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We construct spherically symmetric static solutions of the Einstein-Klein-Gordon-Euler system
involving a complex scalar field governed by a periodic potential that emerges in models of axionlike
particles and fermionic matter modeled by a perfect fluid with a polytropic equation of state. Such solutions
describe gravitationally bound composites of fermions and axions, which we dub fermion-axion stars.
Sequences of pure axion stars in the existence domain may show the presence of multiple stable branches
depending on the value of the decay constant parameter in the potential; this reflects in the appearance of
multiple islands of stability in the two-dimensional parameter space of fermion-axion configurations. We
investigate the domain of existence for three different values of the decay constant, identifying one or more
regions of linear stability, making use of a method we already employed in previous works. We confirm the
results from the linear analysis performing fully nonlinear numerical relativity evolutions. In this context,
we perform several numerical simulations to identify regions in the parameter space where unstable models
face different fates: the collapse to a Schwarzschild black hole, the migration to a stable model, and finally
the dispersion of the scalar field together with the dilution of the fermionic matter, which approaches a
static fermion star model with very low mass. This latter scenario was never observed in previous models
without the periodic potential.
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I. INTRODUCTION

Unveiling the nature of dark matter (DM) is one of the
fundamental challenges in modern cosmology. Its existence
finds support from a wide set of observational results, such
as the measurements of galaxy rotation curves, gravita-
tional lensing, and the cosmic microwave background
[1–8]. Several candidates have been proposed as constitu-
ents of DM, including macroscopic objects like primordial
black holes [9–12] and a zoo of hypothetical particles,
which are considered to lack electromagnetic interactions
with baryonic matter, thus being invisible through electro-
magnetic observations. Among the most compelling par-
ticle DM candidates, there is the axion, a pseudo-scalar
(boson) particle that was introduced in order to solve the
strong CP problem by Peccei and Quinn [13], but that
could play a role in cosmology [14–17]. Ultralight axion-
like fields naturally arise also from string theory compac-
tifications [18,19], serving as another theoretical prediction
of their existence. Motivated by these theoretical studies,
various experiments have been proposed or are currently
ongoing to search for this family of particles in a wide mass
range [20–22].
Bosonic particles can clump together to form localized

and coherently oscillating equilibrium configurations that

resemble Bose-Einstein condensates [23,24]. These compact
objects are known in the literature as boson stars [25], and
theymay have astrophysically relevantmasseswhen themass
of the bosons is lower than 10−11 eV. Since the pioneerworks
of Kaup [26] and Ruffini and Bonazzola [27], their charac-
terization has been broadened, including different potentials
such as the self-interaction [28], the solitonic [29], the
Kleihaus-Kunz-List-Schaffer [30,31], and the axionic poten-
tials [32], including charge [33], rotation [34,35], oscillating
solitonic stars [36], multifield boson stars [37–39], or even
vector field (Proca stars [40]). The interested reader is
addressed to the reviews found in Refs. [41,42]. The
dynamics of these configurations have been extensively
studied with full nonlinear numerical relativity simulations
[43–47]; their stability properties have been investigated in
[48–50], and a formation mechanism called gravitational
cooling has been proposed in [51] by Seidel and Suen, in
[52,53] in the Newtonian limit, and has been extended to the
vector field case in [54]. All these studies confirmed the
dynamical robustness of scalar-field stellar systems.
In this work we consider the novel class of boson stars

first studied in the relativistic regime in [32]. The scalar
field is governed by a periodic potential inspired by that
of the QCD axion, which depends on two independent
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parameters, the axion mass μ and the decay constant fa. If
such axionlike particles exist and they could form such
compact objects, it is natural to assume that objects made
out of a mixture of axions and fermions might also exist in
the Universe, either considering the formation from a
primordial gas comprising axions and fermions or by the
dynamical capture of axionic or fermionic particles by an
already formed neutron or axion star. Macroscopic com-
posites of fermions and bosons are known in the literature
as fermion-boson stars [55–59]. The presence of bosonic
matter in fermion stars can modify their physical properties
and potentially be observed as discussed in [60,61] for
neutron stars (NSs) and in [62] for white dwarfs.
Gravitational-wave emission from orbital mergers of fer-
mion-boson stars have also been analyzed in [63]. Here we
will investigate the properties of macroscopic objects made
of fermions and axions, which we dub fermion-axion stars.
We point out that we consider a complex scalar field for
our models, while in most of their applications, from
fundamental physics to cosmology, axionlike particles
are considered to be real fields. Real fields in astrophysics
can play a role as quasistationary solutions dubbed oscil-
latons, which have similar physical properties, but differ
from the complex case, especially in the relativistic regime.
Studying these configurations is out of the scope of this
work, in which we focus on the stationary solutions made
of complex axionlike particles.
We construct equilibrium configurations of fermion-

axion stars and explore different possible values of the
axion decay constant assessing their stability properties
both in the linear regime and through fully nonlinear
numerical relativity simulations. Linear stability analysis
can be carried out studying the radial perturbation of the
equilibrium configurations and evaluating the modes in the
linearized equations, as in [64] for fermion stars and in
[33,49,50] for boson stars. The linear perturbation analysis
has not yet been applied to fermion-boson stars, but the
linear stability has been studied in previous works
[56,60,65,66] using a variation of the method developed
by Henriques et al. [55,67], which consists of evaluating
the gravitational mass and the number of bosonic and
fermionic particles as functions of the two free parameters
searching for critical points for these three physical
quantities in the two-dimensional parameter space. In this
work, we employ this method for fermion-axion models
and confirm the results of the linear analysis through
nonlinear numerical evolutions, and we present a detailed
study of the different fates of the unstable models,
identifying the regions in the parameter space where
models collapse to black holes (BHs), migrate to a stable
configuration, or face the dispersion of the scalar field,
leaving a very low-mass fermion star remnant.
The paper is organized as follows. In Sec. II, we present

the basic equations employed to obtain the evolution
equations and the matter source terms. Section III addresses

the construction of the static configurations. In Sec. IV,
we briefly describe the linear analysis method and
present two sequences of equilibrium models and illustrate
how the critical points are found. The numerical framework
for the evolutions is described in Sec. V, and the results
are presented in Sec. VI. Finally, we report the conclusions
and final remarks in Sec. VII. We employ units such that
the relevant fundamental constants are equal to 1
ðG ¼ c ¼ M⊙ ¼ 1Þ. For details on how to recover the
physical units for radius and time, we address the reader to
our previous work [66].

II. FORMALISM

Models of mixed stars, where fermionic and bosonic
matter coexist and interact only through gravity, can be
characterized by a total stress-energy tensor, which is the
sum of two independent contributions, one from a perfect
fluid and one from a complex scalar field, in the form

Tμν ¼ Tfluid
μν þ Tϕ

μν; ð1Þ

Tfluid
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð2Þ

Tϕ
μν ¼ −gμν∂αϕ̄∂αϕ − gμνVðjϕjÞ

þ ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ: ð3Þ

The perfect fluid is defined by its rest-mass density ρ, its
pressure P, its internal energy ϵ, and its four-velocity uμ.
The complex scalar field is specified by its potential VðjϕjÞ,
which we choose in this work to be

VðjϕjÞ ¼ 2μ2f2a
B

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4B sin2

� jϕj
2fa

�s !
; ð4Þ

where B ¼ z
zþ1

≈ 0.22 is a constant and z ¼ mu=md ≈ 0.48
is the mass ratio between up and down quarks (see [68]).
The two independent parameters μ and fa represent the
particle mass and the decay constant, respectively. The bar
in the previous equations denotes complex conjugation.
The system of equations governing the dynamics is given
by the Einstein equationsGμν ¼ 8πTμν, by the conservation
laws of the fermionic stress-energy tensor and of the
baryonic mass

∇μT
μν
fluid ¼ 0; ð5Þ

∇μðρuμÞ ¼ 0; ð6Þ

and by the Klein-Gordon equation

∇μ∇μϕ ¼ UðϕÞϕ ð7Þ
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for the complex scalar field. In the previous equations, the
symbol∇ represents the covariant derivative with respect to

the four-metric gμν, andUðϕÞ ¼ ∂VðϕÞ
∂jϕj2 . The system is closed

by a suitable choice of an equation of state (EOS) for the
fluid, which relates the pressure with the rest-mass density
and the internal energy. In this work, we consider a
polytropic EOS for the equilibrium configurations and
an ideal fluid EOS for the evolutions to take into account
possible shock-heating effects, yielding

P ¼ KρΓ ¼ ðΓ − 1Þρϵ; ð8Þ

where we fix the parameters K ¼ 100 and Γ ¼ 2.
Our framework for the evolutions is based on a numeri-

cal code [69], which employs a spherically symmetric
metric in isotropic coordinates

ds2 ¼ −α2dt2 þ ψ4γijðdxi þ βidtÞðdxj þ βjdtÞ; ð9Þ

where xi ¼ fr; θ;φg are the spherical coordinates, α and βi

are the lapse function and the shift vector, respectively,
ψ ¼ e4χ is the conformal factor, and γij is the spatial metric,
which takes the form

γijdxidxj ¼ aðrÞdr2 þ bðrÞr2ðdθ2 þ sin θ2dφ2Þ; ð10Þ

which depends on two generic functions aðrÞ and bðrÞ.
We employ the Baumgarte-Shapiro-Shibata-Nakamura

(BSSN) formulation of Einstein’s equations [70–72] in its
covariant formulation introduced by Brown [73,74]. In
this formalism, the evolved quantities are the spatial
metric γij, the conformal factor χ, the trace of the extrinsic
curvature K, its traceless part Aa ¼ Ar

r, Ab ¼ Aθ
θ ¼ Aφ

φ,
and the radial component of the so-called conformal
connection functions Δr (see [71,72] for definitions). In
our simulations, we employ the “nonadvective 1þ log”
gauge condition for the lapse function α and a variation of
the Gamma-driver condition for the shift vector βr. The
interested reader is addressed to [69] for further details
regarding the BSSN evolution equations, gauge condi-
tions, and the formalism for the hydrodynamic equations
of our numerical code.
Even if we do not report here the entire system of

equations, we remind the reader that they involve matter
source terms emerging from suitable projections of the
stress-energy tensor onto the spatial metric, namely,

E ¼ nμnνTμν; ð11Þ

ji ¼ −γμi nνTμν; ð12Þ

Sij ¼ γμi γ
ν
jTμν; ð13Þ

where γμν ¼ δμν þ nμnν are the projection operators on the
spatial hypersurfaces, nμ is the unit normal vector, and δμν is
the Kronecker delta.
In the case of fermion-axion stars, we can evaluate the

contribution to the matter source terms from the fluid and
from the scalar field separately. The perfect fluid matter
source terms read

Efluid ¼ ½ρð1þ ϵÞ þ P�W2 − P; ð14Þ

jfluidr ¼ e4χa½ρð1þ ϵÞ þ P�W2vr; ð15Þ

Sfluida ¼ e4χa½ρð1þ ϵÞ þ P�W2vr þ P; ð16Þ

Sfluidb ¼ P; ð17Þ

where Sa ¼ Srr and Sb ¼ Sθθ ¼ Sφφ, W ¼ αut is the Lorentz
factor, and vr is the radial component of the fluid three-
velocity. Following the work of [75], we introduce two
auxiliary variables

Π ¼ 1

α
ð∂t − βr∂rÞϕ; ð18Þ

Ψ ¼ ∂rϕ: ð19Þ

In this formalism, the bosonic contribution to the source
terms takes the form

Eϕ ¼
�
Π̄Πþ Ψ̄Ψ

e4χa

�
þ VðjϕjÞ; ð20Þ

jϕr ¼ −ðΠ̄Ψþ Ψ̄ΠÞ; ð21Þ

Sϕa ¼
�
Π̄Πþ Ψ̄Ψ

e4χa

�
− VðjϕjÞ; ð22Þ

Sϕb ¼
�
Π̄Π −

Ψ̄Ψ
e4χa

�
− VðjϕjÞ; ð23Þ

and the Klein-Gordon equation (7) is now recast as a first-
order system of linear equations, which reads

∂tϕ ¼ βr∂rϕþ αΠ; ð24Þ

∂tΠ ¼ βr∂rΠþ α

ae4χ

�
∂rΨþ Ψ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ Ψ
ae4χ

þ αKΠ − αUðϕÞ; ð25Þ

∂tΨ ¼ βr∂rΨþΨ∂rβr þ ∂rðαΠÞ: ð26Þ

Finally, we report here the elliptic sector of Einstein
equations, which provides a set of constraint equations,
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namely, the Hamiltonian constraint and the momentum
constraint, which read as

H ¼ R − ðA2
a þ 2A2

bÞ þ
2

3
K2 − 16πE ¼ 0; ð27Þ

Mr ¼ ∂rAa −
2

3
∂rK þ 6Aa∂rχ

þ ðAa − AbÞ
�
2

r
þ ∂rb

b

�
− 8πjr ¼ 0; ð28Þ

where R is the Ricci scalar.

III. INITIAL DATA

To perform numerical evolutions, a mandatory step is
to construct initial data that solve the constraint equa-
tions (27) and (28) to obtain the physical solutions of
Einstein equations. In this context, we employ a spherically
symmetric metric in Schwarzschild coordinates

ds2 ¼ −αðrÞ2dt2 þ ãðrÞ2dr2 þ r2ðdθ2 þ sinθ2dφ2Þ; ð29Þ

where ãðrÞ and αðrÞ are two geometrical functions; for
simplicity, we use the same symbol r for the radial
coordinate, even though this is now a different coordinate
than the one appearing in (9). The bosonic field is assumed
to have a harmonic time dependence ϕðt; rÞ ¼ ϕðrÞe−iωt,
where ω is its eigenfrequency. Assuming a static fluid,
uμ ¼ ð−1=α; 0; 0; 0Þ, Einstein’s equations can be recast as
ordinary differential equations (ODEs), which read

dã
dr

¼ ã
2

�
1 − ã2

r
þ 8πr

�
ω2ã2ϕ2

α2
þ ã2VðjϕjÞ

þ Ψ2 þ ã2ρð1þ ϵÞ
��

; ð30Þ

dα
dr

¼ α

2

�
ã2 − 1

r
þ 8πr

�
ω2ã2ϕ2

α2
− ã2VðjϕjÞ þΨ2 þ ã2P

��
;

ð31Þ

dϕ
dr

¼ Ψ; ð32Þ

dΨ
dr

¼ −
�
1þ ã2 − 8πr2ã2

�
VðjϕjÞ þ 1

2
ðρð1þ ϵÞ−PÞ

��
Ψ
r

−
ω2ã2ϕ2

α2
− ã2UðjϕjÞϕ; ð33Þ

dP
dr

¼ −½ρð1þ ϵÞ þ P� α
0

α
; ð34Þ

where the prime indicates the derivative with respect to r.
This system is closed by the EOS as in Eq. (8).

To construct suitable equilibrium configurations, we solve
the ODE system with a fourth-order Runge-Kutta method,
applying appropriate boundary conditions. Each numerical
solution is characterized by the central values of the rest-
mass density ρ0 and of the scalar field ϕ0. We then require
the metric functions to be regular at the origin, and we apply
Schwarzschild outer boundary conditions. Finally, we
require that the scalar field vanishes at r → ∞, and this
condition can be fulfilled by evaluating the correct value of
the eigenfrequency ω; to achieve this, we make use of a two-
parameter shooting method. To summarize, the set of
boundary conditions that we apply are

ãð0Þ ¼ 1; ϕð0Þ ¼ ϕc;

αð0Þ ¼ 1; lim
r→∞

αðrÞ ¼ lim
r→∞

1

ãðrÞ ;

Ψð0Þ ¼ 0; lim
r→∞

ϕðrÞ ¼ 0;

ρð0Þ ¼ ρc; Pð0Þ ¼ KρΓc : ð35Þ

We evaluate the total gravitational mass for each
model as

MT ¼ lim
r→∞

r
2

�
1 −

1

ã2

�
; ð36Þ

which corresponds to the Arnowitt-Deser-Misner (ADM)
mass at infinity.

IV. LINEAR STABILITY

In the previous section, we have illustrated how to
construct static solutions of fermion-axion stars. Once
we have populated the parameter space with models, a
natural question that arises is whether we can delineate
the boundary between the stable and unstable regions in
such space. In this section, we explain how to determine the
linear stability of these solutions.
Identifying the stable and unstable branches for single-

fluid systems like fermion stars and boson stars is straight-
forward, as this transition occurs at the equilibrium
configuration with the largest mass, which is called the
critical point. One method for computing the critical point
is to consider a harmonic perturbation around each field
static value and solve the linearized system of equations.
This has been done for boson stars [48–50,76], fermion
stars [64], and dark matter admixed NSs with fermionic
dark matter [77,78]. We are not aware of such a study for
fermion-boson or fermion-axion stars.
In the case of mixed systems, as we have a two-

dimensional space of parameters, the boundary between
stable and unstable regions is not a point but it is a curve,
called the critical curve. An alternative and simpler method
to identify the critical curve for fermion-boson stars has
been proposed in [55]. Critical curves identify the transition
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from linearly stable and unstable with respect to perturba-
tions that conserve mass and particle number, and hence
fulfill the conditions

∂NB

∂ρc

����
M¼constant

¼ ∂NF

∂ρc

����
M¼constant

¼ 0;

∂NB

∂ϕc

����
M¼constant

¼ ∂NF

∂ϕc

����
M¼constant

¼ 0; ð37Þ

where NB and NF are the number of bosonic particles and
of fluid elements, respectively. These quantities are asso-
ciated with the conserved Noether charge related to the
invariance under global Uð1Þ transformations ϕ → ϕeiδ

and with the conservation of the baryonic number, respec-
tively, and they can be evaluated by integrating their
volume densities as follows:

NB ¼ 4π

Z
ãωϕ2r2

α
dr; NF ¼ 4π

Z
ãρr2dr: ð38Þ

To solve (37) for the critical curve, we follow the same
procedure already presented in previous works [56,65,66].
We construct many contour lines with equal mass MT that
populate the parameter space; we then move along each
single line and determine the point at which NB and NF
present a critical value, meaning a change of the sign of
their derivative with respect to the parameters ρc and ϕc. To
automatize this procedure, we have developed a numerical
code that can generate contour lines in the parameter
space for fermion-boson stars, details of which are briefly
discussed in Appendix A. This numerical code is publicly
available.
In Fig. 1 we depict with a color map the total gravita-

tional mass as a function of the two parameters character-
izing the models MTðρ0;ϕ0Þ for three different values of
the decay constant log10ðfaÞ ¼ f−1.5;−1.7;−2.0g, which
show one, two, and three stable branches for axion stars
(ASs), respectively. On top of that, we show many contour
lines of equal mass in dashed blue, and we construct with
the method described in the previous paragraph the black
solid line, which is the boundary between the stable and
unstable regions. Depending on the value of fa the
existence line for axion stars present one or more critical
points, outlining one or more stable branches [32]. We
expected that the presence of more stable branches gives
rise to different islands of stability for the fermion-axion
configurations, and our results confirm this prediction. In
the middle plot of Fig. 1, we observe a secondary region of
linear stability that starts from the critical points of the
axion star models, the minimum at ϕc ¼ 0.092 and second
maximum at ϕc ¼ 0.157, and interestingly, it extends up to
around ρc ¼ 0.008 which is fairly higher than the value
of the critical point for isolated NSs, which is around
ρ ¼ 0.0031. Therefore, we could reach stable neutron stars
with extremely dense interiors due to the presence of axion

particles, with interesting implications for the properties of
dense matter. In the bottom plot, we observe the appearance
of a third island of stability corresponding to the third stable
branch in the pure axion star existence plot.
We now focus on two illustrative examples of sequences

of equilibrium models with log10ðfaÞ ¼ −1.7 with masses
MT ¼ 1.27 and MT ¼ 1.06, which start from a purely

FIG. 1. Equilibrium configurations of fermion-axion stars for
log10ðfaÞ ¼ −1.5 (top), log10ðfaÞ ¼ −1.7 (middle), and
log10ðfaÞ ¼ −2.0 (bottom). Dashed lines correspond to models
with the same total mass MT . The black solid line depicts the
boundary between stable and unstable models.
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fermionic star; in Fig. 2, we depict the number of bosons
NB and fermions NF of these two sequences as functions of
ϕc and ρc. In the first case (top plot) we can identify only
one critical point in the curve, corresponding to a maximum
of NB and a minimum of NF at the values of ρc ¼ 0.00352
and ϕc ¼ 0.052; this contour curve in fact only crosses the
boundary of the primary stability region. All the models on
the left of the critical point lie in the stable region (solid
line), and the ones on the right (dashed line) are unstable.
The second case with MT ¼ 1.06 (bottom plot) instead
presents two stable branches, which correspond to the
intervals in which NB (NF) increases (decreases); this
equal-mass curve crosses the primary stable region at the
first maximum (minimum) of NB (NF), then crosses the
secondary stable region in the minimum (maximum) and
second maximum (minimum) of NB (NF). Sequences of
equilibrium configurations that start from a purely fermion
star have the feature that the number of fermions NF first
decreases up to the critical point and the number of bosons
NB increases; sequences starting with a pure axion star
show the opposite trend.

V. SETUP FOR EVOLUTIONS

To confirm the study of the linear stability in the
nonlinear regime, we perform numerical evolutions of
the Einstein-Klein-Gordon-Euler system described in
Sec. II, with the spherically symmetric numerical code
developed in [69], upgraded with the evolution equations
and the matter source terms of the complex scalar field in
[79], where the authors showed a second-order conver-
gence. We have extensively tested and used this numerical
framework in past works (see, e.g., [75,80–83]). We further
test our numerical code, evolving the configurations in
Table I using three different resolutions and confirming that
the results of the dynamical fate of the models shown in this
work do not depend on the resolution (see Appendix B).
The numerical code solves the Einstein equations in
spherical isotropic coordinates, making use of a partially
implicit Runge-Kutta method, developed in [84,85], to treat
and handle the numerical instabilities coming from the
terms in the equations that carry the typical 1r singularities.

FIG. 2. Number of fermions NF and bosons NB for the
equilibrium configurations of equal mass MT ¼ 1.27 (top) and
MT ¼ 1.06 (bottom), varying the value of ϕc and ρc. The solid
lines indicate the stable branches, while the dashed lines are the
unstable ones.

TABLE I. Static fermion-axion star models with decay constant log10ðfaÞ ¼ −1.7. From left to right, the columns indicate the model
name, its fate, the central value of the scalar field ϕc and of the rest-mass density ρc, the field frequency obtained with the shooting
method ωshoot, the normalized frequency ω, the total Misner-Sharp mass MT , the number of bosons to fermions ratio NB=NF, the
number of bosons NB, the radius containing 99% of bosons, fermions, and total particles, RB, RF, RT , respectively. We used the
Schwarzschild coordinates to evaluate the radii.

Model Fate ϕc ρc ωshoot ω MT NB=NF NB RB RF RT

MS1 Stable 1.24 × 10−1 7.27 × 10−3 1.521 0.617 0.861 0.246 0.152 3.19 5.95 5.86
MS2 Collapsing 1.11 × 10−1 7.78 × 10−3 1.485 0.885 1.060 0.143 0.127 3.26 6.24 6.18
MS3 Migrating 1.45 × 10−1 8.62 × 10−3 1.741 0.550 0.595 0.670 0.181 3.00 4.51 4.36
MS4 Dispersing 7.00 × 10−2 5.00 × 10−4 1.167 0.882 0.369 41.50 0.181 7.31 1.79 7.41
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We employ a nonequally spaced numerical grid first
introduced in [80], which covers the computational domain
with two different patches, a geometrical progression up to
a certain radius and a hyperbolic cosine outside from it.
This allows us to move the outer boundaries far away from
the origin and hence prevent the effects of reflections for
longer computational time.
In our simulations, we consider a minimal resolution

of Δr ¼ 0.0125 and a Courant-Friedrichs-Lewy factor of
Δt
Δr ¼ 0.3. The grid is shifted by Δr=2 to avoid the origin,
meaning that our inner boundary is set at rmin ¼ Δr

2
, while

we set the outer boundary at rmax ¼ 6000. We adopt a
fourth-order Kreiss-Oliger numerical dissipation to our
evolution equations to damp out high-frequency modes.
We employ an upwind scheme to treat the advection terms,
and we impose radiative boundary conditions.

VI. NUMERICAL EVOLUTIONS

In this section, we intend to verify if the regions of linear
stability that we outlined in Sec. III are populated by
models that are also stable in the nonlinear regime. To
achieve this goal, we perform numerical evolutions of the
full nonlinear Einstein-Euler-Klein-Gordon system, and
we consider the equilibrium configurations to be weakly
perturbed by the numerical truncation errors introduced by
the discretization of the otherwise continuous differential
equations. We expect that for stable mixed stars the
fermionic density ρ and the absolute value of the scalar
field jϕj oscillate slightly around their initial values, while
the scalar field itself oscillates at its eigenfrequency ω.
For unstable models, however, even the small perturba-

tion induced by the numerical discretization is expected
to grow, and eventually the fate of these models can be of
three types: the migration to a stable configuration, the
gravitational collapse to a Schwarzschild BH, or the total
dispersion of the bosonic particles.
We perform numerical evolutions of several stable and

unstable models for the three values of the decay constant
log10ðfaÞ ¼ f−1.5;−1.7;−2.0g, but we show the results
only for log10ðfaÞ ¼ −1.7 as a representative example; the
results from the other cases are similar.
The top plot of Fig. 3 shows the parameter space for

log10ðfaÞ ¼ −1.7 populated by models that we have
numerically evolved to verify the linear stability analysis.
The blue triangles represent linearly stable models, which
we confirm to be stable in the nonlinear regime, the green
dots represent unstable models that migrate to the stable
region, the yellow squares are unstable models that collapse
to a Schwarzschild BH only being perturbed by the
numerical truncation errors, and the violet stars represent
models where we observe the dispersion of the scalar field.
The area above the first stable region is mostly populated
by models that migrate to the first stable island; close to the
first unstable branch of pure axion stars, we find models

that show the dispersion of the scalar field. The region
above the second stable island is only populated by models
that migrate to the second stable region. The unstable
branch of NSs is populated by configurations that migrate;
as we add a small amount of bosons to the system, this
feature is preserved, up to a certain point where we discover
a region where fermion-axion stars collapse to BHs. In the
bottom plot of Fig. 3, we show an enlargement of this area

FIG. 3. The thick black curve is the same critical curve as in
middle panel of Fig. 1 for log10ðfaÞ ¼ −1.7. The blue triangles
are linearly stable models that we evolved, the green dots are
unstable models that migrate to the stable region, the yellow
squares are unstable models that collapse to a BH, and the violet
stars are models that show the dispersion of the scalar field. We
highlight with a red outline the models whose physical properties
are summarized in Table I. Bottom: enlargement of the region
close to the unstable branch of pure NSs.
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with more evolutions; we can appreciate how for higher
values of ρc we need a higher contribution of scalar matter
to trigger the collapse to a BH. In Table I, we report a list of
the properties of one representative model for each of the
possible fates, which we also depict in Figs. 4 and 5.
We show in the left panels of Fig. 4 the time evolution of

ρc and ϕc (top plot) and the number of bosonic NB and
fermionic particles NF (bottom plot) for the stable model
MS1.We notice that the global quantities of the equilibrium
solution are constant in time, revealing that the model is
nonlinearly stable. In the central panels of Fig. 4, we show
the evolution of the same global quantities but for model
MS3, which migrates to the stable region; the conserved
quantities such as the number of fermionic and bosonic
particles are constant during the evolution, but the system
settles on a new static model, approaching the new central
values ρc ¼ 0.0064 and ϕc ¼ 0.132 which identify a point
that lies on the secondary stable region. Finally, in the right
panels, we show how in model MS2 the central values go to
zero at the time when we also observe the appearance of an
apparent horizon (bottom right plot), signaling the collapse
to a BH.
Model MS4 is illustrated in Fig. 5, where we depict in

the top panel the time evolution of the central value of the
scalar field ϕc and of the rest-mass density ρc and in the
middle panel the evolution of the minimum value of
the lapse function αmin and the maximum value of the
metric component gmax

rr ; it can be appreciated that both the

central value of the scalar field and of the rest-mass density
drops to zero, while the metric components approach
approximately the value 1 of the flat metric. This only
happens for models that are very close to the first unstable
branch of pure axion stars; interestingly, while the scalar
field is radiated away, the fermionic matter starts to get
more dilute and there is a remnant object that seems to
approach a static configuration of pure fermionic matter
with a total ADM mass MT ≈ 0.00435 M⊙. In the bottom
plot of Fig. 5, we show a comparison between the late time
snapshots of the radial profile of ρ and the static model; we
can appreciate that the final configuration is oscillating
approximately around this new configuration. Because of
the low contribution of the fermionic component, we can
consider these models as pure axion stars that either
accreted some baryonic matter, for example, from a NS
companion in a mixed binary system, or that formed from a
primordial mixture of axionic and a small percentage of
fermionic particles. A possible scenario to observe this
phenomenon could be that of an axion star in the second
stable branch that accreted a low amount of fermionic
matter and that lost part of the axionic matter due to
accretion onto a second more compact object, moving to
the first unstable branch and triggering the dispersion
mechanism. We point out that we present this result as
an academic proof of concept, as we do not consider this
scenario very likely to occur. Moreover, we describe the
perfect fluid with a polytropic EOS with Γ ¼ 2, which is

FIG. 4. Time evolution of three different static models with decay constant log10ðfaÞ ¼ −1.7. Left: the central values of ρc and ϕc
(top) and number of bosons NB and fermions NF (bottom) for the stable model MS1. Middle: the same quantities for the unstable model
MS3 with the dots in the top panels corresponding to the initial values of ρc and ϕc. Right: show ρc and ϕc (top row) and the apparent
horizon mass normalized with the ADM mass of the system (bottom) for model MS2, which collapses to a Schwarzschild BH.
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not a good description for such low-rest-mass densities;
a more precise study should involve more realistic EOS
based on nuclear physics.

VII. CONCLUSIONS

We have studied models of fermion-axion stars, which are
gravitationally boundobjects composedof fermion andboson
particles, where the latter are modeled by a complex scalar
field whose equations of motion are governed by a periodic
potential inspired by that of the QCD axion [32]. We have
constructed equilibrium configurations for three different
values of the decay constant fa and we have depicted the
existence diagram in the parameter space spanned by the
central rest-mass density and central scalar-field amplitude.
We have analyzed the linear stability and delineated the
boundary between stable and unstable regions, being able to
identifymore than one island of stability as expected for those
values of fa that show multiple stable branches in purely
axion stars existence curves.
Finally, we have presented a detailed study of the

nonlinear stability for a representative example. We have
confirmed the results of the linear analysis; the evolutions
of linearly stable models show how all physical quantities
describing the star, such as the central values of the fields
and the number of particles, remain constant in time. We
have identified different areas in the unstable region where
equilibrium models face different fates when they are
weakly perturbed; some models migrate to the stable
region, others collapse to a Schwarzschild BH, and finally
we have found a small region close to the first unstable
branch of pure axion stars in which the scalar field is
rapidly dispersed away, and we find evidence of a remnant
fermion star. This latter scenario was never observed in
previous works on fermion-boson stars.

The supporting data for this Letter are openly available
from the git repository at [86].
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FIG. 5. Time evolution of the dispersed model MS4 with decay
constant log10ðfaÞ ¼ −1.7. Top: illustrates the central value of the
scalar fieldϕc and themaximumvalue of the rest-mass density ρmax
as a function of time. We notice that both these quantities approach
zero, indicating dispersion mechanism. Middle: we show the
minimum value of the lapse αmin and the maximum value of the
metric component gmax

rr during the evolution. Both these quantities
are converging to their Minkowski spacetime values, as expected.
Bottom: we show the radial profile of late time snapshots of ρ
compared with a static NS solution with a similar number of
fermionic particles NF.
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APPENDIX A: ALGORITHM FOR EQUAL-MASS
CURVES

In this appendix, we discuss how we computed the
equal-mass curves shown in blue in Fig. 1. We recall that
the computation of the mass MT associated with a pair
ðρc;ϕcÞ involves the numerical solution of a set of ODEs.
In particular, we have to solve Eqs. (30)–(34) using the
boundary conditions of Eqs. (35), and then take the limit of
Eq. (36). In order to accurately identify the stability region
in the parameter space, we need to compute many equal-
mass curves, i.e., many level curves of MTðρc;ϕcÞ. To
accomplish this task in an efficient and accurate way, we
proceed as follows. Given an initial point p1 ¼ ðρ1c;ϕ1

cÞ in
the parameter space, we compute the corresponding mass
M0 ¼ MTðp1Þ. Then we find a second point p2 ¼ ðρ2c;ϕ2

cÞ
of the level curve identified byM0 along a certain specified
direction using a bisection algorithm requiring that
jM0 −MTðp2Þj < ϵ, where ϵ is a specified tolerance, which
we choose to be ϵ ¼ 10−6. The distance between p1 and the
bisection interval used to find p2 is given in input by the
user. Note that at this stage the algorithm can fail if the level
curve does not cross the bisection interval. In our specific
case, we always start from the ρc axis or the ϕc axis, i.e.,
from the NS or axion-star case, respectively, so that
choosing the direction in which searching the second point
is trivial. Having two points, we can apply the following
procedure:
(1) We consider the line r̄1 passing through pn−1 and pn,

then we consider a third point q� on r̄1 such that
dðpn−1;pnÞ ¼ dðpn;q�Þ, where d∶R2 ×R2 → R is
the Euclidean distance.

(2) We consider r̄2, a line perpendicular to r̄1 that passes
through q�, and we find the two points qL and qR
such that dðqL;q�Þ ¼ dðq�;qRÞ ¼ dðpn;q�Þ.

(3) We evaluate ML
T ¼ MTðqLÞ and MR

T ¼ MTðqRÞ.
(4) Depending on the sign of the product

ðML
T −M0ÞðMR

T −M0Þ, we proceed as follows:
(a) If ðML

T −M0ÞðMR
T −M0Þ ≤ 0, then we apply

the bisection algorithm on the segment iden-
tified by qL and qR and we find the next point
pnþ1 requiring jM0 −MTðpnþ1Þj < ϵ. We call
this method of finding pnþ1 the “tangent”
method.

(b) If ðML
T −M0ÞðMR

T −M0Þ > 0, i.e., if the level
curve is not passing through the segment iden-
tified by qL and qR, then we build a square
whose center is in pn, then we evaluateMT at the
four vertices of the squares, and we search for
the side crossed by the level curve, and then
apply the bisection algorithm to find pnþ1

requiring jM0 −MTðpnþ1Þj < ϵ. We denote this
method as the “square” method.

(5) We repeat this procedure until the curve closes or
until we reach some specified boundary.

Note that the square method guarantees to find a point, but
it is slower than the tangent method since it requires two
additional evaluations of MT .
This method can be applied to any function fðx; yÞ, but if

the function is known in closed form then there are faster
algorithms to find the corresponding level curves. However,
in order to test our algorithm, we consider an analytical
function and compare the contour plot produced by the
MATLAB function contour() with the level curve that we find
with our algorithm. An illustrative example is shown in
Fig. 6. As can be seen, the distance between the points tends
to increase up to a point where the tangent method fails and
thus we have to find the next point using the square method.
After this step, a relatively small distance between the points
is restored. Note that this is not imposed in the code, but it is
just a consequence of the aforementioned procedure. Finally,
consider that using a small initial step almost always
guarantees the success of the tangent method.

APPENDIX B: CODE ASSESSMENT

As pointed out in the main text, a convergence test of
the numerical code presented in [79] shows second-order
convergence. We test the reliability of the results of
the dynamical evolutions of the models presented in this
work, analyzing the results for models MS1, MS2, and
MS3 for two different resolutions, namely, Δr ¼ 0.0125
and Δr ¼ 0.00625. In the top panels of Fig. 7, we show the

FIG. 6. Level curves of the function fðx; yÞ ¼ sinð4xÞ cosð4yÞ.
In the background, we show the ones computed with the MATLAB

function contour(), while on top we show the points of the level
curves found by our algorithm (green points). We consider
as initial point p1 ¼ ð−0.6;−0.30103Þ, that corresponds to
fðp1Þ ≃ −0.242, and we search the second point in the north
direction using a tolerance of ϵ ¼ 10−10. We show the results for
four different initial steps. The red lines are segments of r̄1, the
blue lines are segments of r̄2, the cyan point is q�, the blue dots
are qL and qR, and the red crosses are the vertex of the square
created in the cases where the tangent method fails.
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FIG. 7. Time evolution of models MS1 (top), MS3 (middle), and MS2 (bottom) for two different grid spacings Δr ¼ 0.0125 and
Δr ¼ 0.00625. Left: the central value of the rest-mass density ρ0. Right: the central value of the scalar field ϕ0 for MS1 andMS3, and the
apparent horizon mass AAH for the collapsing model MS2. The blue horizontal lines represent the value of the corresponding quantity at
initial time.
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time evolution of the central value of the rest-mass density
ρ0 and of the scalar field ϕ0 for the two different grid
spacings; we can appreciate how the results are consistent
with each other, and the higher resolution run shows a
better agreement with the values at initial time, which are

highlighted by the horizontal blue lines. In the central
panels, we show model MS3 which migrates to a stable
configuration; the results using the two resolutions are in
agreement. Finally, we confirm the case in which the model
collapses to a black hole in the bottom panels.
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