤ A2

�
1 −

Λ
4π

A

��
1 −

Λ
12π

A

�
: ð29Þ

Note however that J̄ does not coincide with the Komar
angular momentum JK , even for axisymmetric spacetimes.
Indeed, one can show the following inequality [16,17]:

J̄2 ≤
�
RA

Rϕ

�
4

J2K; ð30Þ

where Rϕ is defined by5

R4
ϕ ≔

3

8π

Z
S
ϕaϕ

adA; ð31Þ

with ϕa the axisymmetric Killing vector. We used the fact
that

R
S V

aϕadA ¼ R
S v

aϕadA. For the Kerr-de Sitter space-
time, JK ¼ am=λ (for example, see Ref. [6]). Then, one can
see that JK ¼ J̄ þOða2Þ for small a cases.

IV. SUMMARY AND DISCUSSION

When one thinks of gravitational collapse of matter
spreading over the cosmological horizon, a part of the
matter of the outside region of the cosmological horizon
does not collapse due to the cosmological expansion. Then,
one can expect that the size of a black hole is smaller than
that of the Universe, and we aim to show this. In particular,
we derive a new inequality for the area of stable MOTS,
such that the size of a black hole is limited by the presence
of matter, gravitational waves, and angular momentum. A
main application of this consequence is to give certain
considerations to the population and features of primordial
black holes formed in the very early stage of our Universe.
When one considers standard cosmology, the surface-
averaged density (plus flux) ρ̄þ ¼ ð1=AÞ RS TabnakbdA is
composed of a homogeneous isotropic part and

4In Ref. [16], ð8πJ̄Þ2 ≔ ðA2=6πÞ RS vavadA was used. Note
that va is in the integrand, not Va.

5Considering the inverse mean curvature flow for the spacelike
hypersurface Σ, one can show that Rϕ ≥ RA for the oblate cases
and Rϕ ≤ RA for the prolate cases [16]. Only for the spherically
symmetric case Rϕ ¼ RA holds.
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cosmological perturbations, and the latter imply only tiny
effects at the second order for the inequality. However,
in nonlinear events such as black hole formation, the
argument would be drastically changed. Note that even
if Λ ¼ 0, we would still have a cosmological upper
bound for stable MOTS due to the presence of a nonzero
ρ̄þ in the expanding Universe, so that Λþ ≃ 8πρ̄þ in
standard cosmology as expected (see Ref. [8] for a similar
argument).
One may be interested in higher-dimensional cases. For

the n-dimensional cases, Eq. (13) becomes

1

2

Z
S

ðn−1ÞRdA ≥ ΛAþ
Z
S
½VaVa þ 8πðρþ þ ρþgwÞ�dA:

ð32Þ

This inequality does hold regardless of dimensions and the
sign of the cosmological constant. For n ¼ 3, we can
evaluate the left-hand side from the Gauss Bonnet theorem,
that is,

R
S
ðn−1ÞRdA ¼ 8πð1 − gÞ, where g is the number of

genus. However, for n ≥ 4, the Gauss-Bonnet theorem
does not work, and thus, the value and sign of the left-hand
side cannot be fixed. It gives us an obstacle to show the
upper bound for the area of the stable MOTS in higher
dimensions.
There are a few remaining issues. Equations (15) and

(16) do not depend on the area-averaged quantities, which
we introduce as a simplification. In reality, the exact
physical meaning of the surface integral of VaVa is unclear,
although it can be definitely said that it includes the
contribution from the angular momentum or a three-
dimensional vector-type quantity. Furthermore, it is inter-
esting to look at its variance for the evolution sequence of
stable MOTSs. In the final phase of black hole formation,
spacetime approaches a vacuum and stationary state near
the black hole, and then, the stable MOTS coincides with
the cross section of the event horizon. This means that the
second part of the integrand in Eq. (15) decreases with
evolution, but the first term does not and will be dominate
in the integrand because of the existence of a possible
angular momentum. In future studies, it would be nice to
address these features.
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APPENDIX: SKETCH OF DERIVATION
OF EQ. (8)

Here, we briefly describe the derivation of Eq. (8).
From the Codazzi equation, qbaRbcnc ¼ DbKb

a −DaK,
we have

Rabnarb ¼ raDbKb
a− raDaK

¼−kabκabþKðrÞkþDavaþ 2vaDa ln φ− raDaκ;

ðA1Þ

where Da is the covariant derivative with respect to qab.
From the definition of the three-dimensional Riemann
tensor, ð3ÞRabrarb gives us

raDak ¼ −kabkab − ð3ÞRabrarb − φ−1D2φ

¼ −
1

2
kabkab −

1

2
k2 þ 1

2
ð2ÞR −

1

2
ð3ÞR − φ−1D2φ;

ðA2Þ

where, in the second line, we used the double traced Gauss
equation for S in Σ.
Using the double trace of the Gauss equation for Σ inM,

we have

Gabnanb ¼
1

2
ðð3ÞR − KabKab þ K2Þ: ðA3Þ

Using Eqs. (A1) and (A2), we can compute raDaðkþ κÞ,
and then, eliminating ð3ÞR via Eq. (A3), we can
derive Eq. (8).
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